

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180233 Page: 1 of 288

Radio Test Report FCC ID: 2AWNK-AX18

Original Grant

Report No.	19	TB-FCC180233
Applicant	:	Shenzhen Apeman Innovations Technology Co.,Ltd
Equipment Under	Test	(EUT)
EUT Name	:	AX1800 Dual Band Wi-Fi 6 Smart Router
Model No.	1:	AX18
Series Model No.		AX1801, AX1802, AX1803, AX1804, AX1805, AX18A, AX18B, AX18C, AX18D, AX18E
Sample ID	:	
Brand Name	÷	20210415-09-1#& 20210415-09-2#
Receipt Date	19	2021-05-08
Test Date	:	2021-05-08 to 2021-05-19
Issue Date	1	2021-05-20
Standards	:	FCC Part 15, Subpart E 15.407
Test Method	3.	ANSI C63.10: 2013 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above.
Test/Witness Engineer		: Reheen Repeca

Engineer Test/Witness Engineer

: INAN SU : fugti.

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	13
5.	CONDUCTED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	15
	5.5 EUT Operating Mode	15
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	16
	6.1 Test Standard and Limit	16
	6.2 Test Setup	17
	6.3 Test Procedure	19
	6.4 Deviation From Test Standard	19
	6.5 EUT Operating Condition	19
	6.6 Test Data	20
7.	BAND EDGE EMISSIONS	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	22
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	23
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	BANDWIDTH TEST	24
	8.1 Test Standard and Limit	24
	8.2 Test Setup	24
	8.3 Test Procedure	24
	8.4 Deviation From Test Standard	25
	8.5 EUT Operating Condition	

TOBY

	8.6 Test Data	25
9.	OUTPUT POWER TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Condition	
	9.6 Test Date	
10.	POWER SPECTRAL DENSITY TEST	27
	10.1 Test Standard and Limit	27
	9.2 Test Setup	
	10.3 Test Procedure	27
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	
	10.6 Test Data	
11.	FREQUENCY STABILITY MEASUREMENT	
	11.1 Test Standard and Limit	
	11.2 Test Setup	29
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 EUT Operating Condition	
	11.6 Test Data	
12.	ANTENNA REQUIREMENT	
	12.1 Standard Requirement	
	12.2 Antenna Connected Construction	
	12.3 Deviation From Test Standard	
	12.4 Result	
ATT	ACHMENT ACONDUCTED EMISSION TEST DATA	
ATT	ACHMENT BUNWANTED EMISSION TEST DATA	
ATT	ACHMENT CRESTRICTED BANDS REQUIREMENT TEST DATA	
ATT	ACHMENT DBANDWIDTH TEST DATA	
	ACHMENT EAVG OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	
	ACHMENT GFREQUENCY STABILITY MEASUREMENT DATA	
AII	ACTIMENT G I REQUERCE STADIETT MEASUREMENT DATA	

Revision History

Report No.	Version	Description	Issued Date
TB-FCC180233	Rev.01	Initial issue of report	2021-05-20
BU CON		TOBI	
3	E E		
angu -	A TONS		MOBI
00	D D		
Dip and		S CON	
TEB WE	TOUS	TOD TO THE	
MBL		A LAND	MA
J L	Dis a	The second	mel s
	n augu		6033

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Apeman Innovations Technology Co.,Ltd		
Address		308, Heng Lu E Times Building, No. 159, North Pingji Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen, uangdong, China		
Manufacturer		henzhen Apeman Innovations Technology Co.,Ltd		
Address	-	1808, Heng Lu E Times Building, No. 159, North Pingji Road, Hehua Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	AX1800 Dual Band W	Wi-Fi 6 Smart Router		
Model No.	:	AX18, AX1801, AX1802, AX1803, AX1804, AX1805, AX18A, AX18B, AX18C, AX18D, AX18E			
Model Difference	•		identical in the same PCB, layout and electrical rence is model name.		
THE COMP		Operation Frequency U-NII-1: 5180MHz~5 Number of Channel:	240MHz, U-NII-3: 5745MHz~5825MHz		
		Antenna Gain:	Please see Note(3)		
Product Description		Modulation Type:	802.11a: OFDM (BPSK,QPSK,16-QAM,64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11ac: OFDM (BPSK, QPSK,16QAM, 64QAM, 256QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)		
		Data Rate:	5GHz: Up to 1201Mbps (2*2 80MHz)		
Power Rating	5	Adapter(TPQ-233A1 Input: 100-240V~, 50 Output: DC 12V 1A			
Software Version	-	A			
Hardware Version		N/A			
Remark			The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note:

(1) More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

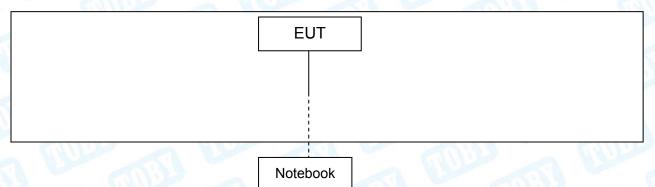
Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5180~5240MHz	36	5180 MHz	44	5220 MHz
	38	5190 MHz	46	5230 MHz
(U-NII-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48; For 40 MHz Bandwidth, use channel 38, 46. For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz	151	5755 MHz	159	5795 MHz
(U-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

(3) Channel List:


Me	ode	N _{ANT}	Re	mark
802	2.11a	2	ANT. 3	3+ ANT. 4
802.11r	n (HT20)	2	ANT. 3	3+ ANT. 4
802.11r	n (HT40)	2 1	ANT. 3	3+ ANT. 4
802.11a	c(VHT20)	2	ANT. 3	3+ ANT. 4
802.11a	c(VHT40)	2	ANT. 3	3+ ANT. 4
802.11a	c(VHT80)	2	ANT. 3	3+ ANT. 4
802.11a	ax(HE20)	2	ANT. 3	3+ ANT. 4
802.11a	ax(HE40)	2	ANT. 3	3+ ANT. 4
802.11a	ax(HE80)	2	ANT. 3	3+ ANT. 4
Antenna	Brand	Model Name	Туре	Antenna Gain (dBi)
		A DUD		U-NII-1: 5
ANT. 3	N/A	N/A	Dipole	U-NII-3: 5
	NIZA	NIA	Dinala	U-NII-1: 5
ANT. 4	N/A	N/A	ANT. 3+ ANT. 3+ ANT. 3+ ANT. 3+ ANT. 3+ ANT. 3+ ANT. 3+ ANT. 3+	U-NII-3: 5
Note:				

For MIMO mode: Directional Gain=ANT. Gain+10*LOG(NANT) =8.01dBi

5G working with 802.11a/n/ac/ax has MIMO mode.

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used "√"
Notebook	161301-CN	15987/00203076	Xiaomi	\checkmark

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test
Fina	I Test Mode	Description
	Mode 1	TX a Mode(5180MHz)
	For	r Radiated Test Below 1GHz
Fina	I Test Mode	Description
	Mode 2	TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/40/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/40/48
NULL S	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
1100	Mode 6	TX Mode 802.11ax(HE20) Mode Channel 36/40/48
U-NII-1	Mode 7	TX Mode 802.11n(HT40) Mode Channel 38/46
100	Mode 8	TX Mode 802.11ac(VHT40) Mode Channel 38/46
and	Mode 9	TX Mode 802.11ax(HE40) Mode Channel 38/46
	Mode 10	TX Mode 802.11ac(VHT80) Mode Channel 42
Mode 8 Mode 9		TX Mode 802.11ax(HE80) Mode Channel 42
1100	Mode 12	TX Mode 802.11a Mode Channel 149/157/165
anner	Mode 13	TX Mode 802.11n(HT20) Mode Channel 149/157/165
6	Mode 14	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165
	Mode 15	TX Mode 802.11ax(HE20) Mode Channel 149/157/165
U-NII-3	Mode 16	TX Mode 802.11n(HT40) Mode Channel 151/159
	Mode 17	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 18	TX Mode 802.11ax(HE40) Mode Channel 151/159
	Mode 19	TX Mode 802.11ac(VHT80) Mode Channel 155
	Mode 20	TX Mode 802.11ax(HE80) Mode Channel 155

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0

802.11n (HT40) Mode: MCS 0

- 802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1
- 802.11ac(VHT80) Mode: MCS 0/ Nss1
- 802.11ax(HE20) Mode: MCS 0/ Nss1
- 802.11ax(HE40) Mode: MCS 0/ Nss1
- 802.11ax(HE80) Mode: MCS 0/ Nss1
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile device; it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

	U-NII-1		
Mada		Paran	neters
Mode	Frequency (MHz)	Ant. 3	Ant. 4
	5180	13	13
802.11a	5200	13	13
	5240	13	13
	5180	12	12
802.11n(HT20)	5200	12	12
	5240	12	12
	5180	12	12
802.11ac(VHT20)	5200	12	12
	5240	12	12
	5180	13	13
802.11ax(HE20)	5200	13	13
	5240	13	13
000 44 m/UT 40)	5190	12	12
802.11n(HT40)	5230	12	12
	5190	12	12
802.11ac(VHT40)	5230	12	12
902 44 ox/UE40)	5190	11	11
802.11ax(HE40)	5230	11	11
802.11ac(VHT80)	5210	12	12
802.11ax(HE80)	5210	12	12

Report No.: TB-FCC180233 Page: 10 of 288

U-NII-3				
Mode	Frequency (MHz)		neters	
		Ant.3	Ant. 4	
	5745	13	13	
802.11a	5785	13	13	
	5825	13	13	
	5745	13	13	
802.11n(HT20)	5785	13	13	
	5825	13	13	
	5745	13	13	
802.11ac(VHT20)	5785	13	13	
	5825	13	13	
	5745	13	13	
802.11ax(HE20)	5785	13	13	
	5825	13	13	
000 44	5755	17	17	
802.11n(HT40)	5795	17	17	
	5755	17	17	
802.11ac(VHT40)	5795	17	17	
	5755	15	15	
802.11ax(HE40)	5795	15	15	
802.11ac(VHT80)	5775	15	15	
802.11ax(HE80)	5775	15	15	

1.7 Measurement Uncertainty

TOBY

The reported uncertainty of measurement $y \pm U_3$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

FCC Part 15 Subpart E(15.407)				
Standard Section	Test Item	Sample ID	Judgment	Remark
15.203	Antenna Requirement	20210415-09-2#	PASS	N/A
15.207	Conducted Emission	20210415-09-1#	PASS	N/A
15.407(b)	Band Edge Emissions	20210415-09-2#	PASS	N/A
15.407(a)	26dB Bandwidth&99% Bandwidth	20210415-09-2#	PASS	N/A
15.407(e)	6dB Bandwidth(only for UNII-3)	20210415-09-2#	PASS	N/A
15.407(a)	AVG Output Power	20210415-09-2#	PASS	N/A
15.407(a)	Power Spectral Density	20210415-09-1# 20210415-09-2#	PASS	N/A
15.407(b)&15.209	Transmitter Spurious Emission	20210415-09-1# 20210415-09-2#	PASS	N/A
15.205	Restricted Bands	20210415-09-2#	PASS	N/A
15.407(g)	Frequency Stability	20210415-09-2#	PASS	N/A

3. Test Software

1	Test Item	Test Software	Manufacturer	Version No.
	Conducted Emission	EZ-EMC	EZ	CDI-03A2
	Radiation Emission	EZ-EMC	EZ	FA-03A2RE
	RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

4. Test Equipment

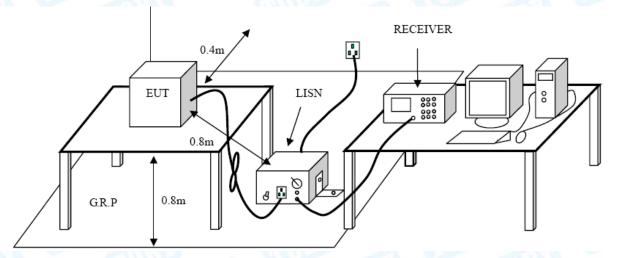
Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission	Fest				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
TO DE	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 11, 2020	Sep. 10, 2021
THE PARTY OF	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 11, 2020	Sep. 10, 2021

5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard FCC Part 15.207
 - 5.1.2 Test Limit

Conducted Emission Test Limit

Francianau	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

(1) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

(2) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(3) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

(4) LISN at least 80 cm from nearest part of EUT chassis.

(5) The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.209
 - 6.1.2 Test Limit

General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

General field strength limits at frequencies Above 1000MHz

Frequency	Distance of 3	Sm (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

General field strength limits at frequencies Below 30MHz

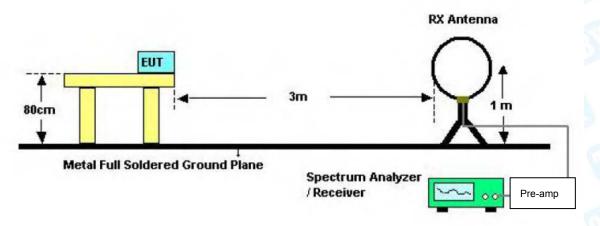
Frequency (MHz)	Field Strength (µA/m)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~30.0	0.08	30	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Limits of unwanted emission out of the restricted bands

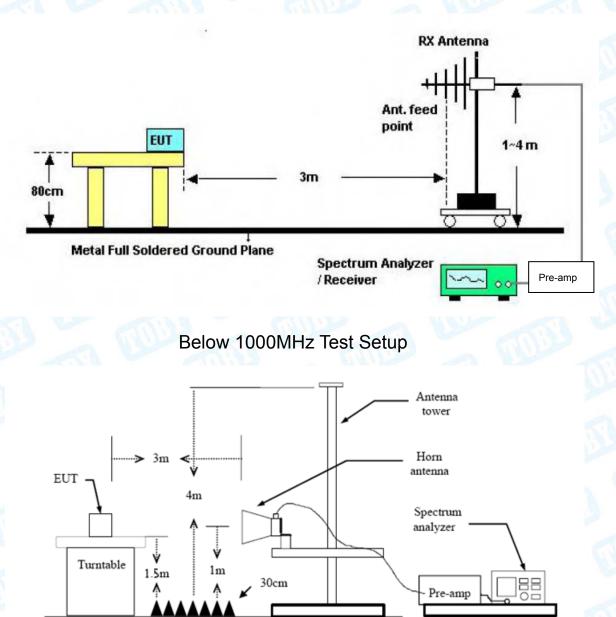
Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

NOTE:

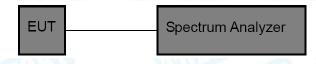

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.


6.2 Test Setup

Radiated measurement


Below 30MHz Test Setup

Above 1GHz Test Setup

Conducted measurement

6.3 Test Procedure

Radiated measurement

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

(2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical Antenna Ore set to make measurement.

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

(5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

(6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

(7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

(8) For the actual test configuration, please see the test setup photo.

Conducted measurement

Testing shall be done on a laboratory bench in a shielded room or in another suitable location. The active antenna port of the unlicensed wireless device shall be connected to the spectrum analyzer after applying appropriate precautions to protect the instrumentation. If a second antenna port is available, then it shall be tested at one operating frequency, with other port(s) appropriately terminated, to verify it has similar output characteristics as the fully tested port. (See also 7.8.8, 11.12.2, and 12.1.2.)

For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

7. Band Edge Emissions

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard FCC Part 15.407(b)
 - 7.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

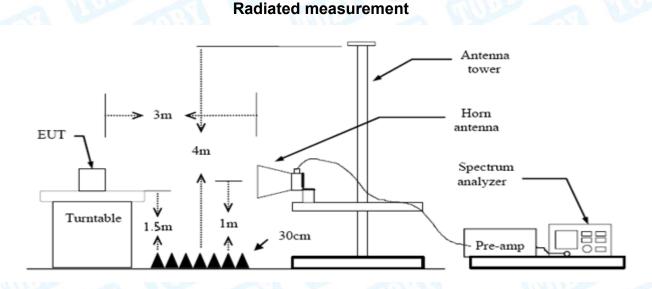
NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

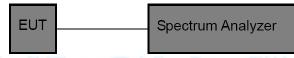
 $\mathsf{E} = \frac{1000000\sqrt{30P}}{3} \, \mathsf{uV/m}, \text{ where P is the eirp (Watts)}$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or

more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below


the band edge, and from 25MHz above or below the band edge increasing linearly to a level of

15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band


edge increasing linearly to a level of 27dBm/MHz at the band edge.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

----Radiated measurement

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

(2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical Antenna Ore set to make measurement.

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

(5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

(6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with

Quasi-peak detection.

(7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

(8) For the actual test configuration, please see the test setup photo.

--Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear

terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

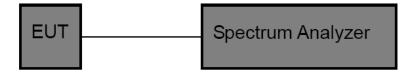
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Please refer to the Attachment C.



8. Bandwidth Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard FCC Part 15.407
 - 8.1.2 Test Limit

	RSS-247	
Test Item	Limit	Frequency Range (MHz)
		5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

	26dB Bandwidth Test					
Spectrum Parameters	Setting					
Attenuation	Auto					
Span	>26 dB Bandwidth					
RBW	Approximately 1% of the emission bandwidth					
VBW	VBW>RBW					
Detector	Peak					
Trace	Max Hold					
Sweep Time	Auto					

	6dB Bandwidth Test					
Spectrum Parameters	Setting					
Attenuation	Auto					
Span	>6 dB Bandwidth					
RBW	100 kHz					
VBW	VBW>=3*RBW					
Detector	Peak					
Trace	Max Hold					
Sweep Time	Auto					
	99% Occupied Bandwidth Test					
Spectrum Parameters	Setting					
Attenuation	Auto					
RBW	1% to 5% of the OBW					
VBW	≥ 3RBW					
Detector	Peak					
Trace	Max Hold					

8.4 Deviation From Test Standard

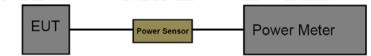
No deviation

8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.



9. Output Power Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.407 (a) 9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)							
Test Item	Limit	Frequency Range(MHz)					
BI TON	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250					
Conducted Output Power	250mW (24dBm)	5250~5350					
	250mW (24dBm)	5500~5700					
	1 Watt (30dBm)	5725~5850					

9.2 Test Setup

9.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

9.4 Deviation From Test Standard

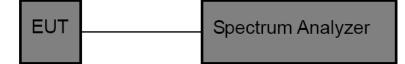
No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Date

Please refer to the Attachment E.



10. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard FCC Part 15.407 (a)
 - 10.1.2 Test Limit

FCC Part 15 Subpart E(15.407)							
Test Item	Limit	Frequency Range(MHz)					
	10dBm/MHz EIRP PSD	5150~5250					
Power Spectral	11dBm/MHz	5250~5350					
Density	11dBm/MHz	5500~5725					
1 10	30dBm/500kHz	5725~5850					

9.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 1 MHz
- (5) Set the VBW to: 3 MHz
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

11. Frequency Stability Measurement

- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard

FCC Part 15.407

11.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
	Manufacturers of U-NII devices are	5150~5250
	responsible for ensuring frequency	
Peak Excursion	stability such that an emission is	5250~5350
Measurement	maintained within the band of operation	5500~5720
	under all conditions of normal operation	5500~5720
	as specified in the users manual	5725~5850

11.2 Test Setup

Temperature	Chamber	
	EUT	Combiner Attenuator Test Equipment

11.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- (6) Extreme temperature is 0°C ~50°C

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

11.6 Test Data

Please refer to the Attachment G.

12. Antenna Requirement

- 12.1 Standard Requirement
 - 12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.3 Deviation From Test Standard

No deviation

12.4 Result

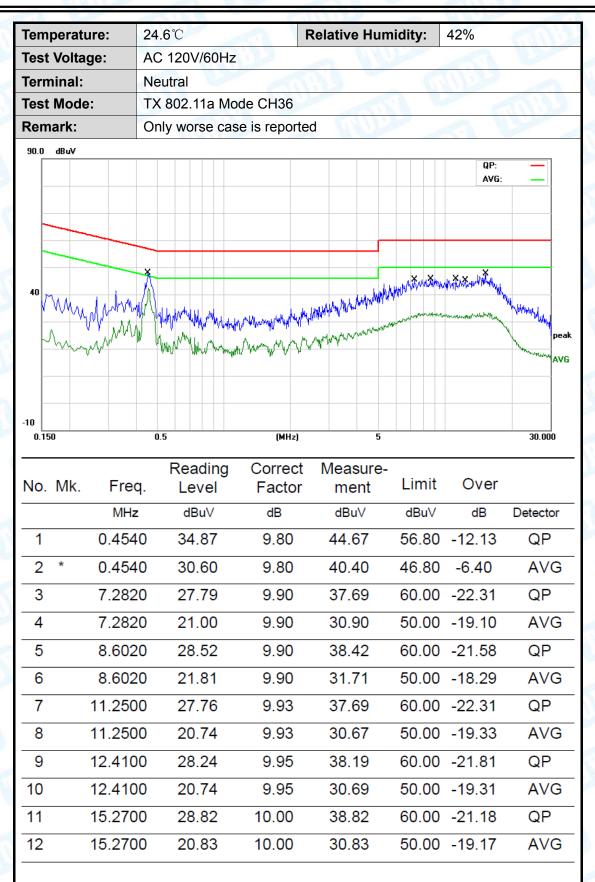
The EUT antennas is a Dipole Antenna. It complies with the standard requirement.

	Antenna Type
TOBI	Permanent attached antenna
20	☑ Unique connector antenna
1000	Professional installation antenna

Attachment A--Conducted Emission Test Data

Remark: All channels have been tested and Shows only the worst channels.

mperature:	24.6 ℃	Relative Humidity:	42%
st Voltage:	AC 120V/60Hz	GADDE	
rminal:	Line	51 - 51	12
st Mode:	TX 802.11a Mode CH	136	
mark:	Only worse case is re	eported.	ALC A
		Mar Marina and a second and a	AVG:


1 2 3 4 5	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 3 4		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
3		0.4580	35.45	9.70	45.15	56.73	-11.58	QP
4	*	0.4580	29.72	9.70	39.42	46.73	-7.31	AVG
		7.6980	32.73	9.80	42.53	60.00	-17.47	QP
5		7.6980	24.56	9.80	34.36	50.00	-15.64	AVG
•		10.1300	32.74	9.81	42.55	60.00	-17.45	QP
6		10.1300	24.52	9.81	34.33	50.00	-15.67	AVG
7		13.8220	32.73	9.95	42.68	60.00	-17.32	QP
8		13.8220	24.26	9.95	34.21	50.00	-15.79	AVG
9		15.3660	33.11	10.00	43.11	60.00	-16.89	QP
10		15.3660	24.62	10.00	34.62	50.00	-15.38	AVG
11		16.9500	31.21	10.00	41.21	60.00	-18.79	QP
12		16.9500	23.17	10.00	33.17	50.00	-16.83	AVG

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

*:Maximum data x:Over limit !:over margin

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emission Test Data

---Radiated Unwanted Emissions

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

				1004		
Temperature:	24.6 ℃	Re	lative Humidity:	43%	0	
Test Voltage:	AC 120V/60HZ			33		211
Ant. Pol.	Horizontal	100	A 12		170	
Test Mode:	TX 802.11a Mode	5180MHz	(U-NII-1)	11	N.	1
Remark:	Only worse case i	is reported	100		1	6 125
80.0 dBuV/m						·
			(RF)FCC 15C 3	3M Radiation	
					Margin -6	ав
					6	
30			3 2 X 4	5 X	×	
30 1 At 1 X		м	X LAA	man	mande	m
moundand	n. monum	now V	1 Marine Car	Wirda		
		w/w				
-20						
30.000 40 50	60 70 80	(MHz)	300 4	00 500	600 700	1000.000
	Reading	Correct	Measure-			
No. Mk. Fre	-	Factor	ment Lin	nit (Over	
MH	•	dB/m		uV/m	dB I	Detector
1 48.67		-22.62			16.25	peak
2 216.78	828 46.26	-19.04	27.22 46	5.00 -	18.78	peak
3 249.42	250 49.36	-17.25	32.11 46	6.00 -	13.89	peak
4 385.28	805 42.36	-12.98	29.38 46	6.00 -	16.62	peak
5 499.42	247 43.13	-10.48	32.65 46	6.00 -	13.35	peak
6 * 750.10						

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Test Voltage:AC 120V/60HZAnt. Pol.VerticalTest Mode:TX 802.11a Mode 5180MHz (U-NII-1)		21.0				10	~	3000
Ant. Pol. Vertical Test Mode: TX 802.11a Mode 5180MHz (U-NII-1) Remark: Only worse case is reported. 80.0 dBwV/m (RFJFCC 15C 3M Radiation Margin 6 dB 40.0 dB wV/m 40.0 dB wV/m	Temperature:			R	elative Humidi	ity: 43	%	
Test Mode: TX 802.11a Mode 5180MHz (U-NII-1) Remark: Only worse case is reported. 80.0 dBuV/m (RFJFCC 15C 3M Radiation Margin 6 dB 30 -20	Test Voltage:				83 T.	1197	100	-
Remark: Only worse case is reported.	Ant. Pol.							
80.0 dBvV/m	Test Mode:					1		
-20	Remark:	Only	worse case	is reported	Ι.	S M S	2	
-20	80.0 dBu∀/m							
	30			4 Marm		(RF)FCC 15	Margin -6	
	No. Mk. Fr		Reading Level	Correct Factor	Measure- ment	Limit	Over	
			dBuV			dBuV/m	dB	Detecto
No. Mk. Freq. Level Factor ment Limit Over	1 * 48.6	5719	59.44	-22.62	36.82	40.00	-3.18	QP
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector	2 ! 77.8	3654	57.99	-22.66	35.33	40.00	-4.67	peak
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 * 48.6719 59.44 -22.62 36.82 40.00 -3.18 QP	3 89.5	5899	56.85	-21.88	34.97	43.50	-8.53	•
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 * 48.6719 59.44 -22.62 36.82 40.00 -3.18 QP 2 ! 77.8654 57.99 -22.66 35.33 40.00 -4.67 peak	4 128.	1130	51.79	-22.29	29.50	43.50	-14.00	peak
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 * 48.6719 59.44 -22.62 36.82 40.00 -3.18 QP 2 ! 77.8654 57.99 -22.66 35.33 40.00 -4.67 peak 3 89.5899 56.85 -21.88 34.97 43.50 -8.53 peak								<u> </u>

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	48.6719	59.44	-22.62	36.82	40.00	-3.18	QP
2	ļ	77.8654	57.99	-22.66	35.33	40.00	-4.67	peak
3		89.5899	56.85	-21.88	34.97	43.50	-8.53	peak
4		128.1130	51.79	-22.29	29.50	43.50	-14.00	peak
5		499.4247	46.39	-10.48	35.91	46.00	-10.09	peak
6		750.1083	42.02	-6.60	35.42	46.00	-10.58	peak

*:Maximum data x:Over limit !:over margin

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

5180MHz-5240MHz(U-NII-1)---the test mode is antenna 3+4

Temperature:	23.6℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		CGD2
Test Mode:	TX 802.11a Mode 5180M	1Hz (U-NII-1)	

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10358.960	42.37	18.05	60.42	74.00	-13.58	peak
2	*	10359.549	28.48	18.05	46.53	54.00	-7.47	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%					
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11a Mode 5180M	TX 802.11a Mode 5180MHz (U-NII-1)						

No	. Mł	k. Freq.	•		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10359.985	42.79	18.05	60.84	74.00	-13.16	peak
2	*	10360.233	30.17	18.05	48.22	54.00	-5.78	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

TOBY

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	AL C	1000
Ant. Pol.	Horizontal		CER D
Test Mode:	TX 802.11a Mode 5200M	IHz (U-NII-1)	

No	р. M	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0399.619	28.55	18.14	46.69	54.00	-7.31	AVG
2		1	0399.976	43.05	18.14	61.19	74.00	-12.81	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%					
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11a Mode 5200M	TX 802.11a Mode 5200MHz (U-NII-1)						

No	o. N	Лk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0396.853	31.03	18.14	49.17	54.00	-4.83	AVG
2		1	0396.993	42.37	18.14	60.51	74.00	-13.49	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 °C	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11a Mode 5240M	IHz (U-NII-1)	

No	. Mk	. Freq.	-	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10481.878	42.74	18.32	61.06	74.00	-12.94	peak
2	*	10483.147	28.69	18.32	47.01	54.00	-6.99	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11a Mode 5240M	IHz (U-NII-1)				

No	. Mł	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10479.789	42.71	18.31	61.02	74.00	-12.98	peak
2	*	10479.789	29.84	18.31	48.15	54.00	-5.85	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	

No	o. N	/lk.	Freq.	•	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0359.863	28.63	18.05	46.68	54.00	-7.32	AVG
2		1	0360.417	42.73	18.05	60.78	74.00	-13.22	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mode	5180MHz (U-NII-1)	COLOR D				

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10358.132	42.88	18.05	60.93	74.00	-13.07	peak
2	*	10363.197	31.18	18.06	49.24	54.00	-4.76	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1)	

No	. M	k. Freq.	• •	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10398.112	28.44	18.14	46.58	54.00	-7.42	AVG
2		10400.290	42.33	18.14	60.47	74.00	-13.53	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode	5200MHz (U-NII-1)	1000			

No	. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10399.992	31.48	18.14	49.62	54.00	-4.38	AVG
2		10400.068	42.68	18.14	60.82	74.00	-13.18	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	BJ C	1000				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)						

No). M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10479.586	28.45	18.31	46.76	54.00	-7.24	AVG
2		10479.657	42.55	18.31	60.86	74.00	-13.14	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)				

No	р. M	lk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	104	76.863	31.71	18.30	50.01	54.00	-3.99	AVG
2		104	77.003	42.72	18.30	61.02	74.00	-12.98	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%		
Test Voltage:	AC 120V/60HZ	BJ C	1000		
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)				

Nc	b. M	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1(0360.009	29.10	18.05	47.15	54.00	-6.85	AVG
2		10	0360.054	42.78	18.05	60.83	74.00	-13.17	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mo	de 5180MHz (U-NII-1)	COLOR D				

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10359.807	31.17	18.05	49.22	54.00	-4.78	AVG
2		10359.875	42.91	18.05	60.96	74.00	-13.04	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C	1000			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)					

No	D.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	;	*	10399.528	28.38	18.14	46.52	54.00	-7.48	AVG
2			10400.462	42.49	18.14	60.63	74.00	-13.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mo	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)				

Nc). М	k. Freq.	•		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10397.053	30.82	18.14	48.96	54.00	-5.04	AVG
2		10403.067	42.25	18.14	60.39	74.00	-13.61	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11 ac(VHT20) Mo	ode 5240MHz (U-NII-1)	

No.	Mk	. Freq.	-	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10480.200	42.60	18.31	60.91	74.00	-13.09	peak
2	*	10482.677	28.63	18.32	46.95	54.00	-7.05	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mo	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)					

No). MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10479.644	30.28	18.31	48.59	54.00	-5.41	AVG
2		10480.243	42.82	18.31	61.13	74.00	-12.87	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11ax(HE20) Mode 5180MHz (U-NII-1)						

No	o. N	/lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0359.573	28.65	18.05	46.70	54.00	-7.30	AVG
2		1	0359.716	43.49	18.05	61.54	74.00	-12.46	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	anis -	TUP				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ax(HE20) Mode 5180MHz (U-NII-1)						

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10359.557	44.61	18.05	62.66	74.00	-11.34	peak
2	*	10359.732	31.31	18.05	49.36	54.00	-4.64	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%		
Test Voltage:	AC 120V/60HZ	BJ C	1000		
Ant. Pol.	Horizontal		6033		
Test Mode:	TX 802.11 ax(HE20) Mode 5200MHz (U-NII-1)				

No). N	٨k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0400.354	28.42	18.14	46.56	54.00	-7.44	AVG
2		1	0400.435	42.47	18.14	60.61	74.00	-13.39	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11 ax(HE20) Mod	TX 802.11 ax(HE20) Mode 5200MHz (U-NII-1)				

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10397.632	42.66	18.14	60.80	74.00	-13.20	peak
2	*	10401.449	32.08	18.14	50.22	54.00	-3.78	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%		
Test Voltage:	AC 120V/60HZ	BJ C	TOUS A		
Ant. Pol.	Horizontal		COB		
Test Mode:	TX 802.11 ax(HE20) Mode 5240MHz (U-NII-1)				

N	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	ť	*	10479.520	28.38	18.31	46.69	54.00	-7.31	AVG
2			10480.027	42.61	18.31	60.92	74.00	-13.08	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ax(HE20) Mod	TX 802.11 ax(HE20) Mode 5240MHz (U-NII-1)					

No.	. Mł	. Freq.	· · · ·		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10399.851	42.35	18.14	60.49	74.00	-13.51	peak
2	*	10400.191	31.34	18.14	49.48	54.00	-4.52	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C	1000			
Ant. Pol.	Horizontal		CELON A			
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)					

No	D.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	*	10379.552	28.55	18.09	46.64	54.00	-7.36	AVG
2			10379.591	42.65	18.09	60.74	74.00	-13.26	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)					

No.	Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10379.511	42.56	18.09	60.65	74.00	-13.35	peak
2	*	10380.028	28.52	18.09	46.61	54.00	-7.39	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	TOUS A
Ant. Pol.	Horizontal		- THE
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	

No	o. N	٨k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0460.303	28.87	18.27	47.14	54.00	-6.86	AVG
2		1	0460.380	42.36	18.27	60.63	74.00	-13.37	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)					

No.	. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10459.590	28.86	18.27	47.13	54.00	-6.87	AVG
2		10459.787	42.49	18.27	60.76	74.00	-13.24	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal	GUU22				
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)					

No	. M	k. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10379.902	28.40	18.09	46.49	54.00	-7.51	AVG
2		10380.420	42.37	18.09	60.46	74.00	-13.54	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10379.719	42.50	18.09	60.59	74.00	-13.41	peak
2	*	10380.119	29.19	18.09	47.28	54.00	-6.72	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		COB
Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	

No) .	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	k	10455.634	28.81	18.25	47.06	54.00	-6.94	AVG
2			10460.030	42.82	18.27	61.09	74.00	-12.91	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT40) Mo	de 5230MHz (U-NII-1)	1000				

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10460.156	42.78	18.27	61.05	74.00	-12.95	peak
2	*	10460.352	28.91	18.27	47.18	54.00	-6.82	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	BJ C					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11ax(HE40) Mod	e 5190MHz (U-NII-1)					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10379.734	42.38	18.09	60.47	74.00	-13.53	peak
2	*	10380.292	28.38	18.09	46.47	54.00	-7.53	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ax(HE40) Mod	e 5190MHz (U-NII-1)	COLOR O			

No). M	k. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10375.425	30.88	18.09	48.97	54.00	-5.03	AVG
2		10375.904	42.34	18.09	60.43	74.00	-13.57	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ 6	TOUS A
Ant. Pol.	Horizontal		COB
Test Mode:	TX 802.11 ax(HE40) Mod	de 5230MHz (U-NII-1)	

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10456.134	43.35	18.26	61.61	74.00	-12.39	peak
2	*	10459.680	28.88	18.27	47.15	54.00	-6.85	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11 ax(HE40) Mod	TX 802.11 ax(HE40) Mode 5230MHz (U-NII-1)				

No). M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10459.663	28.77	18.27	47.04	54.00	-6.96	AVG
2		10459.864	42.21	18.27	60.48	74.00	-13.52	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C	1000			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 802.11ac(VHT80) Mo	de 5210MHz (U-NII-1)				

No.	Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10419.513	42.55	18.19	60.74	74.00	-13.26	peak
2	*	10419.903	28.44	18.19	46.63	54.00	-7.37	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT80) Mo	de 5210MHz (U-NII-1)	COLOR D			

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10419.481	42.83	18.19	61.02	74.00	-12.98	peak
2	*	10419.570	28.56	18.19	46.75	54.00	-7.25	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6°C Relative Humidity:		43%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ax(HE80) Mode 5210MHz (U-NII-1)					

	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10419.677	28.39	18.19	46.58	54.00	-7.42	AVG
2	2		10419.690	42.38	18.19	60.57	74.00	-13.43	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ax(HE80) Mode 5210MHz (U-NII-1)						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10419.996	42.73	18.19	60.92	74.00	-13.08	peak
2	*	10420.353	28.44	18.19	46.63	54.00	-7.37	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5745MHz-5825MHz(U-NII-3)--the test mode is antenna 3+4

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		COB
Test Mode:	TX 802.11a Mode 5745M	IHz (U-NII-3)	

No.	Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11489.502	43.19	19.60	62.79	74.00	-11.21	peak
2	*	11490.341	27.91	19.60	47.51	54.00	-6.49	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11a Mode 5745N	1Hz (U-NII-3)				

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11490.293	45.84	19.60	65.44	74.00	-8.56	peak
2	*	11490.672	32.12	19.60	51.72	54.00	-2.28	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	st Mode: TX 802.11a Mode 5785MHz (U-NII-3)						

N	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11570.177	42.28	19.68	61.96	74.00	-12.04	peak
2	1	*	11570.304	28.07	19.68	47.75	54.00	-6.25	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6 ℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11a Mode 5785M	1Hz (U-NII-3)					

No	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11569.565	45.86	19.68	65.54	74.00	-8.46	peak
2	*	11569.565	30.15	19.68	49.83	54.00	-4.17	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	TOUS A
Ant. Pol.	Horizontal		CGO3
Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	

No	D .	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11645.165	28.05	19.76	47.81	54.00	-6.19	AVG
2			11646.284	42.23	19.76	61.99	74.00	-12.01	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11a Mode 5825M	1Hz (U-NII-3)					

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11649.637	43.83	19.76	63.59	74.00	-10.41	peak
2	*	11650.487	29.83	19.76	49.59	54.00	-4.41	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C	1000			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)					

No	р. М	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11	490.271	28.04	19.60	47.64	54.00	-6.36	AVG
2		11	490.460	41.45	19.60	61.05	74.00	-12.95	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)					

No	. Mł	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11487.732	45.77	19.60	65.37	74.00	-8.63	peak
2	*	11488.222	30.63	19.60	50.23	54.00	-3.77	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6℃	Relative Humidity:	43%		
Test Voltage:	AC 120V/60HZ	BL C			
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)				

No	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11570.370	28.04	19.68	47.72	54.00	-6.28	AVG
2			11571.888	42.66	19.68	62.34	74.00	-11.66	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)				

No.	. Mł	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11570.809	30.63	19.68	50.31	54.00	-3.69	AVG
2		11570.929	44.76	19.68	64.44	74.00	-9.56	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 °C	Relative Humidity:	43%		
Test Voltage:	AC 120V/60HZ	BJ C			
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)				

No	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11647.652	27.99	19.76	47.75	54.00	-6.25	AVG
2			11652.897	42.23	19.76	61.99	74.00	-12.01	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11649.688	31.44	19.76	51.20	54.00	-2.80	AVG
2		11650.052	45.26	19.76	65.02	74.00	-8.98	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		CELON A
Test Mode:	TX 802.11ac(VHT20) Mo	de 5745MHz (U-NII-3)	

No	o. N	1k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1	1490.005	41.15	19.60	60.75	74.00	-13.25	peak
2	*	1	1490.468	27.87	19.60	47.47	54.00	-6.53	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5745MHz (U-NII-3)	COLOR D			

No	. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11490.202	47.32	19.60	66.92	74.00	-7.08	peak
2	*	11490.362	31.73	19.60	51.33	54.00	-2.67	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	

No.	. Mk	. Freq.	· · · ·	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11565.455	42.03	19.68	61.71	74.00	-12.29	peak
2	*	11571.848	27.92	19.68	47.60	54.00	-6.40	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)	COLOR D			

No.	. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11570.061	42.44	19.68	62.12	74.00	-11.88	peak
2	*	11570.107	31.36	19.68	51.04	54.00	-2.96	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5825MHz (U-NII-3)	

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11649.911	42.11	19.76	61.87	74.00	-12.13	peak
2	*	11649.989	28.00	19.76	47.76	54.00	-6.24	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5825MHz (U-NII-3)	and a			

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11649.511	45.09	19.76	64.85	74.00	-9.15	peak
2	*	11649.511	31.37	19.76	51.13	54.00	-2.87	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11ax(HE20) Mod	e 5745MHz (U-NII-3)	

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11490.090	42.39	19.60	61.99	74.00	-12.01	peak
2	*	11490.425	27.79	19.60	47.39	54.00	-6.61	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ax(HE20) Mod	de 5745MHz (U-NII-3)					

No.	M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11490.002	31.75	19.60	51.35	54.00	-2.65	AVG
2		11490.202	42.10	19.60	61.70	74.00	-12.30	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	63 6	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11 ax(HE20) Mod	le 5785MHz (U-NII-3)	

No	D.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	*	11570.084	28.25	19.68	47.93	54.00	-6.07	AVG
2			11570.087	42.74	19.68	62.42	74.00	-11.58	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ax(HE20) Mod	de 5785MHz (U-NII-3)	COLOR D				

No	. M	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11	1570.356	31.45	19.68	51.13	54.00	-2.87	AVG
2		11	1571.350	42.51	19.68	62.19	74.00	-11.81	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	
Ant. Pol.	Horizontal		CE OB
Test Mode:	TX 802.11 ax(HE20) Mod	de 5825MHz (U-NII-3)	

Nc	р. М	k. Freq.	•		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11652.118	28.00	19.76	47.76	54.00	-6.24	AVG
2		11652.248	42.01	19.76	61.77	74.00	-12.23	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ax(HE20) Mod	de 5825MHz (U-NII-3)					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11650.449	45.13	19.76	64.89	74.00	-9.11	peak
2	*	11650.449	31.41	19.76	51.17	54.00	-2.83	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		6033
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)	

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11509.553	42.22	19.63	61.85	74.00	-12.15	peak
2	*	11509.749	28.24	19. <mark>6</mark> 3	47.87	54.00	-6.13	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)				

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11507.433	43.97	19.62	63.59	74.00	-10.41	peak
2	*	11507.433	30.72	19.62	50.34	54.00	-3.66	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		CE OB
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	

No.	Mk	. Freq.	•	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11594.226	41.64	19.71	61.35	74.00	-12.65	peak
2	*	11594.366	27.99	19.71	47.70	54.00	-6.30	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)				

Nc	b. M	lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	1590.295	30.95	19.69	50.64	54.00	-3.36	AVG
2		1	1590.442	44.90	19.69	64.59	74.00	-9.41	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)	

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11509.784	43.50	19.63	63.13	74.00	-10.87	peak
2	*	11510.335	28.47	19.63	48.10	54.00	-5.90	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT40) Mo	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11506.514	46.48	19.62	66.10	74.00	-7.90	peak
2	*	11510.460	32.13	19.63	51.76	54.00	-2.24	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5795MHz (U-NII-3)	

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11592.887	41.90	19.71	61.61	74.00	-12.39	peak
2	*	11593.896	28.00	19.71	47.71	54.00	-6.29	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT40) Mo	de 5795MHz (U-NII-3)	COND -			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11590.002	45.15	19.69	64.84	74.00	-9.16	peak
2	*	11590.155	30.89	19.69	50.58	54.00	-3.42	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	1000
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ax(HE40) Mod	e 5755MHz (U-NII-3)	

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11509.952	41.74	19. <mark>6</mark> 3	61.37	74.00	-12.63	peak
2	*	11510.398	28.40	19. <mark>6</mark> 3	48.03	54.00	-5.97	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ax(HE40) Mod	e 5755MHz (U-NII-3)				

No	. M	K. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11506.124	47.12	19.62	66.74	74.00	-7.26	peak
2	*	11510.147	31.04	19. <mark>6</mark> 3	50.67	54.00	-3.33	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

Temperature:	23.6 ℃	Relative Humidity:	43%
Test Voltage:	AC 120V/60HZ	BJ C	TOUS A
Ant. Pol.	Horizontal		COB
Test Mode:	TX 802.11ax(HE40) Mod	e 5795MHz (U-NII-3)	

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11591.079	43.09	19.70	62.79	74.00	-11.21	peak
2	*	11592.897	28.06	19.71	47.77	54.00	-6.23	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Vertical	/ertical				
Test Mode:	TX 802.11ax(HE40) Mod	e 5795MHz (U-NII-3)	Caller -			

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11590.092	42.86	19.69	62.55	74.00	-11.45	peak
2	*	11590.092	31.79	19. <mark>6</mark> 9	51.48	54.00	-2.52	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

TOBY

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C				
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)					

No.	lo. Mk. Freq.		Reading Correct Measure- Mk. Freq. Level Factor ment		Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11549.895	43.57	19.66	63.23	74.00	-10.77	peak
2	*	11550.332	28.19	19.66	47.85	54.00	-6.15	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)					

No.	No. Mk. Fre		Reading (Freq. Level			Limit Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11549.529	44.18	19.66	63.84	74.00	-10.16	peak
2	*	11550.028	28.89	19.66	48.55	54.00	-5.45	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

TOBY

Temperature:	23.6 ℃	Relative Humidity:	43%			
Test Voltage:	AC 120V/60HZ	BJ C				
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ax(HE80) Mode 5775MHz (U-NII-3)					

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11549.726	42.12	19.66	61.78	74.00	-12.22	peak
2	*	11550.254	28.30	19.66	47.96	54.00	-6.04	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.6℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	A DUL					
Test Mode:	TX 802.11ax(HE80) Mod	TX 802.11ax(HE80) Mode 5775MHz (U-NII-3)					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11547.373	44.81	19.66	64.47	74.00	-9.53	peak
2	*	11549.910	28.86	19.66	48.52	54.00	-5.48	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

----Conducted Unwanted Emissions

Test Mode	Antenna	Channel	Freq Range [MHz]	Max. Fre [MHz]	Max. Level [dBm]	Limit [dBm]	Verdic			
		1000	30~5140	5138.21	-38.16	<=-27	PASS			
NUDE	Ant3	5180	5360~40000	39975.2	-38.23	<=-27	PASS			
			30~5140	5092.9	-47.12	<=-27	PASS			
	Ant4	5180	5360~40000	39950.9	-39.15	<=-27	PASS			
1832			30~5140	5114.88	-46.03	<=-27	PASS			
	Ant3	5200	5360~40000	39826.2	-38.92	<=-27	PASS			
~ BH			30~5140	5117.94	-47.15	<=-27	PASS			
	Ant4	5200	5360~40000	39963.6	-39.17	<=-27	PASS			
			30~5140	4015.24	-47.59	<=-27	PASS			
(and	Ant3	5240	5360~40000	39941.7	-39.58	<=-27	PASS			
	2013		30~5140	5121.01	-47.2	<=-27	PASS			
	Ant4	5240	5360~40000	39474.1	-39.02	<=-27	PASS			
11A-MIMO		MUR.	30~1000	705.7	-54.25	<=-27	PASS			
Lung and	Ant3	5745	1000~40000	39914.2	-38.95	<=-27	PASS			
-			30~1000	862.54	-52.99	<=-27	PASS			
DEB CI	Ant4	5745	1000~40000	39974	-39.25	<=-27	PASS			
				30~1000	800.04	-53.42	<=-27	PASS		
	Ant3	5785	1000~40000	39717.9	-39.17	<=-27	PASS			
	A pt4		30~1000	895.32	-52.32	<=-27	PASS			
	Ant4	5785	1000~40000	40000	-38.94	<=-27	PASS			
TOT I		1170	30~1000	959.21	-52.68	<=-27	PASS			
NO.	Ant3	5825	1000~40000	39920.7	-39.29	<=-27	PASS			
	(All)	1	30~1000	706.08	-53.96	<=-27	PASS			
100	Ant4	5825	1000~40000	39760.8	-39.41	<=-27	PASS			
aus						30~5140	5139.74	-37.99	<=-27	PASS
	Ant3	5180	5360~40000	39728.1	-38.83	<=-27	PASS			
			30~5140	5033.29	-46.75	<=-27	PASS			
an B S	Ant4	5180	5360~40000	39750	-38.92	<=-27	PASS			
	1.96	6	30~5140	5112.32	-46.47	<=-27	PASS			
	Ant3	5200	5360~40000	39649.6	-38.86	<=-27	PASS			
		1022	30~5140	4648.52	-47.1	<=-27	PASS			
	Ant4	5200	5360~40000	39983.3	-38.79	<=-27	PASS			
11N20MIMO	2	2.13	30~5140	5110.96	-47.93	<=-27	PASS			
	Ant3	5240	5360~40000	39955.5	-39.31	<=-27	PASS			
		-	30~5140	5091.71	-47.48	<=-27	PASS			
anna	Ant4	5240	5360~40000	39944	-38.84	<=-27	PASS			
13.2			30~1000	773.59	-53.66	<=-27	PASS			
	Ant3	5745	1000~40000	39975.3	-38.35	<=-27	PASS			
1300			30~1000	894.48	-52.07	<=-27	PASS			
NUL	Ant4	5745	1000~40000	39970.1	-39.21	<=-27	PASS			
e	Ant3	5785	30~1000	777.22	-53.77	<=-27	PASS			

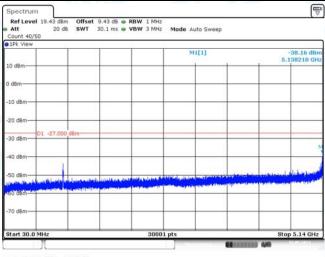
Report No.: TB-FCC180233Page:76 of 288

		600	1000~40000	39977.9	-37.61	<=-27	PASS
N. Contraction	1		30~1000	221.52	-53.24	<=-27	PASS
	Ant4	5785	1000~40000	39329.2	-38.7	<=-27	PASS
110			30~1000	706.76	-53.21	<=-27	PASS
NUUS	Ant3	5825	1000~40000	39729.6	-39.14	<=-27	PASS
			30~1000	888.41	-53.31	<=-27	PASS
	Ant4	5825	1000~40000	39494.3	-37.31	<=-27	PASS
	A.M		30~5140	5132.59	-35.45	<=-27	PASS
	Ant3	5190	5360~40000	39997.1	-39.27	<=-27	PASS
- 6N			30~5140	5138.38	-46.47	<=-27	PASS
3.9	Ant4	5190	5360~40000	39983.3	-38.01	<=-27	PASS
		100		5057.99	-46.41	<=-27	PASS
GAD	Ant3	5230	5360~40000	39986.7	-39.38	<=-27	PASS
	-		30~5140	5093.93	-46.83	<=-27	PASS
	Ant4	5230	5360~40000	39408.3	-39.07	<=-27	PASS
11N40MIMO -	4 10	CAUL -	30~1000	508.83	-51.74	<=-27	PASS
N. Contraction	Ant3	5755	1000~40000	39470.9	-39.07	<=-27	PASS
			30~1000	864.29	-52.85		PASS
	Ant4	5755	1000~40000	39988.3	-38.1	<=-27	PASS
			30~1000	861.76	-52.4	<=-27	PASS
	Ant3	5795	1000~40000	39552.8	-39.35	<=-27	PASS
	-6	283	30~1000	944.31	-53.48	<=-27	PASS
	Ant4	5795	1000~40000	39057.5	-39.13	<=-27	PASS
1 and	Ant3	5180	30~5140	5133.27	-34.01	<=-27	PASS
			5360~40000	39462.5	-38.29	<=-27	PASS
	CAND .		30~5140	5137.87	-46.13	<=-27	PASS
100	Ant4	5180	5360~40000	39934.8	-37.86	<=-27	PASS
aller			30~5140	996.86	-42.96	<=-27	PASS
	Ant3	5200	5360~40000	39977.5	-37.86	<=-27	PASS
			30~5140	5039.93	-47.16	<=-27	PASS
an B.S.	Ant4	5200	5360~40000	39494.9	-38.86	<=-27	PASS
		6	30~5140	5139.4	-47.16	<=-27	PASS
5	Ant3	5240	5360~40000	39605.7	-39.1	<=-27	PASS
11AC20MIMO	-		30~5140	5093.25	-47.93	<=-27	PASS
U.S.	Ant4	5240	5360~40000	39471.8	-38.19	<=-27	PASS
1101	>	A 83	30~1000	869.3	-52.01	<=-27	PASS
	Ant3	5745	1000~40000	39954.5	-39.63	<=-27	PASS
	1990		30~1000	983.92	-54.24	<=-27	PASS
A DE	Ant4	5745	1000~40000	39634.7	-38.85	<=-27	PASS
	-		30~1000	828.4	-53.73	<=-27	PASS
	Ant3	5785	1000~40000	39511.2	-38.82	<=-27	PASS
- 651			30~1000	860.41	-52.41	<=-27	PASS
MUDD	Ant4	5785	1000~40000	39746.5	-38.68	<=-27	PASS

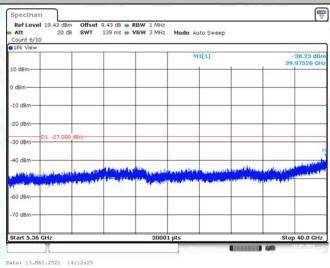
Report No.: TB-FCC180233 Page: 77 of 288

000	A . 12		30~1000	798.55	-53.12	<=-27	PASS
N.C.S.	Ant3	5825	1000~40000	39476.1	-38.35	<=-27	PASS
	RUP		30~1000	453.6	-53.29	<=-27	PASS
	Ant4	5825	1000~40000	39831	-38.24	<=-27	PASS
ALC R			30~5140	5138.21	-34.64	<=-27	PASS
	Ant3	5190	5360~40000	39987.9	-38.57	<=-27	PASS
			30~5140	5046.23	-46.9	<=-27	PASS
0.62	Ant4	5190	5360~40000	39925.5	-39.19	<=-27	PASS
			30~5140	5095.46	-47.17	<=-27	PASS
- BH	Ant3	5230	5360~40000	39788.1	-39.33	<=-27	PASS
	1150		30~5140	5129.87	-46.9	<=-27	PASS
	Ant4	5230	5360~40000	39990.2	-38.76	<=-27	PASS
11AC40MIMO	1		30~1000	962.83	-53.79	<=-27	PASS
	Ant3	5755	1000~40000	39958.4	-38.29	<=-27	PASS
	1	-	30~1000	892.9	-52.27	<=-27	PASS
Can 3 3	Ant4	5755	1000~40000	39966.2	-37.11	<=-27	PASS
CDI I			30~1000	870.07	-54.17	<=-27	PASS
	Ant3	5795	1000~40000	39450.1	-39.34	<=-27	PASS
		C CI D	30~1000	332.71	-53.83	<=-27	PASS
	Ant4	5795	1000~40000	39476.1	-38.9	<=-27	PASS
00			30~5140	5135.66	-40.3	<=-27	PASS
	Ant3	5210	5360~40000	39505.2	-39.35	<=-27	PASS
			30~5140	5138.55	-45.12	<=-27	PASS
10 C	Ant4	5210	5360~40000	39601.1	-39.18	<=-27	PASS
11AC80MIMO		5775	30~1000	959.08	-53.65	<=-27	PASS
	Ant3		1000~40000	39941.5	-37.27	<=-27	PASS
1200			30~1000	871.92	-52.96	<=-27	PASS
MUDE	Ant4	5775	1000~40000	39561.9	-38.61	<=-27	PASS
	anno		30~5140	5136.68	-32.8	<=-27	PASS
	Ant3	5180	5360~40000	39983.3	-38.17	<=-27	PASS
- Ci m			30~5140	5058.33	-46.1	<=-27	PASS
	Ant4	5180	5360~40000	39978.6	-38.55	<=-27	PASS
			30~5140	5138.04	-41.38	<=-27	PASS
501	Ant3	5200	5360~40000	39986.7	-38.77	<=-27	PASS
		1	30~5140	5125.78	-47.15	<=-27	PASS
11AX20MIMO	Ant4	5200	5360~40000	39961.3	-37.85	<=-27	PASS
			30~5140	5071.61	-47.75	<=-27	PASS
22	Ant3	5240	5360~40000	39992.5	-38.58	<=-27	PASS
(III)			30~5140	5099.72	-47.36	<=-27	PASS
	Ant4	5240	5360~40000	39588.4	-39.05	<=-27	PASS
	100		30~1000	978	-52.96	<=-27	PASS
	Ant3	5745	1000~40000	39974	-38.86	<=-27	PASS
CUL -	Ant4	5745	30~1000	890.57	-52.73	<=-27	PASS

Report No.: TB-FCC180233Page:78 of 288


600			1000~40000	39953.2	-39.46	<=-27	PASS
	Ant3	5785	30~1000	509.02	-52.28	<=-27	PASS
			1000~40000	39977.9	-38.78	<=-27	PASS
1990	Ant4	5785	30~1000	863.51	-52.54	<=-27	PASS
ALC: NO	Ant	5765	1000~40000	39963.6	-38.42	<=-27	PASS
	Anto	5005	30~1000	867.52	-54.31	<=-27	PASS
	Ant3	5825	1000~40000	39680.2	-38.89	<=-27	PASS
1193		5825	30~1000	892.38	-53.43	<=-27	PASS
1	Ant4	5025	1000~40000	39459.2	-39.24	<=-27	PASS
	A = +0	5400	30~5140	5132.08	-34.83	<=-27	PASS
81	Ant3	5190	5360~40000	39337.8	-39.24	<=-27	PASS
	A	5400	30~5140	5116.07	-46.47	<=-27	PASS
3 East	Ant4	5190	5360~40000	39788.1	-39.16	<=-27	PASS
	A -= +0	5000	30~5140	5105.51	-45.78	<=-27	PASS
	Ant3	5230	5360~40000	39950.9	-38.93	<=-27	PASS
60033	Ant4	5000	30~5140	4909.97	-47.48	<=-27 PAS	PASS
		5230	5360~40000	39411.7	-39.28	<=-27	PASS
11AX40MIMO	Ant3	5755	30~1000	855.17	-53.12	<=-27	PASS
189			1000~40000	39971.4	-38.61	<=-27	PASS
			30~1000	709.06	-52.48	<=-27	PASS
	Ant4	5755	1000~40000	39985.7	-39.16	<=-27	PASS
	4.10	5705	30~1000	864.22	-51.65	<=-27	PASS
1.12	Ant3	5795	1000~40000	39860.9	-37.95	<=-27	PASS
100V		5705	30~1000	892.48	-52.52	<=-27	PASS
a Ve	Ant4	5795	1000~40000	39993.5	-38.04	<=-27	PASS
		5040	30~5140	5137.36	-38.05	<=-27	PASS
1200	Ant3	5210	5360~40000	39484.5	-37.61	<=-27	PASS
CUDD-			30~5140	5134.46	-44.25	<=-27	PASS
	Ant4	5210	5360~40000	39965.9	-39.3	<=-27	PASS
11AX80MIMO			30~1000	721.28	-53.75	<=-27	PASS
50 D	Ant3	5775	1000~40000	39997.4	-39.35	<=-27	PASS
			30~1000	890.09	-53.09	<=-27	PASS
	Ant4	nt4 5775 -	1000~40000	39953.2	-38.97	<=-27	PASS

Note: The Antenna Gain is compensated in the graph.


Test Graphs

11A-MIMO_Ant3_5180_30~5140

Date: 13.MAY.2021 14:12:24

11A-MIMO_Ant3_5180_5360~40000

11A-MIMO Ant4 5180 30~5140

Count 40		SWT	30.1 ms	• VBW 3 M	Hz Mode /	uto Sweep			
 1Pk View 				- 10					
						41[1]			-47.12
10 d8m-			-	-	+	1	1		1
0 d8m	-			-					-
-10 dBm—									+
-20 d8m—	-		-						-
-30 dBm-	-D1 -27.000	dBm							-
-40 dBm-	-			-		-		-	-
-50 dBm-				utoor is ditatiliti	STO AMADA N	weiter en ale let	- stringhter		
-80 d8m-			-						
-70 dBm-									

Date: 13.MAY.2021 14:14:42

Report No.: TB-FCC180233 Page: 80 of 288

11A-MIMO_Ant4_5180_5360~40000

Count 6/1 1Pk View									
					M	1[1]			39.15 de 95090 G
10 dBm-									
0 dBm	-								
10 dBm—	-	-	-						-
-20 dBm—			-		-				
30 dBm—	01 -27.000	dBm	-						
-40 d8m				6.2					unterfer
	de grande	and det	Card acceleration All	A STATE	diam's the	haldmind.	in the second	ALL STREEP LINE	-
and the second	-	data stability		State Ballin	Prefer and	petrology in a pair	and the second second	-	
-60 dBm-			+			-			
-70 dBm—	-		-						
Start 5.3	5 GHz		_	3000	1 pts			Stor	40.0 GF

11A-MIMO_Ant3_5200_30~5140

	50								
1Pk View				1	N	11[1]			46.03
10 dBm				+		1	1		14000
0 dBm		-	-	-	-	-		-	-
-10 dBm				-			-		-
-20 dBm					_				
-30 dBm	D1 -27.000	dBm	-				-	-	-
-40 dBm					-				-
-50 dBm-	a status to			A. M. HARD	al of a real links	- Aspertor Correct	-projection of	al marking	
60 dBm	,	-	-			advantation.			
-70 dBm					-				

Date: 13.MAY.2021 14:16:31

11A-MIMO_Ant3_5200_5360~40000

Ref Level 19 Att Count 6/10	20 dB	SWT		RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk View									
					M	1[1]			38.92 dE
10 dBm						1	-	39.	62020 G
0 dBm									
-10 dBm			_						
-20 dBm									
1222.000.000	-27.000 c	lBm-							
-40 dBm						-	1.		Louist
addreaded a little	all a sale	Lady ash	A some take	A REALITY	he have think	the sud as de	petrol dabase	Sheker, M.	and the same
	Anna A State	Constant of		and the states	- hupining	-		Partie and	
-60 dBm		-			-	-			
-70 dBm									1
Start 5.36 GH	z			3000	1 pts	-		Stop	40.0 GH

Report No.: TB-FCC180233 Page: 81 of 288

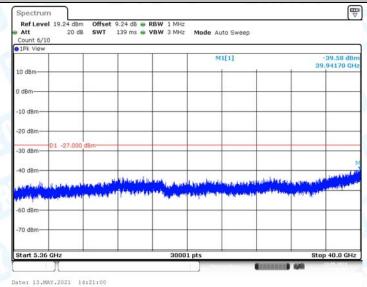
11A-MIMO_Ant4_5200_30~5140

1Pk View	1				0			
					M	1[1]		47.15 dE
10 dBm—	-					1		
0 dBm	-		-					
-10 dBm—	-		-					-
-20 dBm—	-	-						
-30 dBm	D1 -27.000	dBm	-					
-40 dBm—								
-50 dBm-		t a la stadd		and a sure of the state	filmen and the	Peterson William	and the state of the	 a li ma na
60 dBm-					and the second		and all successful to be a set of the	
-70 dBm—	-							
	0 MHz			3000				 5.14 G

11A-MIMO_Ant4_5200_5360~40000

1Pk View					M	1[1]			-39.17 df
10 dBm			-						
0 d8m			-						-
-10 dBm	-								-
-20 dBm—									-
-30 dBm	D1 -27.000	dBm							
-40 dBm									(Istate)
	الم الم الم م	and a star	A BLANKER	taile fi	a globallation	I. Jugisland		LACK LA	-
and the state of the	integration and the	-	100000	A DAMAGE				10 NO.	
-60 dBm						1			

Date: 13.MAY.2021 14:17:50


11A-MIMO_Ant3_5240_30~5140

Ref Level 19.24 dBm Offsel Att 20 dB SWT Count 40/50	9.24 dB • RBW 1 MHz 30.1 ms • VBW 3 MHz	Mode Auto Sweep			
• 1Pk View					
		M1[1]		-47	.59 dB
10 dBm		1	1 1	4.015.	240 G
0 dBm					
-10 dBm					
-20 dBm		<i></i>			
-30 dBm D1 -27.000 dBm					
-40 dBm					
stantes in the			MI		
-50 dBm	الاعماد ومالية معلاعات فأريدين وبا	a triffering and some starter	and we are a state of the state of the	in the little with	
-50 dBm	a particularity alteriated	to be played and a second second	and a set of the set o		2
-70 dBm					
Start 30.0 MHz	3000	1 pts		Stop 5.	14 GH

Report No.: TB-FCC180233 Page: 82 of 288

11A-MIMO_Ant3_5240_5360~40000

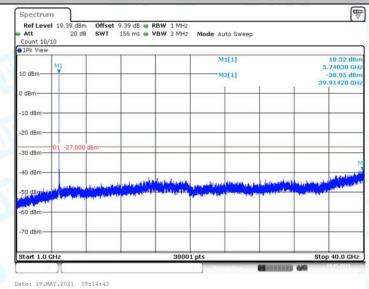
11A-MIMO_Ant4_5240_30~5140

1Pk View					M	1[1]			47.20 d
10 dBm									
0 dBm									
-10 dBm									
-20 dBm								-	-
-30 dBm-	01 -27.000	d8m							-
-40 dBm									<u> </u>
-50 dBm	-	at model of	a lat date	a splan and	Station and shall	an protone persona	- text of the text	la ta dunha ta dun	dist and
-vol dam				- Income align	Contraction of the second s		the stars produced as	- Annual la co	
-70 dBm									

Date: 13.MAY.2021 14:23:20

11A-MIMO_Ant4_5240_5360~40000

Att Count 6/10	20 dB		9.34 dB 🖷 🖡 139 ms 🖷 🕅	BW 3 MHz	Mode Au	to Sweep			
1Pk View					0				
					M	[1]			39.02 de
10 dBm								39	47410 G
0 dBm	_							-	
-10 dBm	_								
-20 dBm	_								
-30 dBm-01	-27.000 d	Bm							
-40 dBm				1				المعادل والارمي	Under
And a strange	Anilough (and the state	a state of the state of the	the pile dall	City of Lathania	and the second		A town in the	manuli
-60 dBm	in the second	Terra and			a de la constante de	ord physics and party and	March 1 am		
-70 dBm	_								-
Start 5.36 GH	z			3000	1 pts			Stop	40.0 GH

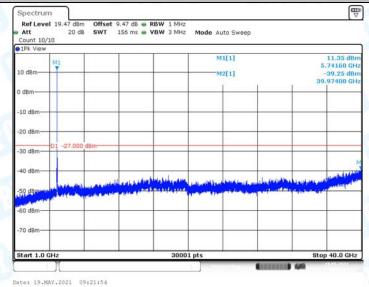


11A-MIMO_Ant3_5745_30~1000

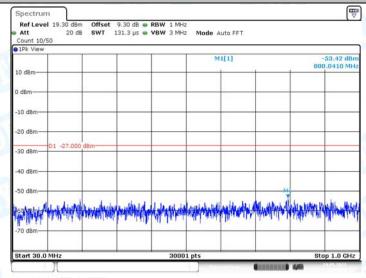
					M	1[1]			54.25 dBn 5.6960 MH
10 dBm								10.	
0 dBm		-					_		
10 dBm									
20 dBm									
30 dBm	D1 -27.000	dBm							
40 dBm									
50 dBm						M			
Abias A	hadistan	-	Manikh	en salillas	1. March 194	L. Hundani	Labrahan A	AN ALANA	A ANTHE
DISCUTATION OF	to tethe nerv	d. dised	In the first of	a. danta as	din daa	ad attend.	Murl . 144	of the last of the	CONCERNO.

Date: 19.MAY.2021 09:14:33

11A-MIMO_Ant3_5745_1000~40000


11A-MIMO_Ant4_5745_30~1000

Ref Level 19.47 dB Att 20 d Count 10/50		.47 dB 👄 RE 1.3 μs 👄 VE			uto FFT			
1Pk View	T T	-		M	1[1]			-52.99 dB
10 dBm								2.5390 MH
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm 01 -27.00	0 dBm							
-40 dBm								
-50 dBm							MI	
al the last the states	WHAT WAR	WALAN	HANNE	Helder !!		Half Alland	White And	with the
-70 dBm	a state of	cort at h	or dealers			1.1.1.1	add a	
Start 30.0 MHz			3000	Inte			Pte	op 1.0 GH



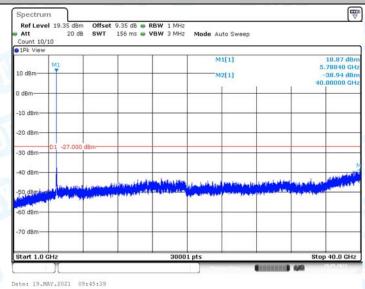
Report No.: TB-FCC180233 Page: 84 of 288

11A-MIMO_Ant4_5745_1000~40000

11A-MIMO_Ant3_5785_30~1000

Date: 19.MAY.2021 09:42:39

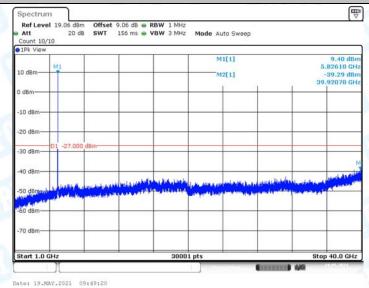
11A-MIMO_Ant3_5785_1000~40000


Att Count 10/:	20 de 10	SWT	156 ms 🖷 🕻	BW 3 MHz	Mode Au	ito Sweep			
1Pk View	-		-	-		1[1]			10.91 dB
80600000	MI				141	1[1]			78320 Gł
10 dBm					M	2[1]			39.17 dB 71790 GF
0 dBm		-	-			-	-	39.	71790 (1
-10 dBm									
-20 dBm									
-30 dBm	D1 -27.000	dBm	-						
-40 dBm		-	-	Statute in					Internal Property in
	. And ine.	J. (h. a. and	a since the	de bille frank	المراد المام العرار	Sandyline in all	a lada ya dala	and the second second	Award
-50 dBm (++)		The state of the second	and the second second		A surface a serie	and and the second		Sulpresses and	
-60 dBm		-	+		-				
-70 dBm	-								
					1 pts				40.0 GH

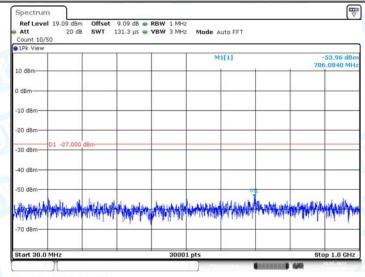
11A-MIMO_Ant4_5785_30~1000

Count 10/ 1Pk View									
					M	1[1]			52.32 dBn i.3240 MH
10 dBm									
) dBm			-						
10 dBm									
20 dBm									
30 dBm-	D1 -27.000	dBm		-					
40 dBm					-				
50 dBm								M	
in the	White the	WHAT HAN	All the states	die Hitter	-	dept A MAN	-	AN HALAN	HANNA
70 dBm-	A. is all	10 I	alter of a		4		111 111		1
Start 30.0				3000					p 1.0 GHz

11A-MIMO_Ant4_5785_1000~40000


11A-MIMO_Ant3_5825_30~1000

Att 20 dB SWT Count 10/50	131.3 µs 🖷 VBW 3 MH	z Mode Auto FFT		
91Pk View		M1[1]		-52.68 dBr
10 dBm				959.2130 MH
0 dBm				_
-10 dBm				_
-20 dBm				
-30 dBm				-
-40 dBm				_
-50 dBm				MI
adapter of Milling a Hills on the second	الأرط المتألية ومستخر والملي المار ويرام	All adapte and a star and	Hidrau Handland	and repaired
-70 dBm	an a fan water a fan de fan	netalisishinga dik kabad	e e soise à séliter déserte a	uni balakir ta
Start 30.0 MHz		01 pts		Stop 1.0 GH



Report No.: TB-FCC180233 Page: 86 of 288

11A-MIMO_Ant3_5825_1000~40000

11A-MIMO_Ant4_5825_30~1000

Date: 19.MAY.2021 09:51:36

11A-MIMO_Ant4_5825_1000~40000

Att Count 10/:	19.09 dBm 20 dB 10		9.09 dB 👄 🖡 156 ms 👄 🕅		Mode Au	uto Sweep			
• 1Pk View 10 dBm	M1					1[1] 2[1]			9.91 d8 82610 G 39.41 d8 76080 G
0 dBm			-						
-10 dBm			-						
-20 dBm			-						
-30 dBm	-01 -27.000	dBm							
-40 dBm				200 00 200			000000		مر و المراجع ا
-50 d8m	a manufact	and the set	Contraction of the	and and strate by	and an inclusion	In Internet in the	- CLANDERS	and the second	ANDALIA
-60 dBm									
-70 dBm									
Start 1.0 C				3000					40.0 GH

Report No.: TB-FCC180233 Page: 87 of 288

11N20MIMO_Ant3_5180_30~5140

Count 39/50 1Pk View								
				M1	[1]			37.99 de 39740 G
10 dBm								
0 dBm			+ +					
-10 dBm		-	-					
-20 dBm								
-30 dBmD1	-27.000 dBm	-						
-40 dBm								
-50 dBm		and the local little and	of added to plate a ball	(the second be		and and a destruction of	tale hore	
-60 dBm				unitere en en el		Are and the second state		
-70 dBm								
Start 30.0 MH			30001					5.14 G

11N20MIMO_Ant3_5180_5360~40000

Count 6/10	20 dB SWT	139 ms 😑 🕈	VBW 3 MHz	Mode Au	ito Sweep			
• 1Pk View			-	0				
				M	1[1]			-38.83 df
10 dBm	1	-			-			-
0 dBm	_	-			-			
-10 dBm	_							
-20 dBm								
-30 dBm-01 -2	7.000 dBm	-						
-40 dBm							-	Internet
the bush of a sullies	A State Barrier	All broadship	. Sheriba			Jaanhales	laners mart	- Contractor
and the second second	partie de poder auf	A LONG THE	1 and the	A CONTRACTOR	and protocol	and the second	1 to all and and a	
-60 dBm		-			-			
-70 dBm	_							
Start 5.36 GHz	_	_	3000				Pto	p 40.0 Gł

Date: 13.MAY.2021 14:26:53

11N20MIMO_Ant4_5180_30~5140

Ref Level 19.52 dBr Att 20 d Count 40/50		 RBW 1 MHz VBW 3 MHz Mod 	le Auto Sweep		
91Pk View					
			M1[1]	-46.7	
10 dBm		-		5.0332	IU GI
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm	D dBm				
-40 dBm					M
-50 d8m				and the second states	
And the second second second second	and the second second second	with a reaction of the state		and a state of the Army Description of the	-
-60 dBm	Contractor Street, Children and				
-70 dBm					
Start 30.0 MHz		30001 pts		Stop 5.1	4 GH

Report No.: TB-FCC180233 Page: 88 of 288

11N20MIMO_Ant4_5180_5360~40000

Att Count 6/1		SWT	139 ms 🖷 🕻	DI DINE	Mode Au	to Sweep			
1Pk View					M	1[1]			-38.92 dB
10 dBm—	-		-		-				
0 dBm	-		_			-			
-10 dBm—	-	-							-
-20 dBm—									-
-30 dBm—	D1 -27.000	dBm							
-40 dBm—				7.55					and allowed
- Lander	-	a Jess the	distantly,	- Alter Road	add mailes	and on the state	and the states	A DESCRIPTION OF	
-	distant and	POR ALANA	A	a shade	bula in the bul	Topological and an and the		A REAL PROPERTY AND	
-60 dBm-			-			-			
-70 dBm—					-				
Start 5.3	5 GHz			3000	1 nts	2		Stor	9 40.0 GH

11N20MIMO_Ant3_5200_30~5140

Att Count 39/50	20 dB	SWT	30.1 ms 🖷	VBW 3 MHz	Mode A	uto Sweep				
1Pk View										
					M	1[1]		-46.47 d 5.112320 0		
10 dBm						1	1	1	1.010	
10000										
0 dBm-								-	-	
-10 dBm									-	
10 0011										
-20 dBm									-	
0	-27.000	dBm								
-30 dBm-										
-40 dBm										
TO GDIN										
-50 dBm	1		Line Land	A Local II is a M	1 M Providence	a transferrer	and and the owned where	and and	at-Milliphi	
	delt ford by			-		-	The state of the state of the state	Partie Aller Aller	and the state	
-80 dBm		and survey a								
-70 dBm										
-70 060						1			1	
	Hz				1 pts				5.14 G	

Date: 13.MAY.2021 14:31:10

11N20MIMO_Ant3_5200_5360~40000

Att Count 6/10	0.43 dBm 20 dB	SWT	9.43 dB 👄 🖡 139 ms 👄 🕅		Mode Au	ito Sweep			
1Pk View									
					M	1[1]			38.86 dB
10 dBm	-		<u> </u>				-		
0 dBm	_								
-10 dBm	_	_							
-20 dBm									
-30 dBm-D1	-27.000	dBm							
-40 dBm									walkak
يعمل ومالوا بالشارين	educon	telds All	altino botto	Anna State	ha and thinks	in the second second	and the second second	and a state of the	durantiti
-60 dBm	(mean-		1.1.1.2.4.4.4.4	a strain	d to the party		40.024		
-70 dBm	_								-
Start 5.36 GH	z			3000	1 pts			Stop	40.0 GH

Report No.: TB-FCC180233 Page: 89 of 288

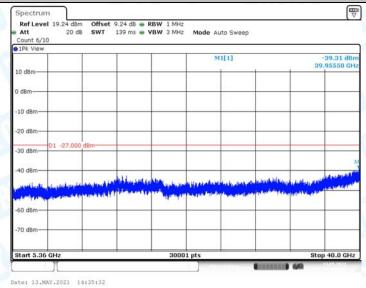
11N20MIMO_Ant4_5200_30~5140

Count 39/50 1Pk View								
				M	1[1]	v		47.10 de 48520 G
10 dBm								
0 dBm	-							
-10 dBm								
-20 dBm	_							
-30 dBm	27.000 dBm	-						
-40 dBm								
-50 dBm		a		the later shall	and with the later	ALL BROOM		Le marte
- Hales and a strange	oline la saminis				and part of the second	ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	and a state of the	phone and the set
od dBm					-			
-70 dBm								
Start 30.0 MHz			30001					5.14 GH

11N20MIMO_Ant4_5200_5360~40000

Att Count 6/10	20 dB SWT	139 ms 😑 🕈	VBW 3 MHz	Mode Auto	Sweep		
1Pk View							
				M1[1]		-38.79 de 39.98330 G
10 dBm						-	
0 dBm							
-10 dBm		-					_
-20 dBm	-						-
-30 dBm 01 -4	27.000 dBm	-					
-40 dBm							with a state of the
un adverte au po	See Line Providence	and the states	the side of	and the second	all have been	A PARTY AND A PARTY	and the second second
approximation present	BRAN MARAN	1.000	A PROPERTY OF	A DIMPOSIT	a la conclusion de la	and the second	100
-60 dBm		-		-			
-70 dBm							
Start 5.36 GHz			3000				Stop 40.0 Gł

Date: 13.MAY.2021 14:32:30


11N20MIMO_Ant3_5240_30~5140

	set 9.24 dB 👄 RBW 1 MHz T 30.1 ms 👄 VBW 3 MHz	Mode Auto Sweep		
9 1Pk View				
		M1[1]		-47.93 dB
10 dBm		1	1 1	5.110960 G
0 dBm				
-10 dBm				-
-20 dBm				
-30 dBm				-
-40 dBm				_
-50 d8m			The law of the deside	abudates
-50 dBm	Nhun a saider dan disila kasan		In the second second second	and plant to be
-50 dBm				
-70 dBm-				_
Start 30.0 MHz	3000	1 pts		Stop 5.14 GH

Report No.: TB-FCC180233 Page: 90 of 288

11N20MIMO_Ant3_5240_5360~40000

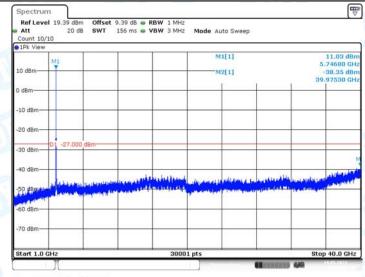
11N20MIMO_Ant4_5240_30~5140

Att Count 40/5	20 de	SWT	30.1 fils 🖷	VBW 3 MHz	Mode A	uto sweep			
1Pk View			1	1	(M	1[1]			47.48 d
10 dBm							91710		
10 0011		1				()			
0 dBm		-	-	-		-			-
-10 dBm									
-20 dBm			-						<u> </u>
-30 dBm	01 -27.000	dBm							-
-40 dBm		-							-
-50 dBm-				Station Added	U.L. B. L.L.	the sure of the	and Harrist	sedu da beliana	Nakas S
400 366	the second second	Carbon Carbon	a and a support of a support	Contraction of the second	and a standard line of	and a substitute	-		
-70 dBm									
-70 0311									
Start 30.0				3000					5.14

Date: 13.MAY.2021 14:37:48

11N20MIMO_Ant4_5240_5360~40000

Att Count 6/10	19.34 dBm 20 dB		9.34 dB 🖷 🖡 139 ms 🖷 🕅		Mode Au	uto Sweep			
1Pk View									
					M	1[1]			-38.84 dB
10 dBm			-					39	94400 G
0 dBm-			-						
-10 dBm			-						
-20 dBm-			-						-
1000-00000	01 -27.000								
-30 dBm-	01 -27.000	dbm				-			
-40 dBm									
-40 dBm				11.			- Alien		Lubert
A all the little and	and the second	and an a state of the state	at long to the	in all the	Contraction of the local distance of the loc	A CONTRACTOR OF THE OWNER	in the second		and the local of
and the second second	true la constante		NUMBER OF	Of a share		1.400.000	a de la dese	Part and a state of	
-60 dBm		-	-		-	Q		-	
70 40 -									
-70 dBm									
	GHz			3000	1 - 1 -			01	0 40.0 GH


Report No.: TB-FCC180233 Page: 91 of 288

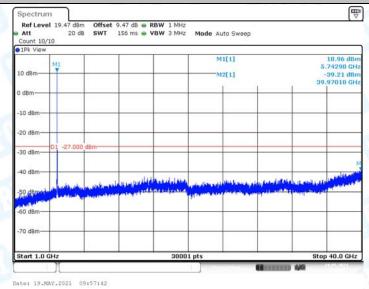
11N20MIMO_Ant3_5745_30~1000

					M	1[1]			-53.66 dBn 773.5930 MH		
.0 dBm	-				-	-	-	77:	3.5930 MH		
I dBm						-					
10 dBm		-									
20 dBm				-				-			
30 dBm	D1 -27.000	dBm									
40 dBm											
50 dBm							M1				
the fille at	HAL WALL	Mar. Hind	hand	Multiple	tulking	1 m the state	Willes the Ko	hulling	HUMPH		
te all at another	A Distant	an diffe finder	All	a official Mile	why of.	ta an di	See that the	at du h	and the		

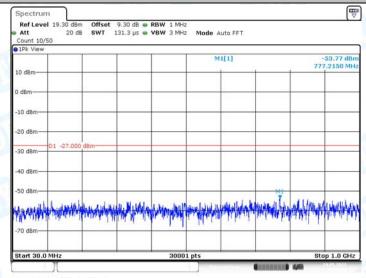
Date: 19.MAY.2021 09:55:07

11N20MIMO_Ant3_5745_1000~40000

Date: 19.MAY.2021 09:55:17


11N20MIMO_Ant4_5745_30~1000

1Pk View					22				
					M	1[1]			52.07 dB
10 dBm	-	-	-				-		
0 dBm						-		-	
-10 dBm	-								
-20 dBm									
-30 dBm	D1 -27.000	dBm							
-40 dBm									
-50 dBm								M	
adulate	A Bulle	an alway line	المعرف الديد		Levis Mill	1 pasiling	All Well	AL HILLIAN	MANAH
And then the	Andalada files	And which a	ad data dal.	Validada Maria	ushill i di	de l'allerate	1411.4.4.4.	Man 1 d	יודדי
-70 dBm									
-70 dBm									

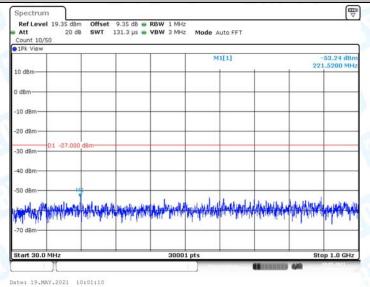


Report No.: TB-FCC180233 Page: 92 of 288

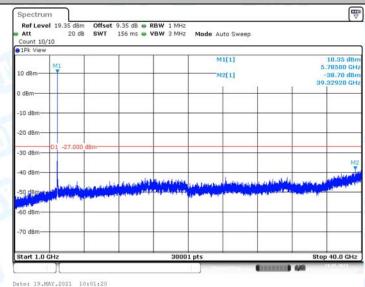
11N20MIMO_Ant4_5745_1000~40000

11N20MIMO_Ant3_5785_30~1000

Date: 19.MAY.2021 09:59:45


11N20MIMO_Ant3_5785_1000~40000

Att Count 10/1	20 de 10	SWT	156 ms 😑 🕻	BW 3 MHz	Mode Au	to Sweep				
• 1Pk View 10 dBm-	M1				M1[1] M2[1]			10.74 dB 5.78970 G -37.61 dB 39.97790 G		
0 dBm							-			
-10 dBm										
-20 dBm		-								
-30 dBm	D1 -27.000	dBm							-	
-40 dBm	_									
-50 dBroad		and a stand and		Albert Bayers	and an Road	And Inches	And a state of the state of the		And the state of the	
-60 dBm	and the first section			2000.00						
-70 dBm									-	
Start 1.0 G				3000					40.0 GH	

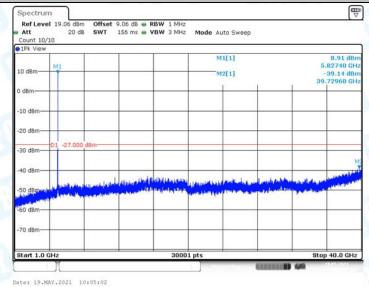


Report No.: TB-FCC180233 Page: 93 of 288

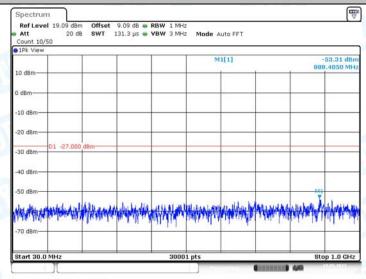
11N20MIMO_Ant4_5785_30~1000

11N20MIMO_Ant4_5785_1000~40000

na na hanna an tha a


11N20MIMO_Ant3_5825_30~1000

Count 10, 1Pk View										
					M	1[1]		-53.21 dB 706.7630 Mi		
10 dBm-	-								1	
0 dBm										
-10 dBm—	-									
-20 dBm—										
-30 dBm-	D1 -27.000	dBm						-		
-40 dBm—										
-50 dBm—										
Anusally	Wohnth	ALIN AND	Malantellin	Author Auto	Helder Aller	Hitelton	Haythhat	AN ANALAN	-	
-70 dBm-	Arden	booled date of		to e filo	with a	na lind		al a		
	D MHz			3000					op 1.0 GH	



Report No.: TB-FCC180233 Page: 94 of 288

11N20MIMO_Ant3_5825_1000~40000

11N20MIMO_Ant4_5825_30~1000

Date: 19.MAY.2021 10:07:17

11N20MIMO_Ant4_5825_1000~40000

Att Count 10/	al 19.09 dBm 20 dB 10		9.09 dB 👄 🖡 156 ms 👄 🕅		Mode Au	ito Sweep				
1Pk View	-				M	1[1]			9.18 dB	
10 dBm	MI		_					5.82350 GH		
10 000					M	2[1]			37.31 dB 49430 GI	
0 dBm			-							
-10 dBm—										
-20 dBm—										
-30 dBm-	-D1 -27.000	dBm	-							
-40 dBm									an aluta ait	
50 d8m al	a motifier	- cubioss	State and the	and the story	سايطويلي	Statistica. 40	Sec. Sec. State	hall-the post		
-50 dBm	and the first	p.p. standards if			Press Const	and alot				
-60 dBm	-	-					-		-	
-70 dBm			-							
Start 1.0	GHz			3000	l pts			Stop	40.0 GH	

Report No.: TB-FCC180233 Page: 95 of 288

11N40MIMO_Ant3_5190_30~5140

Count 40/50 1Pk View											
-					M	1[1]		-35.45 d 5.132590 (
10 dBm											
0 dBm			-	-					-		
-10 dBm			-	-					-		
-20 dBm		-		-					-		
-30 dBm	1 -27.000	dBm	-								
-40 dBm											
-50 dBm		ante de la	Dent slobe	Haddadallandi	telle of the statest	and the state of the state	He al annual bas	-	No. 1. 197		
-b0 dam		and the state of the				Margaret Inco	and the state of the state				
-70 dBm				-							
Start 30.0 M				3000					5.14 G		

11N40MIMO_Ant3_5190_5360~40000

Count 6/10	20 dB SWT	139 ms 🕳 🕅	BW 3 MHz	Mode Aut	to Sweep				
91Pk View		-		0					
				MI	[1]		-39.27 df 39.99710 G		
10 dBm		-		- 1		-			
0 dBm		-							
-10 dBm									
-20 dBm					_				
-30 dBm	7.000 dBm	-							
-40 dBm		-						مرابعوير. المرابعوير	
- har star a barrant	as and a build all	a determination of	the high section	A AND MANA	M.A. Antonia	a holines as		-	
	u. Papane Ale Al	A the source of the	Top top the	apple the	(hubpersonal)	mailes abov	P. M. Million		
-60 dBm									
-70 dBm	_							-	
Start 5.36 GHz	_		30001					40.0 Gł	

Date: 13.MAY.2021 14:43:26

11N40MIMO_Ant4_5190_30~5140

Ref Level 19.52 dBm Offset Att 20 dB SWT Count 40/50	9.52 dB e RBW 1 MHz 30.1 ms e VBW 3 MHz	Mode Auto Sweep		
91Pk View				_
IST PROFILE		M1[1]	-46.47 5.138380	
10 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm 01 -27.000 dBm				_
-40 dBm-	-			_
-50 dBm	a contar manager and deliverse	the has a providence of the local	and the state of the	
-60 dBm	And the state of t	and the second		
-70 dBm				_
Start 30.0 MHz	3000	1 pts	Stop 5.14 (GH

Report No.: TB-FCC180233 Page: 96 of 288

11N40MIMO_Ant4_5190_5360~40000

Att Count 6/10	20 dB 1	SWT 139	ms 🖝 🖬	3W 3 MHz	MODE AU	ito Sweep				
1Pk View					M	1[1]		-38.01 d8		
10 dBm						- 1	39.	98330 GI		
0 dBm			_							
-10 dBm		_	_							
-20 dBm										
-30 dBm	-27.000 dBn	n	_							
40 dBm				7					ALL SALE	
and I date was	AL MARKAGE	And an address of the		Laber He	and shall be at	high states			hands	
-60 dBm			110010		prese to	Contraction for		relation of		
-70 dBm										
Start 5.36 GH				3000	1 1			01	40.0 GH	

11N40MIMO_Ant3_5230_30~5140

Count 39/50	20 de	SWT	30.1 ms 🖷	VBW 3 MHz	mode Al	uto Sweep			
1Pk View			1	1	M	1[1]			-46.41 d
10 dBm									057990
TO OBIII									
0 dBm			+	+			+		-
-10 dBm									-
-20 dBm									-
-30 dBm	01 -27.000	dBm	-				-		-
-40 dBm									
-50 dBm								and the second	
Anderson	a set in the set		al all and the	(II as diturk, and b		and a state of the	-	T allowers life and party	-
-60 dBm	A THURSDAY	And the second					-		
-70 dBm-				-			-		

Date: 13.MAY.2021 14:49:10

11N40MIMO_Ant3_5230_5360~40000

Att Count 6/10	20 dB	SWT	139 ms 🖷 ۷	BW 3 MHz	Mode Au	to Sweep				
1Pk View					2					
					M1[1]			-39.38 dBr 39.98670 GH		
10 dBm	-		-							
0 dBm										
-10 dBm-										
-20 dBm										
100000000	-27.000	dBro								
-30 dBm	-27.000	upm								
-40 dBm									فعلاد الداري	
and the star	and dela	and a log alad	all this protect	"In palale	Liburn Plante	MALINA DATA	- APRILIA	plank an glaster	and shaded	
-	Alana di	Number and	P. C. P.	and the second second	CAR INC. MILLION	Rectant Annual Co	and the second second	manulation of		
-60 dBm	-		+			-				
-70 dBm	_		-							
Start 5.36 GH	2			3000	nte	_		Stor	40.0 GH	

Report No.: TB-FCC180233 Page: 97 of 288

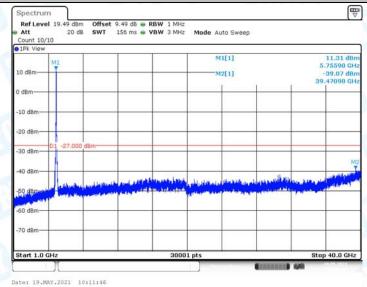
11N40MIMO_Ant4_5230_30~5140

Count 40/ 1Pk View	00								
					M	1[1]			46.83 dB
10 dBm	-		-			1		0.0	53550 G
0 dBm	-					-			
-10 dBm									
-20 dBm—	_								
-30 dBm	D1 -27.000	dBm	-						
-40 dBm									
-50 dBm	and sealing of the	a chanalatha		-	With Manual P	Louis Allin.		and the state	
-60 dam		-			and an		and more thanks	and and introduction of the	
-70 dBm									
	MHz			3000					5.14 Gł

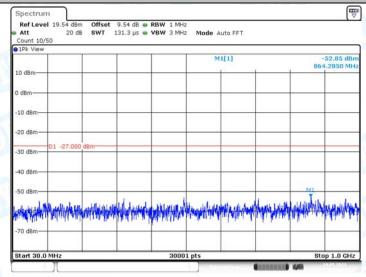
11N40MIMO_Ant4_5230_5360~40000

Att Count 6/10	20 dB SWT	139 ms 😑 🕈	VBW 3 MHz	Mode Auto	Sweep				
1Pk View				2					
100 T 100 C 14				M1[1	1		-39.07 dB 39.40830 GF		
10 dBm							1		
0 dBm		-				_	-		
-10 dBm						_			
-20 dBm							-		
-30 dBm	7.000 dBm	-				_			
-40 dBm	_	-				_	a shall		
-hast belle starter and	well destroyed in highly	and the plan	Nada passie	want an and the	المحمد وماليهم	Wild participant	an and a second second		
And Superly and supervised	weeks and the state		and the second	S. & Jost Director force	WARDARN PARTY	and the states			
-60 dBm						_			
-70 dBm						_	-		
Start 5.36 GHz		_	3000				p 40.0 G		

Date: 13.MAY.2021 14:51:34


11N40MIMO_Ant3_5755_30~1000

Count 10, 1Pk View											
1010100414					M	M1[1]			-51.74 dB 508.8250 Mi		
10 dBm-											
0 dBm	-										
-10 dBm—					-				-		
-20 dBm—											
-30 dBm—	D1 -27.000	dBm									
-40 dBm—											
-50 dBm—				M							
herewill	He La habite	WHALL AN	UN MARL	HAMILA	ANNA/N	while the	AWARA	WHAT AT	dia in		
-70 dBm-	a didle and	and definition	de de de etc	the Has	other that	hdat it.	Alf an fr	Lot th	ut to		
Start 30.	D MH2			3000	1 ntc			Sta	p 1.0 GH:		



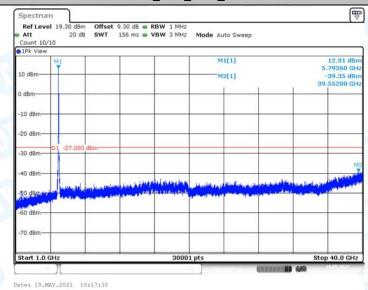
Report No.: TB-FCC180233 Page: 98 of 288

11N40MIMO_Ant3_5755_1000~40000

11N40MIMO_Ant4_5755_30~1000

Date: 19.MAY.2021 10:14:01

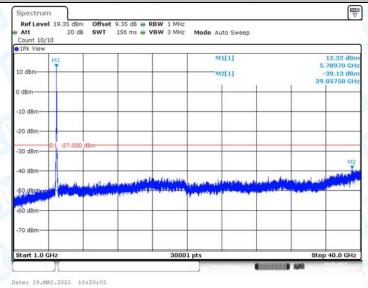
11N40MIMO_Ant4_5755_1000~40000


Att Count 10/10	20 de	SWT	156 ms 😑	VBW 3 MHz	Mode A	uto Sweep			
1Pk View			-	-	N	1[1]			12.33 dB
10 dBm	W1				M2[1]			12.33 dB 5.75850 GH -38.10 dB	
0 dBm							1	39.	.98830 GI
-10 dBm									
-20 dBm									
-30 dBm	1 -27.000	dBm	-						
-40 dBm				المندور الماطعية			ا يغالب ما ال		Induction
-50 dBmath		the particular particu		PAPERDA AL	ger berrinere		Propagate of		, and the latest
-60 dBm									
-70 dBm									
Start 1.0 GF	1.		_	3000	Inte	-		Ptor	40.0 GH

11N40MIMO_Ant3_5795_30~1000

1Pk View									
					M	1[1]			-52.40 dBn 1.7630 MH
.0 dBm									1
I dBm									
10 dBm—									
20 dBm									
30 dBm	01 -27.000	dBm							
40 dBm									
50 dBm						-		MI	
Whee Har		phylippingl	Yortheman	the states and the states of t	h-	halinali	WHITH HAND	North Martin	and the state
70 dBm				11					
tart 30.0	MILIA			3000	Inte	-		01	op 1.0 GHz

11N40MIMO_Ant3_5795_1000~40000


11N40MIMO_Ant4_5795_30~1000

Count 10/50										
91Pk View	1 1			M	1[1]			-53.48 dB		
10 dBm-								944.3080 MI		
0 dBm	-			-	-		-	-		
-10 dBm	-							-		
-20 dBm								-		
-30 dBm	D dBm									
-40 dBm	-									
-50 dBm								ML		
adman hele while he he he	A subathant	-	Andshall	Lo is Making	ALL NOTE IN	an a Mildelala	malifiel	+11. shel		
ta ha kudun an dalan	Mit. Louist	(100malians	ations and	Link, Luk	Aud didan	ad collects	and a mil	and d. It		
-70 dBm								-		

Report No.: TB-FCC180233 Page: 100 of 288

11N40MIMO_Ant4_5795_1000~40000

11AC20MIMO_Ant3_5180_30~5140

Count 40/5	0					uto Sweep		
• 1Pk View					м	1[1]		34.01 33270
0 dBm			-	-			-	
-10 dBm			-	-			-	
-20 dBm			-					
-30 dBm	D1 -27.000	dBm	-	-				
-40 dBm								
-50 dBm	angu dainta la	lo contration	u althada	Personalitikan atapitati Personalitikan atapitati	- V (Annandymeda)			- And -
-60 dBm	entitate de la combra	Man In Marin I	a salat Success					

Date: 13.MAY.2021 14:58:58

11AC20MIMO_Ant3_5180_5360~40000

Att Count 6/10	20 dB	SWT	139 ms 🖷 ۷	DW 3 MHz	MODE AU	to Sweep				
1Pk View										
000000000					M1[1]			-38.29 dB 39.46250 GF		
10 dBm	-		1							
0 dBm			-			-		-		
-10 dBm										
-20 dBm									-	
-30 dBm-01	-27.000	dBm	-							
-40 dBm										
	10	and a bank	Raber Hans	Lens Store		And Mailing			at later	
and and an end of the second	and the second s	Secold de Mala	optimization the	The search star	Badyla Marsh	Bada Aneradia	AND THE OWNER	Latin to solar	and the second second	
-60 dBm										
-70 dBm			-			-			-	
Start 5.36 GH	-			3000	Late			Eton	40.0 GH	

Report No.: TB-FCC180233 Page: 101 of 288

11AC20MIMO_Ant4_5180_30~5140

Count 40/50 1Pk View									
5000000 V					M	1[1]			46.13 dE 37870 G
10 dBm									
0 dBm			-						
-10 dBm			-						
-20 dBm									
-30 dBm	-27.000	dBm	-						
-40 dBm									
-50 dBm	al such the		e an Arristat	Weiner a Callon	and some light	CONTRACTOR OFFIC	alaker-anichy	al definition of the	and part
-60 dBm		Cashing of the			al-do-cynclosed	Name and a state of the state o		Contraction Street Street	
-70 dBm									
Start 30.0 M	Hz	-		30001	nts	-		Stor	5.14 Gł

11AC20MIMO_Ant4_5180_5360~40000

Att Count 6/10	20 dB 8	WT 139 ms	VBW 3 MHz	Mode Aut	o Sweep		
1Pk View	1		1	M1	[1]		-37.86 dB
10 dBm			_			3	9.93480 G
0 dBm	_	_	_				-
-10 dBm							-
-20 dBm			_				-
-30 dBm-D1	-27.000 dBm		_				-
-40 dBm			0.00				(heard of the
and Read Survey	un polo and	United by the State of the Stat	And the state	Access to be a left	an bally die	A Billing and the state	
-60 dBm	en horredistante				and a still a stre		
-70 dBm			_				

Date: 13.MAY.2021 15:02:32

11AC20MIMO_Ant3_5200_30~5140

Ref Level 19.43 dBm Offsel Att 20 dB SWT	9.43 dB . RBW 1 MHz 30.1 ms . VBW 3 MHz				
Count 40/50					
1Pk View		M1[1]		-42.96 dB	
10/10/20/14		milil	996.860 MH		
10 dBm				-	
0 dBm					
0 dBm					
-10 dBm					
-20 dBm					
D1 -27,000 dBm					
-30 dBm					
-40 dBmM1					
-40 dbin					
-50 dBm			the second states of the	L. H. B. Lillado	
450 dBm		Cardinan and a second particular statement in a	Contraction of the Internation	the state of the s	
-60 dBm				-	
-70 dBm-		· · · · · · · · · · · · · · · · · · ·			
Start 30.0 MHz	3000	1 pts		Stop 5.14 GH	

Report No.: TB-FCC180233 Page: 102 of 288

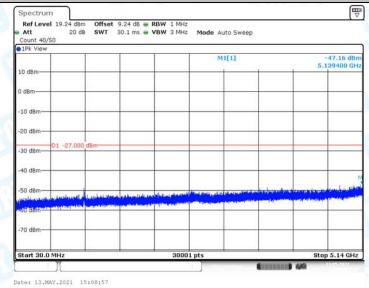
11AC20MIMO_Ant3_5200_5360~40000

Count 6/10 1Pk View				24		
IPK VIEW				M1[1]		-37.86 dB 39.97750 G
10 dBm		-		-		
0 dBm		_		_		
-10 dBm						
-20 dBm						
-30 dBm 01	-27.000 dBm	-				
40 dBm						station
La starte startes	أويطر فالما المطريدتون	A A A A A A A A A A A A A A A A A A A	A and a ball	office wild sector	a production of the	or and the second s
-60 dBm	and provide the second		A Start Same Prover			
-70 dBm				_		
	z		30001 pts			

11AC20MIMO_Ant4_5200_30~5140

01Pk View									
					M	1[1]			47.16 d
10 dBm				-				5.0	39930 0
0 dBm									
-10 dBm	-								
-20 dBm—					-				
-30 dBm	D1 -27.000	dBm							
-40 dBm—					-				
-50 dBm-	1	a datawa tertek		14 days from solarit	-	Approximation of the second	manichaetri	. Anulan quil	
-o0 dem-	and the second s		- ten la seren en	en la participation	a land gang to part the		A Address (bary disk		
-70 dBm-									

Date: 13.MAY.2021 15:05:54


11AC20MIMO_Ant4_5200_5360~40000

	dBm Offset 20 dB SWT	9.52 dB 🖷 🖡 139 ms 🖷 V		Mode A	uto Sweep			
Count 6/10 1Pk View					24			
				N	11[1]			38.86 dB
10 dBm	1.0	-		-	1	1		49490 0
0 dBm		-			-			
-10 dBm	_	-			-			-
-20 dBm		-			-			-
-30 dBm 01 -27	.000 dBm							
-40 dBm			54					land Brite
المعريد والمسقوس	Ale and shirts	ala beli	Levinah	I.hout lives	all nearing of	man filler	date hirth offered	-
and a start of the	AND DALLS	1.00	a second	A local of	Contraction of the			
-60 dBm		-						
-70 dBm								
Start 5.36 GHz	_		3000	1 pts			Stor	40.0 GH

Report No.: TB-FCC180233 Page: 103 of 288

11AC20MIMO_Ant3_5240_30~5140

11AC20MIMO_Ant3_5240_5360~40000

Att Count 6/1	20 de 0	SWT	139 ms 👄	VBW 3 MHz	Mode A	uto Sweep			
1Pk View					M	1[1]			-39.10 dE
10 dBm						1	1	39	.60570 G
0 dBm									-
-10 dBm			-						-
-20 dBm			-					_	-
-30 dBm	01 -27.000	d8m	-						-
-40 dBm									
-	manhdala	Span and	all manages by	a ter and and a second	and platellati	the present	lastilessi.	and any set	- A print
-60 dBm	and manufactory of				basis at	and all the			
-70 dBm									-

Date: 13.MAY.2021 15:09:02

11AC20MIMO_Ant4_5240_30~5140

Att 20 dB SWT	9.34 dB 🖷 RBW 1 MHz 10.1 ms 🖷 VBW 3 MHz 🛛 Mode Auto Sweep	ρ
Count 40/50 1Pk View		
10 dBm	M1[1]	-47.93 dB 5.093250 GI
10 dBm		
0 dBm-		
-10 dBm		
-20 dBm		
-30 dBm D1 -27.000 dBm		
-40 dBm		
-50 dBm	an other and in contracted and the billing on the second second second second second second second second second	
NEU GEM	and the state of t	
-70 dBm		
Start 30.0 MHz	30001 pts	Stop 5.14 GH

Report No.: TB-FCC180233 Page: 104 of 288

11AC20MIMO_Ant4_5240_5360~40000

Count 6/10 1Pk View			25	
TPK VIEW			M1[1]	-38.19 de 39.47180 G
10 dBm			1 1	
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm	lBm			
40 dBm				in the set
Landon Broker Strander Bar	Line de la companya d	a provide a state of the state	And the state of the light of the	and different states
60 dBm	C II A AND A COLORADO			
-70 dBm				
Start 5.36 GHz		30001 pts		Stop 40.0 GF

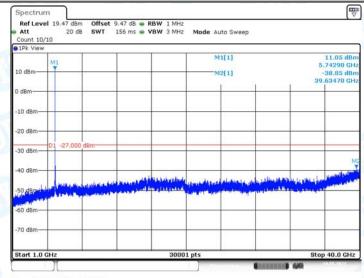
11AC20MIMO_Ant3_5745_30~1000

				M		-52.01 dBn		
10 dBm			_	-	-		869	9.2970 MF
0 dBm		_		_	-			
-10 dBm								
-20 dBm				-				
-30 dBm-01	-27.000 dBm							
-40 dBm				-				
-50 d8m		_		_			MI	
Wath With	William WY	to an all the last	ALL ANTIMAL	When the Marthalm	WANK	Aug Markey	MANANY	ALLAN
WHERE A REAM 15. W	And the lot of	and the start of a	and the livin	a margare lla	Alles I days	and the first of the	10.0.0	1.11.1

Date: 19.MAY.2021 10:24:05

11AC20MIMO_Ant3_5745_1000~40000

Count 10	20 d	B SWT	156 ms 🖷 🕻	BW 3 MHz	Mode Auto :	Sweep			
1Pk View		T			M1[1	1		10.72 dB	
10 dBm-	MI				M2[1			5.74680 GH -39.63 dBr	
						· .		9.95450 GF	
0 dBm		1							
-10 dBm—		-						-	
-20 dBm—		-						-	
-30 dBm-	01 -27.000	dBm	-				_	-	
-40 dBm-									
	and here here		Ber Hadde	upper ante	and a state of the	Heles michaele	and the second second	I wanted and	
-50 dBmi	and an angel	mainda	in a second second	Part of the local date	diama da anticipa	Starte Scienting	and the strength of the second		
-60 dBm-	-	-							
-70 dBm—		-	-				_		
Start 1.0				30001			eta	p 40.0 GH;	


Report No.: TB-FCC180233 Page: 105 of 288

11AC20MIMO_Ant4_5745_30~1000

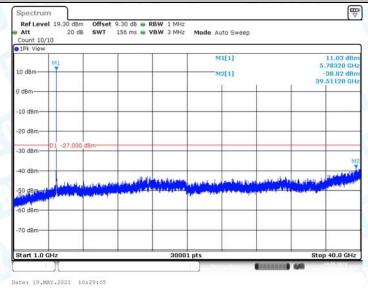
					M	1[1]			54.24 dBr
10 dBm						1	-	98:	3.9150 MH
) dBm	-		-						
10 dBm—	-		-						
20 dBm—			-			·			
30 dBm	D1 -27.000	dBm	-						
40 dBm—									
50 dBm—									M
al stall	A MARTIN SAL	a justicity	A filled all	LA WANT	AN ANALAS	Hallann al	Window Hard	Halland Argent	AL ANY HAL
70 dBm-	and the	A	de la la	to be a day		dande	of defin	11.1.	ALC: NOT

Date: 19.MAY.2021 10:26:31

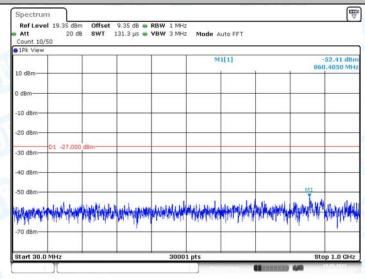
11AC20MIMO_Ant4_5745_1000~40000

Date: 19.MAY.2021 10:26:40

11AC20MIMO_Ant3_5785_30~1000


1Pk View					2				
					M	1[1]			-53.73 dB 8.3970 MH
10 dBm		Q				1	1		1.0000
0 dBm									
-10 dBm									
-20 dBm					/				-
-30 dBm	01 -27.000	dBm							
-40 dBm					-				
-50 dBm								mi	
and all the	mallulas	الم الداد ا	و بر دار بال الله الله	the ask	and under	A tab Sugar	distantial and	hi hatte	a bear he
Water and West	a sound had	a shakalara	a k latelitik	In Aller & all	di maa ada	Au Alu Al.	as and Minda	JIM MAN	deal 14 as

Date: 19.MAY.2021 10:28:55



Report No.: TB-FCC180233 Page: 106 of 288

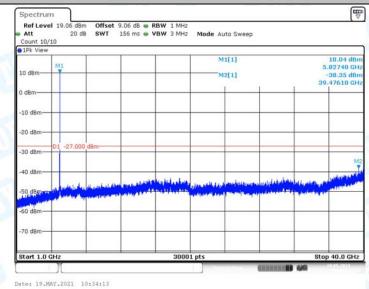
11AC20MIMO_Ant3_5785_1000~40000

11AC20MIMO_Ant4_5785_30~1000

Date: 19.MAY.2021 10:30:21

11AC20MIMO_Ant4_5785_1000~40000

Att Count 10/		SWT	156 ms 😑	VBW 3 MHz	Mode Au	ito Sweep			
• 1Pk View 10 dBm-	M1					1[1] 2[1]			10.31 dB .78970 G .38.68 dB .74650 G
0 dBm			-	-			-		
-10 dBm—									
-20 dBm									
-30 dBm	D1 -27.000	dBm	-						-
-40 dBm—									الم الحرمين و
-50 dBm			A CONTRACTOR	the belochter			a data milika September 194	http://	
-60 dBm-			-		-				
-70 dBm									

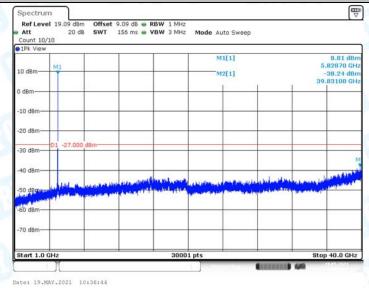


Report No.: TB-FCC180233 Page: 107 of 288

11AC20MIMO_Ant3_5825_30~1000

Count 10/ 1Pk View									
					M	1[1]			53.12 dBn 3.5540 MH
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm	D1 -27.000	dBm							
-40 dBm			<u> </u>						
-50 dBm							M		
thick with	William Hill	When the	AN ALLEN	ALAN AND	-	-	Hailt mare	A WAYN	
-70 dBm	- Hereit		1 1	1 Beets	1.1.2	a fair with	11.5.1		
Start 30.0	MU2			3000	Inte			Str	p 1.0 GHz

11AC20MIMO_Ant3_5825_1000~40000


11AC20MIMO_Ant4_5825_30~1000

	1		M1[1]		-53.29 dB		
_					453.6010 MH		
7.000 dBm							
					_		
_		-111	-				
him the states of the state	had in harden	Albert Mar 14	1. A WALKING	mark the start	Ling and south the		
A MARK HAR HAR HAR	In Allen Allen	and desired the light	M HANNING	Designment of the second	A MARY AND A		
1.1.1	and a star	1 1 1 1 1 1		1 1 L 1	10 - 10 - 16 S		
	7.000 dam	7.000 dam	7.000 dam		7.000 dam		

Report No.: TB-FCC180233 Page: 108 of 288

11AC20MIMO_Ant4_5825_1000~40000

11AC40MIMO_Ant3_5190_30~5140

1Pk View					M	1[1]			-34.64 (138210
10 dBm			-	-			1		1
0 dBm						-	-		-
-10 dBm	-			-					
-20 dBm—				-					-
-30 dBm-	D1 -27.000	dBm	-	_					-
-40 dBm									<u> </u>
-50 dBm		the second state	a di secili se a	and the standard	e lan con All	The part of the		Carlouit Stancist	
-60 dBm		(argument of the state	V reader & 10 million	and the second		No. of Concession, Name		- Contraction of the second se	
-70 dBm									

Date: 13.MAY.2021 15:17:34

11AC40MIMO_Ant3_5190_5360~40000

Ref Level 19.43 dBm Off Att 20 dB SW Count 6/10	set 9.43 dB 👄 RBW 1 MHz T 139 ms 👄 VBW 3 MHz		
9 1Pk View			
		M1[1]	-38.57 de
10 dBm		+ + +	39.98790 G
0 dBm			
-10 dBm-			
-20 dBm		-	
-30 dBm D1 -27.000 dBm			
-40 dBm			
to dom	and all a standards	محمد بريعان بالاست	A REAL PROPERTY AND A REAL
and the second second second second second	and the state of the state of the state of	dimenti the state and the state and the	and the during of the printer
-60 dBm			
-70 dBm			
Start 5.36 GHz	3000	01 pts	Stop 40.0 GH

Report No.: TB-FCC180233 Page: 109 of 288

11AC40MIMO_Ant4_5190_30~5140

Count 40								
an constant					M	1[1]		46.90 dB
10 dBm—	-		-					
0 dBm								-
-10 dBm—	-		-			-	-	
-20 dBm—								
-30 dBm—	-D1 -27.000	dBm	-					
-40 dBm—								
-50 dBm-	a sector i la de	to be easy of define	and a standard or M	adhieroon (4140	the standard of the	the state of the s	 a first de transfé	and a behaved
-o0 dBm-		New York Statistics			Contraction in party	and the set of the state of the		
-70 dBm—					_			
Start 30.				3000				5.14 GF

11AC40MIMO_Ant4_5190_5360~40000

Att 2 Count 6/10	O dB SWT	139 ms 👄 🕅	VBW 3 MHz	Mode Au	to Sweep			
91Pk View				0				
				M1[1]			39.19 de 92550 G	
10 dBm		-						2000 0
0 dBm		_						
u du li								
-10 dBm								-
-20 dBm		-						
-30 dBm D1 -27	.000 dBm	-						
-40 dBm		و فعد بدأية قري	hal			a dela		andur
مرود مرود المرود ال	and plantification of the	ani i da ani a	Listing the	diding	a di di kuma mana	Linds Product		1 maple and
Competition better	plane the million of	S 80.888	A Party of	and the second second	Contraction of the	1.01 1 1 2 2		
-60 dBm				-		-		
-70 dBm	_							
Start 5.36 GHz			3000				01	40.0 GF

Date: 13.MAY.2021 15:20:00

11AC40MIMO_Ant3_5230_30~5140

Ref Level 19.38 dBm Offse Att 20 dB SWT Count 40/50	1 9.38 dB	Auto Sweep		
91Pk View			-47.17 dB	
		M1[1]		
10 dBm		1 1	5.095460 G	
0 dBm				
-10 dBm-				
-20 dBm	-			
-30 dBm				
-40 dBm				
-50 dBm				
	ne and the second of the descent second s		And a second brite player the December of the	
-60 dBm				
-70 dBm				
Start 30.0 MHz	30001 pts		Stop 5.14 GH	