

FCC Test Report

FCC ID : 2AWUU6050001

Equipment : Wireless Alarm Hub

Model No. : BH61-HW

Brand Name : Verkada

Applicant : Verkada Inc.

Address : 405 E. 4th Ave. San Mateo CA 94401 United

States Of America (Excluding The States Of

Alaska

Standard : 47 CFR FCC Part 15.247

Received Date : Oct. 05, 2021

Tested Date : Oct. 06 ~ Oct. 07, 2021

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager Gary Chang / Manager

Testing Laboratory

Report No.: FR100503 Page : 1 of 42

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Reference Guidance	9
1.7	Deviation from Test Standard and Measurement Procedure	9
1.8	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Facility	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	6dB and Occupied Bandwidth	18
3.3	RF Output Power	21
3.4	Power Spectral Density	23
3.5	Unwanted Emissions into Restricted Frequency Bands	26
3.6	Emissions in Non-Restricted Frequency Bands	40
4	TEST LABORATORY INFORMATION	42

Release Record

Report No.	Version	Description	Issued Date
FR1O0503	Rev. 01	Initial issue	Oct. 19, 2021

Report No.: FR100503 Page: 3 of 42

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 15.022MHz 44.15 (Margin -15.85dB) – QP	Pass
15.247(d) 15.209 Radiated Emissions		[dBuV/m at 3m]: 48.55MHz	Pass
		36.77 (Margin -3.23dB) - PK	F 455
15.247(b)(3)	Maximum Output Power	Max Power [dBm]: 17.65	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR100503 Page: 4 of 42

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	Ch. Freq. (MHz)	Modulation	Data Rate		
915 ~ 916	915, 915.35, 915.70	DSSS-OQPSK	80Kbps		

1.1.2 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)
1	PIFA	Murata connector	0.2

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	37-57Vdc from PoE
-------------------	-------------------

Note: The above power supply is not bundled in market.

1.1.4 Accessories

	Accessories				
No.	Equipment	Description			
1	Install Kit				

Report No.: FR100503 Page: 5 of 42

1.1.5 Channel List

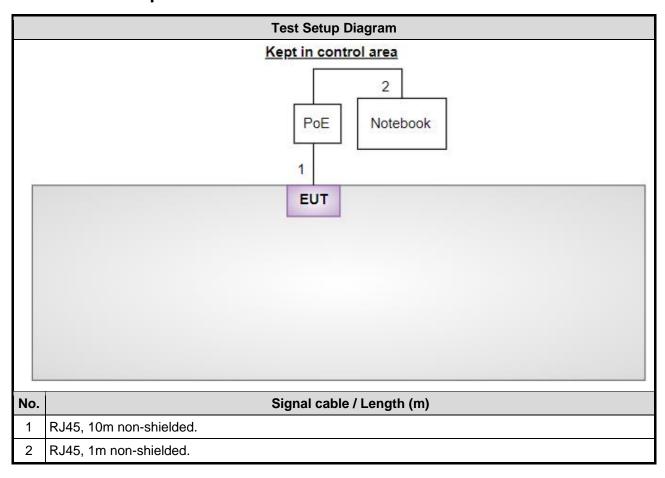
Channel	MHz
0	915
10	915.35
20	915.70

1.1.6 Test Tool and Duty Cycle

Test Tool	Tera Term, Version: V4.94			
Duty Cycle and Duty Factor	Duty Cycle (%)	Duty Factor (dB)		
Duty Cycle and Duty Factor	100.00%	0.00		

1.1.7 Power Index of Test Tool

Modulation Mode		Test Frequency (MHz)	
Modulation Mode	915	915.35	915.70
DSSS-OQPSK	200	200	200


Report No.: FR100503 Page: 6 of 42

1.2 Local Support Equipment List

Support Equipment List						
No.	No. Equipment Brand Model FCC ID Remarks					
1	Notebook	DELL	Latitude E5470	DoC		
2	POE	PowerDsine	PD-9601G/AC		Provided by applicant.	

1.3 Test Setup Chart

Report No.: FR100503 Page: 7 of 42

1.4 The Equipment List

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)					
Tested Date	Oct. 06, 2021	Oct. 06, 2021					
Instrument	Brand Model No. Serial No. Calibration Date Calibration Until						
Receiver	R&S	ESR3	101658	Feb. 08, 2021	Feb. 07, 2022		
LISN	R&S	ENV216	101579	Mar. 17, 2021	Mar. 16, 2022		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 21, 2020	Oct. 20, 2021		
Measurement Software AUDIX e3 6.120210k NA NA							

Test Item	Radiated Emission							
Test Site	966 chamber3 / (03Cl	H03-WS)						
Tested Date	Oct. 06, 2021							
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until			
Receiver	R&S	ESR3	101657	Mar. 12, 2021	Mar. 11, 2022			
Spectrum Analyzer	R&S	FSV40	101499	Mar. 02, 2021	Mar. 01, 2022			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 17, 2020	Nov. 16, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	May 06, 2021	May 05, 2022			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Dec. 22, 2020	Dec. 21, 2021			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 06, 2020	Nov. 05, 2021			
Preamplifier	EMC	EMC02325	980187	Jul. 26, 2021	Jul. 25, 2022			
Preamplifier	Agilent	83017A	MY39501309	Sep. 06, 2021	Sep. 05, 2022			
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 05, 2021	Oct. 04, 2022			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Sep. 24, 2021	Sep. 23, 2022			
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Sep. 24, 2021	Sep. 23, 2022			
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Sep. 24, 2021	Sep. 23, 2022			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Sep. 24, 2021	Sep. 23, 2022			
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Sep. 24, 2021	Sep. 23, 2022			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

Report No.: FR100503 Page: 8 of 42

Test Item	RF Conducted								
Test Site	(TH01-WS)	(TH01-WS)							
Tested Date	Oct. 07, 2021	Oct. 07, 2021							
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2020	Dec. 03, 2021				
Power Meter	Anritsu	ML2495A	1241002	Nov. 04, 2020	Nov. 03, 2021				
Power Sensor	Anritsu	MA2411B	1207366	Nov. 04, 2020	Nov. 03, 2021				
Measurement Software	Sporton	SENSE-15247_DTS	V5.10	NA	NA				
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.								

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty					
Parameters Uncertainty					
Bandwidth	±34.130 Hz				
Conducted power	±0.808 dB				
Power density	±0.583 dB				
Conducted emission	±2.715 dB				
AC conducted emission	±2.92 dB				
Radiated emission ≤ 1GHz	±3.96 dB				
Radiated emission > 1GHz	±4.9 dB				

Report No.: FR100503 Page: 9 of 42

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	CO01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.
Test Site	03CH03-WS
Address of Test Site	No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

FCC Designation No.: TW0009FCC site registration No.: 207696

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Conducted Emissions	DSSS-OQPSK	915 / 915.35 / 915.70	80Kbps	
Radiated Emissions ≤1GHz Radiated Emissions >1GHz Maximum Output Power 6dB bandwidth Power spectral density	DSSS-OQPSK	915 / 915.35 / 915.70	80Kbps	

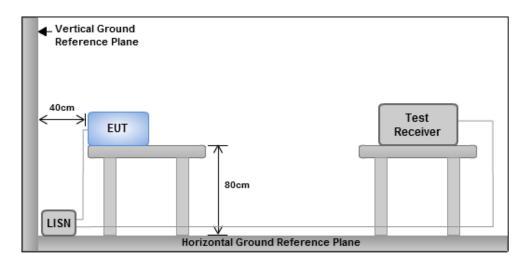
NOTE:

Report No.: FR100503 Page: 10 of 42

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The Z-plane results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Conducted Emissions

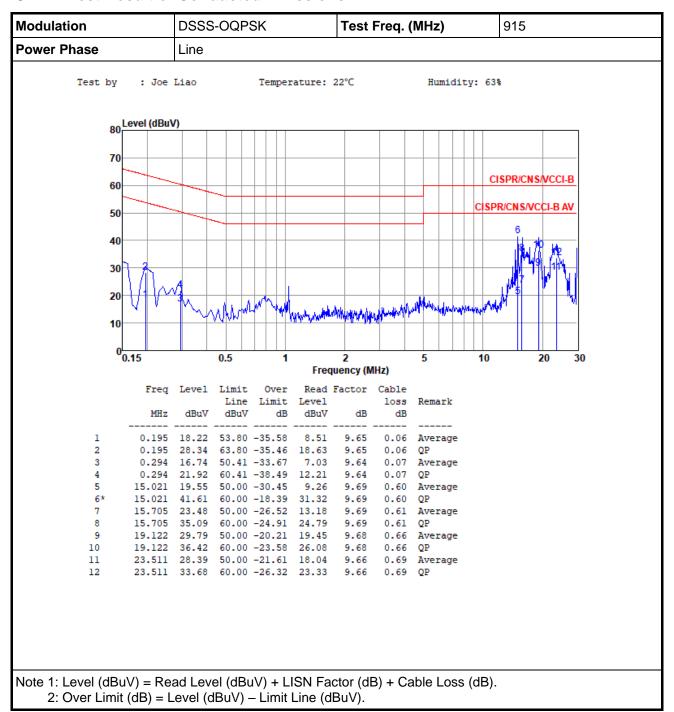

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

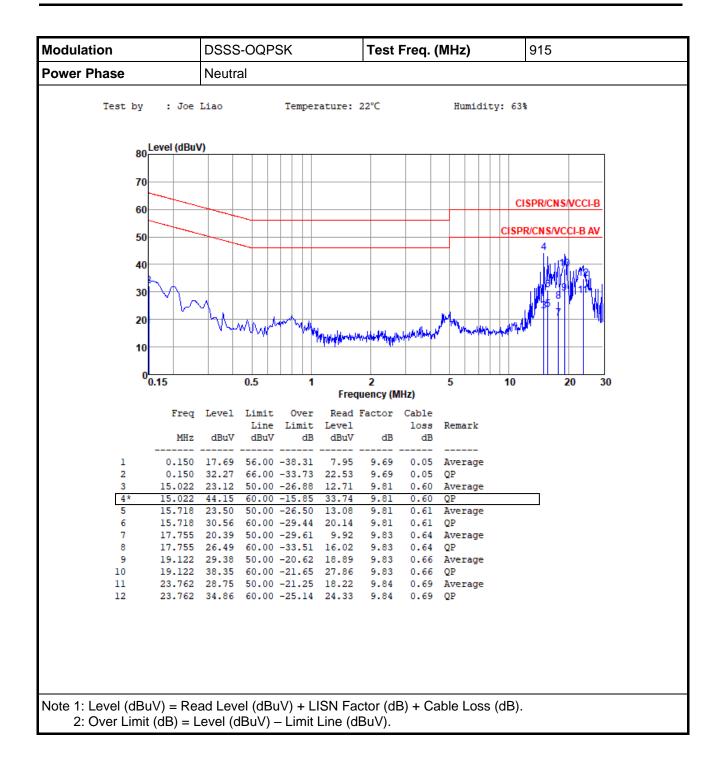
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

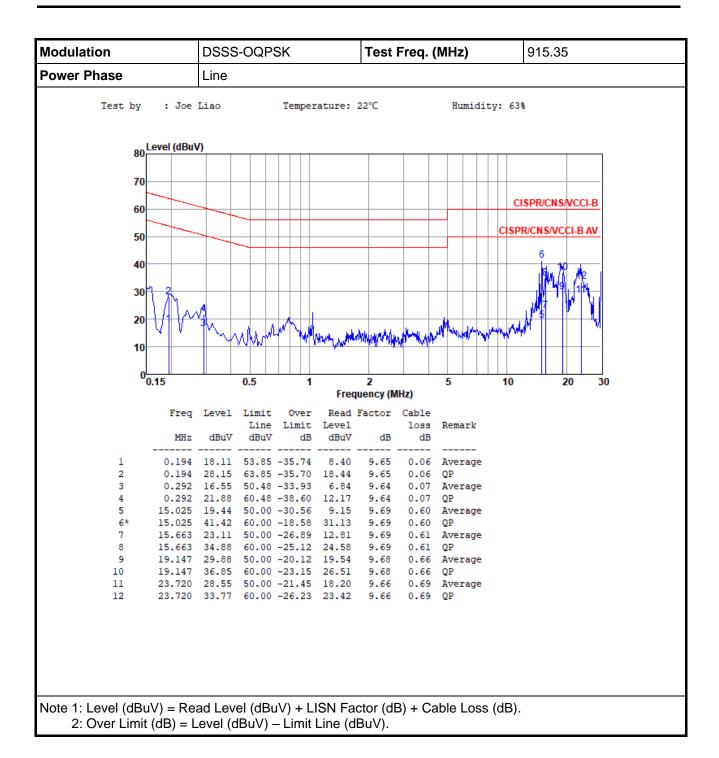

Note: 1. Support units were connected to second LISN.

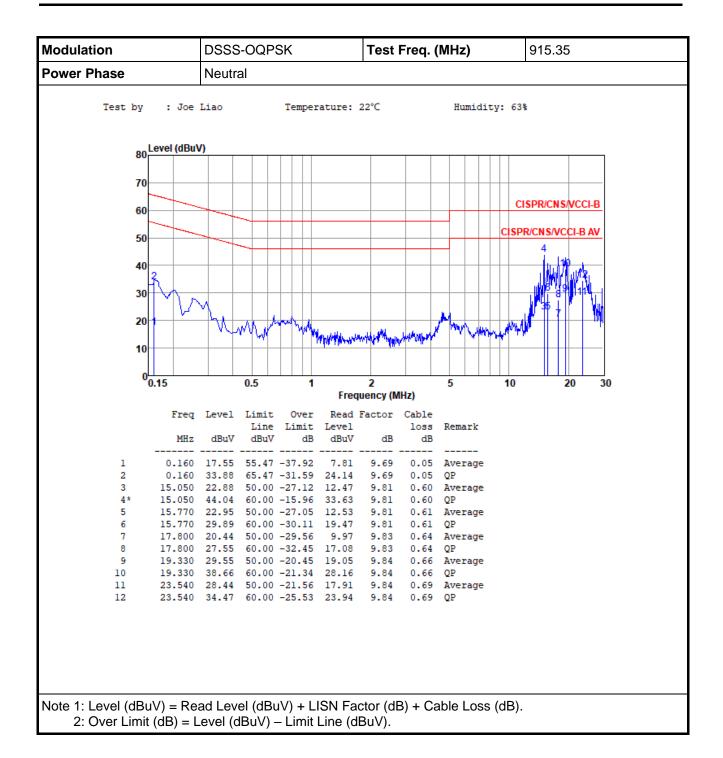
Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

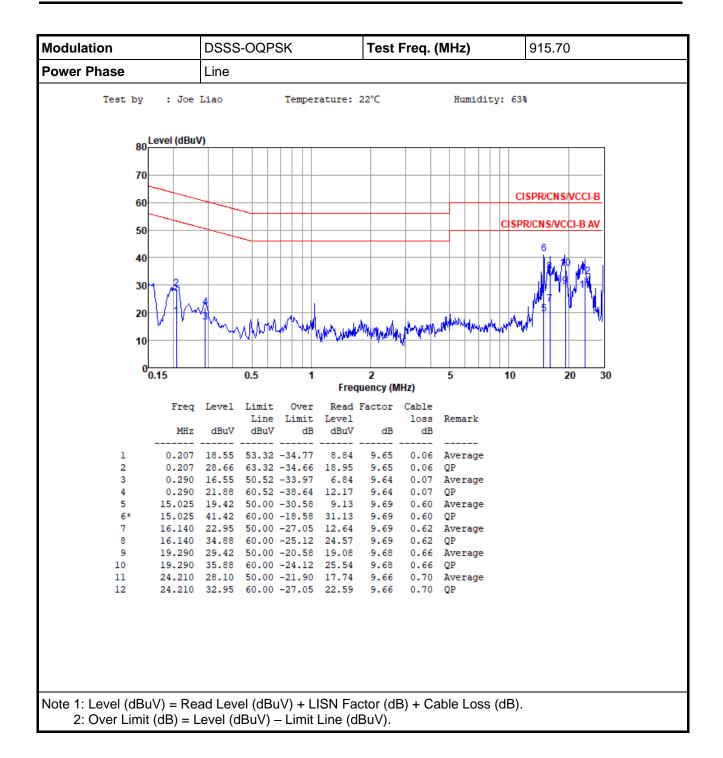
Report No.: FR100503 Page: 11 of 42

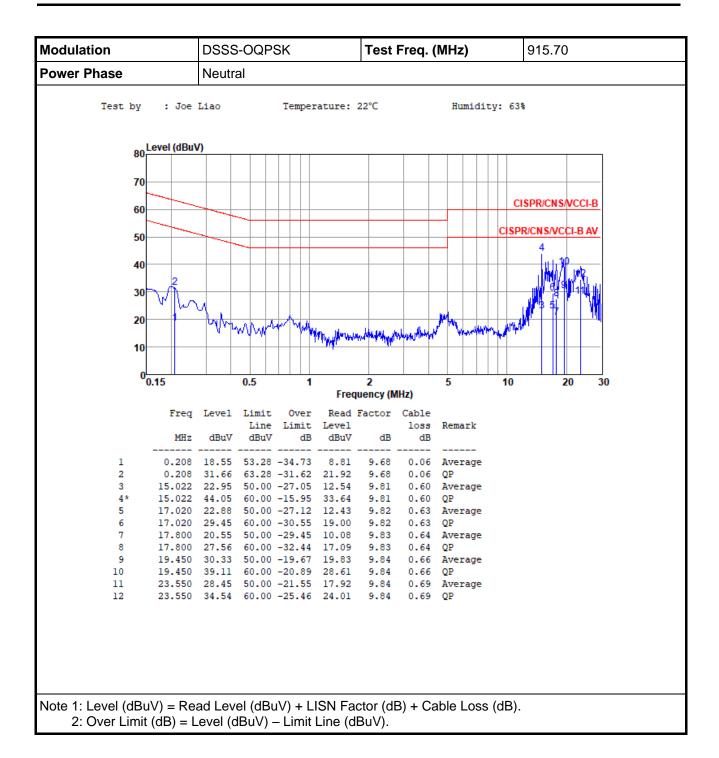


3.1.4 Test Result of Conducted Emissions


Report No.: FR100503 Page: 12 of 42


Report No.: FR100503 Page: 13 of 42


Report No.: FR100503 Page: 14 of 42


Report No.: FR100503 Page: 15 of 42

Report No.: FR100503 Page: 16 of 42

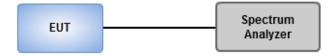
Report No.: FR100503 Page: 17 of 42

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

Report No.: FR100503 Page: 18 of 42

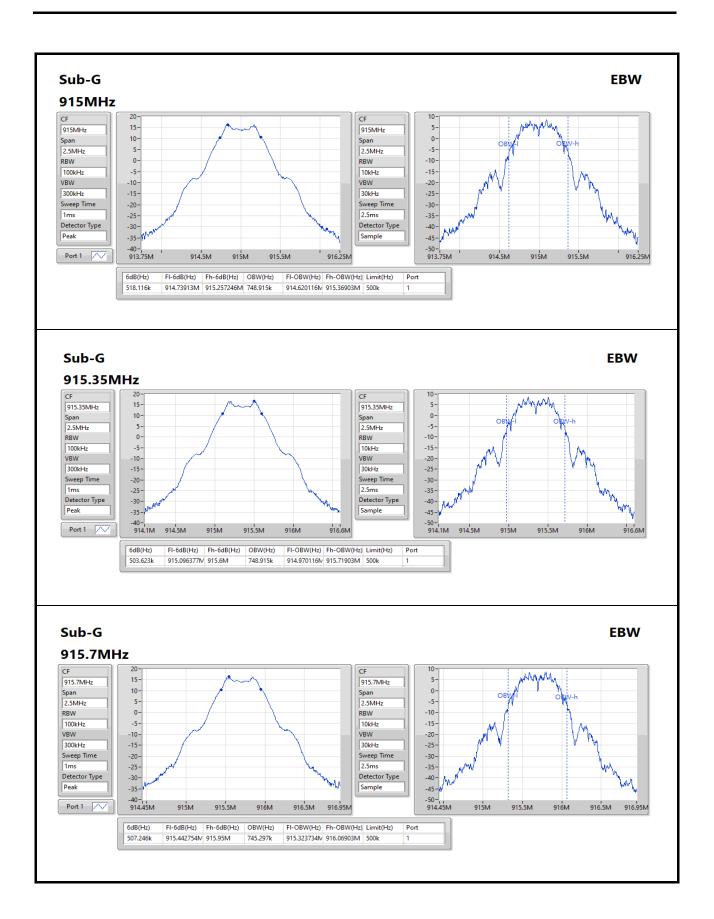
3.2.4 Test Result of 6dB and Occupied Bandwidth

Ambient Condition	24°C / 66%	Tested By	Brad Wu
		l -	

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
902-928MHz	-	-	-	-	-
Sub-G	518.116k	748.915k	749KD1D	503.623k	745.297k

Max-N dB = Maximum 6dB down bandwidth; **Max-OBW** = Maximum 99% occupied bandwidth; **Min-N dB** = Minimum 6dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;


Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
Sub-G	-	-	-	-
915MHz	Pass	500k	518.116k	748.915k
915.35MHz	Pass	500k	503.623k	748.915k
915.7MHz	Pass	500k	507.246k	745.297k

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report No.: FR100503 Page: 19 of 42

Report No.: FR100503 Page: 20 of 42

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR100503 Page: 21 of 42

3.3.4 Test Result of Maximum Output Power

Ambient Condition	24°C / 66%	Tested By	Brad Wu
-------------------	------------	-----------	---------

Summary of Peak Conducted Output Power

Mode	Total Power	Total Power
	(dBm)	(W)
902-928MHz	-	-
Sub-G	17.65	0.05821

Result

Mode	Result	DG	Port 1	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Sub-G	-	-	-	-	-	-	-
915MHz	Pass	0.20	17.64	17.64	30.00	17.84	36.00
915.35MHz	Pass	0.20	17.65	17.65	30.00	17.85	36.00
915.7MHz	Pass	0.20	17.63	17.63	30.00	17.83	36.00

DG = Directional Gain; **Port X** = Port X output power

Summary of Conducted (Average) Output Power

Mode	Total Power (dBm)	Total Power (W)
902-928MHz	-	-
Sub-G	17.57	0.05715

Result

Nesuit							
Mode	Result	DG	Port 1	Total Power	Power Limit	EIRP	EIRP Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Sub-G	-	ı	-	-	-	-	-
915MHz	Pass	0.20	17.56	17.56	-	17.76	-
915.35MHz	Pass	0.20	17.57	17.57	-	17.77	1
915.7MHz	Pass	0.20	17.55	17.55	-	17.75	-

DG = Directional Gain; **Port X** = Port X output power

Note: Conducted average output power is for reference only

Report No.: FR100503 Page: 22 of 42

3.4 Power Spectral Density

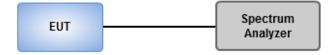
3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

Peak PSD

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.


Average PSD, duty cycle ≥ 98%

- 1. Set the RBW = 30 kHz, VBW = 100 kHz.
- 2. Detector = RMS, Sweep time = auto couple.
- 3. Sweep time = auto couple.
- 4. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 5. Use the peak marker function to determine the maximum amplitude level.

Average PSD, duty cycle < 98%

- 1 Set the RBW = 30 kHz, VBW = 100 kHz. Detector = RMS.
- Set the sweep time to: \geq 10 (number of measurement points in sweep) x (total on/off period of the transmitted signal).
- 3 Perform the measurement over a single sweep.
- 4 Use the peak marker function to determine the maximum amplitude level.
- 5 Add 10 log (1/x), where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR100503 Page: 23 of 42

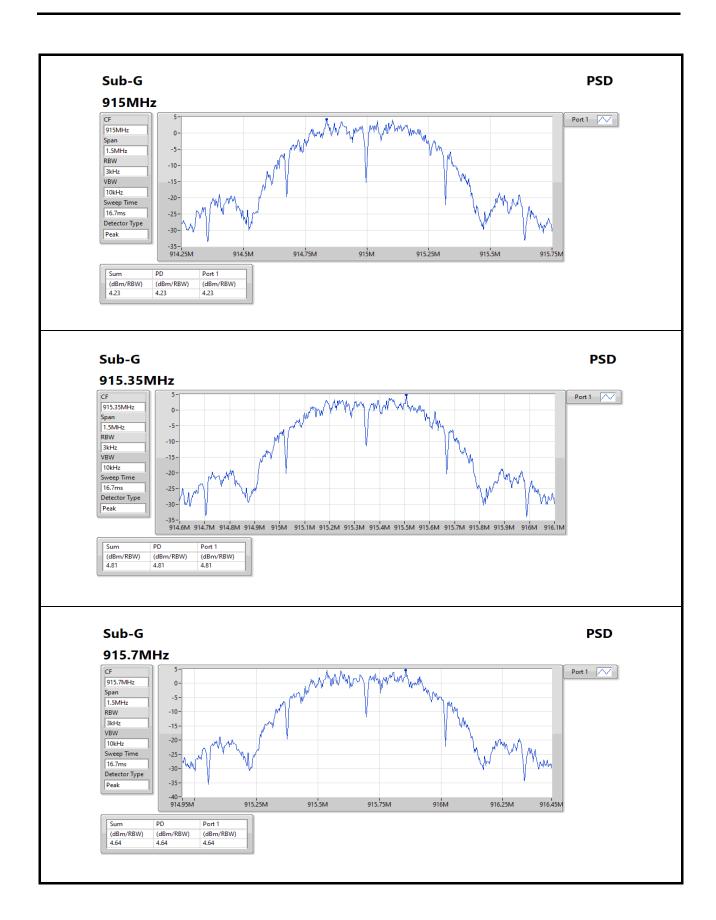
3.4.4 Test Result of Power Spectral Density

Ambient Condition	24°C / 66%	Tested By	Brad Wu
		•	

Summary

Mode	PD
	(dBm/3kHz)
902-928MHz	-
Sub-G	4.81

Result


Mode	Result	DG	Port 1	PD	PD Limit
		(dBi)	(dBm/3kHz)	(dBm/3kHz)	(dBm/3kHz)
Sub-G	-	-	-	-	-
915MHz	Pass	0.20	4.23	4.23	8.00
915.35MHz	Pass	0.20	4.81	4.81	8.00
915.7MHz	Pass	0.20	4.64	4.64	8.00

DG = Directional Gain;

PD = Maximum power density; **Port X** = Port X power density;

Report No.: FR100503 Page: 24 of 42

Report No.: FR100503 Page: 25 of 42

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

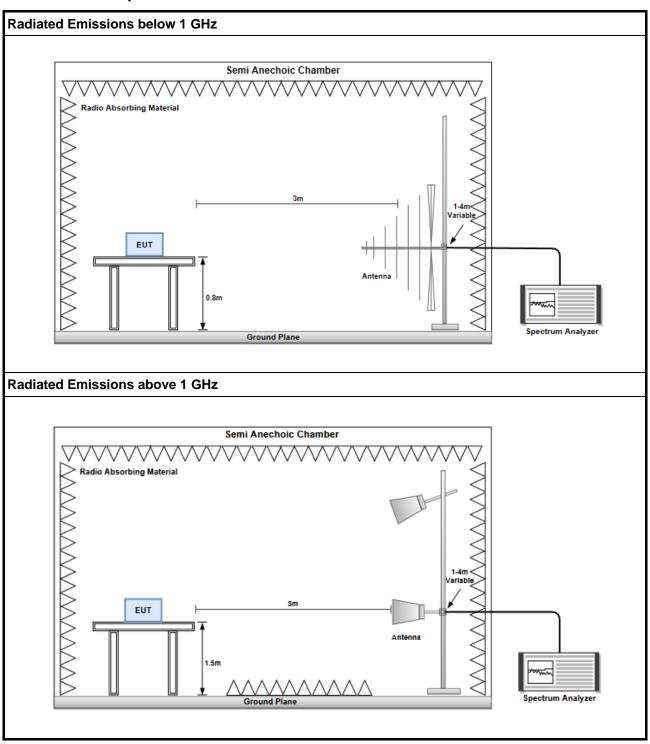
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

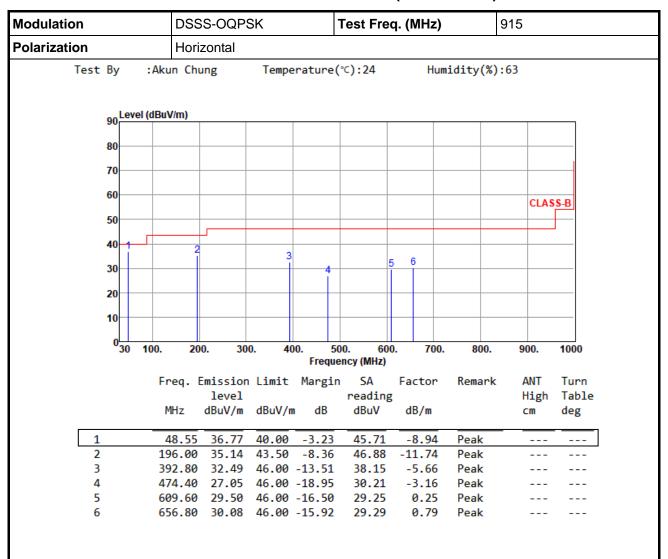
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

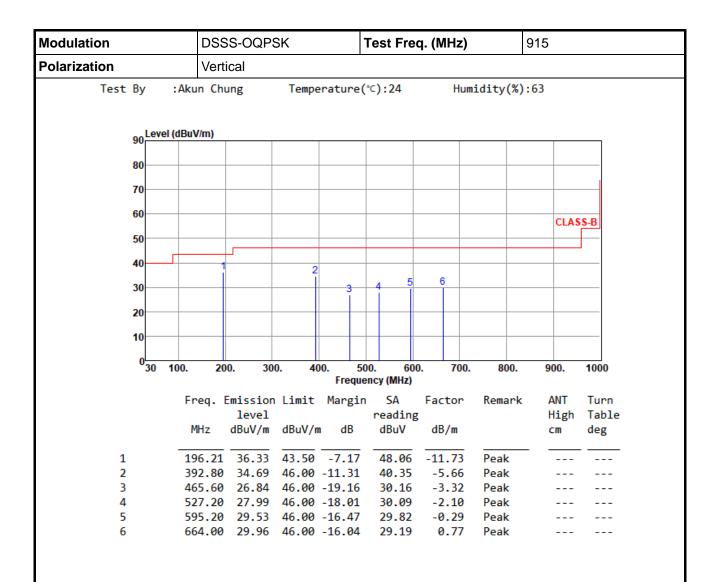
Report No.: FR100503 Page: 26 of 42


3.5.3 Test Setup

Report No.: FR100503 Page: 27 of 42

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR1O0503 Page: 28 of 42

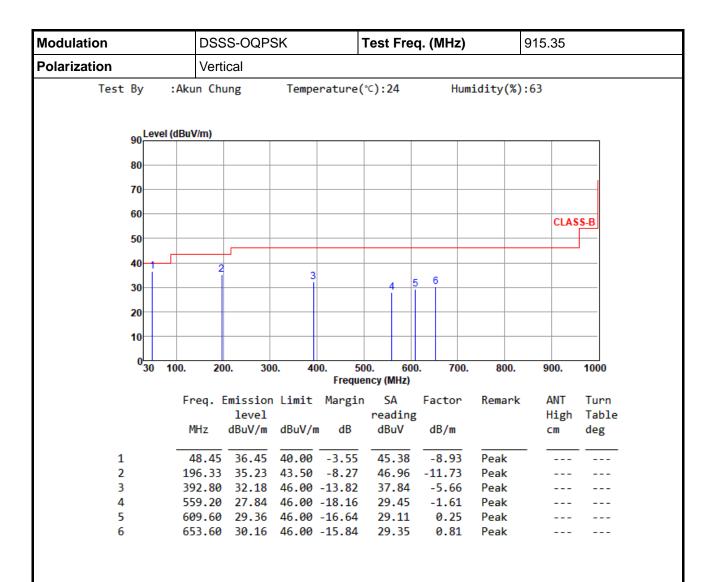
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR100503 Page: 29 of 42

Modulation		DSS	S-OQP	SK	-	Test Fre	915.35				
Polarization		Horiz	zontal								
Test By	:Aku	un Chung Temperature(°C):24 Humidity(%):63									
90 <u>Le</u>	vel (dBu\	//m)									
80											
70											
60											
									CLAS	S-B	
50											
40		1	_	3							
30—						4	5 6				
30			2			l i l					
20											
10											
0 <mark>30</mark>	100.	20	0. 30	0. 4		00. 60 ency (MHz)	0. 70	0. 800.	900.	1000	
	г						Factor	Remark	ANT	Turn	
	Fr	eq. c	level	ı LIMITC	Margin	reading		. кешагк	High	Table	
	М	Hz	dBuV/m	dBuV/ı	n dB	dBuV	dB/m		cm	deg	
1		6.57	36.57		-6.93	48.30					
2 3		9.60	23.13		-22.87 -9.98	32.92 41.68	-9.79 -5.66				
4			27.44			29.59	-2.15				
5					-16.53	29.22	0.25				
6	68	4.80	29.68	46.00	-16.32	28.59	1.09	Peak			


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR100503 Page: 30 of 42

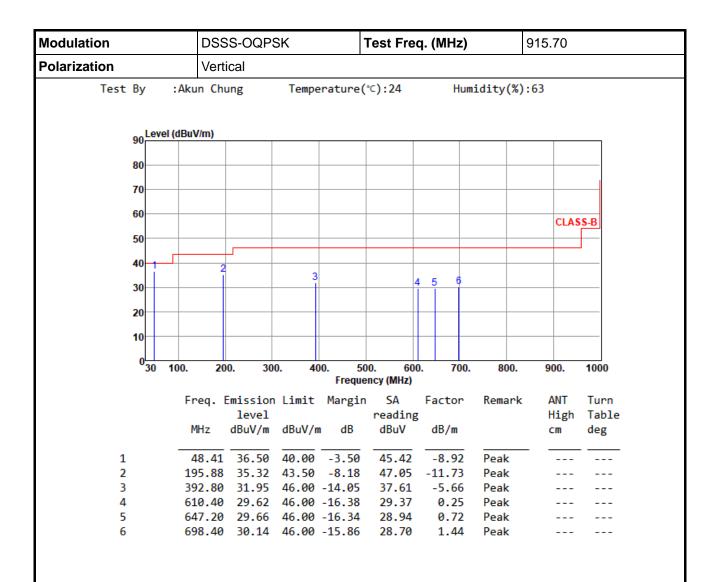
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR100503 Page: 31 of 42

Modulation		DSSS-	OQPS	SK		Test	Free	q. (MHz	9	915.70		
Polarization		Horizo	ntal									
Test By	:Akur	kun Chung Temperature(°C):24 Humidity(%):63										
90 Lev	el (dBuV	m)										
80												
80												
70							\rightarrow					
60—											CLAS	
50											CLAS	5-В
							_					١
40		1		2				6				
30-					3		5					
20												
10												
030	100.	200.	30	0. 4	00.	500.	600). 70	0. 8	00.	900.	1000
					Freq	uency (I	MHz)					
	Fre			Limit	Margi			Factor	Rem	ark	ANT	Turn
	MH		level	dBuV/r	n dB		ding uV	dB/m			High cm	Table deg
	1-11	IZ UL	ouv/III	ubuv/i	ii ub	ub	uv	ub/III			CIII	ueg
1	196	5.77	36.57	43.50	-6.93	48	.30	-11.73	Pea	k		
2	392	2.80	32.06	46.00	-13.94	37	.72	-5.66	Pea	k		
3				46.00			.22	-3.14		k		
4				46.00			.11	-1.62				
5				46.00			.65	0.21				
6	697	7.60	32.47	46.00	-13.53	31	.05	1.42	Pea	k		

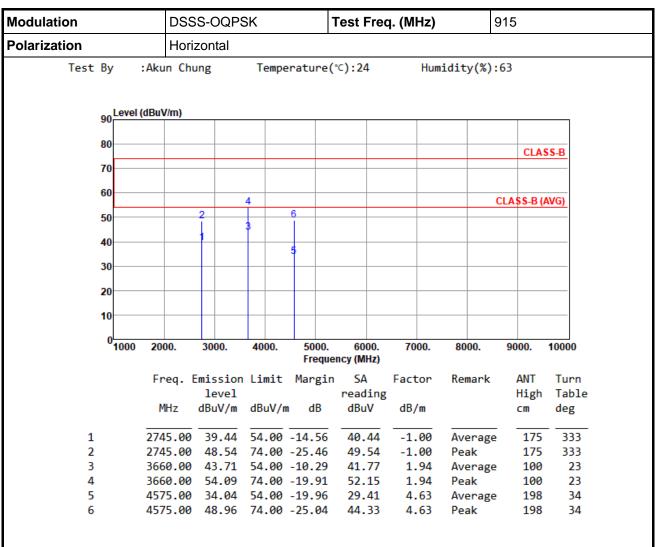

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR100503 Page: 32 of 42

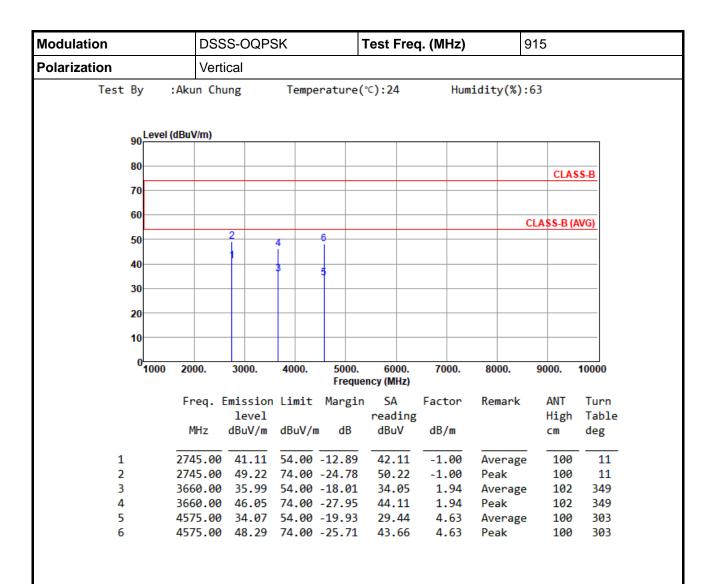
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR100503 Page: 33 of 42

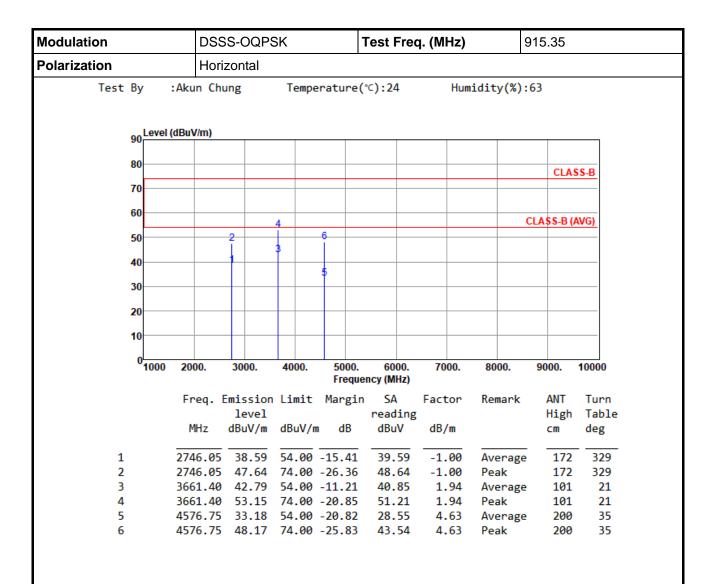
3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR100503 Page: 34 of 42

^{*}Factor includes antenna factor , cable loss and amplifier gain



*Factor includes antenna factor, cable loss and amplifier gain

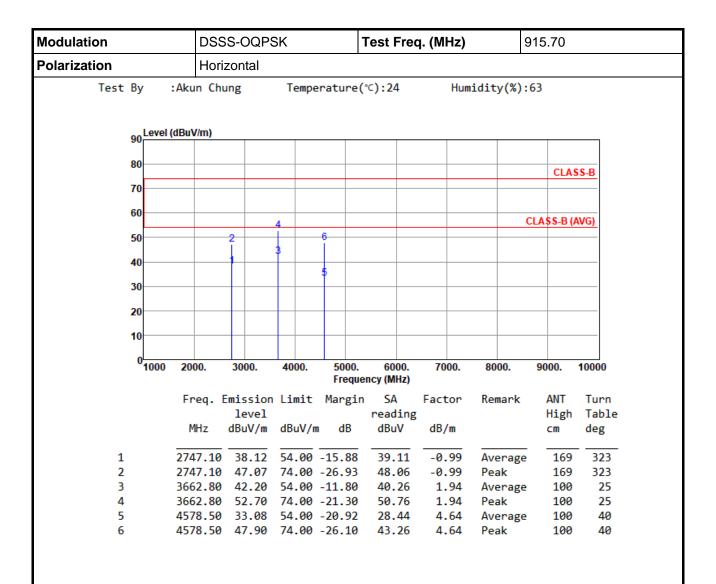
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR100503 Page: 35 of 42

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

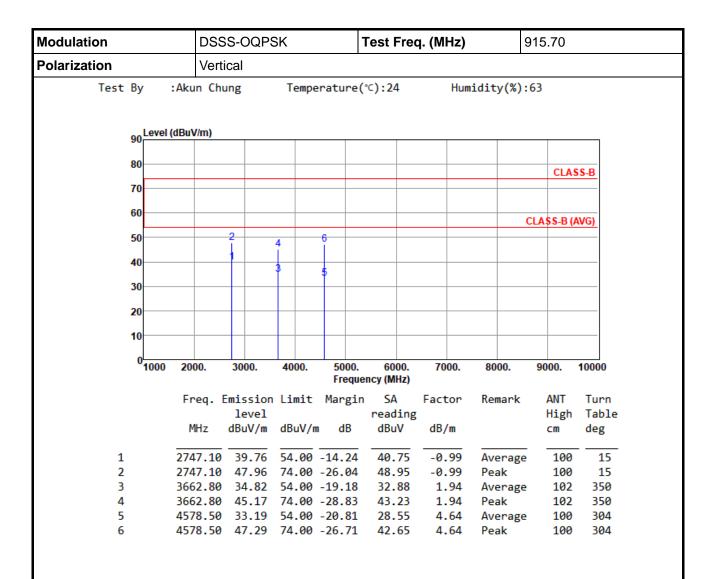
Report No.: FR100503 Page: 36 of 42



Modulation	DSS	S-OQPS	SK		Test Fred	915.35			
Polarization	Vert	ical							
Test By :	Akun Chu	n Chung Temperature			℃):24	Hum	idity(%):	63	
90 Level (dBuV/m)								
80									
								CLAS	S-B
70									
60								LASS-B (A	WG)
50		2	4	6				,EN33-B (F	
40		1	1						
			3	5					
30									
20									
10									
0									
~1000	2000.	3000.	4000.	5000. Freque	6000. ency (MHz)	7000.	8000.	9000.	10000
	Freq. 1	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB/m		cm	deg
1	2746.05	40.28	54.00	-13.72	41.28	-1.00	Average	102	12
2	2746.05			-25.60	49.40	-1.00	Peak	102	12
3	3661.40	35.06	54.00	-18.94	33.12	1.94	Average	104	355
4	3661.40				43.58	1.94	Peak	104	355
5	4576.75				28.66	4.63	Average		305
6	4576.75	47.50	74.00	-26.50	42.87	4.63	Peak	100	305

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR100503 Page: 37 of 42



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR100503 Page: 38 of 42

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

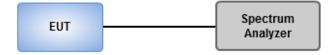
Report No.: FR100503 Page: 39 of 42

3.6 Emissions in Non-Restricted Frequency Bands

3.6.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

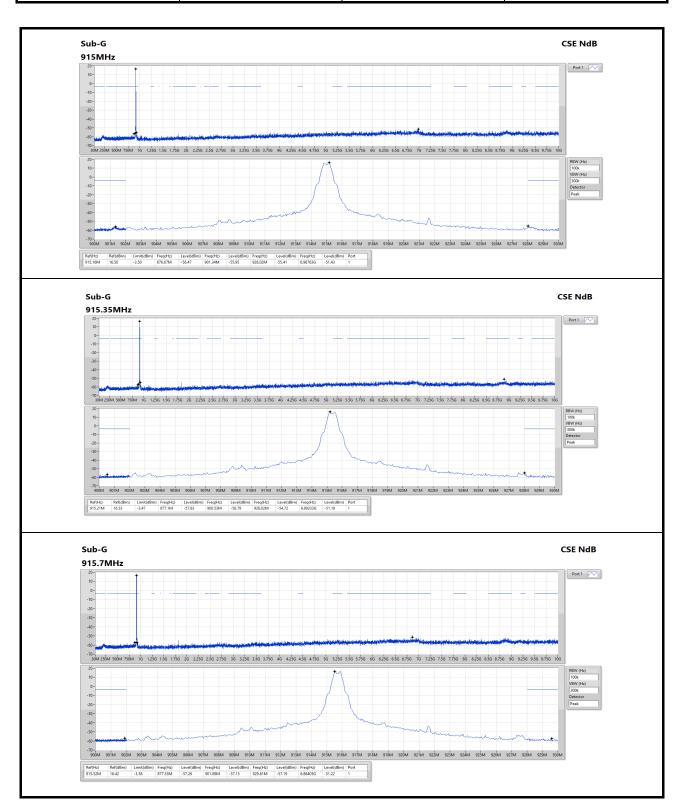

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.6.3 Test Setup



Report No.: FR100503 Page: 40 of 42

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

Ambient Condition24°C / 66%Tested ByBrad Wu

Report No.: FR100503 Page: 41 of 42

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666

No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC_Service@icertifi.com.tw

___END___

Report No.: FR100503 Page: 42 of 42