

GTS Global United Technology Services Co., Ltd.

Report No.: GTS202009000301F02

TEST REPORT

Applicant:	Semcorel Inc
Address of Applicant:	1134 Bedford St, Fremont,CA,US
Manufacturer:	Shenzhen Xinhuabang Technology Co., Ltd.
Address of Manufacturer:	2F, Building 3, Ji'antai Industrial Park, Fuqiao 1st Area, Fuyong Street, Bao'an District, Shenzhen.
Equipment Under Test	(EUT)
Product Name:	CoCo Tablet
Model No.:	T1
Trade Mark:	CoCo
FCC ID:	2AWOY-T1
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Sep.20,2020
Date of Test:	Sep.20,2020- Sep.29,2020
Date of report issued:	Sep.29,2020
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Sep.29,2020	Original

Tested/Prepared By:

sand

Date:

Sep.29,2020

Project Engineer

Check By:

Date: binson Reviewer

Sep.29,2020

3 Contents

			Page
1	COV	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4	TES	ST SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	Test Mode	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	7
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
	TEC	ST INSTRUMENTS LIST	
6	TES	STINSTRUMENTS LIST	8
6 7		ST RESULTS AND MEASUREMENT DATA	
•			10
•	TES	ST RESULTS AND MEASUREMENT DATA	10
•	TES 7.1	ST RESULTS AND MEASUREMENT DATA	10 10 11
•	TES 7.1 7.2	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS	10
•	TES 7.1 7.2 7.3	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER	10
•	TES 7.1 7.2 7.3 7.4	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT Conducted Emissions Conducted Output Power Channel Bandwidth	
•	TES 7.1 7.2 7.3 7.4 7.5	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	
•	TES 7.1 7.2 7.3 7.4 7.5 7.6	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	
•	TES 7.1 7.2 7.3 7.4 7.5 7.6 7.6.	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES 1 Conducted Emission Method	
•	TES 7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.6. 7.7 7.7.	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	
•	TES 7.1 7.2 7.3 7.4 7.5 7.6 7.6. 7.6. 7.7	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	
•	TES 7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.6. 7.6. 7.7 7.7. 7.7.	ST RESULTS AND MEASUREMENT DATA ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED OUTPUT POWER CHANNEL BANDWIDTH POWER SPECTRAL DENSITY BAND EDGES	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz	30MHz-200MHz 3.8039dB	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz 3.30dB		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	CoCo Tablet
Model No.:	T1
Series model:	N/A
Test sample(s) ID:	GTS202009000301 -1(Engineer sample)
	GTS202009000301 -2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	FPC ANT
Antenna Gain:	2.0dBi
Power Supply:	DC 3.7V From Battery and DC 5V From Adapter
Adapter Information	Mode:EP-TA20CBC
(Auxiliary test provided by the lab):	Input:AC100-240V-50/60Hz,0.5A
	Output:DC 5V,2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Operation Frequency Zigbee:

Note: The line display in grey were the channel selected for testing

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.8 Additional Instructions

	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:						
ltem	n Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic ZhongYu Electron 9 Chamber 2 2 3		9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Condu	ucted Emission								
ltem	Test Equipment	Manufact	urer	Model	No.	Inventory No.	Cal.Da (mm-dd-		Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Ele	ZhongYu Electron)x2.9(H)	GTS252	May.15 20	019	May.14 2022
2	EMI Test Receiver	R&S		ESCI	7	GTS552	June. 25 2	020	June. 24 2021
3	Coaxial Switch	ANRITSU C	ORP	MP59	3	GTS225	June. 25 2	020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCH	ROHDE&SCHWARZ		6	GTS226	June. 25 2	2020	June. 24 2021
5	Coaxial Cable	GTS	GTS			GTS227	N/A		N/A
6	EMI Test Software	AUDIX	AUDIX			N/A	N/A		N/A
7	Thermo meter	KTJ		TA328	3	GTS233	June. 25 2	020	June. 24 2021
8	Absorbing clamp	Elektroni Feinmecha		MDS2	1	GTS229	June. 25 2020		June. 24 2021
9	ISN	SCHWARZ	BECK	NTFM 8	158	GTD565	June. 25 2	020	June. 24 2021
RF Co	RF Conducted Test: Item Test Equipment Manufacturer Model No. Serial No. Cal.Date Cal.Due date								

ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

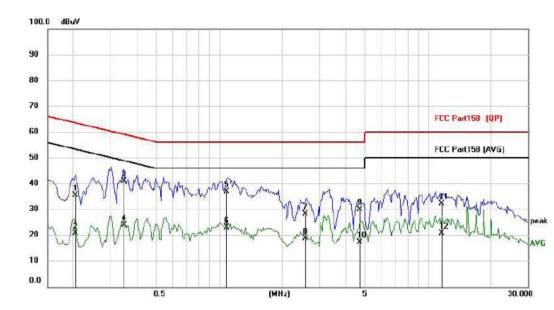
Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021				
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	rement: FCC Part15 C Section 15.203 /247(c)						
15.203 requirement:							
responsible party shall be us antenna that uses a unique o	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.						
15.247(c) (1)(i) requirement	15.247(c) (1)(i) requirement:						
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.						
E.U.T Antenna:	E.U.T Antenna:						
	The antenna is FPC antenna, the best case gain of the is 2.00dBi, reference to the appendix II for details						

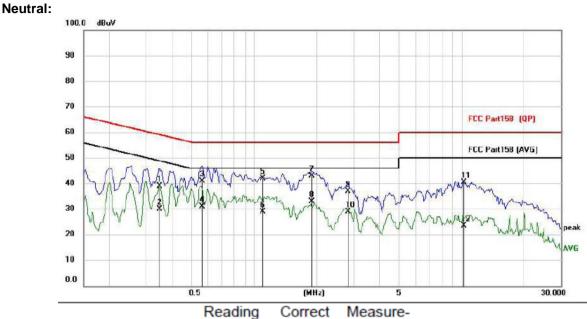
7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:		Limi	t (dBuV)				
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5	o 46*					
	0.5-5		46				
	5-30	60		50			
Test setup:	* Decreases with the logarithm Reference Plane						
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Fequipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 8m	LISN Filter AC p	power	through a			
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz	I	1	1			
Test results:	PASS						

Measurement data

Line:

Report No.: GTS202009000301F02



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2046	24.47	10.92	35.39	63.42	-28.03	QP
2	0.2046	9.67	10.92	20.59	53.42	-32.83	AVG
3 *	0.3489	30.00	10.92	40.92	58.99	-18.07	QP
4	0.3489	13.00	10.92	23.92	48.99	-25.07	AVG
5	1.0821	26.00	10.92	36.92	56.00	-19.08	QP
6	1.0821	12.00	10.92	22.92	46.00	-23.08	AVG
7	2.5913	17.05	11.00	28.05	56.00	-27.95	QP
8	2.5913	7.54	11.00	18.54	46.00	-27.46	AVG
9	4.7043	18.69	11.08	29.77	56.00	-26.23	QP
10	4.7043	6.13	11.08	17.21	46.00	-28.79	AVG
11	11.6775	20.81	11.40	32.21	60.00	-27.79	QP
12	11.6775	9.15	11.40	20.55	50.00	-29.45	AVG

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

GTS

Report No.: GTS202009000301F02

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.3489	28.00	10.92	38.92	58.99	-20.07	QP
2	0.3489	19.00	10.92	29.92	48.99	-19.07	AVG
3	0.5633	30.00	10.92	40.92	56.00	-15.08	QP
4	0.5633	20.00	10.92	30.92	46.00	-15.08	AVG
5	1.0976	31.00	10.92	41.92	56.00	-14.08	QP
6	1.0976	18.00	10.92	28.92	46.00	-17.08	AVG
7 *	1.8972	32.00	10.96	42.96	56.00	-13.04	QP
8	1.8972	22.00	10.96	32.96	46.00	-13.04	AVG
9	2.8332	26.00	11.00	37.00	56.00	-19.00	QP
10	2.8332	18.00	11.00	29.00	46.00	-17.00	AVG
11	10.1877	29.00	11.37	40.37	60.00	-19.63	QP
12	10.1877	12.00	11.37	23.37	50.00	-26.63	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.1	0:2013 and k	KDB558074 [D01 DTS Mea	as Guidance	e V05r02
Limit:	30dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table					
		Ground Reference Pla	ine			
Test Instruments:	Refer to see	ction 6.0 for d	letails			
Test mode:	Refer to see	ction 5.2 for d	letails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	7.725		
Middle	7.241	30.00	Pass
Highest	6.692		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02					
Limit:	>500KHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for	details				
Test mode:	Refer to se	ction 5.2 for	details				
Test results:	Pass	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	


Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.7060		
Middle	0.6989	>500	Pass
Highest	0.6894		

Test plot as follows:


Report No.: GTS202009000301F02

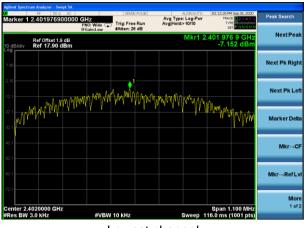
Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.1	0:2013 and I	KDB558074	D01 DTS Me	as Guidanc	e V05r02
Limit:	8dBm/3kHz	2				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to se	ction 6.0 for c	letails			
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-7.152		Pass	
Middle	-7.660	8.00		
Highest	-8.262			

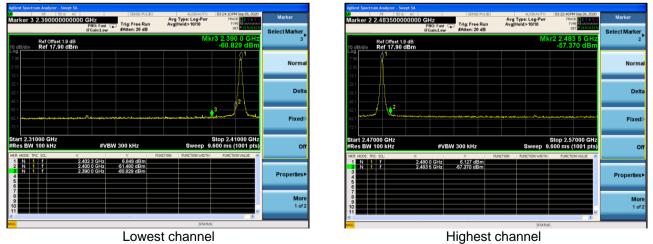
Test plot as follows:

Report No.: GTS202009000301F02

Lowest channel

Middle channel

Highest channel



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Test plot as follows:

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:	2013						
Test Frequency Range:	All of the rest 2500MHz) dat			ted, only	the wors	st band's	(2310MHz to	
Test site:	Measurement	Distance:	3m					
Receiver setup:	Frequency	Detec	tor	RBW	VBW		Value	
	Above 1GHz	, Pea	k	1MHz	3MHz	2	Peak	
	Above 10112	RM	S	1MHz	3MHz	z A	verage	
Limit:	Frequ	uency	Lin	nit (dBuV/	′m @3m)	Value	
	Above	9 1GHz		54.0		A	verage	
Test setup:	7.5070			74.0	0		Peak	
	Turn Tables <150cm>		< 3m>	Test Antenna < 1m 4m >	1			
Test Procedure:	1. The EUT w	on placed				la 1 5 mot	ora abava	
	 determine t 2. The EUT wantenna, watower. 3. The antenna ground to be horizontal a measurement 4. For each su and then the and the rota the maximut 5. The test-re Specified B 6. If the emissional substratement is the EUT was substratement in the EUT wa	the position vas set 3 min hich was min hich was min hich was min hich was min hich was min hich was determine the and vertical ent. uspected ent is antenna a table was um reading ceiver syste andwidth wision level of ed, then test build be rep- in would be rep- in would be rep- in would be rep- in would be rep- in measure the X axis p	of the hi eters awa oounted of varied frome maxim polarization mission, was tuned turned frome turned from turned from turned for the EUT sting cour- orted. Ot e re-teste pecified a ements a positionin	ighest rad ay from the on the top rom one m num value tions of th the EUT v ed to heigh rom 0 deg set to Pea mum Hold T in peak and the stop therwise the ed one by and then re are perform ng which it	liation. be interfered of a variation of a variation of a variation beter to fared of the anternational strength of the anternational stre	erence-rec iable-heig four meter ield streng na are set 1 meter to 360 degre t Function as 10dB lo the peak sions that og peak, q in a data s , Y, Z axis	ht antenna s above the oth. Both to make the s worst case o 4 meters sees to find and ower than the values of did not have uasi-peak or sheet. s positioning.	
	worst case							
Test Instruments:	worst case Refer to section							
Test Instruments:	Refer to section	on 6.0 for d	etails					
Test Instruments: Test mode: Test results:		on 6.0 for d	etails					

Measurement Data

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Mode: GFSK TX Low channel(2402MHz) Horizontal (Worst case)

HUHZUHIAI (worst case)								
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2390	56.42	-5.68	50.74	74	-23.26	peak			
2390	45.37	-5.68	39.69	54	-14.31	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	56.82	-5.68	51.14	74	-22.86	peak
2390	46.38	-5.68	40.7	54	-13.3	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

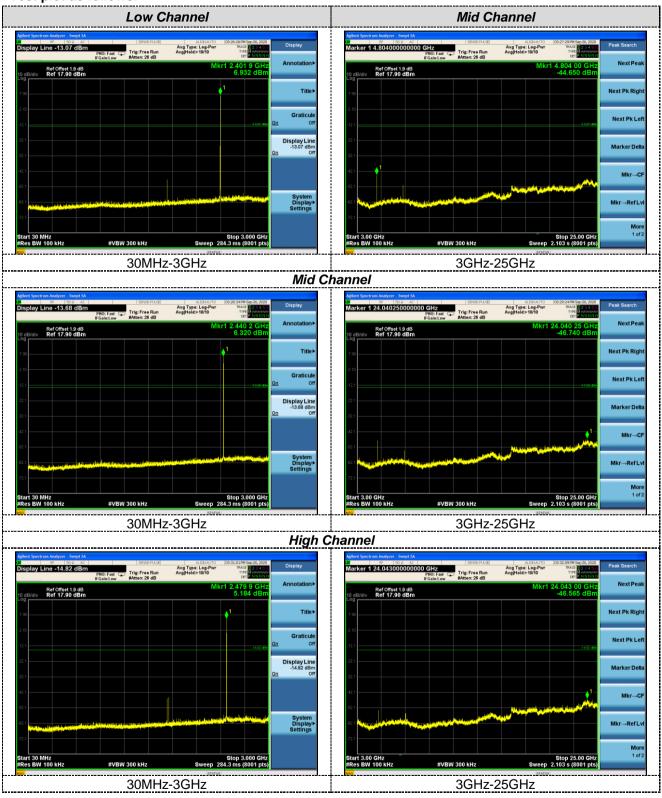
Operation Mode: GFSK TX High channel (2480MHz) Horizontal (Worst case)

nonzoniai (worst case)								
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	58.2	-5.85	52.35	74	-21.65	peak			
2483.5	44.47	-5.85	38.62	54	-15.38	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	60.32	-5.85	54.47	74	-19.53	peak	
2483.5	46.09	-5.85	40.24	54	-13.76	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							
Remark: All the	e other emissior	ns not reported	were too low to re	ead and deemed to	comply with	FCC limit.	

7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	spectrum in is produced the 100 kHz the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Sp								
Test Instruments:	Refer to see	ction 6.0 for d	etails						
Test mode:	Refer to see	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows:

Report No.: GTS202009000301F02

7.7.2 Radiated Emission Method

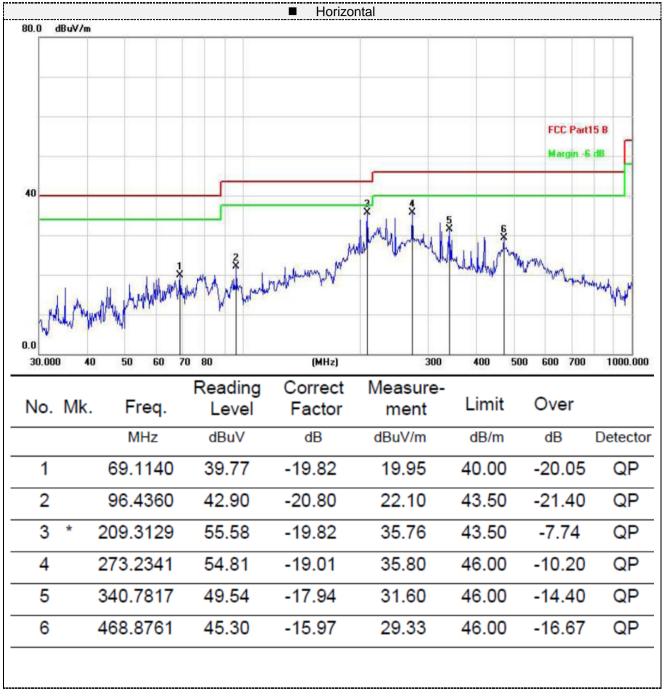
Report No.: GTS202009000301F02

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	nce: 3	3m				
Receiver setup:	Frequency	C	Detector	RB	W	VBW	Value
	9KHz-150KHz	Qı	ıasi-peak 200⊦		Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qı	ıasi-peak 9K⊢		Ηz	30KH2	z Quasi-peak
	30MHz-1GHz	Qı	iasi-peak	120KHz		300KH	lz Quasi-peak
	Above 1GHz		Peak	1Mł	Ηz	3MHz	e Peak
	Above ronz		Peak	1Mł	Ηz	10Hz	Average
Limit:	Frequency		Limit (u∖	//m)	V	'alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m
	1.705MHz-30MH	Z	30			QP	30m
	30MHz-88MHz		100		QP		
	88MHz-216MHz	_	150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500		QP		0111
	Above 1GHz		500		Average		
	710010112		5000		F	Peak	
Test setup:	For radiated emiss	ions	from 9kH	z to 30	HMC	z	" =
	Turn Table < 80cm >		< 3m > Te: 2 Tum Table-	t Antenna 1m	a O		

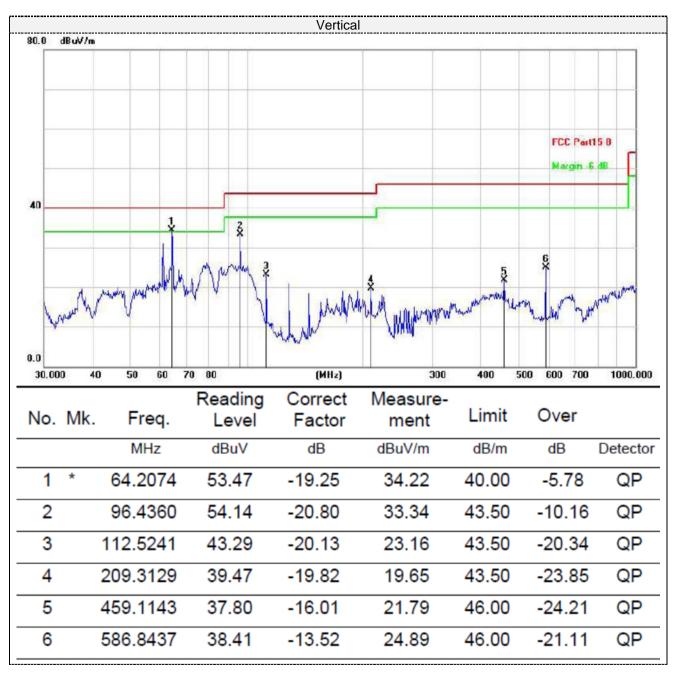
Report No.: GTS202009000301F						
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

■ Above 1GHz

Report No.: GTS202009000301F02

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.36	-3.61	58.75	74	-15.25	peak
4804	44.85	-3.61	41.24	54	-12.76	AVG
7206	57.37	-0.85	56.52	74	-17.48	peak
7206	43.58	-0.85	42.73	54	-11.27	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	63.06	-3.61	59.45	74	-14.55	peak
4804	44.22	-3.61	40.61	54	-13.39	AVG
7206	57.78	-0.85	56.93	74	-17.07	peak
7206	43.69	-0.85	42.84	54	-11.16	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Lo	ss – Pre-amplifier.			

CH Middle (2440MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	61.57	-3.49	58.08	74	-15.92	peak
4880	45.82	-3.49	42.33	54	-11.67	AVG
7320	58.03	-0.8	57.23	74	-16.77	peak
7320	44.49	-0.8	43.69	54	-10.31	AVG
						-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	61.54	-3.49	58.05	74	-15.95	peak
4880	47.79	-3.49	44.3	54	-9.7	AVG
7320	58.72	-0.8	57.92	74	-16.08	peak
7320	43.68	-0.8	42.88	54	-11.12	AVG
Pemark: Eact	or - Antonna Eac	tor + Cable I o	ss – Pre-amplifier			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4960	61.28	-3.41	57.87	74	-16.13	peak	
4960	44.57	-3.41	41.16	54	-12.84	AVG	
7440	56.92	-0.72	56.2	74	-17.8	peak	
7440	42.65	-0.72	41.93	54	-12.07	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Emission Level	Limits	Margin	
dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
61.53	-3.41	58.12	74	-15.88	peak
45.27	-3.41	41.86	54	-12.14	AVG
58.32	-0.72	57.6	74	-16.4	peak
42.65	-0.72	41.93	54	-12.07	AVG
(61.53 45.27 58.32 42.65	61.53 -3.41 45.27 -3.41 58.32 -0.72 42.65 -0.72	61.53 -3.41 58.12 45.27 -3.41 41.86 58.32 -0.72 57.6 42.65 -0.72 41.93	61.53 -3.41 58.12 74 45.27 -3.41 41.86 54 58.32 -0.72 57.6 74 42.65 -0.72 41.93 54	61.53 -3.41 58.12 74 -15.88 45.27 -3.41 41.86 54 -12.14 58.32 -0.72 57.6 74 -16.4 42.65 -0.72 41.93 54 -12.07

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----