

FCC Part 15.247 TEST REPORT

For

IOTTECH CORPORATION

No.10-1, Shijian Rd., Hukou, Hsinchu, Taiwan

FCC ID: 2AWP5WM1188FXC

Report Type:

Original Report

Product Type:

IEEE 802.11 b/g/n 2.4GHz 1T1R

USB Wi-Fi Module

Budy. Shih

Report Producer : Coco Lin

Report Number: <u>RXZ240711039RF02</u>

Report Date : <u>2024-09-04</u>

Reviewed By: Andy Shih

Prepared By: Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,

New Taipei City 221, Taiwan, R.O.C.

Tel: +886 (2) 2647 6898

Fax: +886 (2) 2647 6895

www.bacl.com.tw

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ240711039	RXZ240711039RF02	2024-09-04	Original Report	Coco Lin

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 2 of 67

TABLE OF CONTENTS

1	Ge	eneral Information	5
	1.1 1.2	Product Description for Equipment under Test (EUT)	6
	1.3 1.4	Test Methodology Statement	
	1.5	Measurement Uncertainty	
	1.6	Environmental Conditions	
	1.7	Test Facility	7
2	Sy	stem Test Configuration	8
	2.1	Description of Test Configuration	
	2.2	Equipment Modifications	
	2.3 2.4	EUT Exercise Software	
	2.5	Support Equipment List and Details	
	2.6	External Cable List and Details	
	2.7	Block Diagram of Test Setup	9
	2.8	Duty Cycle	11
3	Su	mmary of Test Results	14
4	Te	est Equipment List and Details	15
5	FC	CC §15.247(i), §1.1307(b)(3) - RF Exposure	16
	5.1	Applicable Standard	
	5.2	RF Exposure Evaluation Result	17
6	FC	CC §15.203 – Antenna Requirements	18
	6.1	Applicable Standard	
	6.2	Antenna List and Details	
7	FC	CC §15.207(a) – AC Line Conducted Emissions	19
	7.1	Applicable Standard	
	7.2	EUT Setup	
	7.3	EMI Test Receiver Setup Test Procedure	
	7.4 7.5	Corrected Factor & Over Limit Calculation	
	7.6	Test Results	
8	FC	CC §15.209, §15.205 , §15.247(d) – Spurious Emissions	
	8.1	Applicable Standard	22
	8.2	EUT Setup	23
	8.3	EMI Test Receiver & Spectrum Analyzer Setup	
	8.4 8.5	Test Procedure	
	8.6	Test Results	
9		CC §15.247(a)(2) – 6 dB Emission Bandwidth	
	9.1	Applicable Standard	
	9.2	Test Procedure	
	9.3	Test Results	
10	FC	CC §15.247(b)(3) – Maximum Peak Output Power	52

Bay Area	Compliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ240711039RF02
10.1	Applicable Standard	52
10.2	Test Procedure	52
10.3	Test Results	53
11 FC	CC§15.247(d) – 100 kHz Bandwidth of Frequency Band E	Edge 54
11.1	Applicable Standard	54
	Test Procedure	
11.3	Test Results	55
12 FC	CC §15.247(e) – Power Spectral Density	60
	Applicable Standard	
12.2	Test Procedure	60
12.3	Test Results	61

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	IOTTECH CORPORATION			
Applicant	No.10-1,Shijian Rd.,Hukou,Hsinchu,Taiwan			
Brand(Trade) Name	IOTTECH Corp.			
Product (Equipment)	IEEE 802.11 b/g/n 2.4GHz 1T1R USB Wi-Fi Module			
Main Model Name	ITM1188-F-XC			
Series Model Name	N/A			
Engraph and Danger	IEEE 802.11b/g/n HT20 Mode: 2412 ~ 2462 MHz			
Frequency Range	IEEE 802.11n HT40 Mode: 2422 ~ 2452 MHz			
	IEEE 802.11b Mode: 15.26 dBm			
Maximum Conducted Peak	IEEE 802.11g Mode: 18.52 dBm			
Output Power	IEEE 802.11n HT20 Mode: 17.46 dBm			
	IEEE 802.11n HT40 Mode: 17.09 dBm			
	IEEE 802.11b Mode: DSSS			
Madulation Tashniqua	IEEE 802.11g Mode: OFDM			
Modulation Technique	IEEE 802.11n HT20 Mode: OFDM			
	IEEE 802.11n HT40 Mode: OFDM			
Power Operation	DC 2 2V4-			
(Voltage Range)	DC 3.3Vdc			
Received Date	2024/07/11			
Date of Test	2024/07/12 ~ 2024/07/16			

^{*}All measurement and test data in this report was gathered from production sample serial number:

RXZ240711039-1 (Assigned by BACL, New Taipei Laboratory).

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

Page 5 of 67

1.2 Objective

This report is prepared on behalf of IOTTECH CORPORATION in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

No.: RXZ240711039RF02

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 6 of 67

1.5 Measurement Uncertainty

Parameter	-	Uncertainty
AC Mains		+/- 3.02 dB
RF output power, conduct	ed	+/- 0.57 dB
Power Spectral Density, co	onducted	+/- 0.60 dB
Occupied Bandwidth		+/- 0.09 %
Unwanted Emissions, con-	ducted	+/- 1.09 dB
	9 kHz~30 MHz	+/- 3.20 dB
Emissions, radiated	30 MHz~1 GHz	+/- 3.30 dB
Ellissions, radiated	1 GHz~18 GHz	+/- 5.14 dB
	18 GHz~40 GHz	+/- 4.75 dB
Temperature		+/- 0.76 °C
Humidity		+/- 0.41 %

No.: RXZ240711039RF02

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2024/7/15	26.6	40	1010	Jing Chang
Radiation Spurious Emissions	2024/7/12~2024/7/16	23.4~25.1	58~68	1010	Wayne Pan
Duty Cycle	2024/7/12	25.2	53	1010	Jing Chang
Conducted Spurious Emissions	2024/7/12~2024/7/15	25.2~25.4	45~53	1010	Jing Chang
6 dB Emission Bandwidth	2024/7/12~2024/7/15	25.2~25.4	45~53	1010	Jing Chang
Maximum Output Power	2024/7/12~2024/7/15	25.2~25.4	45~53	1010	Jing Chang
100 kHz Bandwidth of Frequency Band Edge	2024/7/12~2024/7/15	25.2~25.4	45~53	1010	Jing Chang
Power Spectral Density	2024/7/12~2024/7/15	25.2~25.4	45~53	1010	Jing Chang

1.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

∑70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 7 of 67

2 System Test Configuration

2.1 Description of Test Configuration

For WIFI mode, there are totally 11 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

No.: RXZ240711039RF02

For 802.11 b/g/n20 Modes were tested with channel 1, 6 and 11.

For 802.11n40 Mode were tested with channel 3, 6 and 9.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The test software was used "MPTool v1.2.0.5"

The system was configured for testing in engineering mode, which was provided by Applicant.

Test Frequency		Low	Middle	High
	802.11b Mode	42	42	36
Dayyan I ayal Catting	802.11g Mode	47	47	44
Power Level Setting	802.11n HT20 Mode	46	46	42
	802.11n HT40 Mode	45	45	39

The worst case data rates are as follows:

802.11b: 1Mbps

802.11g: 6Mbps

802.11n HT20: MCS0

802.11n HT40: MCS0

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 8 of 67

2.4 Test Mode

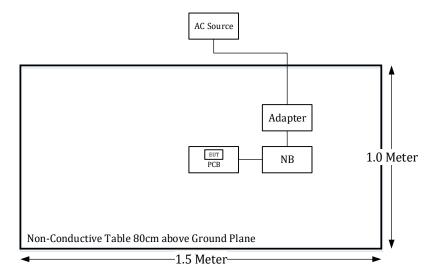
Full System (model: ITM1188-F-XC) for all test item.

2.5 Support Equipment List and Details

Description	Manufacturer	Model Number	
NB	DELL	E6410	
Adapter	DELL	DA90PE3-00	
Bottom Layer PCB	IOTTECH Corp.	47080Z-Y25-190504	

No.: RXZ240711039RF02

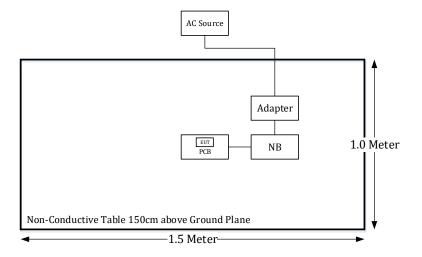
2.6 External Cable List and Details

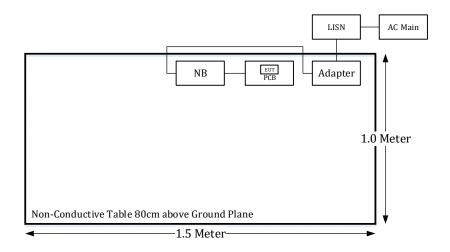

Description		Manufacturer	Length (m)
USBA to Mini USB		BACL	1

2.7 Block Diagram of Test Setup

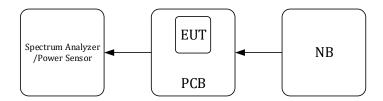
See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:


Below 1GHz:


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 9 of 67


Above 1GHz:

Conduction:

Conducted:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

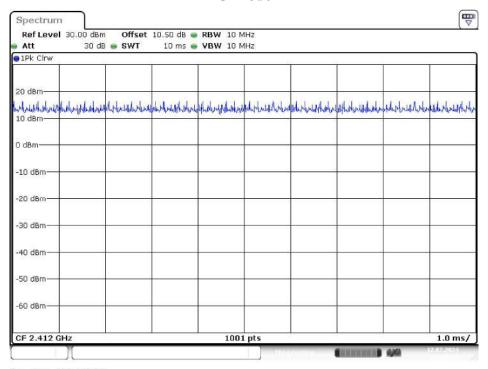
Page 10 of 67

2.8 Duty Cycle

The duty cycle as below:

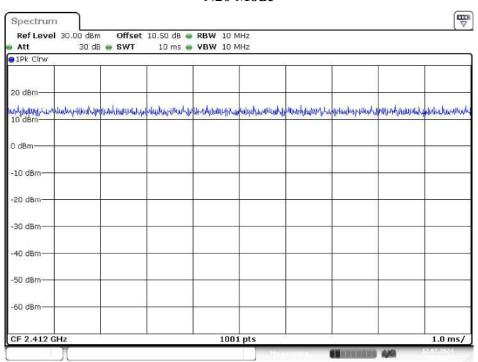
Radio Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	1/T (kHz)	1/T VBW setting (kHz)
802.11b	100	100	100	/	0.01
802.11g	100	100	100	/	0.01
802.11n HT20	100	100	100	/	0.01
802.11n HT40	100	100	100	/	0.01

No.: RXZ240711039RF02

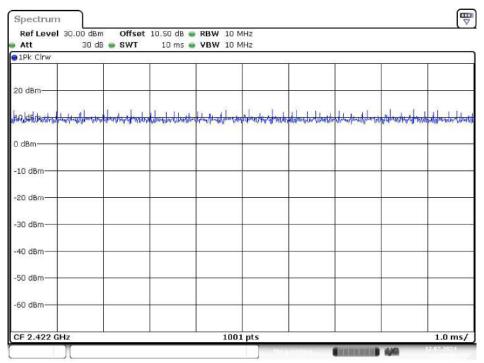

Please refer to the following plots.

B Mode Spectrum Ref Level 30.00 dBm Offset 10,50 dB - RBW 10 MHz 30 dB 🌞 SWT Att 10 ms 👄 VBW 10 MHz ●1Pk Clrw 20 dBm 10 dBm 0 dBm--10 dBm -20 dBm--30 dBm -50 dBm--60 dBm-1001 pts 1.0 ms/ CF 2.412 GHz

Date: 12.JUL_2024_16:55:22


G Mode

No.: RXZ240711039RF02


Date: 12.JUL 2024 16:56:20

N20 Mode

Date: 12.JUL_2024 16:57:14

N40 Mode

Date: 12.JUL.2024 16:58:06

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 13 of 67

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1307(b)(3)(i)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

4 Test Equipment List and Details

	pment List and		Serial	Calibration	Calibration
Description	Manufacturer	Model	Number	Date	Due Date
	AC]	Line Conduction Roo		2	2 40 2 400
LISN	Rohde & Schwarz	ENV216	101612	2024/2/16	2025/2/15
EMI Test		ECMO	100047	2024/5/24	
Receiver	Rohde & Schwarz	ESW8	100947	2024/5/24	2025/5/23
RF Cable	EMEC	EM-CB5D	1	2024/6/5	2025/6/4
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
		Radiation 3M Room	(966-A)		
Active Loop Antenna	ETS-Lindgren	6502	35796	2024/3/27	2025/3/26
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/1554 2_01	2024/1/19	2025/1/18
Horn Antenna	A.H. system	SAS-571	1020	2024/5/21	2025/5/20
Horn Antenna	ETS-Lindgren	3116	62638	2023/8/25	2024/8/23
Preamplifier	Sonoma	310N	130601	2024/1/29	2025/1/28
Preamplifier	Channel	ERA-100M-18G- 01D1748	EC2300051	2024/3/29	2025/3/28
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2024/1/8	2025/1/7
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2024/6/24	2025/6/23
Spectrum Analyzer	Rohde & Schwarz	FSV40	101939	2024/3/27	2025/3/26
Microflex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2024/1/23	2025/1/22
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2024/1/23	2025/1/22
Coaxial Cable	COMMATE	PEWC	8Dr	2023/12/23	2024/12/22
Cable	EMC	EMC105-SM- SM-10000	201003	2024/1/23	2025/1/22
Coaxial Cable	JUNFLON	J12J102248-00- B-5	AUG-07-15- 044	2023/12/23	2024/12/22
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2024/1/23	2025/1/22
Microflex Cable	ROSNOL	K1K50-UP0264- K1K50-80CM	160309-2	2024/1/23	2025/1/22
Band-stop filter	Woken	STI15-9831	STI15-9831-1	2023/10/20	2024/10/19
High-pass filter	XINGBOKEJI	XBLBQ-GTA54	200108-3-2	2023/10/20	2024/10/19
Software	AUDIX	E3	18621a	N.C.R	N.C.R
		Conducted Roo	m		
Spectrum Analyzer	Rohde & Schwarz(R&S)	FSV40	101204	2024/5/30	2025/5/29
Cable	UTIFLEX	UFA210A	9435	2023/10/2	2024/10/1
Power Sensor	Boonton	RTP5006	11037	2024/5/21	2025/5/20
Attenuator	MCL	BW-S10W5+	1419	2024/2/23	2025/2/22

^{*}Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

5 FCC §15.247(i), §1.1307(b)(3) - RF Exposure

5.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1307(b)(3), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

No.: RXZ240711039RF02

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

- (A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);
- (B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} \; (\text{mW}) = \begin{cases} ERP_{20\;cm} (d/20\;\text{cm})^x & d \leq 20\;\text{cm} \\ ERP_{20\;cm} & 20\;\text{cm} < d \leq 40\;\text{cm} \end{cases}$$
 Where
$$x = -\log_{10} \left(\frac{60}{ERP_{20\;cm}\sqrt{f}}\right) \; \text{and} \; f \text{is in GHz};$$
 and
$$ERP_{20\;cm} \; (\text{mW}) = \begin{cases} 2040f & 0.3\;\text{GHz} \leq f < 1.5\;\text{GHz} \\ 3060 & 1.5\;\text{GHz} \leq f \leq 6\;\text{GHz} \end{cases}$$

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the freespace operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine
Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 16 of 67

5.2 RF Exposure Evaluation Result

Project info

Band	Freq (MHz)	Tune-up Power (dBm)	Ant Gain (dBi)	Distances (mm)	Tune-up Power (mW)	ERP (dBm)	ERP (mW)
WiFi 2.4GHz	2412	18.6	3.44	200	72.44	19.89	97.50

No.: RXZ240711039RF02

§ 1.1307(b)(3)(i)(A) method is not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq (MHz)	λ/2π (mm)	Distances applies	ERP Limit (mW)	Result Option C
WiFi 2.4GHz	2412	19.8	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates

ERP (watts) is no more than the calculated value prescribed for that frequency

R must be at least $\lambda / 2\pi$

 λ is the free-space operating wavelength in meters

Note: The Tune-up output power was declared by the Applicant.

Result: The device compliant the MPE-Based Exemption at 20cm distances.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 17 of 67

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ240711039RF02

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

6.2 Antenna List and Details

Manufacturer	Model	Antenna Type	Antenna Gain	Impedance	
Hantech	HT870001	PCB Antenna	3.44 dBi	50Ω	

The antenna is connected to the EUT using a connector that is not a standard antenna jack.

Result: Compliance

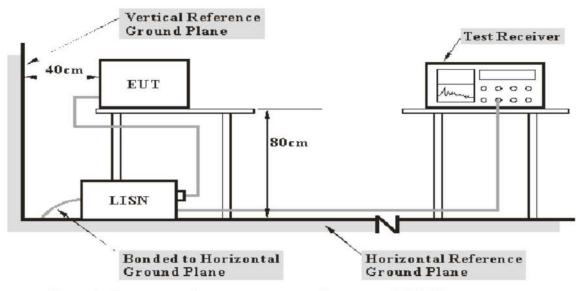
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 18 of 67

7 FCC §15.207(a) – AC Line Conducted Emissions

7.1 Applicable Standard

According to §15.207


For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

No.: RXZ240711039RF02

Frequency of Emission	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56 ^{Note}	56 to 46 ^{Note}			
0.5-5	56	46			
5-30	60	50			

Note: Decreases with the logarithm of the frequency.

7.2 EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

from other units and other metal planes support units.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 19 of 67

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

No.: RXZ240711039RF02

7.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

7.5 Corrected Factor & Over Limit Calculation

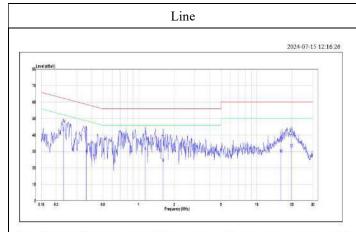
The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

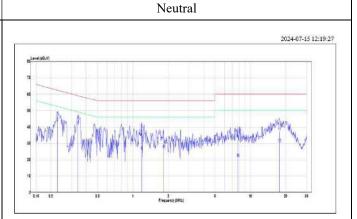
The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Result – Limit Line

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 20 of 67

7.6 Test Results


Test Mode: Transmitting

Main: AC120 V, 60 Hz

(Worst case is 802.11b mode, Middle Channel)

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark	Phase
	(MHz)	dBuV	Factor(dB)	dBuV	dBuV	(dB)		
1	0.230	37.23	10.05	47.28	62.44	-15.16	QP	Line
2	0.230	32.08	10.05	42.13	52.44	-10.31	Average	Line
3	0.360	31.84	10.15	41.99	58.74	-16.75	QP	Line
4	0.360	18.51	10.15	28.66	48.74	-20.08	Average	Line
5	1.141	29.45	10.34	39.79	56.00	-16.21	QP	Line
6	1.141	19.80	10.34	30.14	46.00	-15.86	Average	Line
7	1.610	27.09	10.34	37.43	56.00	-18.57	QP	Line
8	1.610	12.81	10.34	23.15	46.00	-22.85	Average	Line
9	16.140	24.37	10.58	34.95	60.00	-25.05	QP	Line
10	16.140	18.17	10.58	28.75	50.00	-21.25	Average	Line
11	19.740	27.59	10.61	38.20	60.00	-21.50	QP	Line
12	19.740	21.35	10.61	31.96	50.00	-18.04	Average	Line

No.: RXZ240711039RF02

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark	Phase
	(MHz)	dBuV	Factor(dB)	dBuV	dBuV	(dB)		
1	0.228	36.93	10.06	46.99	62.52	-15.53	QP	Neutral
2	0.228	32.85	10.06	42.91	52.52	-9.61	Average	Neutral
3	0.341	34.76	10.15	44.91	59.15	-14.27	QP	Neutral
4	0.341	30.91	10.15	41.06	49.15	-8,12	Average	Neutral
5	1.184	28.45	10.35	38.80	56.00	-17.20	QP	Neutral
6	1.184	15.22	10.35	25.57	46.00	-20.43	Average	Neutral
7	1.819	24.09	10.35	34.44	56.00	-21.56	QP	Neutral
8	1.819	16.18	10.35	26.53	46.00	-19.47	Average	Neutral
9	7.810	22.09	10.44	32.53	60.00	-27.47	QP	Neutral
10	7.810	10.56	10.44	21.00	50.00	-29.00	Average	Neutral
11	17.661	26.42	10.65	37.07	60.00	-22.93	QP	Neutral
12	17.661	19.43	10.65	30.08	50.00	-19.92	Average	Neutral

Note

Result = Reading + Factor

Over Limit = Result – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 21 of 67

8 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

No.: RXZ240711039RF02

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 – 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 – 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 -167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 – 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 – 13.41	399.9 – 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

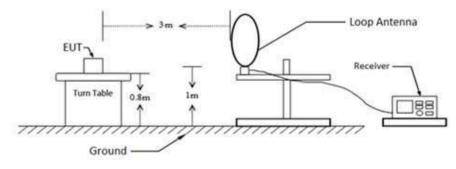
Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

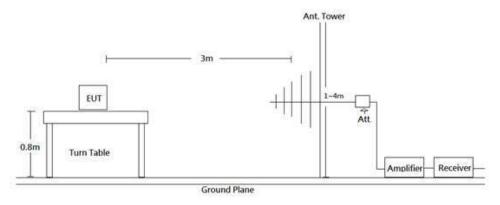
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 22 of 67

According to ANSI C63.10-2013, section 5.3.3

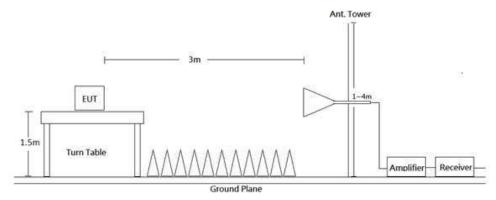

Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field, and the emissions to be measured can be detected by the measurement equipment (see 4.3.4). Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. Measurements from 18 GHz to 40 GHz are typically made at distances significantly less than 3 m from the EUT. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements or inverse of linear distance-squared for power-density measurements).

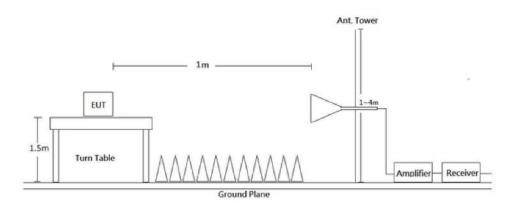
No.: RXZ240711039RF02


As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

8.2 EUT Setup

9kHz-30MHz:


30MHz-1GHz:


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 23 of 67

1-18 GHz:

18-26.5 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
9 kHz - 150 kHz	200 Hz/300 Hz	1 kHz	/	QP/AV
150 kHz - 30 MHz	9 kHz/10 kHz	30 kHz	/	QP/AV
30-1000 MHz	120 kHz	300 kHz	/	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 24 of 67

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in Quasi-peak and average detector mode from 9 kHz to 30 MHz, Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

No.: RXZ240711039RF02

8.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

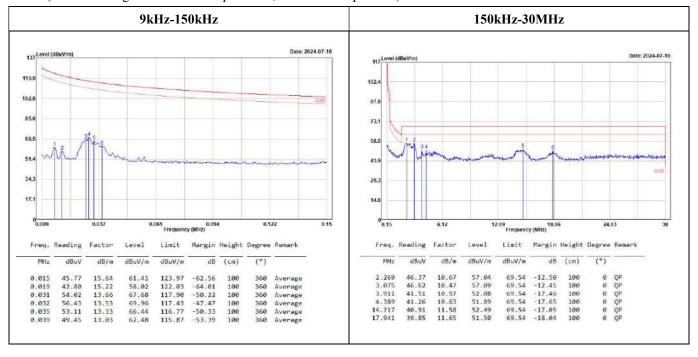
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Level - Limit

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 25 of 67

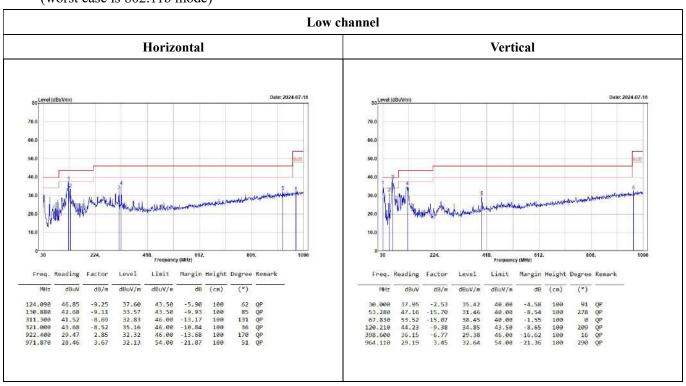
8.6 Test Results


Test Mode: Transmitting

(Pre-scan with three orthogonal axis, and worse case as X axis.)

9kHz-30MHz:

(Worst case is 802.11b mode, middle channel)


(Pre-scan using three directional polarities, worst case as parallel.)

No.: RXZ240711039RF02

30MHz-1GHz:

(worst case is 802.11b mode)

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 26 of 67

dBuV/m

40.00 43.50 43.50 46.00 54.00

-2.43 -1.04 -11.90 -9.18 -13.74 -21.40

QP QP QP QP QP

Middle channel Horizontal Vertical 60.0 50.0 Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark dB dB/m dBuV/m 38.730 68.800 98.870 114.390 399.570 986.420 -8.85 -15.27 -13.36 -10.06 -6.77 4.06 40.00 40.00 43.50 43.50 46.00 54.00 86 137 67 347 9 229 34.78 37.72 30.25 36.07 29.10 33.19 24 97 112 59 245 82 100 100 100 100 100 100 QP -9,85 -7,94 -12,16 -15,87 -13,19 -21,76 43.50 43.50 46.00 46.00 54.00 35.56 31.34 30.13 32.81 32.24 44.91 41.32 38.93 30.09 28.58 -9.35 -9.98 -8.80 2.72 3.66 100 100 100 100 100 100 52,99 43,61 46,13 35,87 29,13 High channel Horizontal Vertical 76.0 60.0 Limit Margin Height Degree Remark Margin Height Degree Remark Freq. Reading Factor Limit

Level = Reading + Factor.

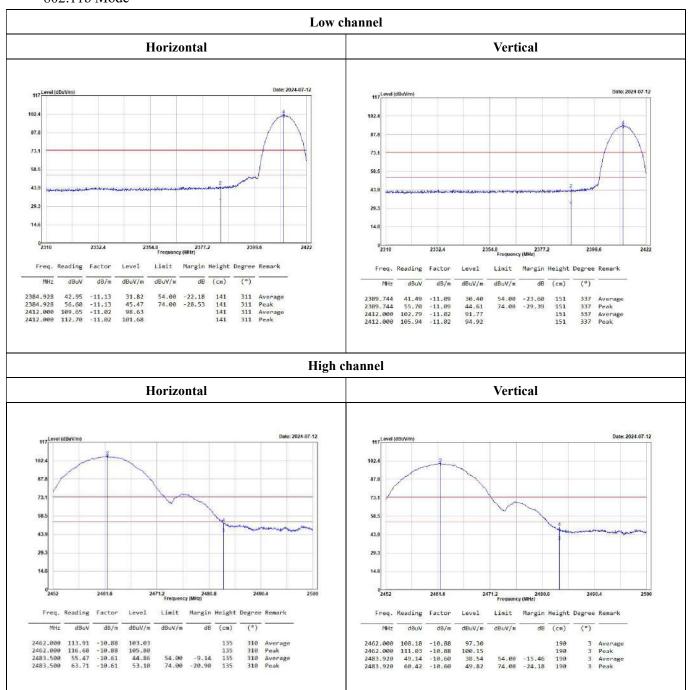
40.53 -9.60 42.52 -10.70 41.06 -8.80 38.59 -8.23 28.65 3.96

118.270 165.800 298.690 331.670 983.510

Margin = Level-Limit.

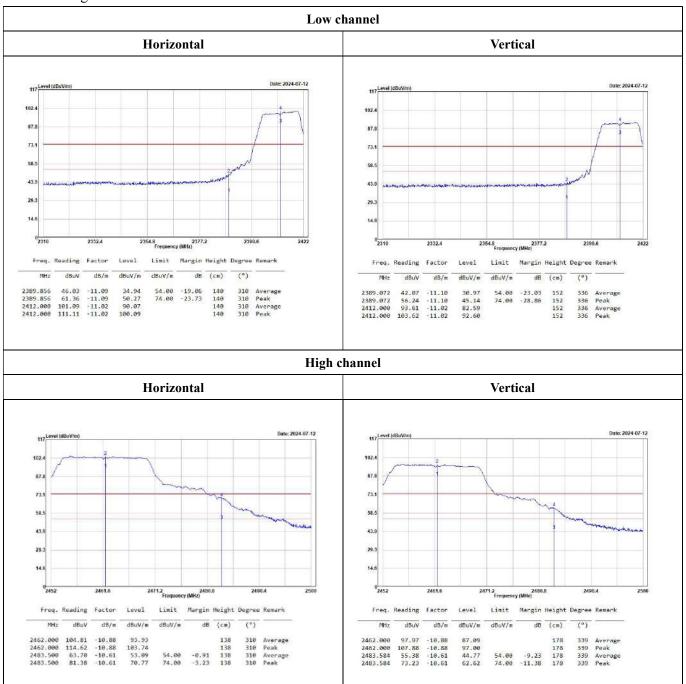
 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

32.76 30.93 31.82

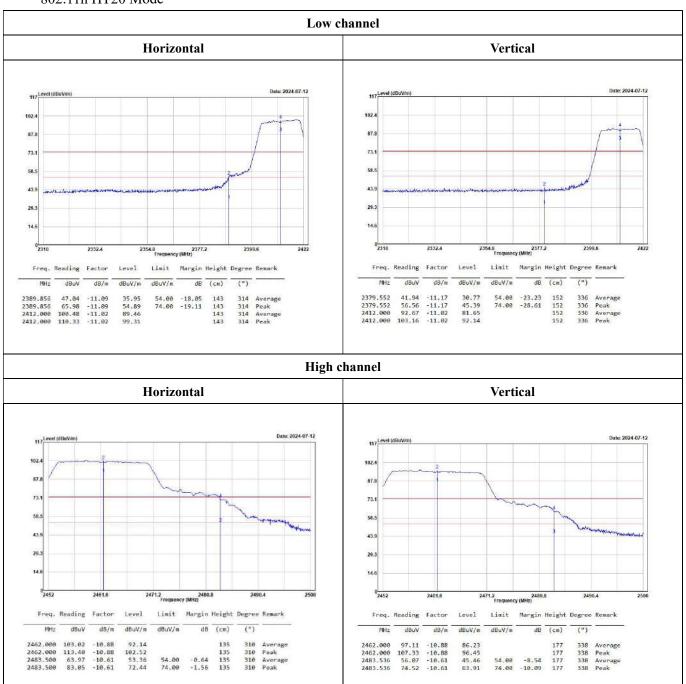

32.26 30.36 32.61 48.08 -7.24 43.58 -12.57 43.58 -11.68 46.00 -13.74 46.00 -15.64 54.00 -21.39

189 24 189 99 180 35 180 244 180 155

QP QP QP QP QP 31.940 67.830 98.870 184.230 931.130 976.720 41.52 54.03 44.96 46.15 29.17 28.82 -3.95 -15.07 -13.36 -11.83 3.09 3.78


38.96 31.60 34.32 32.26 32.60

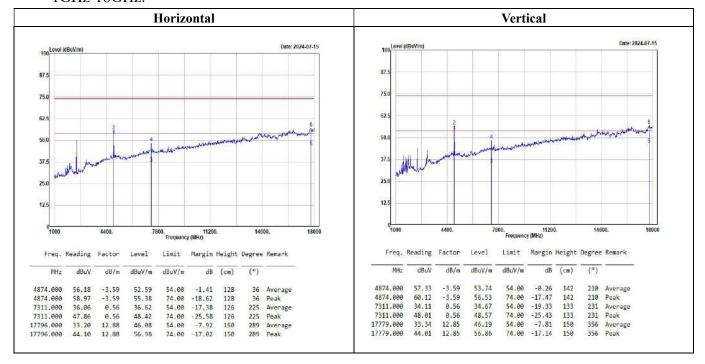
Band-Edge: 802.11b Mode

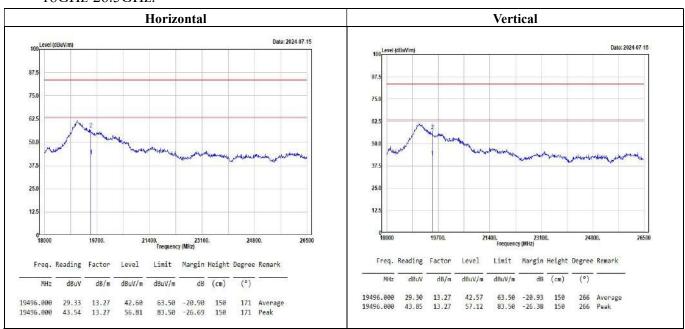


No.: RXZ240711039RF02

802.11g mode

802.11n HT20 Mode


802.11n HT40 Mode


No.: RXZ240711039RF02

(worst case is 802.11b mode, middle channel)

1GHz-18GHz:

18GHz-26.5GHz:

Level = Reading + Factor.

Margin = Level-Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

For 18-26.5GHz Convert the test distance limit of 3 meters to a limit of 1 meter:

Conversion factor = 20 log (1m/3m) = 9.5 dB , Average Limit = 54+9.5 = 63.50 dBuV/m @ 1m

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 32 of 67

Above 1GHz

802.11b Mode:

			Hori	zont	al							Vo	rtical						
			11011	ZUIIT	aı							VEI	ticai						
Freq.	Reading	Factor	Leve1	Limit	Margin	Heigh	t Degre	oo Romark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(0)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dt	(cm)	(")			
4824.000	53.36	-3.96	49,40	54,00	-4.60				4824,000	54.76	-3,96	50.80	54.00	-3.20	155	332	Averag		
4824,000 7236,000	56.15 30.31	-3.96 0.55	52.19 30.86	74.00 54.00	-21.81 -23.14				4824.000 7236.000		-3.96 0.55	53.54 31.08	74.00	-20.46		332	Peak		
7236.000		0.55	46.64	74.00					7236.000		Ø.55	45.96	74.00				Peak		
								Middle	channel										
			Hori	zont	al				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height !	Degree F	Remark		
MHz	dBuV	dB/m	dBuV/m	dBuV/≡	dB	(cn)	(")		NHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(ca)	(*)			
4874.000		-3.59	52.59	54.00	-1.41	128		Average	4874.000	57.33	-3,59	53.74	54.00	-0.26	142	210 4	Average		
4874.000 7311.000		-3.59 0.56	55.38 36.62	74.00 54.00	-18.62	128		Peak Average	4874.000	60.12	-3.59	56.53		-17.47	142	210	eak		
7311.000		0.56	48.42	74.00	-25.58	126		Peak	7311.000 7311.000	34.11 48.01	0.56 0.56	34.67 48.57	74.00	-19.33 -25.43	133		lvorago Peak		
17796.000 17796.000		12.88 12.88	46.08 56.98	54.00 74.00	-7.92 -17.02	150 150		Average Peak	17779.000 17779.000	33.34 44.01	12.85 12.85	46.19 56.86	54,00	-7.81 -17.14	150 150	356 8	Average Peak		
								High c	hannel										
			Hori	zont	al				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Heigh	t Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark		
MHz	dBuV	dB/m	dBuV/n	dBuV/m	dB	(cm)	(°)	<u> </u>	MHz	dBuV	dB/m	dBuV/m	dBuV/m	di	(cm)	(0)			
4924.000	55.24	-3.51	51.73	54.00	-2.27		37		4924,008			52,57	54.00				Averag		
4924.000	58.05	-3.51	54.54	74.00	-19,46				4924.008			55.38	74.00			35			
7386,000	39.81	0.22	49.30	54.00 74.00	-13.97 -24.70		221	Average Peak	7386,008			37.25 48.09	54.00 74.00				Averag Peak		
					5-1.10				- 10000 - 50000			75.63		1000					

Note:

Level = Reading + Factor.

Margin = Level-Limit.

 $Factor = Antenna \; Factor + Cable \; Loss - Amplifier \; Gain.$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 33 of 67

802.11g Mode:

			Hard		.1			Low cl				V.	4:001						
			Hori	zonta	ł I							ver	tical						
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(*)		MHz	dBuV	dB/m	d9uV/m	dBuV/m	dB	(cin)	(°)			
4824,000		-3.96	33.22	54.00	-20.78	114		Average	4824.000	40.31	-3.96	36.35		-17.65	201		Averag		
4824.000 7236.000		-3.96 0.55	47.48 39.88	74,00	-26.52 -23.12	114	41	Peak Average	4824.000 7236.000	54.15 30.39	-3.96 0.55	50.19 30.94	74.00 54.00	-23.81 -23.06	201 150		Peak Averag		
7236.000			46.57	74.00		150		Poak	7236,000		0.55	46.93	74.00	-27.07	150		Peak		
								Middle	channel										
			Hori	zonta	ıl				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin H	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		
MHz	dBuV	dB/m	dBuV/m	dBuV/s	dВ	(cn)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	ďΒ	(cm)	(°)			
4874.000	37.84	-3.59	34.25	54.00	-19.75	127		Average	4874.000	38.94	-3.59	35.35	54.00	-18.65	149		Averag		
4874.000 7311.000	54.07 30.96	-3.59 Ø.56	50.48	74.00 54.00	-23.52 -22.48	127	202 216	Peak Average	4874.000 7311.000	54.69 30.64	-3.59 Ø.56	51.10 31.20	74.00 54.00	-22.90 -22.80	149 151		Peak Averag		
7311.000	48.57	0.56	49.13		-24.87	183		Peak	7311.000		0.56	46,69	74,08		151	201			
								High c	hannel										
			Hori	zonta	ıl				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remani		
MHz	dBuV	dB/m	dBuV/n	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)			
4924.000	39.23	-3.51	35.72	54.00	-18.28	126	40	Average	4924,000			35.91	54.00		143		Averag		
4924.000		-3,51	51.23	74.00		126	40		4924,000 7386,000		-3.51 0.22	51.70 31.88	74.00 54.00	-22.30	143 116	36 226	Peak Averag		
7386.000			32.46 48.98	54.00 74.00		120	220		7386.000			47.68	74.00	-22.12 -26.32	116	226	Peak		

No.: RXZ240711039RF02

Note:

Level = Reading + Factor.

Margin = Level-Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 34 of 67

802.11n HT20 Mode:

			Horiz	zonta	ıl							Ver	tical						
Freq. F	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		
MH2	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cn)	(°)		PHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(0)	5.		
4824.000	36.47	-3.96	32.51	54.00	-21.49	115	43	Average	4824,000	36,81	-3.96	32.85	54.00	-21.15	161		Averag		
4824.000	51.31	-3.96	47.35	74.88	-26.65	115	43	Peak	4824.000 7236.000	52.17	-3.96 Ø.55	48.21	74.00	-25.79 -23.05	161 150		Peak Averag		
7236.000 7236.000	30.35 45.93	0.55 0.55	30.98 46.48	54.00 74.00	-23.10 -27.52	158 158	342 342	Average Peak	7236.000		0.55	46.10		-27.90	150	232			
								Middle	channel										
			Horiz	zonta	ıl				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remani		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	d8	(cm)	(°)	7	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(,)	-		
4874.000	36.06	-3.59	32.47	54.00			36		4874.000			33.97	54.00		128		Avera		
	53.40 30.59	-3,59 0,56	49.81	74.00 54.00			36 330		4874.000 7311.000			50.77 31.16	74.00 54.00	-23.23	128 150	43 359	Peak		
7311.000					-22.85	150		Average		30.60	0.56			-22.84		359			
7311.000	30.59	0.56	31.15	54.00	-22.85	150	338	Average	7311.000 7311.000	30.60	0.56	31,16	54.88	-22.84	150	359	Averag		
7311.000	30.59	0.56 0.56	31.15	54.00 74.00	-22.85 -27.84	150	338	Average Peak	7311.000 7311.000	30.60	0.56	31,16 46.41	54.88	-22.84	150	359	Avera		
7311,000 7311,000	30.59 45.60	0.56 0.56	31.15 46.16	54.00 74.00	-22.85 -27.84	150 150	330 330	Average Peak	7311.000 7311.000 hannel	30.60	0.56 0.56	31,16 46.41	54.80 74.80	-22.84	150 150	359 359	Avera Peak		
7311,000 7311,000	30.59 45.60	0.56 0.56	31.15 46.16	54.60 74.60 Zonta	-22.85 -27.84	150 150	330 330	Average Peak High c	7311.000 7311.000 hannel	30.60 45.85	0.56 0.56	31,16 46,41 Ver	54.86 74.86	-22.84 -27.59	150 150 Height	359 359	Averag Peak		
7311.000 7311.000 Freq. MHz 4924.000	30.59 45.60 Reading dBuV 36.60	0.56 0.56 Factor dB/m	31.15 46.16 Horiz Level dBuV/n 33.09	54.00 74.00 ZONTA Limit dBuV/m 54.00	-22.85 -27.84 Margin dB -20.91	Height (cm)	338 338 Degree (°)	High c	7311.000 7311.000 hannel Freq. 19424.000	30.60 45.85 Reading dBuV 38.26	0.56 0.56 Factor d8/m	Ver Level dBuV/m 34.75	54.00 74.00 tical Limit dBuV/n 54.00	-22.84 -27.59 Margin d8 -19.25	158 158 Height (cm)	359 359 Degree (°)	Average Averag		
	30.59 45.60 Reading	0.55 0.56 Factor	31.15 46.16 Hori z Level dBuV/n	54.00 74.00 ZONTA Limit	-22.85 -27.84	Height (cm)	338 338 Degree (°)	High c	7311.000 7311.000 hannel Freq. PHz	30.60 45.85 Reading dBuV 38.26 55.73	0.56 0.56 Factor dB/m	Ver	54.86 74.86	-22.84 -27.59 Margin	Height (cm)	359 359 Degree (°)	Averag Poak Remank		

Note:

Level = Reading + Factor.

Margin = Level-Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 35 of 67

802.11n HT40 Mode:

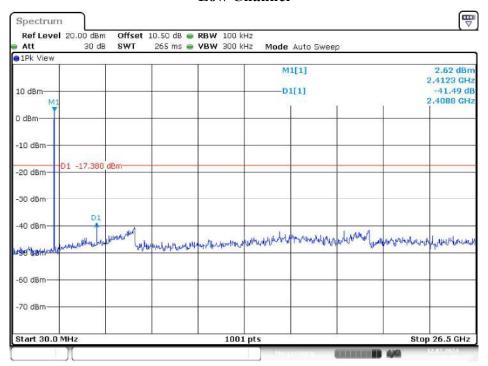
			Horiz	zonta	ıl			Vertical											
Freq.	Reading	Factor	Level	Limit	Margin Heig		Height Degree Remark		Freq.	Reading	Factor	Level	Limit	Margin Height Degree			Remark		
MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(")		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	8		
4844.000	31.28	-3.83	27.45	54.00	-26.55	150	9	Average	4844,000	31,28	-3.83	27.45	54,60	-26,55	150	121	Averag		
4844.000	46.52	-3.83	42.69	74.00	-31.31	150	9	Peak	4844.000	46.75	-3.83	42.92	74.00	-31.08	150	121	Peak		
7266.000		0.60	31.10	54.00 74.00	-22.90 -27.78	150	209	Average Peak	7266.008 7266.008		0.60	31.09 46.34	54.00 74.00		150		Averag Peak		
								Middle	channel										
			Horiz	zonta	ıl				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remank		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/n	dBuV/∞	dB	(cm)	(°)			
4874.000	32.09	-3.59	28.50	54.00	-25.50	137	358	Average	4874.900	35.99	-3.59	32.40		-21,60	127		Averag		
4874.000		-3.59	43.46	74.00	-30.54	137	358	Peak	4874,000 7311,000	51.67 30.49	-3.59 0.56	48.08	74.00 54.00	-25,92	127		Peak Averae		
7311.000 7311.000		0.56	31.04 46.62	74.00	-22.96 -27.38		322 322	Average Peak	7311.000		0.56	46.00		-28.00	150		Peak		
								High c	hannel										
			Horiz	zonta	ıl				Vertical										
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	d8	(cm)	(°)			
4984.000	33.21	-3,48	29.81	54.00	-24.19	132	39	Average	4984.000			29.92	54.00		150		Averag		
4984.000		-3.40	45.20	74.00	-28.80	132	39	Peak	4994.000		-3,48	45.86	74.00	-28,94	150		Peak		
7356.000		0.39	30.92 46.93	74.00	-23.08	150	355	Average Peak	7356.000 7356.000		0.39 0.39	30.91 46.28			150 150	182	Averag Peak		
	6 STATE				100015	200													

Note:

Level = Reading + Factor.

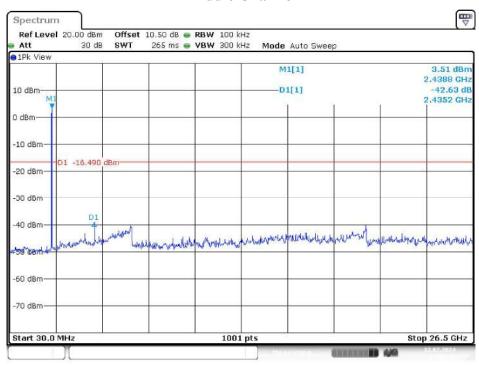
Margin = Level-Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

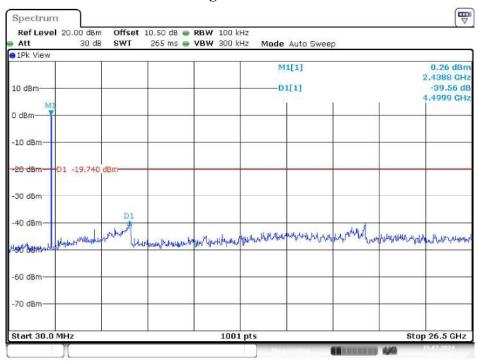
Page 36 of 67

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result		
		B Mode				
Low	2412	41.49	≥ 20	PASS		
Mid	2437	42.63	≥ 20	PASS		
High	2462	39.56	≥ 20	PASS		
	G Mode					
Low	2412	34.78	≥ 20	PASS		
Mid	2437	33.58	≥ 20	PASS		
High	2462	32.19	≥ 20	PASS		
		N20 Mode		•		
Low	2412	33.19	≥ 20	PASS		
Mid	2437	34.48	≥ 20	PASS		
High	2462	31.46	≥ 20	PASS		
	N40 Mode					
Low	2422	29.72	≥ 20	PASS		
Mid	2437	29.93	≥ 20	PASS		
High	2452	27.31	≥ 20	PASS		

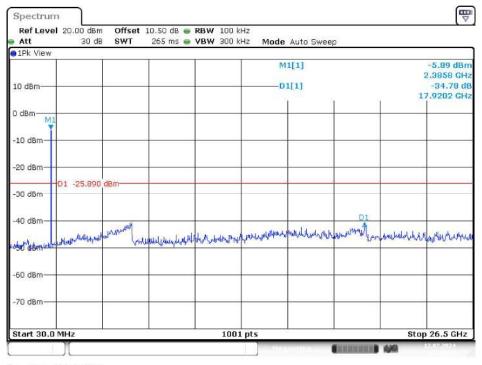

B Mode Low Channel

No.: RXZ240711039RF02

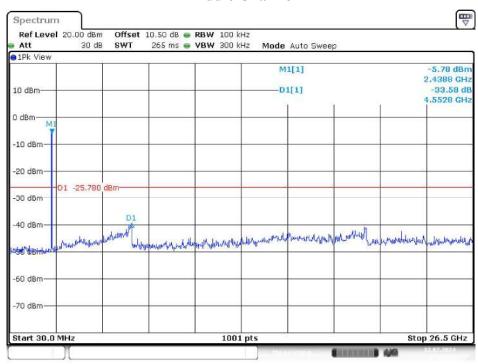
Date: 12.JUL 2024 17:01:21


Middle Channel

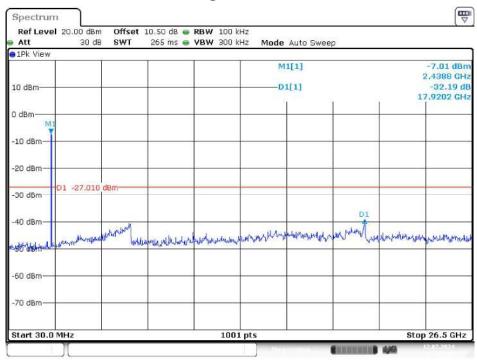
Date: 12.JUL.2024 17:04:11


High Channel

No.: RXZ240711039RF02

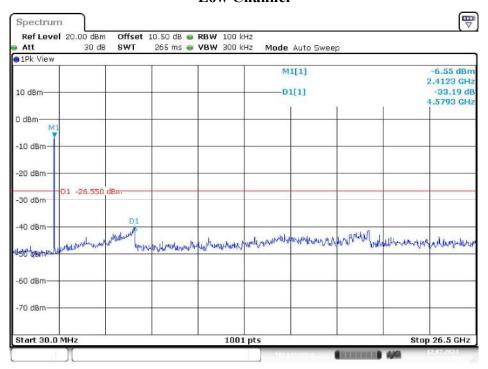

Date: 15.JUL 2024 14:41:48

G Mode Low Channel

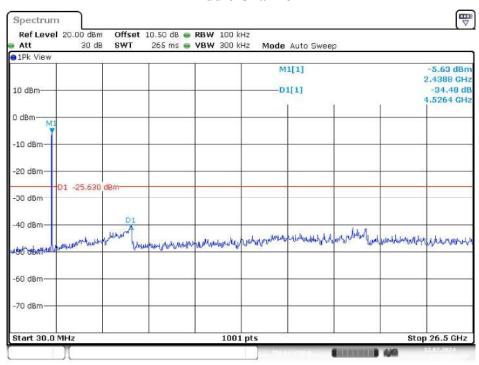

Date: 12.JUL.2024 17:10:30

No.: RXZ240711039RF02

Date: 12.JUL.2024 17:13:41

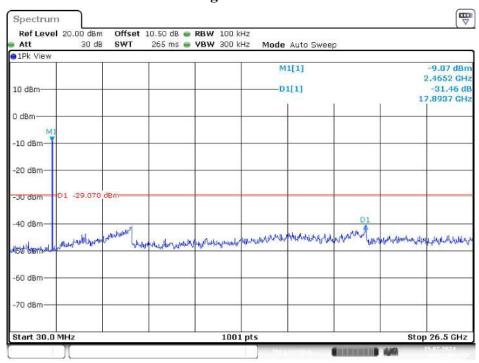

High Channel

Date: 12.JUL.2024 17:45:47

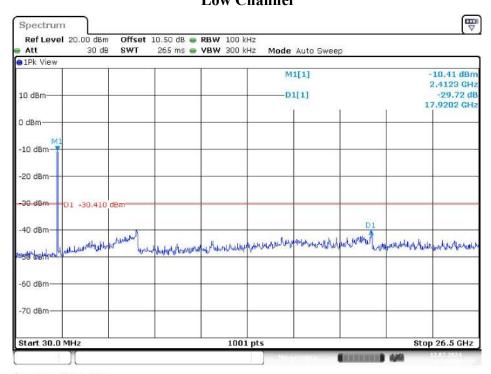

N20 Mode Low Channel

No.: RXZ240711039RF02

Date: 12.JUL.2024 17:21:15


Middle Channel

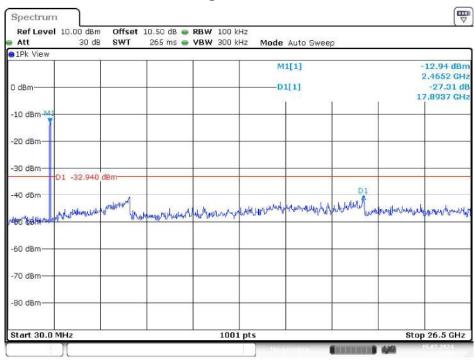
Date: 12.JUL.2024 17:23:01


High Channel

No.: RXZ240711039RF02


Date: 15.JUL 2024 09:51:04

N40 Mode Low Channel


Date: 12.JUL 2024 17:28:40

No.: RXZ240711039RF02

Date: 12.JUL 2024 17:30:43

High Channel

Date: 15.JUL 2024 11:09:10

9 FCC §15.247(a)(2) – 6 dB Emission Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

No.: RXZ240711039RF02

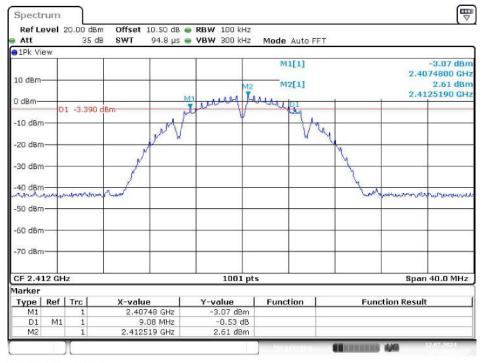
9.2 Test Procedure

According to ANSI C63.10-2013, section 11.8

The steps for the first option are as follows:

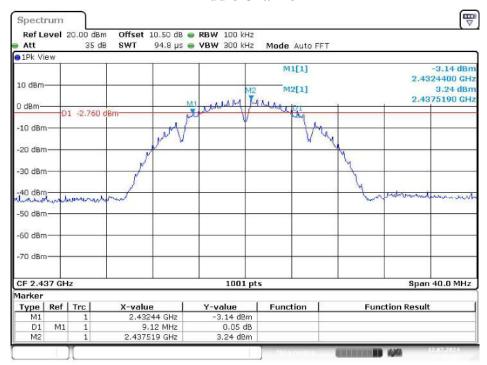
- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

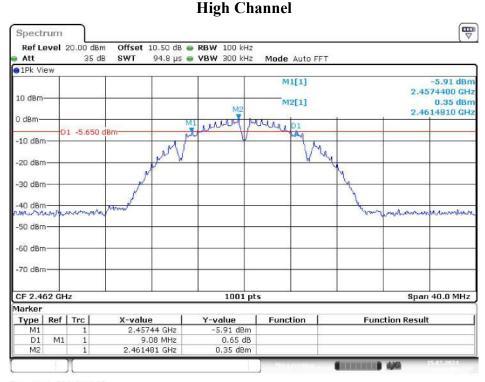

Page 44 of 67

7.5 Test Results	3					
Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	Result		
	B Mode					
Low	2412	9.08	> 500	PASS		
Middle	2437	9.12	> 500	PASS		
High	2462	9.08	> 500	PASS		
	G Mode					
Low	2412	16.56	> 500	PASS		
Middle	2437	16.56	> 500	PASS		
High	2462	16.60	> 500	PASS		
N20 Mode						
Low	2412	17.80	> 500	PASS		
Middle	2437	17.80	> 500	PASS		
High	2462	17.84	> 500	PASS		
N40 Mode						
Low	2422	36.40	> 500	PASS		
Middle	2437	36.56	> 500	PASS		
High	2452	36.56	> 500	PASS		

Please refer to the following plots

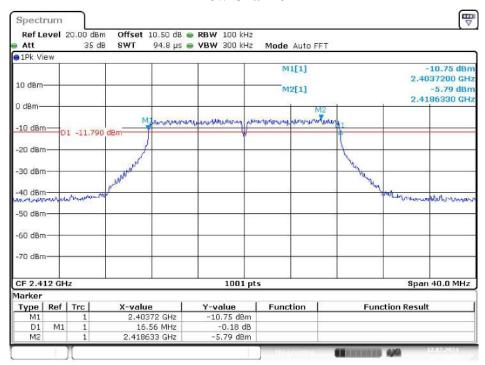

B Mode Low Channel

No.: RXZ240711039RF02

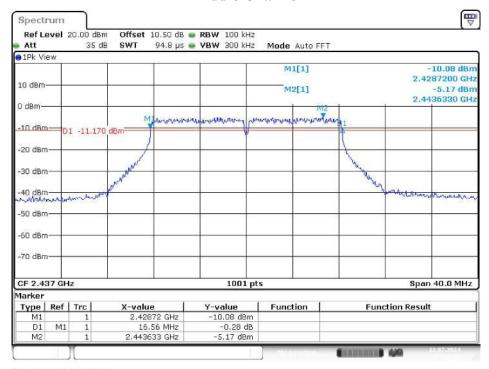


Date: 12.JUL.2024 17:00:40

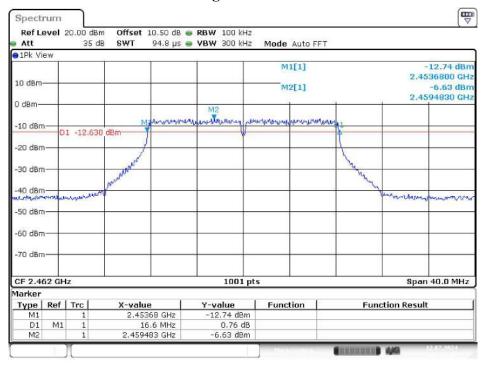
Middle Channel



Date: 12.JUL 2024 17:03:46

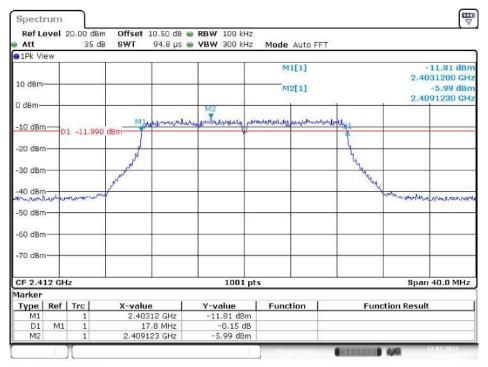

Date: 15.JUL.2024 14:41:08

G Mode Low Channel

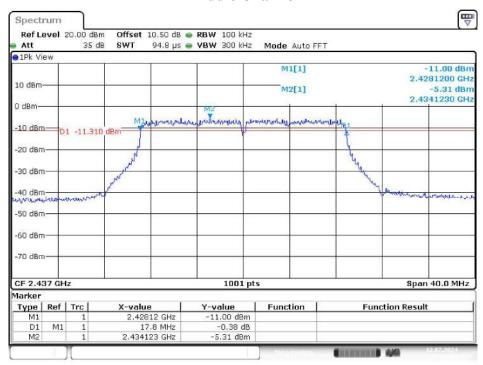

Date: 12.JUL.2024 17:09:49

No.: RXZ240711039RF02

Date: 12.JUL.2024 17:13:17

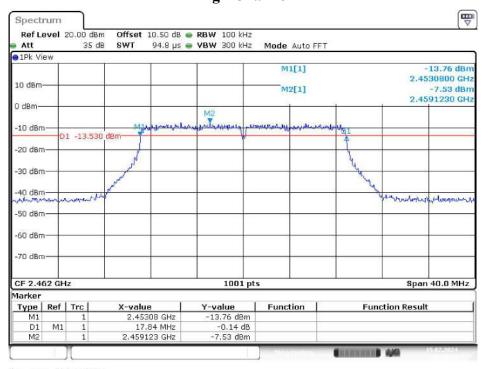

High Channel

Date: 12.JUL.2024 17:45:07

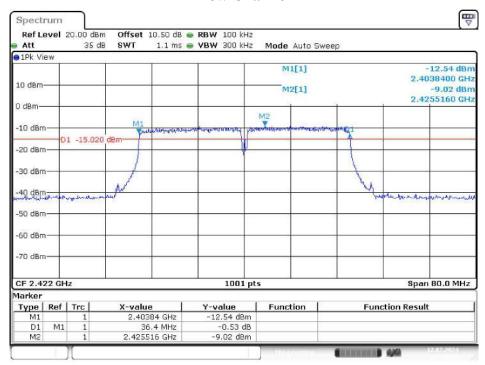

N20 Mode Low Channel

No.: RXZ240711039RF02

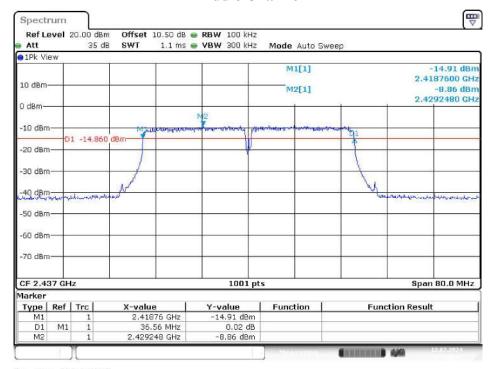
Date: 12.JUL 2024 17:20:35


Middle Channel

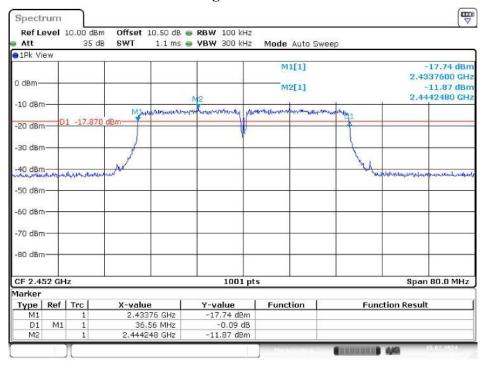
Date: 12.JUL 2024 17:22:37


High Channel

No.: RXZ240711039RF02


Date: 15.JUL.2024 09:50:24

N40 Mode Low Channel


Date: 12.JUL.2024 17:28:00

No.: RXZ240711039RF02

Date: 12.JUL.2024 17:30:18

High Channel

Date: 15.JUL_2024 11:08:30

10 FCC §15.247(b)(3) – Maximum Peak Output Power

10.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

No.: RXZ240711039RF02

10.2 Test Procedure

According to ANSI C63.10-2013, section 11.9.1.3

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 52 of 67

10.3 Test Results

Conducted Peak Output Power

Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)	Power (W)	Limit (W)	Result		
	802.11b Mode						
Low	2412	14.77	0.030	1	PASS		
Middle	2437	15.26	0.034	1	PASS		
High	2462	13.32	0.021	1	PASS		
		802.11g M	ode				
Low	2412	18.12	0.065	1	PASS		
Middle	2437	18.52	0.071	1	PASS		
High	2462	17.43	0.055	1	PASS		
	802.11n HT20 Mode						
Low	2412	16.73	0.047	1	PASS		
Middle	2437	17.46	0.056	1	PASS		
High	2462	15.84	0.038	1	PASS		
802.11n HT40 Mode							
Low	2422	16.98	0.050	1	PASS		
Middle	2437	17.09	0.051	1	PASS		
High	2452	15.12	0.033	1	PASS		

11 FCC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

No.: RXZ240711039RF02

11.1 Applicable Standard

According to FCC §15.247(d).

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

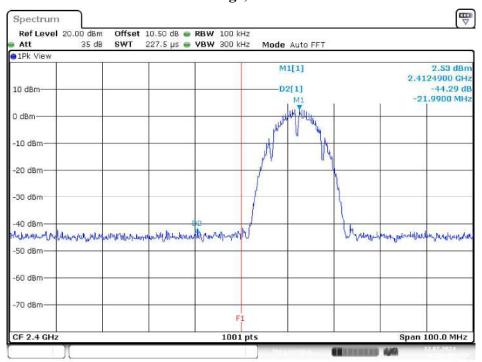
11.2 Test Procedure

According to ANSI C63.10-2013 Section 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

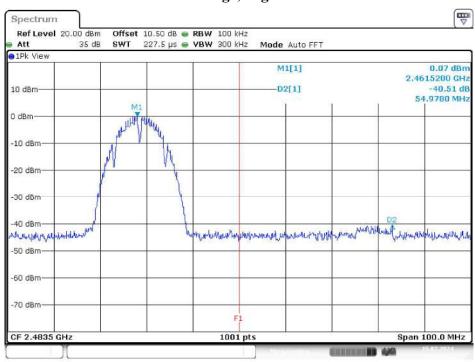
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 54 of 67

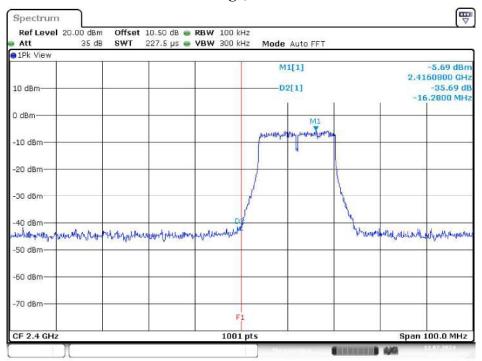

1est itesuit	,			
Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result
		B Mode		
Low	2412	44.29	≥ 20	PASS
High	2462	40.51	≥ 20	PASS
	•	G Mode		
Low	2412	35.69	≥ 20	PASS
High	2462	33.05	≥ 20	PASS
		N20 Mode		
Low	2412	33.83	≥ 20	PASS
High	2462	32.73	≥ 20	PASS
		N40 Mode		
Low	2422	31.40	≥ 20	PASS
High	2452	28.72	≥ 20	PASS

Please refer to the following plots.

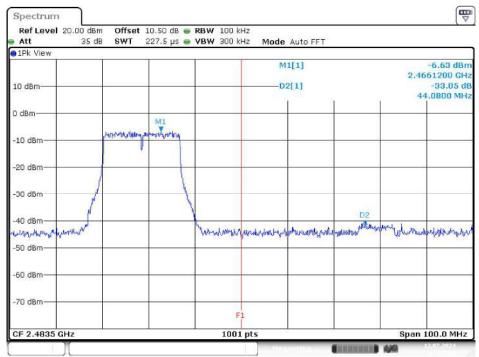
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 55 of 67

B Mode Band Edge, Left Side

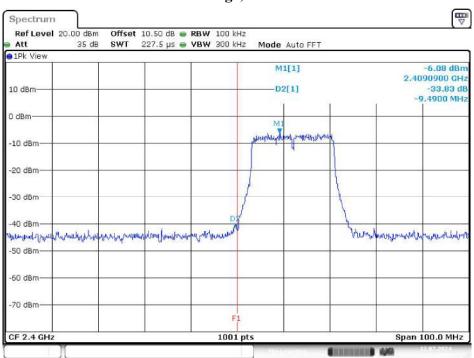

Date: 12.JUL.2024 17:01:05

Band Edge, Right Side

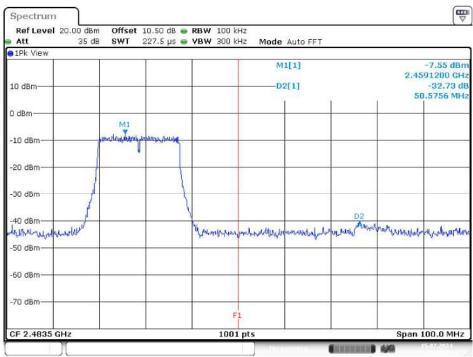

Date: 15.JUL 2024 14:41:33

G Mode Band Edge, Left Side

Date: 12.JUL.2024 17:10:14

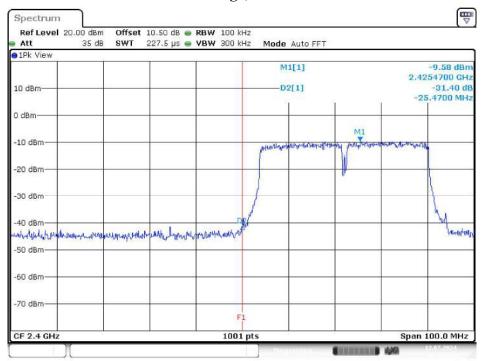

Band Edge, Right Side

Date: 12.JUL 2024 17:45:31

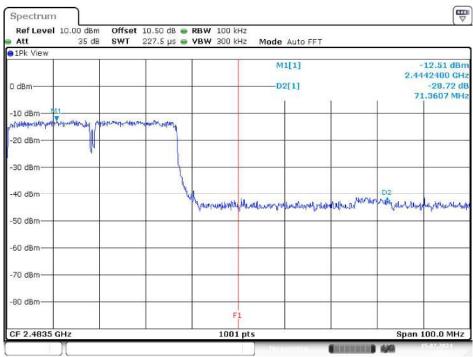

N20 Mode Band Edge, Left Side

No.: RXZ240711039RF02

Date: 12.JUL.2024 17:20:59


Band Edge, Right Side

Date: 15.JUL 2024 09:50:48


N40 Mode Band Edge, Left Side

No.: RXZ240711039RF02

Date: 12.JUL 2024 17:28:24

Band Edge, Right Side

Date: 15.JUL 2024 11:08:55

12 FCC §15.247(e) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

No.: RXZ240711039RF02

12.2 Test Procedure

According to ANSI C63.10-2013, section 11.10.2

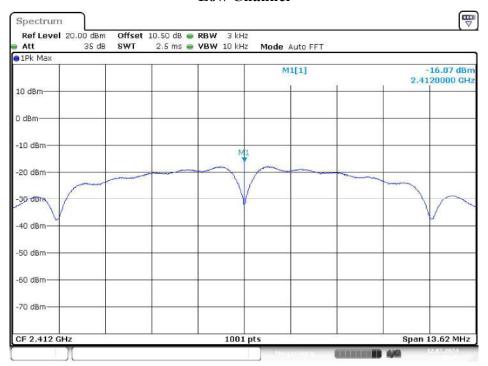
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 60 of 67

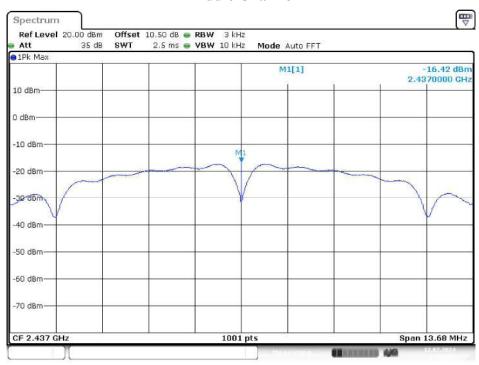
12.3 Test Results

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result		
	B Mode					
Low	2412	-16.07	8	PASS		
Middle	2437	-16.42	8	PASS		
High	2462	-18.58	8	PASS		
	G Mode					
Low	2412	-17.37	8	PASS		
Middle	2437	-16.69	8	PASS		
High	2462	-18.54	8	PASS		
	N20 Mode					
Low	2412	-16.10	8	PASS		
Middle	2437	-16.71	8	PASS		
High	2462	-18.84	8	PASS		
N40 Mode						
Low	2422	-16.92	8	PASS		
Middle	2437	-16.60	8	PASS		
High	2452	-17.83	8	PASS		


Please refer to the following plots

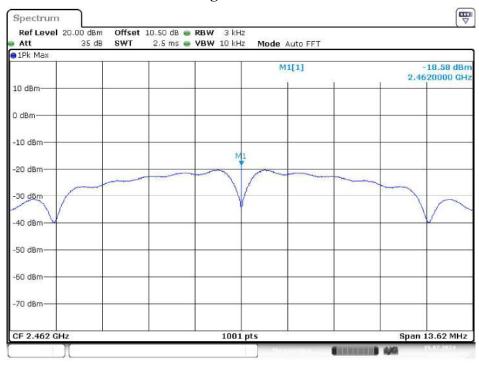
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 61 of 67

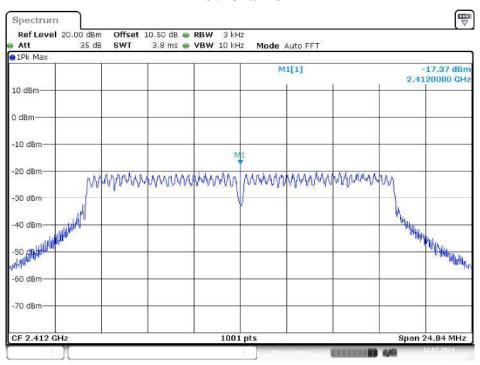

B Mode Low Channel

No.: RXZ240711039RF02

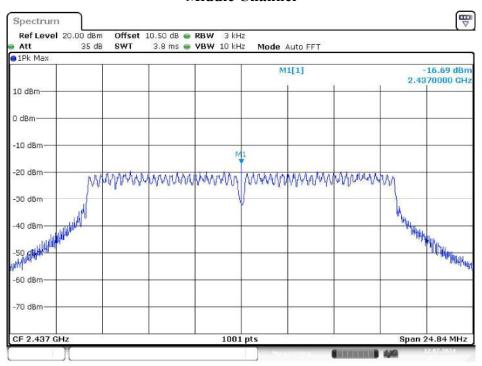
Date: 12.JUL.2024 17:00:49


Middle Channel

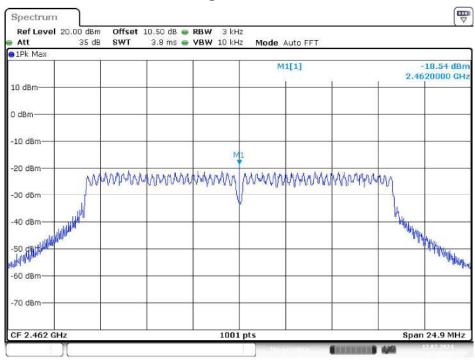
Date: 12.JUL_2024 17:03:55


High Channel

No.: RXZ240711039RF02

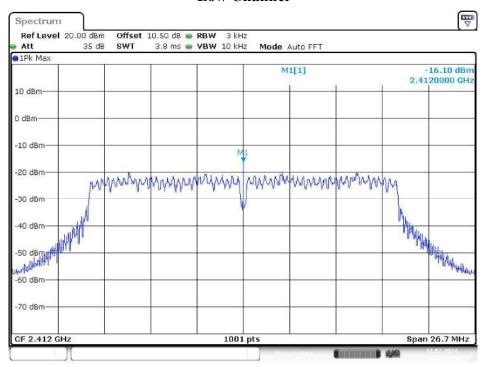

Date: 15.JUL.2024 14:41:17

G Mode Low Channel

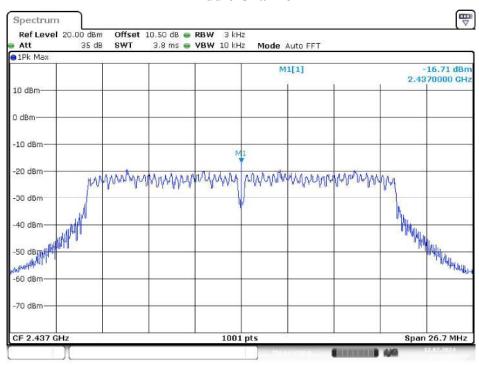

Date: 12.JUL.2024 17:09:58

No.: RXZ240711039RF02

Date: 12.JUL 2024 17:13:26

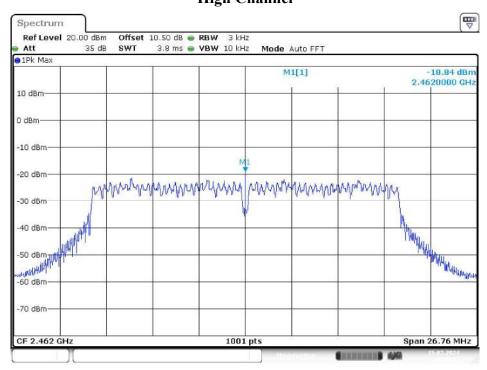

High Channel

Date: 12.JUL.2024 17:45:16

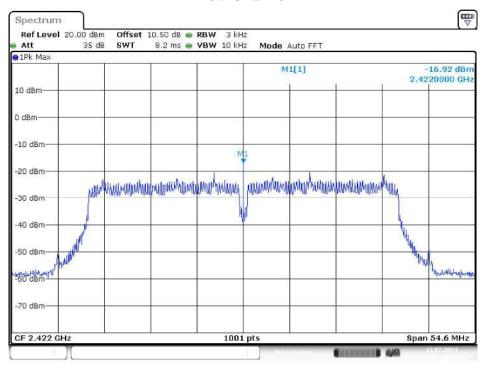

N20 Mode Low Channel

No.: RXZ240711039RF02

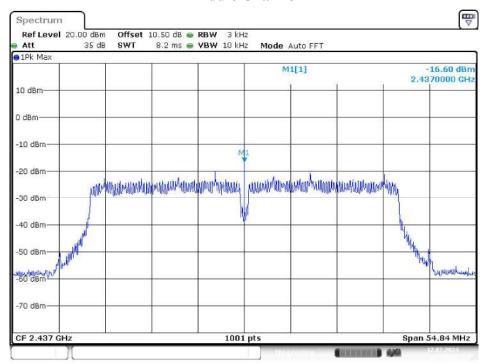
Date: 12.JUL.2024 17:20:44


Middle Channel

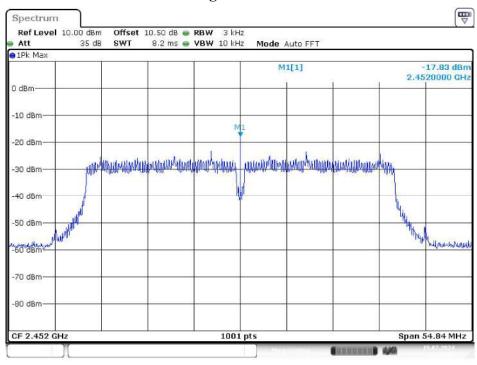
Date: 12.JUL 2024 17:22:46


High Channel

No.: RXZ240711039RF02


Date: 15.JUL 2024 09:50:33

N40 Mode Low Channel


Date: 12.JUL.2024 17:28:08

No.: RXZ240711039RF02

Date: 12.JUL 2024 17:30:27

High Channel

Date: 15.JUL.2024 11:08:39

***** END OF REPORT *****