

Test report No.: 23C0617R-SAUSV01S-A

SAR Test Report

_	
Product Name	Digital Typewriter
Trademark	KING JIM
Model and /or type reference	DM250US
Applicant's name / address	KING JIM CO.,LTD. 2-10-18 Higashikanda,Chiyoda-ku Tokyo 101-0031 Japan
Manufacturer's name	KAGA MICRO SOLUTION CO.,LTD.
FCC ID	2AWV4-DM250US
Applicable Standard	IEEE 1528-2013 KDB 447498 D01 v06 KDB 865664 D01 v01r04
Test Result	Max. SAR Measurement (1g) 2.4 GHz: 0.093 W/kg
Verdict Summary	IN COMPLIANCE
Documented By (Senior Project Specialist / Ida Tung)	Ida Tung
Tested By (Senior Engineer / Luke Cheng)	Ida Tung Luke cheng Lan Vin
Approved By (Assistant Manager / San Lin)	San Vin
Date of Receipt	2023/12/18
Date of Issue	2024/02/15
Report Version	V1.0

INDEX

	0		Page
1.		ral Information	
	1.1 1.2	EUT Description	
		Antenna List	5
	1.3	SAR Test Exclusion Calculation	
	1.4	Test Environment	
_	1.5	Measurement procedures	
۷.		Measurement System	
	2.1	DASY System Description	
	2.2	Area Scans	
	2.3	DASY E-Field Probe	
	2.4	DATA Acquisition Electronics (DAE) and Measurement Server	
	2.5	Robot	
	2.6	Device Holder	_
_	2.7	Phantom	
3.		e Simulating Liquid	15
	3.1	The composition of the tissue simulating liquid	15
	3.2	Tissue Calibration Result	
	3.3	Tissue Dielectric Parameters for Phantoms	
4.		urement Procedure	
	4.1	SAR System Check	
_	4.2	SAR Measurement Procedure	
5.		rposure Limits	
6.		Equipment List	
7.		urement Uncertainty	
8.	Cond	ucted Power Measurement (Including tolerance allowed for produc	tion
_		ınit)	
9.		Results	
	9.1	Test Results Summary	26
		dix A. System Check Data	
		dix B. Highest measurement Data	
		dix C. Test Setup Photographs	
		dix D. Probe Calibration Data	
		dix E. Dipole & Source Calibration	
	Appen	dix F. Product Photos-Please refer to the file: 23C0617R-Product Photos	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 23C0617R-SAUSV01S-A

Revision History

Report No.	Version	Description	Issued Date
23C0617R-SAUSV01S-A	V1.0	Initial issue of report.	2024/02/15

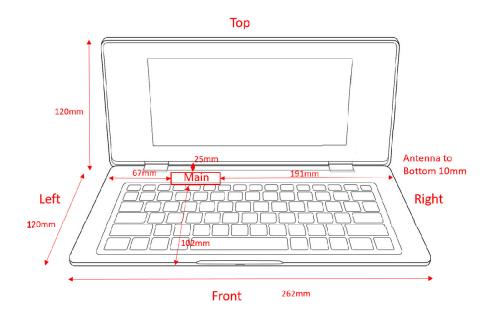
1. General Information

1.1 EUT Description

Product Name	Digital Typewriter				
Trademark	KING JIM				
Model and /or type	DM250US				
reference					
FCC ID	2AWV4-DM250US				
Frequency Range	WLAN 2.4GHz: 2412-2462MHz				
	BT: 2402-2480MHz				
Type of Modulation	802.11b: DSSS				
	802.11g/n: OFDM				
	GFSK(1Mbps) / π /4DQPSK(2Mbps) / 8DPSK(3Mbps)				
Antenna Type	Monopole				
Device Category	Portable				
RF Exposure	Uncontrolled				
Environment					

Summary of test result-Reported 1g SAR (W/Kg)						
Test configuration DTS DSS(BT)						
Standalone	0.093	0.011				

1.2 Antenna List


No.	Brand Name	Part No.	Antenna Type	Peak Gain
1	TAIYO YUDEN	AH168M245001-T (Main)	Monopole	2.0 dBi for 2400 MHz

Note: The above EUT information by manufacturer.

1.3 SAR Test Exclusion Calculation

According to KDB Publication 616217 D04, SAR evaluation is required for the bottom surface of the laptop keyboard.

1.4Test Environment

Ambient conditions in the laboratory:

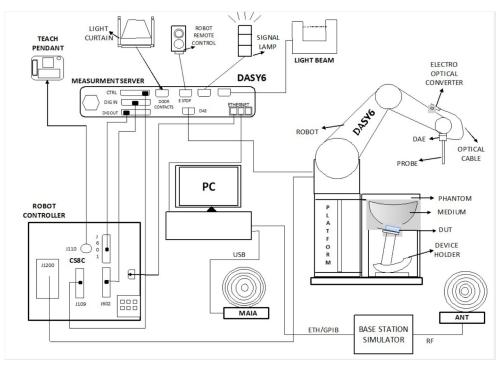
Test Date: 2024/01/30

Items	Required	Actual	
Temperature (°C)	18-25	23 ± 2	
Humidity (%RH)	30-70	50 ± 20	

USA	FCC Registration Number: TW0033				
Canada	CAB Identifier Number: TW3023 / Company Number: 26930				
Site Description	Accredited by TAF				
	Accredited Number: 3023				
Test Laboratory	DEKRA Testing and Certification Co., Ltd.				
	Linkou Laboratory				
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C				
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.				
Phone Number	+886-3-275-7255				
Fax Number	+886-3-327-8031				

Report No.: 23C0617R-SAUSV01S-A

1.5 Measurement procedures


IEEE 1528-2013 47CFR § 2.1093 KDB 248227 D01 v02r02 KDB 447498 D01 v06 KDB 616217 D04 v01r02 KDB 865664 D01 v01r04

2. SAR Measurement System

2.1 DASY System Description

SAR Configurations is shown below:

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- ➤ A computer running Win7/8/10 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing.

2.2.1 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.2.2 SAR measurement drifts

Before an area scan and after the zoom scan, single point SAR measurements are performed at defined locations to estimate the SAR measurement drift due to device output power variations. If a device is known to drift randomly, additional single point drift reference measurements should be performed at regular intervals throughout the area and zoom scan test durations. The SAR drift shall be kept within \pm 5%, whether there are substantial drifts or not. The field difference will be calculated in dB units in the DASY software.

2.2.3 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions.

2.3 DASY E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards under ISO 17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	Ex3DV4					
Construction	Symmetrical design with triangular core Built-in shielding ag	Symmetrical design with triangular core Built-in shielding against static charges				
	PEEK enclosure material (resistant to organic solvents, e.g.	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Frequency	4 MHz – 10 GHz	4 MHz – 10 GHz				
	Linearity: ± 0.2 dB (30 MHz to 10 GHz)					
Directivity	± 0.1 dB in TSL (rotation around probe axis)					
	± 0.3 dB in TSL (rotation normal to probe axis)	1				
Dynamic Range	mic Range 10 μW/g to 100 mW/g					
	nearity: ± 0.2 dB (noise: typically < 1 μW/g)					
Dimensions						
	Tip diameter: 2.5 mm (Body: 12 mm)					
	Typical distance from probe tip to dipole centers: 1 mm	al distance from probe tip to dipole centers: 1 mm				
Application	High precision dosimetric measurements in any exposure so	gh precision dosimetric measurements in any exposure scenario (e.g., very strong				
	gradient fields). Only probe which enables compliance testing for frequencies up to 6					
	GHz with precision of better 30%.					

E-Field mm-Wave Probe Specification

Model	EUmmWVx				
Construction	Two dipoles optimally arranged to obtain pseudo-vector information				
	Minimum three measurements/point, 120° rotated around probe axis				
	Sensors (0.8 mm length) printed on glass substrate protected by high density foam				
Frequency	750 MHz to 110 GHz				
Dynamic Range	< 20 V/m to 10000 V/m with PRE-10				
	(min < 20 V/m to 2000 V/m)				
Position Precision	< 0.2 mm				
Dimensions	Overall length: 337 mm (tip: 20 mm)				
	Tip diameter: encapsulation 8 mm				
	(internal sensor < 1mm)				
	Distance from probe tip to dipole centers:				
	< 2 mm				
	Sensor displacement to probe's calibration point: < 0.3 mm				
Application	E-field measurements of 5G devices and other mm-wave transmitters operating above				
	10GHz in < 2 mm distance from device (free-space)				
	Power density, H-field, and far-field analysis using total field reconstruction				

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

2.5 Robot

The DASY system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- > High precision (repeatability 0.02 mm)
- > High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



2.7 Phantom

2.7.1 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The device holder positions are adjusted to the standard measurement positions in the three sections. A cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

2.7.2 mmWave Phantom

The mmWave Phantom approximates free-space conditions, allowing to evaluate not only the antenna side of the device but also the front (screen) side or any opposite-radiating side of wireless devices operating above 10 GHz without distorting the RF field. It consists of a 40 mm thick Rohacell plate used as a test bed, which has a loss tangent (tan δ) \leq 0.05 and a relative permittivity (ϵ_r) \leq 1.2. High-performance RF absorbers are placed below the foam.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000	-	
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Dielectric Probe Kit and Vector Network Analyzer.

	Tissue Frequency		Relative Permittivity (cr)		Conductivity (σ)			Tissue Temp.	
Date	Type	(MHz)	Measured	Target	Delta	Measured	Torgot	Delta	(°C)
	туре	(IVII IZ)	Measured	raiget	(%)	Measured	Target	(%)	(0)
2024/1/30	Head	2450	39.93	39.20	1.86	1.81	1.80	0.56	21.5
2024/1/30	Head	2412	40.07	39.28	2.01	1.76	1.77	-0.56	21.5
2024/1/30	Head	2437	39.98	39.23	1.91	1.79	1.79	0.00	21.5
2024/1/30	Head	2441	39.96	39.22	1.89	1.79	1.79	0.00	21.5
2024/1/30	Head	2462	39.88	39.18	1.79	1.82	1.81	0.55	21.5

Page: 15 of 27

3.3 Tissue Dielectric Parameters for Phantoms

The head tissue dielectric parameters recommended by the IEC/IEEE 62209-1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head tissue parameters that have not been specified are interpolated according to the head parameters specified in IEC/IEEE 62209-1528.

Target Frequency	H	ead
(MHz)	€r	σ (S/m)
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1640	40.2	1.31
1750	40.1	1.37
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48
6500	34.5	6.07
7000	33.9	6.65
7500	33.3	7.24

Page: 16 of 27

4. Measurement Procedure

4.1 SAR System Check

4.1.1 Dipoles

The SAR dipoles are optimized symmetrical dipole with $\lambda/4$ balun matched to a Flat phantom section filled with tissue simulating liquids. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC signals. They are available for the variety of frequencies between 300MHz and 10 GHz. The provided tripod is used to hold the dipole below the phantom. As the distance between the dipole center and the TSL is critical, a spacer is placed between the dipole and the phantom. The spacing distance is frequency dependent.

4.1.2 SAR System Check Result

- 1. Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %.
- 2. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

	Frague nov	Input	Measured	Targeted	Normalized		Measured	Targeted	Normalized	Delta 10g	Tissue
Date	Frequency	Power	1g SAR	1g SAR	1g SAR	Delta 1g	10g SAR	10g SAR	10g SAR	- 3	Temp.
	(MHz)	(mW)	(W/kg)	(W/kg)	(W/kg)	(%)	(W/kg)	(W/kg)	(W/kg)	(%)	(°C)
2024/1/30	2450	250	12.80	52.40	51.2	-2.29	5.82	24.60	23.28	-5.37	21.5

4.2 SAR Measurement Procedure

The Dasy calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

E:RMS electric field strength (V/m)

The SAR / APD measurements for the EUT should be performed on the channel that produces the highest rated output power of each transmitting antenna.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR / APD distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR / APD location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. RF Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, RSS-102 Issue 5, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg
Power density ¹	1 mW/cm ²

Note: $1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration	Next Calibration
Reference Dipole 2450MHz	Speag	D2450V2	930	2022/11/21	2025/11/20
Device Holder	Speag	N/A	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1207	2023/11/22	2024/11/21
E-Field Probe	Speag	EX3DV4	3698	2023/11/21	2024/11/20
SAR Software	Speag	DASY52	V52.10.4.1535	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Directional Coupler	Agilent	87300C	MY44300353	N/A	N/A ¹
Attenuator	Woken	WATT-218FS-10	N/A	N/A	N/A ¹
Attenuator	Mini-Circuit	BW-S20W2+	N/A	N/A	N/A ¹
Vector Network Analyzer	Agilent	E5071C	MY46108013	2023/03/09	2024/03/08
Signal Generator	Anritsu	MG3694A	041902	2023/09/07	2024/09/06
Power Sensor	Anritsu	MA2411B	1339194	2023/11/06	2024/11/05
Power Meter	Anritsu	ML2495A	1434004	2023/12/27	2024/12/26
Power Sensor	Anritsu	MA2411B	1339196	2023/12/27	2024/12/26

Note: 1. System Check, the path loss measured by the network analyzer, includes the signal generator, amplifier, cable, attenuator and directional coupler.

Page: 20 of 27

Note:

Per KDB 865664 D01 requirements for dipole calibration, the following are recommended FCC procedures for SAR dipole calibration.

- 1. After a dipole is damaged and properly repaired to meet required specifications.
- 2. When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions.
- 3. When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification.

D2450V2-930

	Frequency	Tissue	Return loss	Limit	Verified Date
Calibration	2450 MHz	Head	-26.8	Within 20%	2022/11/21
Measurement	2450 MHz	Head	-26.79	VVIIIIII 20%	2023/11/16

4. When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement.

D2450V2-930

	Frequency	Tissue	Impedance	Limit	Verified Date
Calibration	2450 MHz	Head	53.7	Within 5Ω	2022/11/21
Measurement	2450 MHz	Head	53.82	VVIIIIII 502	2023/11/16

7. Measurement Uncertainty

Measi	urement un	certain	ty for	300 N	/IHz to	o 3 GHz	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.
	value	Dist.		1g	10g	(1g)	(10g)
Measurement System Err	ors		•	•	•		•
Probe Calibration	±12.0%	N	2	1	1	±6.0%	±6.0%
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%
Broadband Signal	±2.8%	R	1.732	1	1	±1.6%	±1.6%
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%
Other Probe+Electronic	±0.8%	N	1	1	1	±0.8%	±0.8%
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±0.006 mm	N	1	0.14	0.14	±0.1%	±0.1%
Data Processing	±1.2%	N	1	1	1	±1.2%	±1.2%
Phantom and Device Erro	ors	- 1		•		•	-
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
Conductivity (temp.)	±3.3%	R	1.732	0.78	0.71	±1.5%	±1.4%
Phantom Permittivity	±14.0%	R	1.732	0	0	±0.0%	±0.0%
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR res	sults	•	•	•	•		•
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%
Combined Uncertainty		-	•			±11.0%	±10.9%
Expanded Uncertainty						±21.9%	±21.7%

Page: 22 of 27

Mea	surement u	ncertai	nty fo	r 3 G	Hz to	6 GHz	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.
	value	Dist.		1g	10g	(1g)	(10g)
Measurement System Err	rors	1		ı		1	-
Probe Calibration	±14.0%	N	2	1	1	±7.0%	±7.0%
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%
Broadband Signal	±2.6%	R	1.732	1	1	±1.5%	±1.5%
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%
Other Probe+Electronic	±1.2%	N	1	1	1	±1.2%	±1.2%
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±0.005 mm	N	1	0.29	0.29	±0.2%	±0.2%
Data Processing	±2.3%	N	1	1	1	±2.3%	±2.3%
Phantom and Device Erro	ors	•	•	•	•		
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
Conductivity (temp.)	±3.4%	R	1.732	0.78	0.71	±1.5%	±1.4%
Phantom Permittivity	±14.0%	R	1.732	0.25	0.25	±2.0%	±2.0%
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR res	sults	-	•		•	•	
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%
Combined Uncertainty						±11.9%	±11.8%
Expanded Uncertainty						±23.8%	±23.6%

8. Conducted Power Measurement (Including tolerance allowed for production unit)

WLAN 2	.4G 1TX SISO						
specified maximum output power an antenna port	_		514	SISO-Main(TX1)			
ntbn	Frequency	Mode BW	Frequency Mode BW	CH	AV	AV	
10 E				СН	Power	Target	
aximu port		b		1	15.81	16.5	
та; ла р			20	6	16.17	16.5	
ified				11	16.04	16.5	
specified m an antenna				1	13.76	14	
ode s at a	WLAN 2.4GHz	g	20	6	12.93	14	
A mc				11	12.21	14	
FD		n		1	12.36	13	
DSSS/OFDM mode		n (HT)	20	6	12.41	13	
DSG		(111)		11	12.65	13	

ВТ								
	_			SISO-Main(TX1)				
ower	Frequency	Mode	Modulation	CH	AV	AV		
ut po				CH	Power	Target		
Bluetooth mode maximum output power				0	8.80	9.0		
mnu		BR	BR GFSK	39	8.81	9.0		
axin				78	8.45	9.0		
le m				0	7.28	7.5		
шос	BT 2.4GHz	EDR 8	EDR	EDR 8DPSK	DR 8DPSK	39	7.23	7.5
ooth				78	7.24	7.5		
luet				0	N/A	N/A		
Δ		BLE	GFSK	19	N/A	N/A		
				39	N/A	N/A		

9. Test Results

9.1 Test Results Summary

Test	Dist.	Frequ	iency		Conducted Power (dBm)		SAR (W/kg)	
Position	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	Plot No.
Test Mode: WLA	N2.4GHz_	802.11b-1N	M_Ant Mair	1				
Bottom	0	1	2412	15.81	16.5	0.068	0.081	
Bottom	0	6	2437	16.17	16.5	0.078	0.085	
Bottom	0	11	2462	16.04	16.5	0.083	0.093	3
Test Mode: Bluetooth_BT-1M_Ant Main								
Bottom	0	39	2441	8.81	9	0.00795	0.011	4

Note:

- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required.
- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no
 further SAR testing is required for 802.11b DSSS in that exposure configuration.

Appendix

Appendix A. System Check Data

Appendix B. Highest measurement Data

Appendix C. Test Setup Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix F. Product Photos-Please refer to the file: 23C0617R-Product Photos

Report No.: 23C0617R-SAUSV01S-A

Appendix A. System Check Data

Test Laboratory: DEKRA Date: 2024/01/30

System Performance Check_2450MHz-Head

DUT: 2450 MHz; Type: D2450V2

Communication System: UID 0, CW; Frequency: 2450 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ S/m}$; $\epsilon_r = 39.93$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3698; ConvF(7.15, 7.15, 7.15) @ 2450 MHz; Calibrated: 2023/11/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 2023/11/22
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.10 (4);

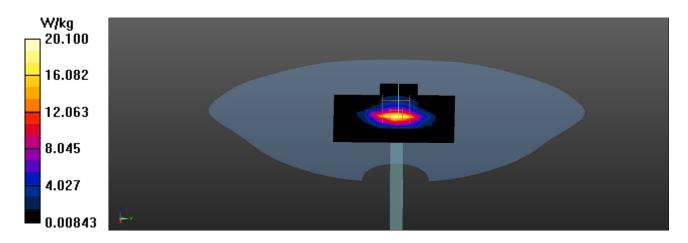
Configuration/2450MHz-Head/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 20.1 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.8 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 24.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.82 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 47.2%

Maximum value of SAR (measured) = 21.5 W/kg

Appendix B. Highest Measurement Data

Test Laboratory: DEKRA Date: 2024/01/30

3_WLAN2.4GHz_802.11b-1M_CH11_Bottom_0mm_ANT Main

DUT: Digital Typewriter; Type: DM250US

Communication System: UID 0, WLAN2.4G; Frequency: 2462 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2462 MHz; σ = 1.82 S/m; ϵ_r = 39.88; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

 Probe: EX3DV4 - SN3698; ConvF(7.15, 7.15, 7.15) @ 2462 MHz; Calibrated: 2023/11/21

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1207; Calibrated: 2023/11/22

Phantom: SAM with left table; Type: SAM;

Measurement SW: DASY52, Version 52.10 (4);

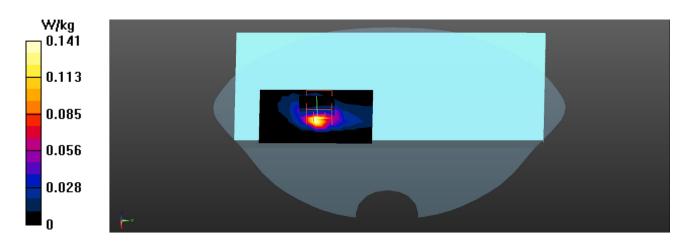
Configuration/2450MHz-Head/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.141 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.249 V/m; Power Drift = -0.15 dB


Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.034 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 43.2%

Maximum value of SAR (measured) = 0.169 W/kg

Test Laboratory: DEKRA Date: 2024/01/30

4_Bluetooth_BT-1M_CH39_Bottom_0mm_ANT Main

DUT: Digital Typewriter; Type: DM250US

Communication System: UID 0, BT 1M&3M&BLE; Frequency: 2441 MHz

Communication System PAR: 0 dB

Medium parameters used: f = 2441 MHz; σ = 1.79 S/m; ϵ_r = 39.96; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

 Probe: EX3DV4 - SN3698; ConvF(7.15, 7.15, 7.15) @ 2441 MHz; Calibrated: 2023/11/21

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1207; Calibrated: 2023/11/22

Phantom: SAM with left table; Type: SAM;

Measurement SW: DASY52, Version 52.10 (4);

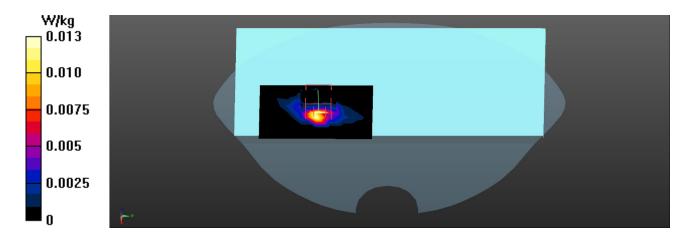
Configuration/2450MHz-Head/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0125 W/kg

Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

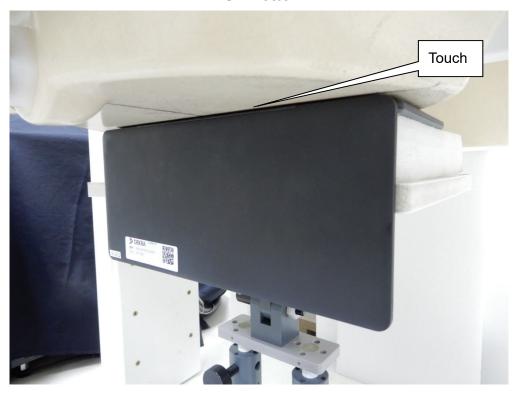
Reference Value = 0.2610 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 0.0250 W/kg

SAR(1 g) = 0.00795 W/kg; SAR(10 g) = 0.00202 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm)

Ratio of SAR at M2 to SAR at M1 = 43%


Maximum value of SAR (measured) = 0.0154 W/kg

Appendix C. Test Setup Photographs

Depth of the liquid in the phantom

Page : 1 of 1

Appendix D. Probe Calibration

Calibration Laboratory of

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Dekra

Taoyuan City

Certificate No.

EX-3698 Nov23

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3698

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

November 21, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name Function Signature

Calibrated by Jeffrey Katzman Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: November 21, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D

Polarization φ

 φ rotation around probe axis

Polarization &

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\theta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \,\mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f > 800 \,\mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
- · Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3698 Nov23 Page 2 of 9 EX3DV4 - SN:3698 November 21, 2023

Parameters of Probe: EX3DV4 - SN:3698

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)$ A	0.41	0.34	0.37	±10.1%
DCP (mV) B	104.8	104.8	101.1	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$^{ m B}_{ m dB}\sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	142.0	±3.3%	±4.7%
		Y	0.00	0.00	1.00		149.2		
		Z	0.00	0.00	1.00		137.7		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX-3698_Nov23

 $^{^{\}rm A}$ The uncertainties of Norm X,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 5). $^{\rm B}$ Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:3698 November 21, 2023

Parameters of Probe: EX3DV4 - SN:3698

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	39.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3698_Nov23

EX3DV4 - SN:3698 November 21, 2023

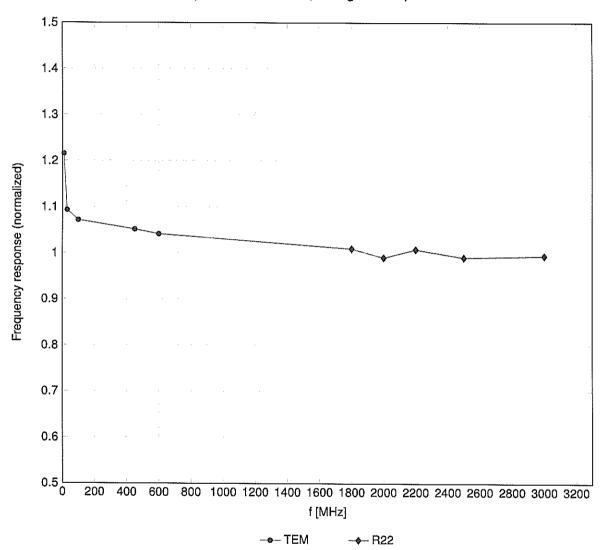
Parameters of Probe: EX3DV4 - SN:3698

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	43.5	0.87	9.66	9.66	9.66	0.16	1.30	±13.3%
750	41.9	0.89	8.83	8.83	8.83	0.40	0.80	±12.0%
835	41.5	0.90	8.74	8.74	8.74	0.37	0.80	±12.0%
900	41.5	0.97	8.51	8.51	8.51	0.45	0.80	±12.0%
1450	40.5	1.20	8.19	8.19	8.19	0.29	0.80	±12.0%
1640	40.2	1.31	8.03	8.03	8.03	0.40	0.86	±12.0%
1750	40.1	1.37	7.91	7.91	7.91	0.39	0.86	±12.0%
1950	40.0	1.40	7.60	7.60	7.60	0.39	0.86	±12.0%
2300	39.5	1.67	7.33	7.33	7.33	0.39	0.90	±12.0%
2450	39.2	1.80	7.15	7.15	7.15	0.44	0.90	±12.0%
2600	39.0	1.96	6.94	6.94	6.94	0.46	0.90	±12.0%
3300	38.2	2.71	6.67	6.67	6.67	0.30	1.35	±14.0%
3500	37.9	2.91	6.17	6.17	6.17	0.35	1.30	±14.0%
3700	37.7	3.12	6.11	6.11	6.11	0.35	1.30	±14.0%
5250	35.9	4.71	4.71	4.71	4.71	0.40	1.80	±14.0%
5600	35.5	5.07	4.41	4.41	4.41	0.40	1.80	±14.0%
5800	35.3	5.27	4.60	4.60	4.60	0.40	1.80	±14.0%

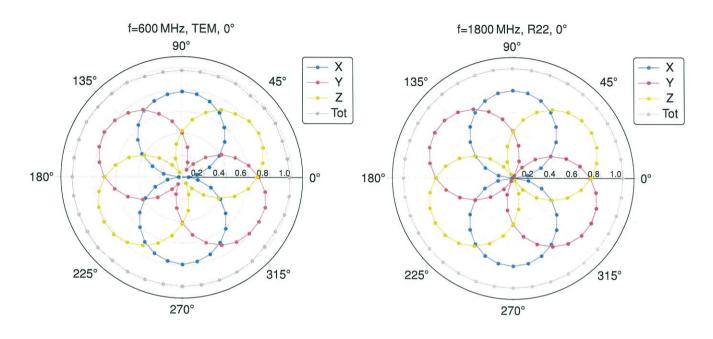
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-3698_Nov23


assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations from the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

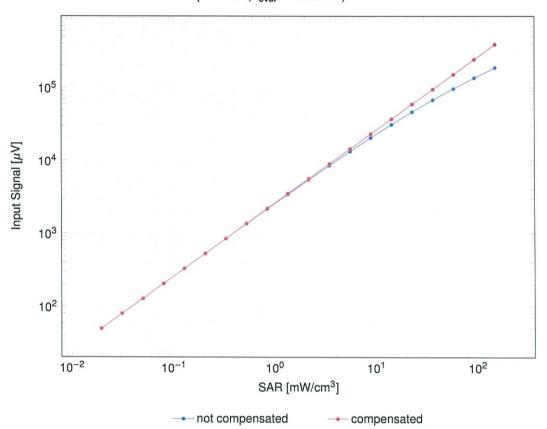
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

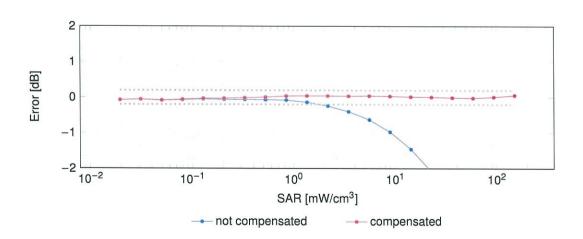

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

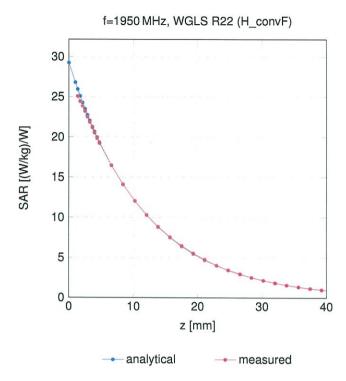


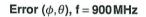


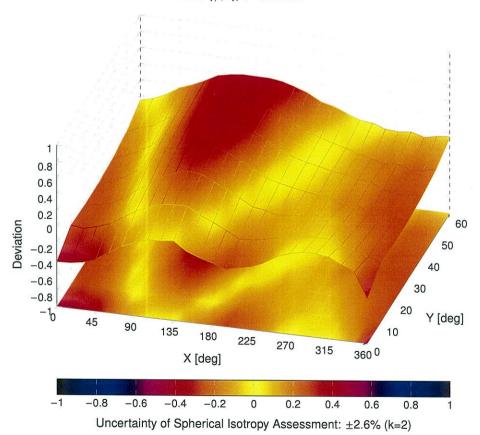
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head})

(TEM cell, f_{eval} = 1900 MHz)




Uncertainty of Linearity Assessment: ±0.6% (k=2)


EX3DV4 - SN:3698

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Appendix E. Dipole & Source Calibration

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

DEKRA (Auden)

Certificate No: D2450V2-930 Nov22

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object D2450V2 - SN:930

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: November 21, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	+- ll
Approved by:	Sven Kühn	Technical Manager	C

Issued: November 22, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7 Ω + 2.9 jΩ
Return Loss	- 26.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-930_Nov22 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 21.11.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:930

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ S/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 31.08.2022

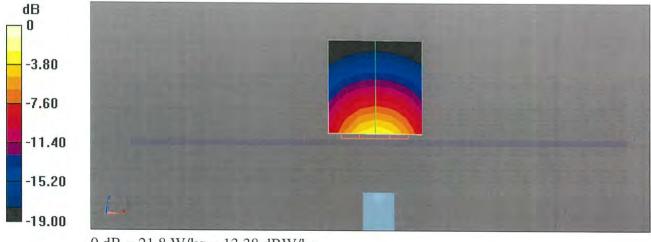
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.6 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 25.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 51.7%

Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg

Impedance Measurement Plot for Head TSL

