

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200601201

FCC REPORT

Applicant: Sunwell Technology Company Limited

Address of Applicant: Building 2. Unit 2. Floor 4A. Jinlong Garden, Nanlian Community,

Longgang Street, Longgang District, Shenzhen. China

Equipment Under Test (EUT)

Product Name: Fireplace Remote Control

Model No.: IF-BTSS, IF-SSKT, RCB04A, RCB04B, RCB04C, RCB05A

FCC ID: 2AWRZ-IF-BTSS-TX

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of sample receipt: 04 Jun., 2020

Date of Test: 04 Jun., to 24 Jun., 2020

Date of report issue: 28 Jun., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jun., 2020	Original

Prepared By: Quen (hen Date: 28 Jun., 2020

Test Engineer

Check By: Date: 28 Jun., 2020

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	Test Mode	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	RADIATED EMISSION	9
	6.2.	1 Field Strength Of The Fundamental Signal	11
	6.2.2	2 Spurious Emissions	15
	6.3	20DB BANDWIDTH	
	6.4	DURATION TIME	22
7	TES	ST SETUP PHOTOS	24
8	FUT	CONSTRUCTIONAL PHOTOS	25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.231 (b)	Pass
Spurious emissions	15.231 (b)/15.209	Pass
20dB Bandwidth	15.231 (c)	Pass
Duration Time	15.231 (a)(1)	Pass
Conducted Emission	15.207	N/A

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.4-2014 ANSI C63.10-2013

5 General Information

5.1 Client Information

Applicant:	Sunwell Technology Company Limited					
Address:	Building 2.Unit 2.Floor 4A. Jinlong Garden, Nanlian Community, Longgang Street, Longgang District, Shenzhen. China					
Manufacturer:	Sunwell Technology Company Limited					
Address:	Building 2.Unit 2.Floor 4A. Jinlong Garden, Nanlian Community, Longgang Street, Longgang District, Shenzhen. China					
Factory:	Feawell Technology Company Limited					
Address:	Bldg8,Floor3.Lanshuxia Industrial Zone,Liang an tian, Pinghu Longgang District ShenZhen China					

5.2 General Description of E.U.T.

Product Name:	Fireplace Remote Control
Model No.:	IF-BTSS, IF-SSKT, RCB04A, RCB04B, RCB04C, RCB05A
Operation Frequency:	304.03MHz
Channel numbers:	1
Modulation type:	OOK
Antenna Type:	Internal antenna
Antenna gain:	0.5 dBi
Power supply:	Battery AAA*2(3V)
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Model No.: IF-BTSS, IF-SSKT, RCB04A, RCB04B, RCB04C, RCB05A were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas.

5.3 Test mode

010 1001111040							
Transmitting mode:	Keep the EUT in transm	Keep the EUT in transmitting mode with modulation (new battery used)					
Pre-Test Mode:	·						
	ruction and function in typical Y axis, Z axis. which was sho						
Axis	Χ	Υ	Z				
Field Strength(dBuV/m)	78.04	77.67	77.35				
Final Test Mode:							
According to ANSI C63.4 stathe test setup photo)	andards, the test results are t	ooth the "worst case" and "w	orst setup": X axis (see				

Report No: CCISE200601201

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

Nο

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

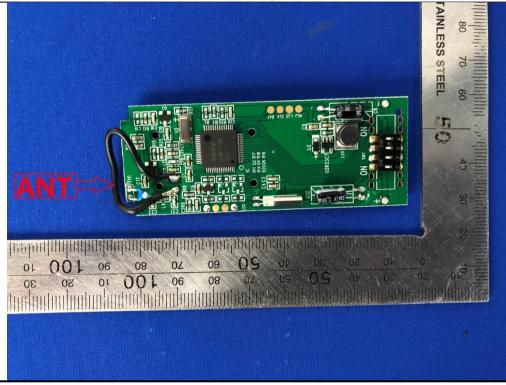
Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020					
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2020	03-17-2021					
Broadband Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020					
broadband Antenna	SURWARZBEUN	VUDASTIT	359	06-19-2020	06-20-2021					
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021					
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020					
nom Antenna	SURWARZBEUN	DDDA9120D	1605	06-19-2020	06-20-2021					
Horn Antenna	SCHWARZBECK	BBHA9170	582	11-18-2019	11-17-2020					
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021					
EMI Test Software	AUDIX	E3	,	Version: 6.110919	b					
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021					
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021					
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2020	03-06-2021					
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020					
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2020	03-06-2021					
Simulated Station	Anritsu	MT8820C	6201026545	03-07-2020	03-06-2021					
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021					
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021					
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021					

6 Test results and Measurement Data

6.1 Antenna requirement

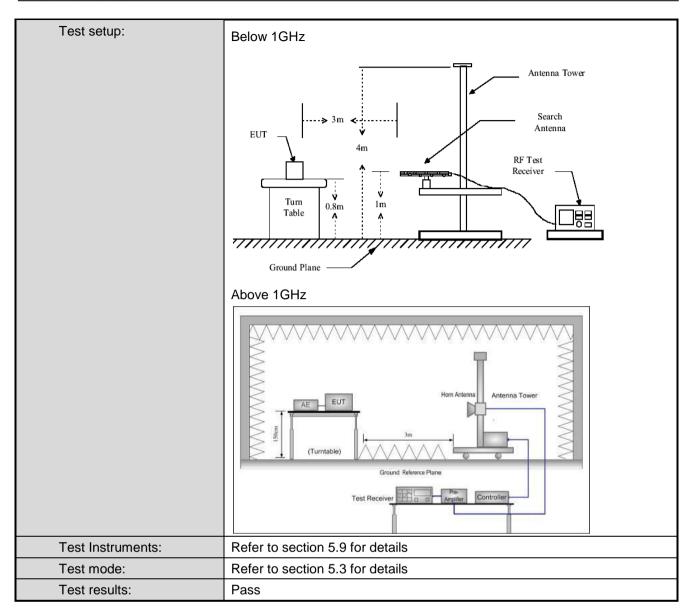

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

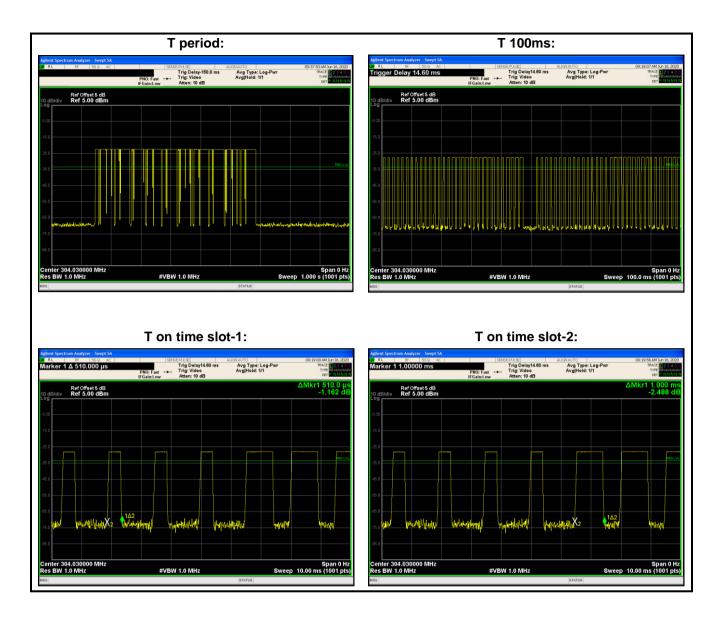
E.U.T Antenna:

The EUT make use of a PCB antenna, The typical gain of the antenna is 0.5dBi.

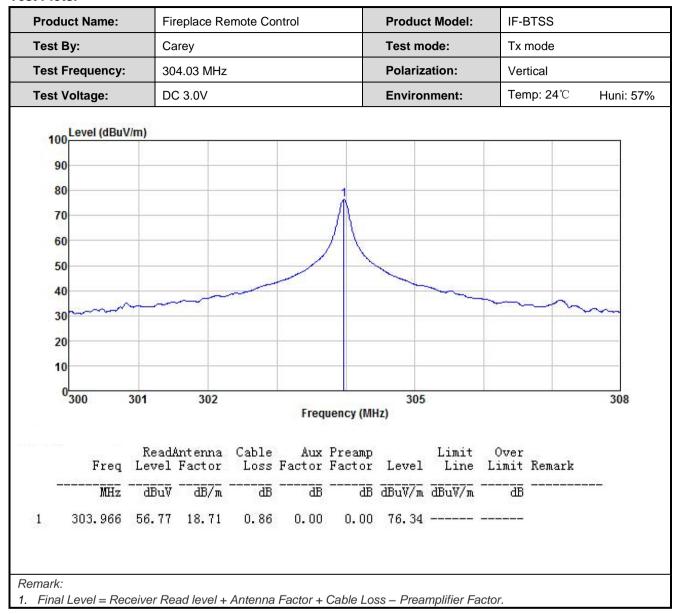


6.2 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.231(a) and 15.209						
Test Frequency Range:	30MHz to 500	0MHz					
Test site:	Measurement	Distance: 3m (Semi-Anecho	oic Chamb	er)		
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
Limit:	Frequen	cy L	imit (dBuV/m @	@3m)	Remark		
(Field strength of the	304.03M	Ц-7	74.94		Average Value		
fundamental signal)	304.031	112	94.94		Peak Value		
Limit:	Frequen	cy L	imit (dBuV/m @	23m)	Remark		
(Spurious Emissions)	30MHz-88	MHz	40.0		Quasi-peak Value		
,	88MHz-216	6MHz	43.5		Quasi-peak Value		
	216MHz-96	0MHz	46.0		Quasi-peak Value		
	960MHz-1	GHz	54.0		Quasi-peak Value		
	Above 10	≥H-7	54.0		Average Value		
	Above 10	JI 12	74.0		Peak Value		
Test Procedure:	Above 1GHz						

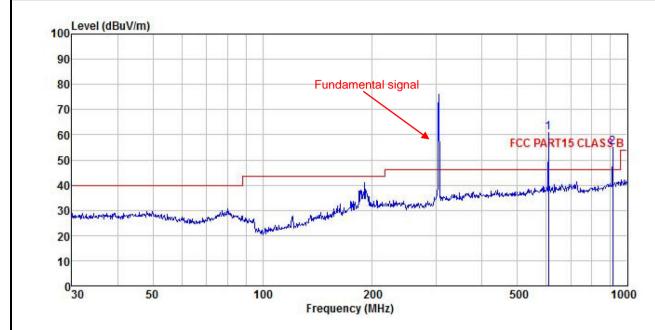


6.2.1 Field Strength Of The Fundamental Signal


					Peak value						
Frequency (MHz)	Read Level (dBuV)	Antenr Facto (dB/m	or	Cable Loss (dB)	Preamp Factor(dB)		₋evel BuV/m)	Limit Line		Polarization	
304.03	56.77	18.7	1	0.86	0.00	7	6.34	94.94	-18.60	Vertical	
304.03	58.47	18.7	1	0.86	0.00	7	' 8.04	94.94	-16.90	Horizontal	
	Average value										
Frequency (MHz)	Level (dBuV/r			Outy Cycle factor	Average value (dBuV/m)		Limit Line (dBuV/m)		Over Limit (dB)	Polarization	
304.03	76.34			-6.96	69.38		74.94		-5.56	Vertical	
304.03	78.04			-6.96	71.08		74.94		-3.86	Horizontal	
		Aver	Average value=Peak value + Duty Cycle Factor								
Calcula	te Formula:	Duty	Duty cycle factor = 20log(Duty cycle)								
		Duty	Duty cycle = on time/100 milliseconds or period, whichever is less								
			time	e =(1*26)(ms)	+ (0.51*37)(m	s) =4	44.87(ms	s)	·	·	
			riod	=560(ms)>10	00(ms)						
les	st data:	Duty	cyc	le =52.10%							
		Duty	cyc	le factor = 20	log(Duty cycle)	= -6	6.96				

Test Plots:

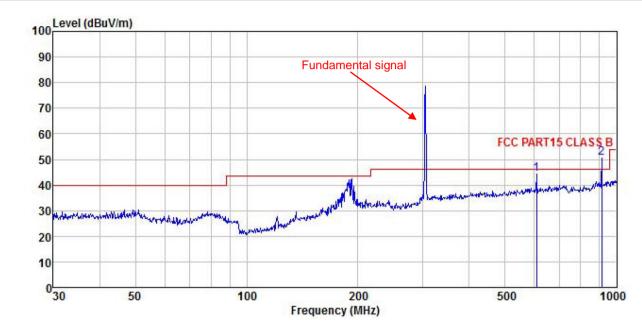
Product N	ame:	Fire	eplace Re	emote Co	ontrol		Prod	luct Mode	el:	IF-BTSS		
Test By: Carey		rey					mode:		Tx mode			
Test Frequ	iency:	304	4.03 MHz				Pola	rization:		Horizont	al	
Test Volta	ge:	DC	3.0V				Envi	ronment:		Temp: 24	4℃	Huni: 579
525.000		0 4							·			
100 Leve	(dBuV	//m)										
90												
80						1						
70						$ \mathbb{A}$						
60						$/ \setminus$						
50							1					-
40								-				
30~~~	~~											
20												
10												
300		301	302		Fr	equency (305				308
						oquonoj						
	Freq		intenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∀	<u>dB</u> /m		<u>d</u> B	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B			
1 303	. 966	58.47	18.71	0.86	0.00	0.00	78.04					


6.2.2 Spurious Emissions

	Below 1GHz (30MHz-1000MHz)										
Peak value											
Frequency (MHz)	. , l Facto		Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
608.06	39.64	19.93	1.22	0.00	60.79	74.94	-14.15	Vertical			
912.09	30.86	22.65	1.50	0.00	55.01	74.94	-19.93	Vertical			
608.06	23.03	19.93	1.22	0.00	44.18	74.94	-30.76	Horizontal			
912.09	26.22	22.65	1.50	0.00	50.37	74.94	-24.57	Horizontal			
				Average valu	е						
Frequency Leve (MHz) (dBuV/			Duty cycle factor		Average value (dBuV/m)		Over Limit (dB)	Polarization			
608.06 60.79		79	-6.96	5	53.83		-1.11	Vertical			
912.09 55.01)1	-6.96	4	48.05		-6.89	Vertical			
608.06 44.18		18	-6.96	3	37.22		-17.72	Horizontal			
912.09 50.37		37	-6.96	4	43.41		-11.53	Horizontal			

Test Plots:

Product Name:	Fireplace Remote Control	Product Model:	IF-BTSS
Test By:	Carey	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.0V	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
-	MHz	—dBu∜	<u>dB</u> /m	 <u>ab</u>	<u>qp</u>	$\overline{dBuV/m}$	$\overline{dB} \overline{uV/m}$	<u>ab</u>	
	607.787 912.862								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Fireplace Remote Control	Product Model:	IF-BTSS
Test By:	Carey	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.0V	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∇	<u>dB</u> /π	<u>ap</u>	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1 2 *	607.787 912.862	23.03 26.22	19.93 22.65	1.22 1.50	0.00 0.00	0.00 0.00	44.18 50.37	46.00 46.00	-1.82 4.37	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Fireplace I	Remote Control	Pro	duct Model:	IF-BTSS		
Test By:	Carey		Tes	st mode:	Tx mode		
Test Frequency:	1 GHz ~ 5	GHz	Pola	arization:	Vertical		
Test Voltage:	DC 3.0V		Env	vironment:	Temp: 24℃	Huni: 57%	
Level (dBuV/ı	m)						
80 Level (dBuV/l	,				FCC PAR	T 15 (PK)	
70							
60							
		2 3		6 0	FCC PAR	T 15 (AV)	
50			4 5	7 1	Mary durant mary	Madden Brosselfer	
40		h	Marine Language Language	White and what the property of	Maria to Maria to the Salar Sa		
30 mary destruction	Children of Constant of the Security						
20							
10							
01000 120	0 150	00 200	00			5000	
		Fi	requency (MHz)				
	ReadAntenna evel Factor		Preamp Factor Level	Limit Over Line Limit	Remark		
<u>MH</u> z	dBuV −dB/m	<u>qp</u> <u>qp</u> .	dB dBu√/m	$\overline{dBuV/m} \ \overline{dB}$			
2 1519.610 6- 3 1822.703 6	4.34 24.38 4.21 25.05 3.89 25.31 5.68 26.35 0.86 27.13	2.96 1.21 3.34 1.36 3.74 1.52 4.02 1.63 4.32 1.69	41.06 41.83 41.03 52.93 41.26 53.20 41.67 46.01 41.92 42.08 41.73 49.01	74.00 -32.17 74.00 -21.07 74.00 -20.80 74.00 -27.99 74.00 -31.92 74.00 -24.99	Peak Peak Peak Peak		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Fireplace Remote Control	Product Model:	IF-BTSS		
Test By:	Carey	Test mode:	Tx mode		
Test Frequency:	1 GHz ~ 5 GHz	Polarization:	Horizontal		
Test Voltage:	DC 3.0V	Environment:	Temp: 24°C Huni: 57%		
80 Level (dBuV/m)			FCC PART 15 (PK)		
60			FCC PART 15 (AV)		
50	2 3 4	5 6 7	when the manuscrape were		

10											
0	1000 120	00	1500		2000) equency (MUzl				5000
		Read	Antenna	Cable		Preamo		Limit	Over		
	Freq		Factor							Remark	
	MHz	—dBu∜	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
	1214.997	57.46	24.38	2.96	1.21	41.06	44.95	74.00	-29.05	Peak	
2	1519.610	57.05	25.05	3.34	1.36	41.03	45.77	74.00	-28.23	Peak	
i	1822.703	59.19	25.31	3.74	1.52	41.26	48.50	74.00	-25.50	Peak	
	2127.242	54.05	26.35	4.02	1.63	41.67	44.38	74.00	-29.62	Peak	
	2431.260	51.62	27.13	4.32	1.69	41.92	42.84	74.00	-31.16	Peak	
;	2734.364	54.23	27.84	4.60	1.79	41.73	46.73	74.00	-27.27	Peak	
7	3040.803	51.11	28.43	4.93	1.92	41.49	44.90	74.00	-29.10	Peak	
3	3343.701	53.56	28.62	5.18	2.12	41.36	48.12	74.00	-25.88	Peak	

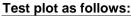
Remark:

30

20

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

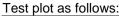
6.3 20dB Bandwidth

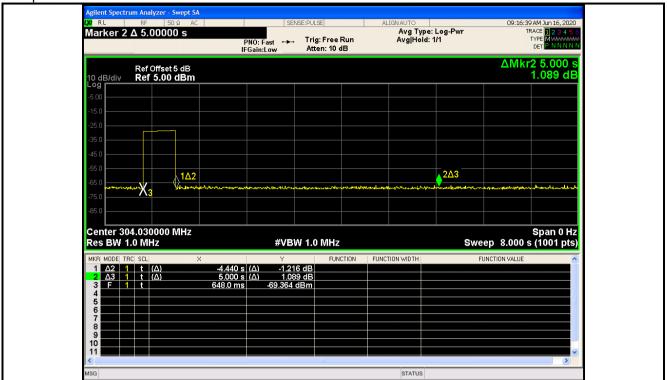

Test Requirement:	FCC Part15 C Section 15.231 (c)				
Receiver setup:	RBW=1kHz, VBW=3kHz, detector: Peak				
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.				
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

20dB bandwidth (MHz)	Limit (MHz)	Results
0.0082	0.760075	Passed

Note: Limit= Fundamental frequency×0.25%=304.03×0.25%=0.760075MHz


6.4 Duration Time


Test Requirement:	FCC Part15 C Section 15.231 (a)		
Receiver setup:	RBW=100kHz, VBW=300kHz, span=0Hz, detector: Peak		
Limit:	Not more than 5 seconds		
Test mode:	Transmitting mode		
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Single scan the transmission, and read the transmission time. 		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Duration time (second)	Limit (second)	Result
0.56	<5.0	Pass

