

FCC RF Test Report

APPLICANT : Gnome Tarn LLC
EQUIPMENT : Gemini
BRAND NAME : Gnome Tarn
MODEL NAME : DVT1L
FCC ID : 2AWS6-5646
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DSS) Spread Spectrum Transmitter
TEST DATE(S) : Jun. 28, 2021

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

Approved by: Alex Wang / Manager

Sportun International (Kunshan) Inc.
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Product Feature of Equipment Under Test.....	5
1.4 Product Specification of Equipment Under Test.....	5
1.5 Modification of EUT	6
1.6 Testing Location	6
1.7 Test Software.....	6
1.8 Applicable Standards.....	6
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	7
2.1 Carrier Frequency Channel	7
2.2 Test Mode.....	8
2.3 Connection Diagram of Test System.....	9
2.4 Support Unit used in test configuration and system	9
2.5 EUT Operation Test Setup	9
3 TEST RESULT	10
3.1 Radiated Band Edges and Spurious Emission Measurement	10
4 LIST OF MEASURING EQUIPMENT.....	14
5 UNCERTAINTY OF EVALUATION.....	15
APPENDIX A. RADIATED SPURIOUS EMISSION	
APPENDIX B. DUTY CYCLE PLOTS	
APPENDIX C. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.36 dB at 35.820 MHz

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Gnome Tarn LLC

103 Foulk Road, Wilmington Delaware 19803

1.2 Manufacturer

Gnome Tarn LLC

103 Foulk Road, Wilmington Delaware 19803

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	Gemini
Brand Name	Gnome Tarn
Model Name	DVT1L
FCC ID	2AWS6-5646
HW Version	DVT
SW Version	msm8998-userdebug 7.1.1 NGI77B eng.cep.20210119.143229 test-keys
EUT Stage	Identical Prototype

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. This is a variant report for DVT1L, there is not a major difference between small DVT (DVT1S) and large DVT (DVT1L). The only major differences as follows:
 - 1) Flex length in large DVT is longer than the flex in small DVT.
 - 2) Frame size of the large DVT is larger than the small DVT by few mm.
 - 3) The critical components i.e. main board, battery, and the antenna are the same.

Based on the similarity between current and previous project, only the related test cases from original test report (Sportun Report Number FR090813-01A) were verified for the differences.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	79
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78
Antenna Type / Gain	IFA Antenna type with gain 0.40 dBi
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sportun International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International (Kunshan) Inc.		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH06-KS	CN1257	314309

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

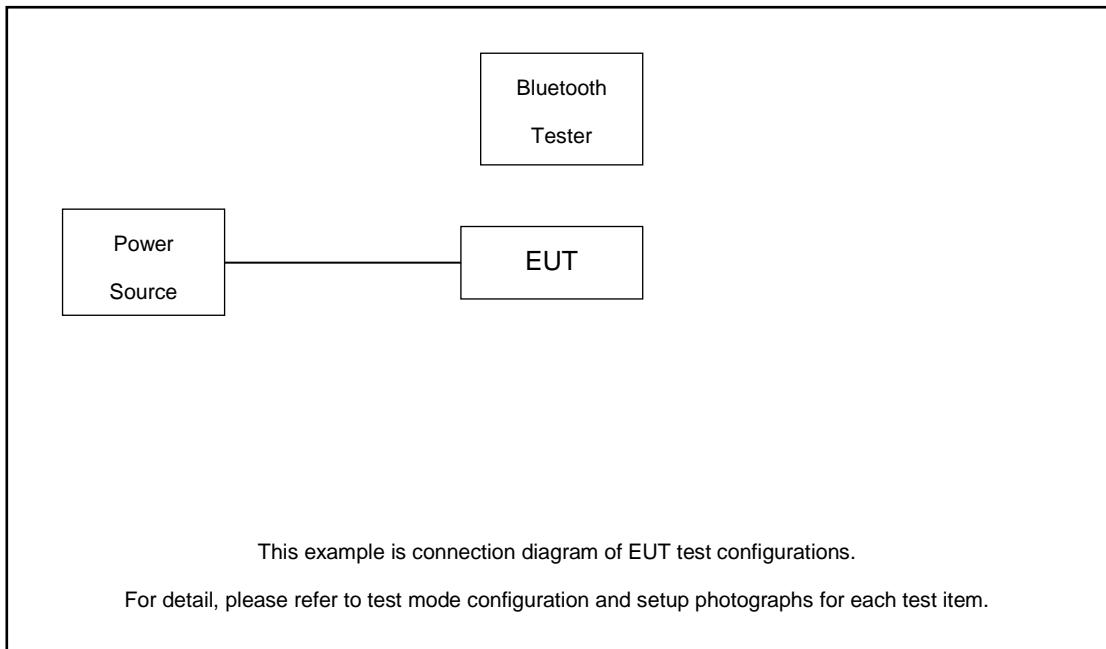
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Summary table of Test Cases	
Test Item	Data Rate / Modulation
Radiated	Bluetooth BR 1Mbps GFSK
Test Cases	Mode 1: CH78_2480 MHz

Remark:

1. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
2. For Radiated Test Cases, The tests were performed with Adapter and USB cable.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Tester	R&S	CBT	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

3 Test Result

3.1 Radiated Band Edges and Spurious Emission Measurement

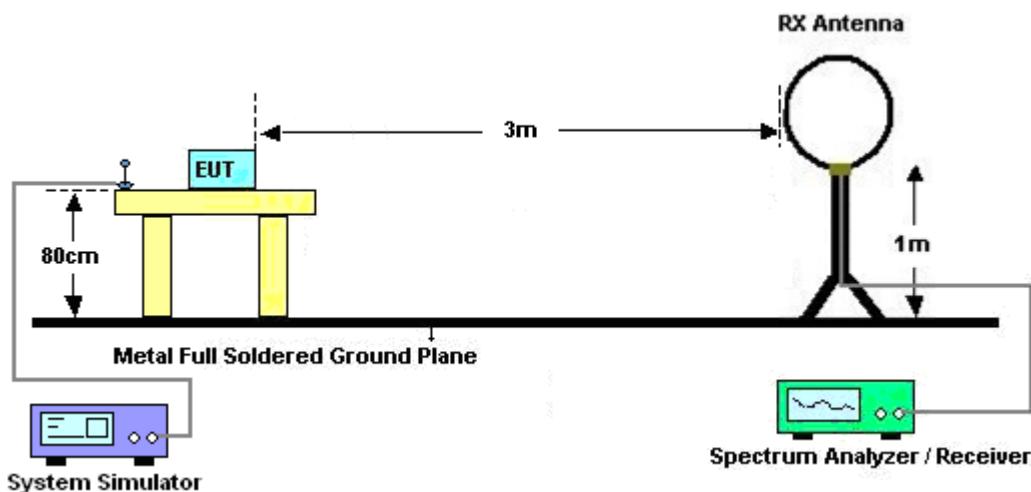
3.1.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

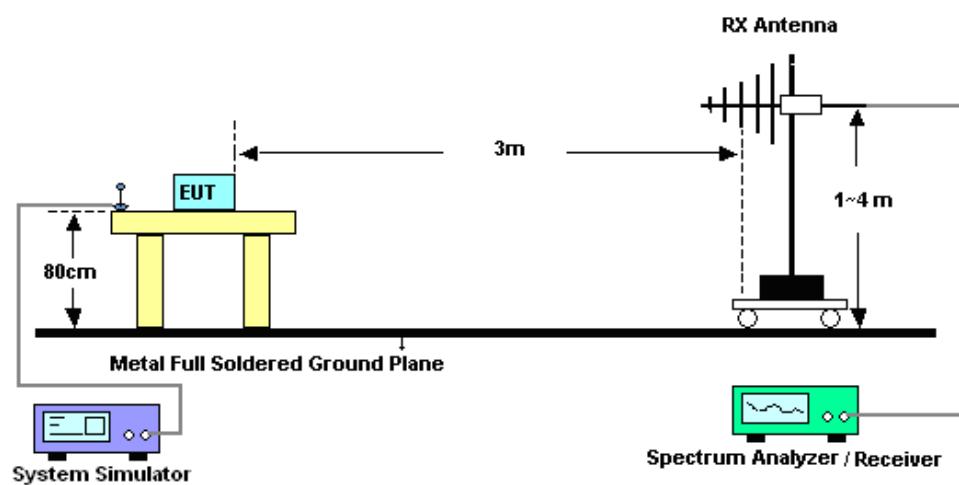
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.1.2 Measuring Instruments

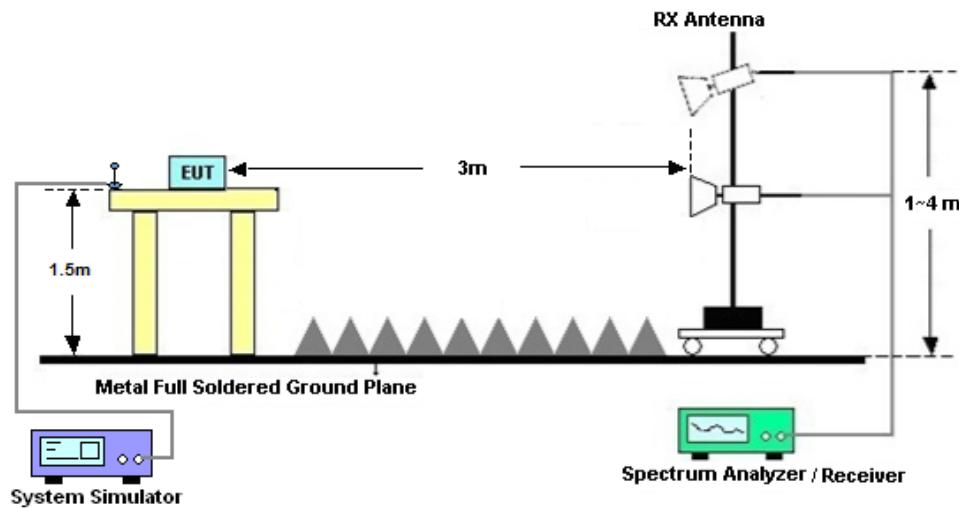
The measuring equipment is listed in the section 4 of this test report.


3.1.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
4. Set to the maximum power setting and enable the EUT transmit continuously.
5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz, RBW=1MHz for $f > 1$ GHz ; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).
Duty cycle = On time/100 milliseconds
On time = $N_1 \cdot L_1 + N_2 \cdot L_2 + \dots + N_{n-1} \cdot L_{n-1} + N_n \cdot L_n$
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
Average Emission Level = Peak Emission Level + $20 \cdot \log(\text{Duty cycle})$
6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from $20 \log(\text{dwell time}/100\text{ms})$. This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.1.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.1.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix A.

3.1.8 Duty cycle correction factor for average measurement

Please refer to Appendix B.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY56400004	3Hz~8.5GHz; Max 30dBm	Oct. 17, 2020	Jun. 28, 2021	Oct. 16, 2021	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150208	10Hz-44GHz	Apr. 12, 2021	Jun. 28, 2021	Apr. 11, 2022	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 01, 2020	Jun. 28, 2021	Oct. 31, 2021	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 27, 2021	Jun. 28, 2021	May 26, 2022	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 25, 2021	Jun. 28, 2021	Apr. 24, 2022	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 06, 2020	Jun. 28, 2021	Nov. 05, 2021	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHz	Apr. 12, 2021	Jun. 28, 2021	Apr. 11, 2022	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 06, 2021	Jun. 28, 2021	Jan. 05, 2022	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Jan. 06, 2021	Jun. 28, 2021	Jan. 05, 2022	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY53270203	500MHz~26.5GHz	Apr. 13, 2021	Jun. 28, 2021	Apr. 12, 2022	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Jun. 28, 2021	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 28, 2021	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 28, 2021	NCR	Radiation (03CH06-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

Appendix A. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT CH 78 2480MHz		2485.9	53.7	-20.3	74	47.2	31.7	8.22	33.42	162	317	P	H
	*	2485.9	28.91	-25.09	54	-	-	-	-	-	-	A	H
		2480	100.77	-	-	94.18	31.8	8.22	33.43	162	317	P	H
		2480	75.98	-	-	-	-	-	-	-	-	A	H
		2486.8	56.1	-17.9	74	48.44	32.86	8.22	33.42	104	258	P	V
	*	2486.8	31.31	-22.69	54	-	-	-	-	-	-	A	V
		2480	98.92	-	-	91.27	32.86	8.22	33.43	104	258	P	V
		2480	74.13	-	-	-	-	-	-	-	-	A	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

BT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT CH 78 2480MHz		4962	39.39	-34.61	74	53.58	35.14	11.71	61.04	100	360	P	H
		7440	41.84	-32.16	74	51.12	36.89	14.88	61.05	100	360	P	H
		4962	41.62	-32.38	74	56.14	34.81	11.71	61.04	100	360	P	V
		7440	41.84	-32.16	74	51.54	36.47	14.88	61.05	100	360	P	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
												Limit	Line
												Level	Factor
2.4GHz BT LF		119.24	29.68	-13.82	43.5	44.21	16.56	1.77	32.86	106	35	P	H
		217.21	30.79	-15.21	46	45.3	16.21	2.38	33.1	-	-	P	H
		379.2	27.56	-18.44	46	35.91	21.32	3.17	32.84	-	-	P	H
		734.22	28.91	-17.09	46	29.43	27.8	4.41	32.73	-	-	P	H
		813.76	30.91	-15.09	46	30.21	28.59	4.64	32.53	-	-	P	H
		878.75	31.97	-14.03	46	30.41	29.27	4.83	32.54	-	-	P	H
		35.82	33.64	-6.36	40	43.66	22.04	0.66	32.72	106	96	P	V
		221.09	25.55	-20.45	46	39.77	16.48	2.4	33.1	-	-	P	V
		257.95	28.66	-17.34	46	40.51	18.63	2.59	33.07	-	-	P	V
		829.28	32.75	-13.25	46	31.81	28.81	4.69	32.56	-	-	P	V
		882.63	31.81	-14.19	46	30.2	29.3	4.84	32.53	-	-	P	V
		932.1	32.48	-13.52	46	30.13	29.75	4.97	32.37	-	-	P	V
Remark	1. No other spurious found. 2. All results are PASS against limit line.												

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.		
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT CH 00 2402MHz		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	H
		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	H

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)

2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

1. Level(dB μ V/m)

= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 54.51(dB μ V) – 35.86 (dB)

= 55.45 (dB μ V/m)

2. Over Limit(dB)

= Level(dB μ V/m) – Limit Line(dB μ V/m)

= 55.45(dB μ V/m) – 74(dB μ V/m)

= -18.55(dB)

For Average Limit @ 2390MHz:

1. Level(dB μ V/m)

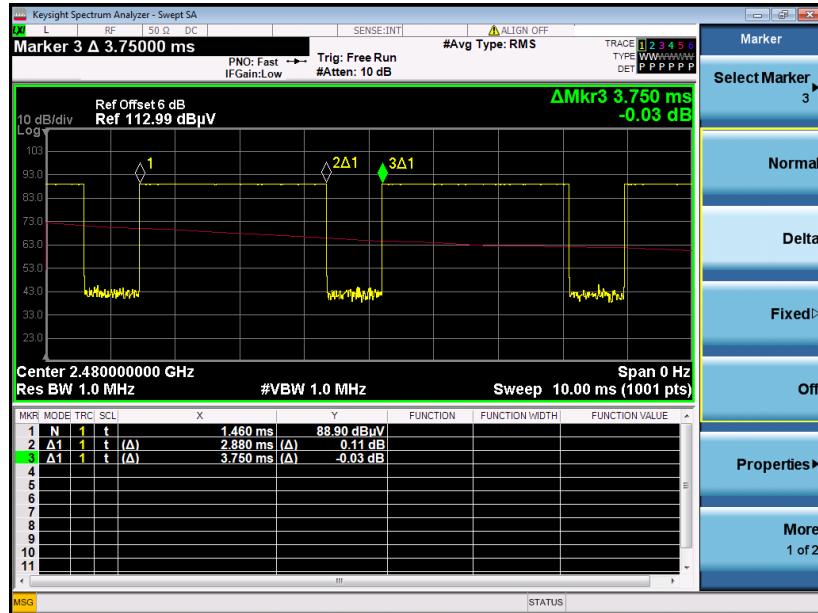
= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 42.6(dB μ V) – 35.86 (dB)

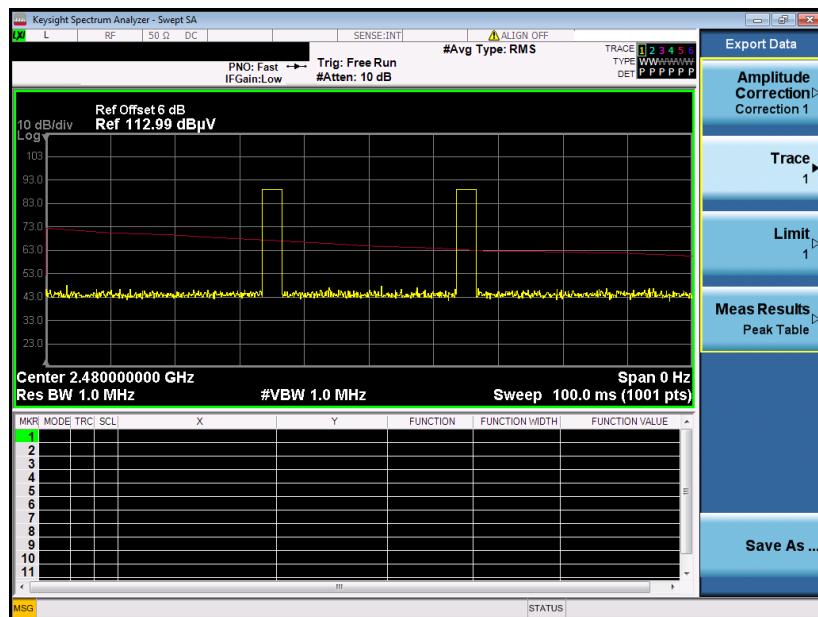
= 43.54 (dB μ V/m)

2. Over Limit(dB)

= Level(dB μ V/m) – Limit Line(dB μ V/m)


= 43.54(dB μ V/m) – 54(dB μ V/m)

= -10.46(dB)


Both peak and average measured complies with the limit line, so test result is “PASS”.

Appendix B. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 78

DH5 on time (Count Pulses) Plot on Channel 78

Note:

1. Worst case Duty cycle = on time/100 milliseconds = $2 * 2.88 / 100 = 5.76 \%$
2. Worst case Duty cycle correction factor = $20 * \log(\text{Duty cycle}) = -24.79 \text{ dB}$
3. DH5 has the highest duty cycle worst case and is reported.