Analysis Report

The Equipment Under Test (EUT), is a portable 2.4GHz Transceiver (Car Unit) for a RC Mini CAT Car. The sample supplied operated on 27 channels, normally at 2407 - 2477MHz. The channels are shown in below table.

2407	2408	2409	2410	2411
2413	2435	2436	2438	2439
2440	2441	2442	2443	2444
2445	2467	2468	2469	2470
2471	2472	2473	2474	2475
2476	2477			

The EUT is powered by 1 x 1.2V Ni-MH battery. After switching on the EUT, the Mini CAT Car will be moved forward or backward and turned left and right based on the switches pressed in the controller.

Antenna Type: Internal integral antenna

Antenna Gain: OdBi

Nominal rated field strength: 67.8dBuV/m at 3m

Maximum allowed field strength of production tolerance: +/- 3dB

According to the KDB 447498 D04 Interim General RF Exposure Guidance v01

Based on the Maximum allowed average field strength of production tolerance was 70.8dBµV/m at 3m.

Thus, it below calculated field strength according to minimum SAR exclusion threshold level as follows:

For mobile devices that are not exempt per Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] at distances from 20 cm to 40 cm and in 0.3 GHz to 6 GHz, evaluation of compliance with the exposure limits in § 1.1310 is necessary if the ERP of the device is greater than ERP_{20cm} in Formula (B.1) [repeated from § 2.1091(c)(1) and § 1.1307(b)(1)(i)(B)].

$$P_{\rm th} \, ({\rm mW}) = ERP_{\rm 20 \, cm} \, ({\rm mW}) = \begin{cases} 2040 f & 0.3 \, {\rm GHz} \le f < 1.5 \, {\rm GHz} \\ \\ 3060 & 1.5 \, {\rm GHz} \le f \le 6 \, {\rm GHz} \end{cases} \tag{B.1}$$

If the ERP is not easily obtained, then the available maximum time-averaged power may be used (i.e., without consideration of ERP only if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole.

$$P_{\text{th (mW)}} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20 \text{ cm}}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW) Distance (mm)

Frequency (MHz)

The worst case of SAR Exclusion Threshold Level at 2.48GHz with distance 5mm: = 2.717mW

According to the KDB 412172 D01: $EIRP = [(FS*D) ^2*1000 / 30]$

Calculated Field Strength for 2.717mW is 99.6dBuV/m @3m

Since maximum average field strength plus production tolerance < = 99.6dBuV/m @3m and antenna gain is > = 0.0dBi, it is concluded that maximum Conducted Power and Field Strength are well below the SAR Exclusion threshold level, so the EUT is considered to comply with SAR requirement without testing.