

Report No.: JYTSZ-R12-2200403

FCC RF Test Report

Applicant:	Shen Zhen Conquest Communication Equipment Co., Ltd.
Address of Applicant:	2nd Floor, Building B, Yong xiang Street East on the 17th, Bantian Street, Longgang District, Shen Zhen, Guangdong, China
Equipment Under Test (E	UT)
Product Name:	5G digital mobile phone
Model No.:	conquest-S20
Trade Mark:	CONQUEST
FCC ID:	2AWTK-S20
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of Sample Receipt:	09 Mar., 2022
Date of Test: 10 Mar., to 17 Apr., 2022	
Date of Report Issued: 18 Apr., 2022	
Test Result:	PASS

Tested by:	Test ngineer	Date:	18 Apr., 2022
Reviewed by: _	Project Engineer	Date:	18 Apr., 2022
Approved by:	检验检测专用章 Manager	Date:	18 Apr., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Apr., 2022	Original

3 Contents

		Pa	age
1	Cove	er Page	1
2	Vers	ion	2
3	Con	tents	3
4	Gen	eral Information	4
	4.1	Client Information	4
	4.2	General Description of E.U.T.	4
	4.3	Test Mode and Test Environment	5
	4.4	Description of Support Units	5
	4.5	Measurement Uncertainty	5
	4.6	Additions to, Deviations, or Exclusions From the Method	5
	4.7	Laboratory Facility	
	4.8	Laboratory Location	
	4.9	Test Instruments List	6
5	Mea	surement Setup and Procedure	8
	5.1	Test Channel	8
	5.2	Test Setup	
	5.3	Test Procedure	
6	Test	Results	.11
	6.1	Summary	11
	6.2	Antenna Requirement	
	6.3	AC Power Line Conducted Emission	
	6.4	Emissions in Restricted Frequency Bands	
	6.5	Emissions in Non-restricted Frequency Bands	

4 General Information

4.1 Client Information

Applicant:	Shen Zhen Conquest Communication Equipment Co., Ltd.
Address:	2nd Floor, Building B, Yong xiang Street East on the 17th, Bantian Street, Longgang District, Shen Zhen, Guangdong, China
Manufacturer/Factory:	Shen Zhen Conquest Communication Equipment Co., Ltd.
Address:	2nd Floor, Building B, Yong xiang Street East on the 17th, Bantian Street, Longgang District, Shen Zhen, Guangdong, China

4.2 General Description of E.U.T.

Product Name:	5G digital mobile phone
Model No.:	conquest-S20
Operation Frequency:	2402 MHz - 2480 MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	1.3 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 8000mAh
AC Adapter:	Model: HJ-FC001K7-US
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V, 3.0A or 9.0V, 2.0A or 12.0V, 1.5A
Wireless Charger:	Input: DC 12.0V, 2.0A or 9.0V, 2.0A or 5.0V, 2A
	Output: 15W/ 10W/ 7.5W/ 5W
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

4.3 Test Mode and Test Environment

Test Modes:				
Non-hopping mode:	Non-hopping mode: Keep the EUT in continuous transmitting mode.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark: For AC power line conducted emission and radiated spurious emission, pre-scan GFSK, π/4-DQPSK, 8DPSK modulation mode, found GFSK modulation was worse case mode. The report only reflects the test data of worst mode. Operating Environment:				
Temperature:	15℃ ~ 35℃			
Humidity: 20 % ~ 75 % RH				
Atmospheric Pressure: 1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	±4.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

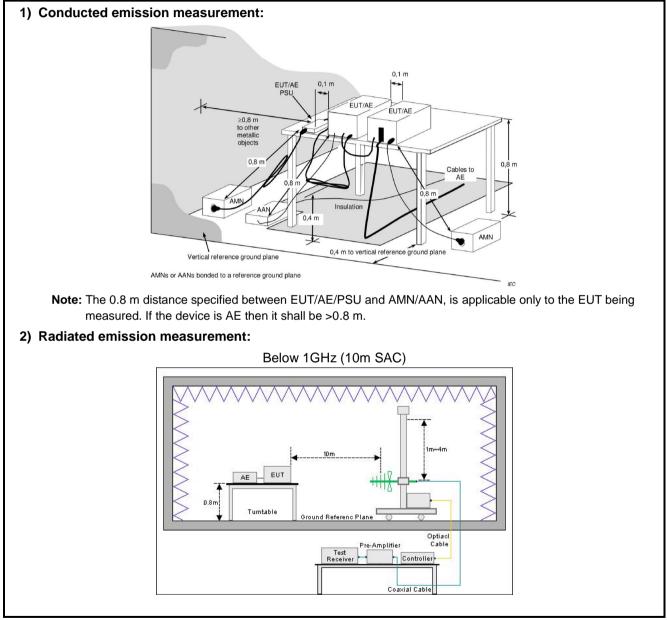
4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	02-17-2022	02-16-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/C		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

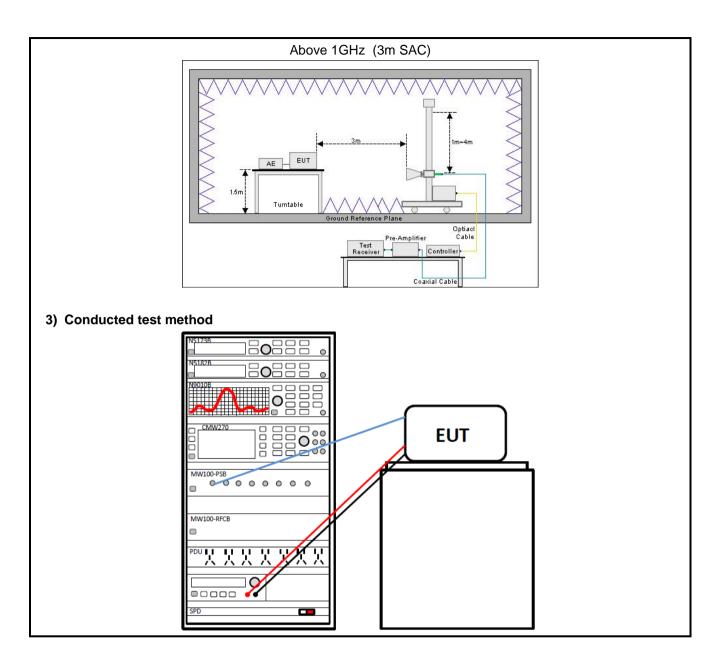
Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
RiConil og Antonno	SCHWARZBECK	VULB 9168	WXJ090-1	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZDECK	VULD 9100	WAJ090-1	03-30-2022	03-29-2023	
BiCanil og Antonna	SCHWARZBECK	VULB 9168	WXJ090-2	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZDECK	VULD 9100	WAJ090-2	03-30-2022	03-29-2023	
EMI Test Receiver	R&S	ESR 3		04-08-2021	04-07-2022	
	Rao	ESK 3	WXJ090-3	03-30-2022	03-29-2023	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	04-08-2021	04-07-2022	
EIVII TEST Receiver	Rao	ESK 3	VVAJ090-4	03-30-2022	03-29-2023	
Low Bro amplifiar	Bost	LNA 0920N	WXG002-3	04-06-2021	04-05-2022	
Low Pre-amplifier	DUSI	LINA U920IN	WAG002-3	03-30-2022	03-29-2023	
Low Dro omplifier	Bost	LNA 0920N	WXG002-4	04-06-2021	04-05-2022	
Low Pre-amplifier	DOSI	LINA U920IN	WAG002-4	03-30-2022	03-29-2023	
Cable	Bost	JYT10M-1G-NN-10M	XC002 7	04-02-2021	04-01-2022	
Cable	DUSI	JTTTUM-TG-MIN-TUM	A XG002-7	03-30-2022	03-29-2023	
Cabla			04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	A XG002-8	03-30-2022	03-29-2023	
Test Software	R&S	EMC32	Version: 10.50.40			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003 N/C			
Test Software	AUDIX	E3	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-25-2021	10-24-2022	
Vector Signal Generator	Keysight	N5182B	WXJ006-6	10-25-2021	10-24-2022	
Signal Generator	Keysight	N5173B	WXJ006-4	10-25-2021	10-24-2022	
Wireless Connectivity Tester	Rohde & Schwarz	CMW270	WXJ008-7	10-25-2021	10-24-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-25-2021	10-24-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/C		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		


5 Measurement Setup and Procedure

5.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	39	2441	78	2480	

5.2 Test Setup

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. The Bluetooth antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass
Hopping Channel Number	5.247 (a)(1)(iii)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)(iii)	Appendix A – BT	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BT	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass
Remark: 1. Pass: The EUT complies with the essential re		d.	<u> </u>

- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

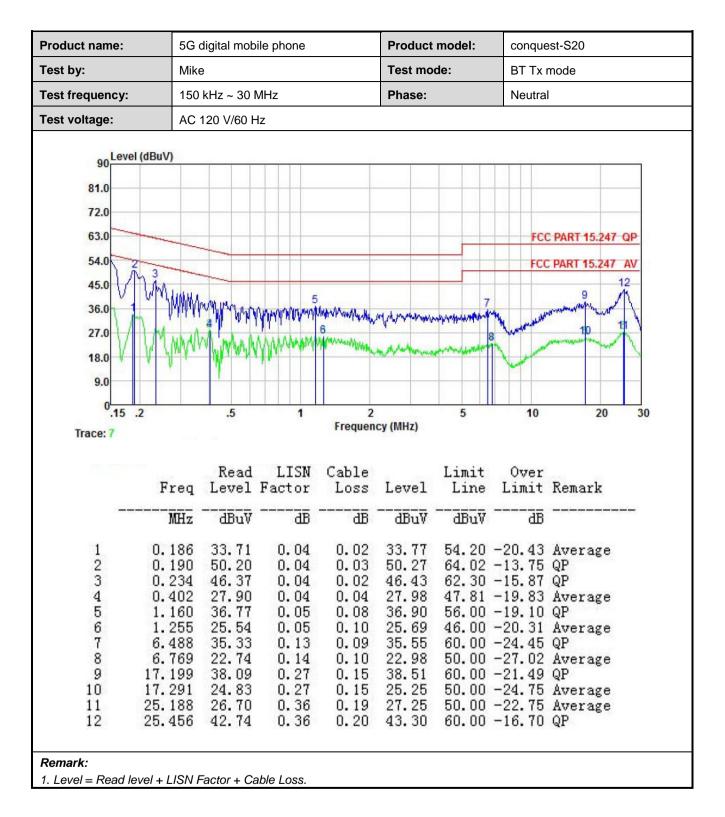
Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

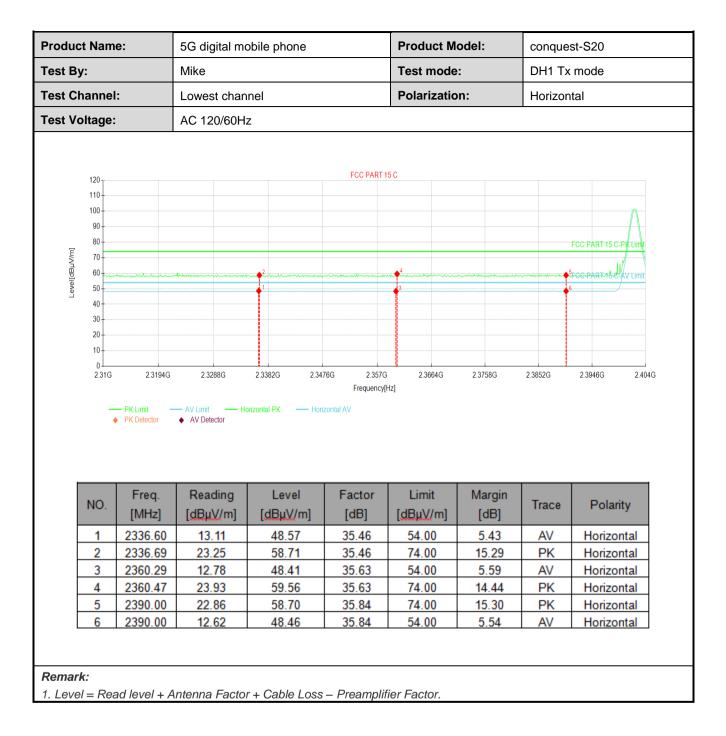
Test items	Limit						
	Frequency		3μV)				
	(MHz)	Quasi-Peak		Average			
AC Power Line Conducted	0.15 – 0.5	66 to \$	56 Note 1	56 to 46 Note 1			
Emission	0.5 – 5		56	46			
	5 – 30		30 <u></u>	50			
	Note 1: The limit level in dBμV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.						
Conducted Output Power	For frequency hopping system employing at least 75 non-off frequency hopping systems	overlapping h	opping chanr	els: 1 watt. For all oth	her		
20dB Occupied Bandwidth	Within authorization band						
Carrier Frequencies	a) 0.025MHz or the 20dB I		-				
Separation	b) 0.025MHz or two-thirds	of the 20dB t	andwidth (wr	nichever is greater).			
Hopping Channel Number	At least 15 channels.						
Dwell Time	Not be greater than 0.4 sec	conds.					
Band-edge Emission Conduction Spurious Emission	spectrum or digitally modul frequency power that is pro- dB below that in the 100 kH highest level of the desired radiated measurement, pro- the peak conducted power power limits based on the up ermitted under paragraph this paragraph shall be 30 climits specified in §15.209(a) which fall in the restricted b with the radiated emission	duced by the Jz bandwidth power, base vided the tran limits. If the transfer use of RMS a (b)(3) of this dB instead of a) is not requi- bands, as defi	intentional ra within the bar d on either an asmitter demo ransmitter converaging over section, the a 20 dB. Attent red. In addition ned in §15.20	adiator shall be at lease and that contains the a RF conducted or a constrates compliance mplies with the condu- tra time interval, as attenuation required u- uation below the gene con, radiated emissions (5(a), must also comp	with icted nder eral s		
	Frequency	Limit (dBµV/m)		Detector			
	(MHz)	@ 3m	@ 10m				
Environmente Deschiete I	30 - 88	40.0	30.0	Quasi-peak	_		
Emissions in Restricted	88 - 216	43.5	33.5	Quasi-peak	-		
Frequency Bands	216 - 960	46.0 54.0	36.0 44.0	Quasi-peak	-		
Emissions in New restricts -	960 – 1000 Note: The more stringent limit a			Quasi-peak	-		
Emissions in Non-restricted Frequency Bands			Limit (dBµV/m	n) @ 3m			
Trequency Danus	Frequency	Aver	· · ·	Peake			
	Above 1 GHz		54.0 74.0				
	Note: The measurement bandwidth shall be 1 MHz or greater.						

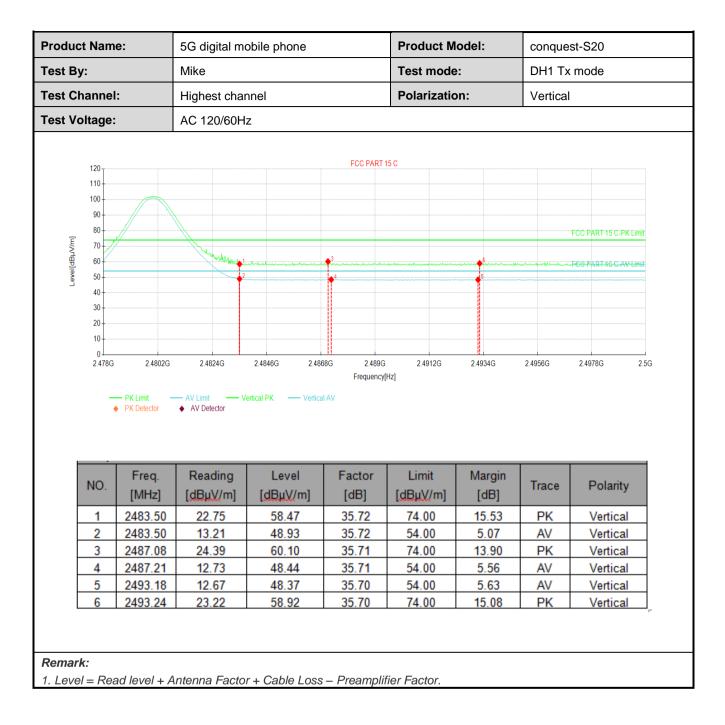
6.2 Antenna Requirement


Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)					
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the					
E.U.T Antenna:						
	The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 1.3 dBi. See product internal photos for details.					

Product name: 5G digital mobile phone **Product model:** conquest-S20 Test by: Test mode: BT Tx mode Mike Phase: **Test frequency:** 150 kHz ~ 30 MHz Line Test voltage: AC 120 V/60 Hz 90 Level (dBuV) 81.0 72.0 63.0 FCC PART 15.247 QP 54.0 FCC PART 15.247 AV 45.0 12 C 36.0 27.0 10 18.0 9.0 0 5 .15 10 .2 .5 1 2 20 30 Frequency (MHz) Trace: 5 Read LISN Cable Limit Over Freg Level Factor Loss Level Line Limit Remark MHz dBuV dB dB dBu∛ dBuV dB 0.18651.84 0.040.0251.90 64.20 -12.30 QP 1 23 0.19835.82 0.04 0.04 35.90 53.71 -17.81 Average 0.406 28.29 28.21 0.04 0.04 47.73 -19.44 Average 4 0.410 0.04 0.04 39.66 57.64 -17.98 QP 39.58 5 22.75 46.00 -23.25 Average 0.654 22.68 0.04 0.03 6 56.00 -22.92 QP 33.08 1.160 32.95 0.05 0.08 7 6.698 32.88 0.150.10 33.13 60.00 -26.87 QP 8 6.841 22.050.150.10 22.30 50.00 -27.70 Average 9 16.928 36.51 0.29 0.16 36.96 60.00 -23.04 QP 10 18.622 21.51 0.31 0.15 21.97 50.00 -28.03 Average 11 25.456 23.44 0.37 0.20 24.01 50.00 -25.99 Average 41.95 60.00 -18.05 QP 12 25.456 41.38 0.37 0.20 Remark: 1. Level = Read level + LISN Factor + Cable Loss.

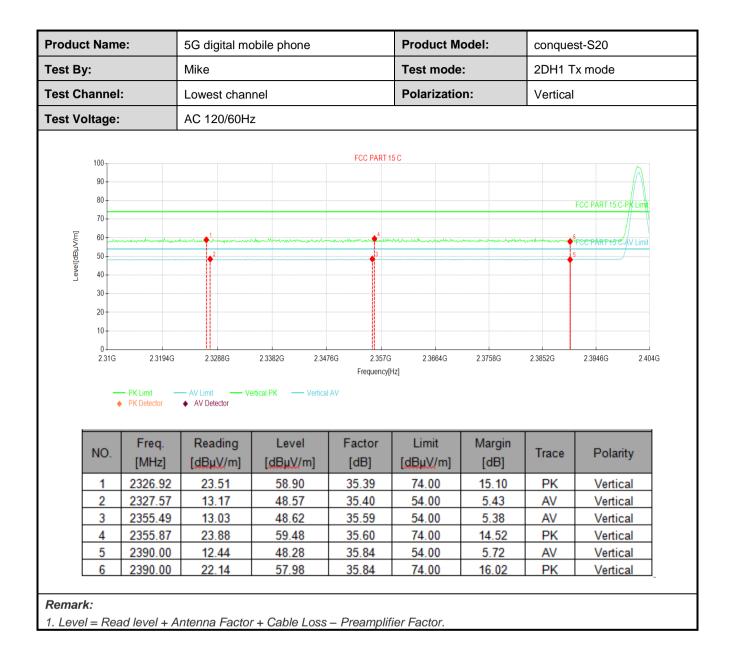
6.3 AC Power Line Conducted Emission

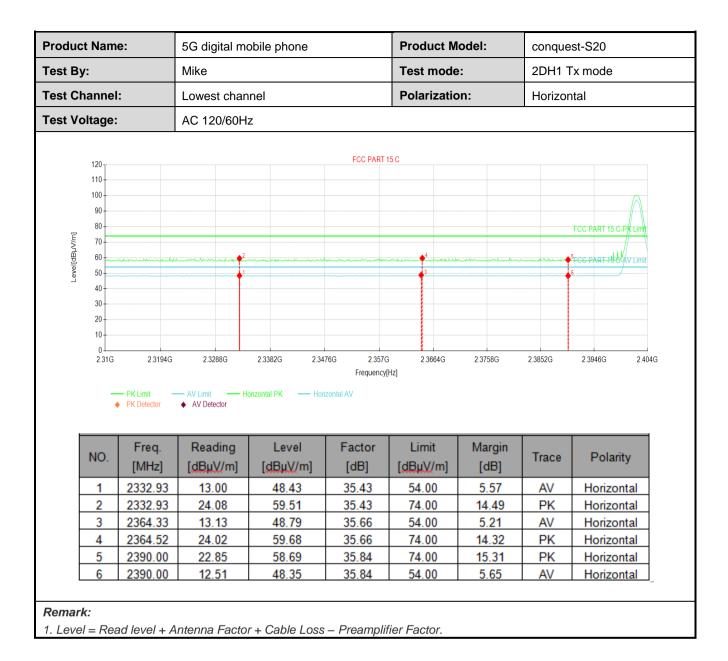



Product Name: 5G digital mobile phone **Product Model:** conquest-S20 Test By: Mike Test mode: DH1 Tx mode **Polarization: Test Channel:** Lowest channel Vertical **Test Voltage:** AC 120/60Hz FCC PART 15 C 100 90 80 70-Level[dBµV/m] 60 50 40 30 20 10-231G 2 3194G 2 3476G 2 3664G 2 3758G 2 3852G 2 3946G 2 404G 2 3288G 2 3382G 2 357G Frequency[Hz] PK Limit ΔV/Limit Vertical PK ---- Vertical AV PK Detector AV Detector Reading Level Factor Limit Freq. Margin NO. Trace Polarity [MHz] [dBuV/m] [dBµV/m] [dB] [dBµV/m] [dB] 1 2341.02 24.90 60.39 35.49 74.00 13.61 ΡK Vertical 2 2341.20 13.20 48.69 35.49 54.00 5.31 AV Vertical 3 2362.82 23.50 59.15 35.65 74.00 14.85 PK Vertical 4 2363.01 12.96 48.61 35.65 54.00 5.39 AV Vertical 5 58.50 15.50 PK 2390.00 22.66 35.84 74.00 Vertical 6 2390.00 12.44 48.28 35.84 54.00 5.72 AV Vertical Remark: 1. Level = Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

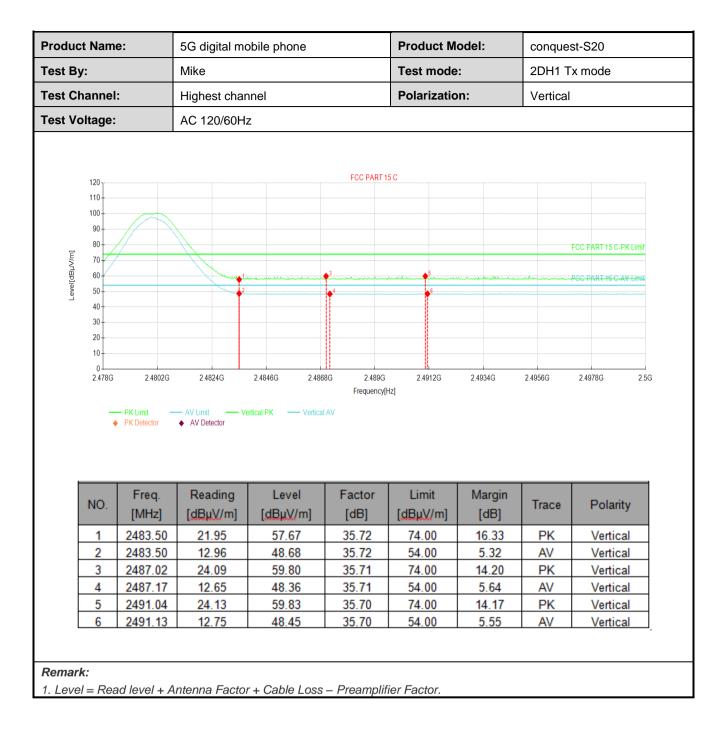
6.4 Emissions in Restricted Frequency Bands



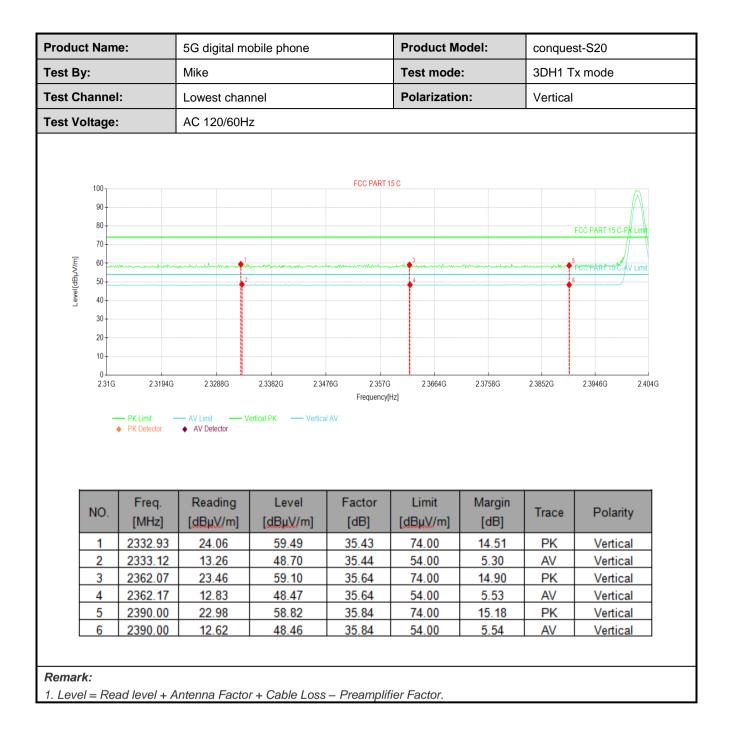


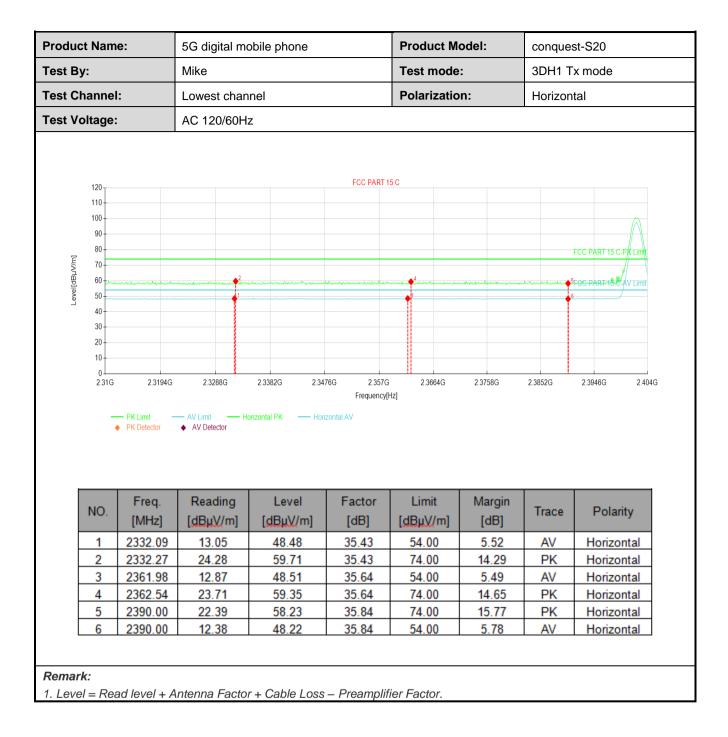


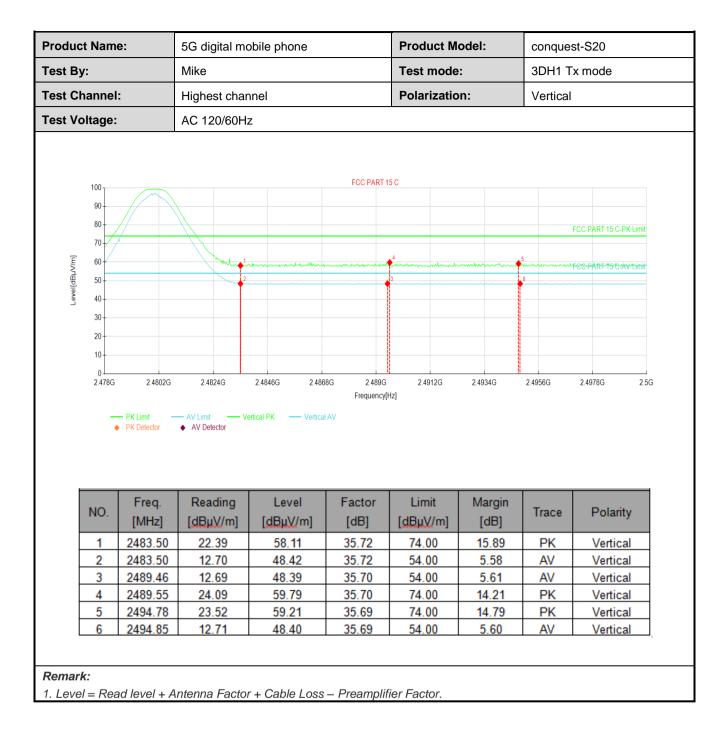
1. Level = Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

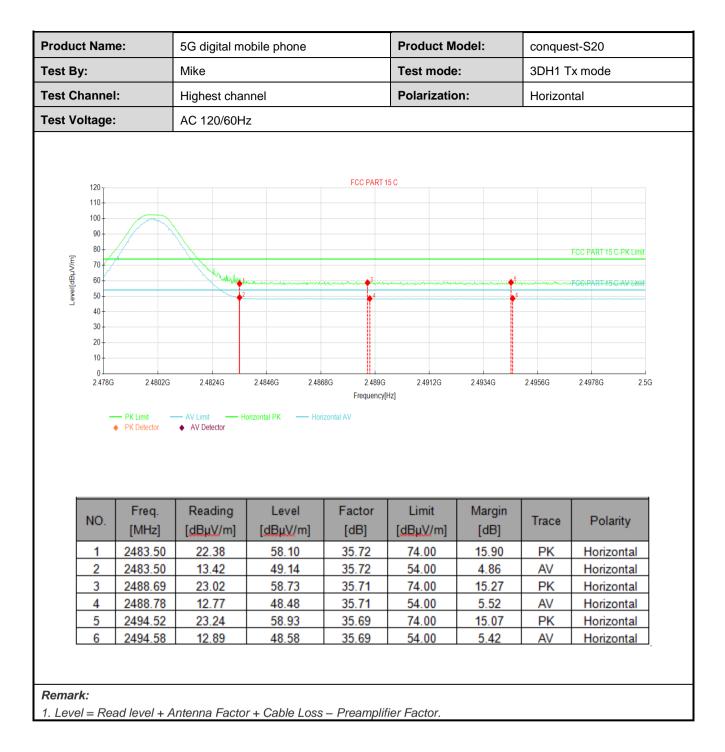












6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	Product Name:		5G digital mobile phone			Product Model:		conquest-S20 BT Tx mode				
st By:		Mike			Test mode:		E					
st Frequ	ency:	30 MHz ~ 1 GHz			Polarization:		\	Vertical & Horizontal				
est Voltag	je:	AC 120/60H	z									
				Full Spec	trum							
	80 -						1					
	70											
	60											
=	50											
Level in dBµV/	· • • +						FCC	PAR	T 15.	.247	10m	
in c	40											
evel	30											
Ľ	Т									AL-LA	***	
	20	0			*	aline and and	فعوا والمعاد	*	er yan ana ang		11	
	10 - 😽	*		*		all and a start of the	a second for					
		SALIA SAMAA SALA SALA AYA AYA AYA 👘		L. A. Landston P. VI	STALL AND INCOME.	(4) Construction of the second sec						
	0	Montecontrolling	And the state of t			And the second s						
	The second se	50 60	80 100		1 200		00 50	1		800) 10	
	0	The second s	80 100	M	and a second		1	1		800) 10	
	0 30M	50 60	Limit	M Freque	200 Incy in Hz		00 50	muth		Ca	orr.	
	o 30M Frequency (MHz) 59.973000	50 60 MaxPeak (dB ⊭ V/m) 9.75	Limit (dB µ V/m) 30.00	M Freque Margin (dB) 20.25	200 ncy in Hz Height (cm) 100.0	300 4	00 50	muth leg) 265.0			orr. /m) -16.3	
	0 30M	50 60 MaxPeak (dB µ V/m) 9.75 9.98	Limit (dB µ V/m) 30.00 33.50	M Freque Margin (dB) 20.25 23.52	200 ncy in Hz Height (cm) 100.0	300 4 Pol H	00 50	muth leg) 265.0 286.0		Ca	orr. /m) -16.3 -17.4	
	0 30M Frequency (MHz) 59.973000 118.367000 38.924000 552.345000	MaxPeak (dB ⊭ V/m) 9.75 9.98 9.47 18.20	Limit (dB ¥ V/m) 30.00 33.50 30.00 36.00	Margin (dB) 20.25 23.52 20.53 17.80	200 ncy in Hz Height (cm) 100.0 100.0 100.0	300 4 Pol H H V V	00 50	muth leg) 265.0 286.0 3.0 286.0		Ca	orr. //m) -16.3 -17.4 -15.8 -7.7	
	0 30M Frequency (MHz) 59.973000 118.367000 38.924000	MaxPeak (dB µ V/m) 9.75 9.98 9.47 18.20 17.08	Limit (dB ¥ V/m) 30.00 33.50 30.00	M Freque Margin (dB) 20.25 23.52 20.53	200 ncy in Hz Height (cm) 100.0 100.0	300 4 Pol H H V V	00 50	muth leg) 265.0 286.0 3.0		Ca	orr. /m) -16.3 -17.1 -15.8	

Above 1GHz:

		Test o	hannel: Lowest ch	nannel			
	r	D	etector: Peak Valu	le			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	
4804.00	57.18	-9.60	47.58	74.00	26.42	Vertical	
4804.00	55.89	-9.60	46.29	74.00	27.71	Horizontal	
	•	Det	ector: Average Va	alue		-	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatior	
4804.00	52.68	-9.60	43.08	54.00	10.92	Vertical	
4804.00	48.71	-9.60	39.11	54.00	14.89	Horizontal	
		-					
			channel: Middle ch				
_		U	etector: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	
4882.00	57.63	-9.05	48.58	74.00	25.42	Vertical	
4882.00	56.29	-9.05	47.24	74.00	26.76	Horizontal	
		Det	ector: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarizatior	
4882.00	52.31	-9.05	43.26	54.00	10.74	Vertical	
4882.00	48.90	-9.05	39.85	54.00	14.15	Horizontal	
			hannel: Highest cl				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	etector: Peak Valu Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	
4960.00	57.54	-8.45	49.09	74.00	24.91	Vertical	
4960.00	56.24	-8.45	47.79	74.00	26.21	Horizontal	
			ector: Average Va				
	1		Level	Limit	Margin	Polarizatio	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)		
		Factor(dB) -8.45		(dBuV/m) 54.00	(dB) 9.71	Vertical	

-----End of report-----