

TEST REPORT

Product Name : Bluetooth module 5.2

Brand Mark : ABLUE TECH

Model No. : PTR5620P

FCC ID : 2AWMN-PTR5620P

Report Number : BLA-EMC-202108-A9801

Date of Sample Receipt : 2021/8/26

Date of Test : 2021/8/26 to 2021/9/24

Date of Issue : 2021/9/24

Test Standard: 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Shenzhen Chuanghongxin Intelligent technology Co.,Ltd Room 703 Of Wanhai Building B, 1031 South Sea Avenue, Nanshan District, Shenzhen, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Review by:

Approved by:

Date:

Page 2 of91

REPORT REVISE RECORD

Version No. Date		Description	
00 2021/9/24		Original	
01	2021/10/13	The test model name is changed	
01	2021/10/13	from PTR5620+-ANK to PTR5620P	

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GE	NERAL INFORMATION	6
3	GE	NERAL DESCRIPTION OF E.U.T	6
4	TES	ST ENVIRONMENT	7
5	TES	ST MODE	7
6	ME	ASUREMENT UNCERTAINTY	7
7		SCRIPTION OF SUPPORT UNIT	
		BORATORY LOCATION	
8			
9		ST INSTRUMENTS LIST	
10	СО	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
	10.1	LIMITS	13
	10.2	BLOCK DIAGRAM OF TEST SETUP	
	10.3	PROCEDURE	
	10.4	TEST DATA	
11	СО	NDUCTED BAND EDGES MEASUREMENT	
	11.1	LIMITS	19
	11.2	BLOCK DIAGRAM OF TEST SETUP	19
	11.3	TEST DATA	20
12	СО	NDUCTED SPURIOUS EMISSIONS	21
	12.1	LIMITS	21
	12.2	BLOCK DIAGRAM OF TEST SETUP	21
	12.3	TEST DATA	22
13	РО	WER SPECTRUM DENSITY	23
	13.1	LIMITS	23
	13.2	BLOCK DIAGRAM OF TEST SETUP	23
	13.3	TEST DATA	23
14	СО	NDUCTED PEAK OUTPUT POWER	24
	14.1	LIMITS	24
	14.2	BLOCK DIAGRAM OF TEST SETUP	
	14.3	TEST Data	25

Page 4 of 91

15 MII	NIMUM 6DB BANDWIDTH	26
15.1	LIMITS	26
15.2	BLOCK DIAGRAM OF TEST SETUP	26
15.3	TEST DATA	26
16 AN	NTENNA REQUIREMENT	27
16.1	Conclusion	27
17 RA	ADIATED SPURIOUS EMISSIONS	28
17.1	LIMITS	
17.2	BLOCK DIAGRAM OF TEST SETUP	29
17.3	PROCEDURE	
17.4	TEST DATA	31
18 RA	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	47
18.1	LIMITS	47
18.2	BLOCK DIAGRAM OF TEST SETUP	
18.3	PROCEDURE	48
18.4	TEST DATA	
19 AP	PPENDIX	58
APPENI	DIX A: PHOTOGRAPHS OF TEST SETUP	86
ADDENI	DIX B. PHOTOGRAPHS OF FUT	g g

Page 5 of 91

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	onducted Band 47 CFR Part 15, (2		47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11		
Power Spectrum Density	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	/ 120131 SACTI		47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	/ (2013) S		47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	Juirement Subpart C 15.247 N/A ated Spurious sisions 47 CFR Part 15, Subpart C 15.247 ANSI C63.10 (2013) Section 6.4,6.5,6.6 ated Emissions h fall in the 47 CFR Part 15, Subpart C 15.247 ANSI C63.10 (2013) Section 6.4,6.5,6.6		47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions			47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands			47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass

Page 6 of 91

2 GENERAL INFORMATION

Applicant	Shenzhen Chuanghongxin Intelligent technology Co.,Ltd		
Address	Room 703 Of Wanhai Building B, 1031 South Sea Avenue, Nanshan District, Shenzhen, China		
Manufacturer	Shenzhen Chuanghongxin Intelligent technology Co.,Ltd		
Address	Room 703 Of Wanhai Building B, 1031 South Sea Avenue, Nanshan District, Shenzhen, China		
Factory	Shenzhen Chuanghongxin Intelligent technology Co.,Ltd		
Address	Room 703 Of Wanhai Building B, 1031 South Sea Avenue, Nanshan District, Shenzhen, China		
Product Name	Bluetooth module5.2		
Test Model No.	PTR5620P		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A
Software Version	N/A
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	integral Antenna
Antenna Gain:	2.0 dBi(provided by applicant)

Page 7 of 91

4 TEST ENVIRONMENT

Environment Temperature		Voltage
Normal	25°C	3.3V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.
Remark: Full ba	ttery is used during all test except ac conducted emission.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

Page 8 of 91

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:


BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 91

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment Manufacturer Model S/N Cal.Date Cal.Du					
Shield room	SKET	833	N/A	2020/11/25	2023/11/24
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11		
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11		
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11		
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11		

Test Equipment Of Conducted Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11		
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11		
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11		
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11		

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Page 10 of91

Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of 0	Conducted Peak				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11	
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11	
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11	

Test Equipment Of Radiated Spurious Emissions						
Equipment Manufacturer Model S/N Cal.Date C						
Chamber	SKET	966	N/A	2020/11/10	2023/11/9	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	

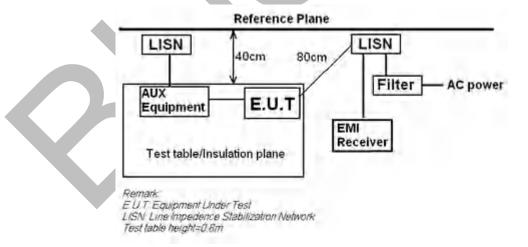
Page 11 of91

Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11
broadband Antenna	Schwarzbeck	VULB9168 00836 P:00227		2020/9/26	2022/9/25
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands						
Equipment Manufacturer		Model S/N		Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	2020/11/10	2023/11/9		
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11		
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11		
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25		
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25		
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15		
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A		
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25		
Controller	SKET	N/A	N/A	N/A	N/A		
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A		

Page 12 of91

Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A


10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				

10.1 LIMITS

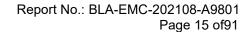
Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-pea	k	Average			
0.15-0.5	66 to 56*		56 to 46*			
0.5-5	56		46			
5-30	60		50			
*Decreases with the logarithm of the frequency.						

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

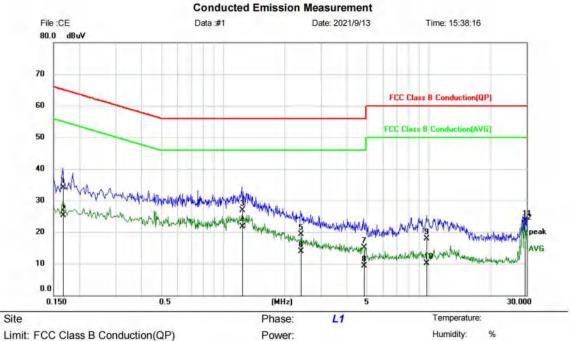
Page 14 of 91


3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor



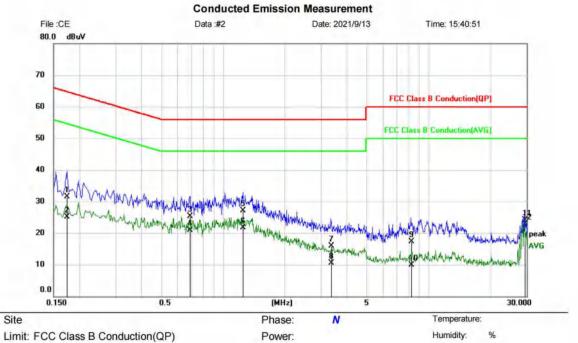
10.4 TEST DATA

BLE 1M

[TestMode: TX]; [Line: Line]; [Power:AC120V/60Hz]

EUT: Bluetooth module 5.2 M/N: PTR5620+ANK

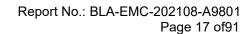
Mode: TX mode


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1660	24.26	9.82	34.08	65.16	-31.08	QP	
2		0.1660	15.43	9.82	25.25	55.16	-29.91	AVG	
3		1.2420	17.08	9.92	27.00	56.00	-29.00	QP	
4	*	1.2420	11.81	9.92	21.73	46.00	-24.27	AVG	
5		2.3940	9.28	9.95	19.23	56.00	-36.77	QP	
6		2.3940	3.97	9.95	13.92	46.00	-32.08	AVG	
7		4.8420	5.07	10.02	15.09	56.00	-40.91	QP	
8		4.8420	-0.63	10.02	9.39	46.00	-36.61	AVG	
9		9.7739	7.60	10.21	17.81	60.00	-42.19	QP	
10		9.7739	-0.10	10.21	10.11	50.00	-39.89	AVG	
11		29.2380	13.12	10.49	23.61	60.00	-36.39	QP	
12		29.2380	11.92	10.49	22.41	50.00	-27.59	AVG	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

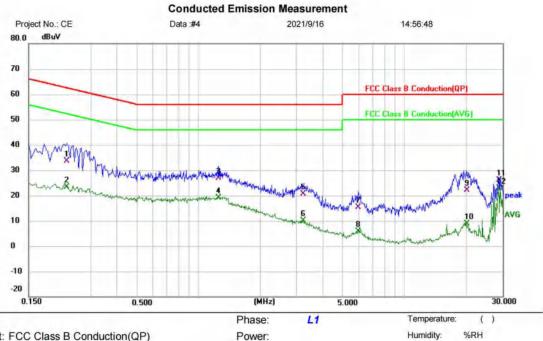
[TestMode: TX]; [Line: Nutral]; [Power:AC120V/60Hz]


EUT: Bluetooth module 5.2

M/N: PTR5620+ANK Mode: TX mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1740	21.74	9.74	31.48	64.77	-33.29	QP	
2		0.1740	15.31	9.74	25.05	54.77	-29.72	AVG	
3		0.6900	15.52	9.82	25.34	56.00	-30.66	QP	
4		0.6900	10.99	9.82	20.81	46.00	-25.19	AVG	
5		1.2540	17.17	9.85	27.02	56.00	-28.98	QP	
6	*	1.2540	11.81	9.85	21.66	46.00	-24.34	AVG	
7		3.3460	5.94	9.90	15.84	56.00	-40.16	QP	
8		3.3460	0.65	9.90	10.55	46.00	-35.45	AVG	
9		8.2140	7.24	10.06	17.30	60.00	-42.70	QP	
10		8.2140	-0.17	10.06	9.89	50.00	-40.11	AVG	
11		29.2380	13.58	10.48	24.06	60.00	-35.94	QP	
12		29.2380	12.42	10.48	22.90	50.00	-27.10	AVG	


^{*:}Maximum data x:Over limit !:over margin \(\text{Reference Only}

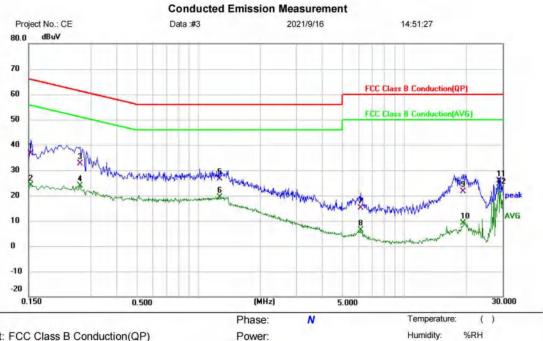
BLE 2M

[TestMode: TX]; [Line: Line]; [Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Bluetooth module 5.2 M/N: PTR5620+ANK Mode: 2M TX mode

Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2300	23.36	10.30	33.66	62.45	-28.79	QP	
2		0.2300	12.97	10.30	23.27	52.45	-29.18	AVG	
3		1.2579	16.99	9.93	26.92	56.00	-29.08	QP	
4	*	1.2579	9.21	9.93	19.14	46.00	-26.86	AVG	
5		3.2300	10.64	9.98	20.62	56.00	-35.38	QP	
6		3.2300	0.06	9.98	10.04	46.00	-35.96	AVG	
7		5.9899	5.35	10.05	15.40	60.00	-44.60	QP	
8		5.9899	-4.26	10.05	5.79	50.00	-44.21	AVG	
9		20.0140	11.72	10.43	22.15	60.00	-37.85	QP	
10		20.0140	-1.45	10.43	8.98	50.00	-41.02	AVG	
11		28.6860	15.56	10.49	26.05	60.00	-33.95	QP	
12		28.6860	12.39	10.49	22.88	50.00	-27.12	AVG	

^{*:}Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX]; [Line: Nutral]; [Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Bluetooth module 5.2 M/N: PTR5620+ANK Mode: 2M TX mode

Note:

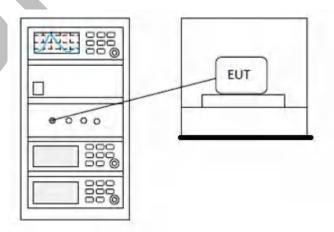
Site

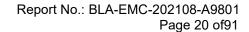
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1539	26.70	10.03	36.73	65.79	-29.06	QP	
2		0.1539	14.13	10.03	24.16	55.79	-31.63	AVG	
3		0.2660	22.25	10.30	32.55	61.24	-28.69	QP	
4		0.2660	13.58	10.30	23.88	51.24	-27.36	AVG	
5		1.2700	16.88	9.85	26.73	56.00	-29.27	QP	
6	*	1.2700	9.61	9.85	19.46	46.00	-26.54	AVG	
7		6.1460	5.13	9.99	15.12	60.00	-44.88	QP	
8		6.1460	-3.54	9.99	6.45	50.00	-43.55	AVG	
9		19.3460	11.30	10.41	21.71	60.00	-38.29	QP	
10		19.3460	-1.19	10.41	9.22	50.00	-40.78	AVG	
11		28.6860	15.43	10.48	25.91	60.00	-34.09	QP	
12		28.6860	12.32	10.48	22.80	50.00	-27.20	AVG	

^{*:}Maximum data x:Over limit !:over margin (Reference Only

Page 19 of 91

11 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Sven					
Temperature	25℃					
Humidity	52%					


11.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

Pass: Please Refer To Appendix: For Details

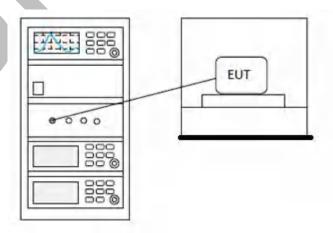
Page 21 of 91

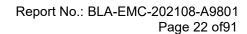
12 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				

12.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the


restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

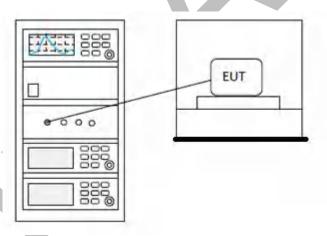
In any 100 kHz bandwidth outside the frequency band in which the spread

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

Pass: Please Refer To Appendix: For Details

Page 23 of 91


13 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				

13.1 LIMITS

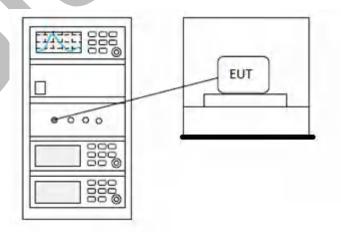
Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Pass: Please Refer To Appendix: For Details

Page 24 of 91


14 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				

14.1 LIMITS

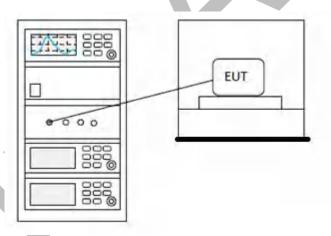
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
	1 for frequency hopping systems and digital
5725-5850	modulation

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Pass: Please Refer To Appendix: For Details

Page 26 of 91


15 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				

15.1 LIMITS

Limit: ≥500 kHz

15.2 BLOCK DIAGRAM OF TEST SETUP

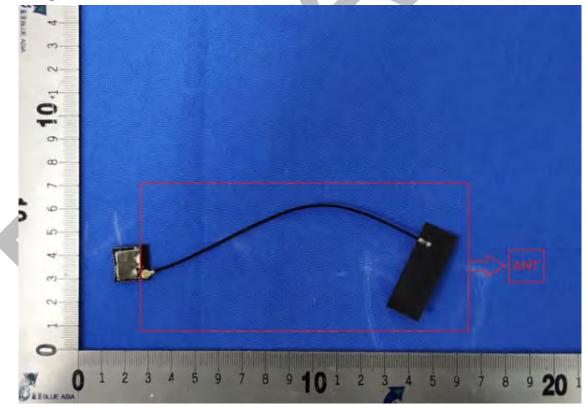
15.3 TEST DATA

Pass: Please Refer To Appendix: For Details

Page 27 of 91

16 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


16.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

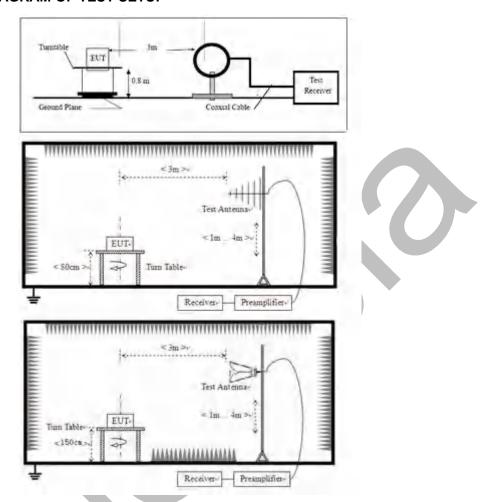
EUT Antenna:

The antenna is integrated on the main PCB board and no consideration of replacement. The best case gain of the antenna is 2.0 dBi.

Page 28 of 91

17 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Sven				
Temperature	25℃				
Humidity	52%				


17.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

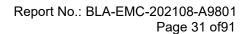
17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 30 of 91

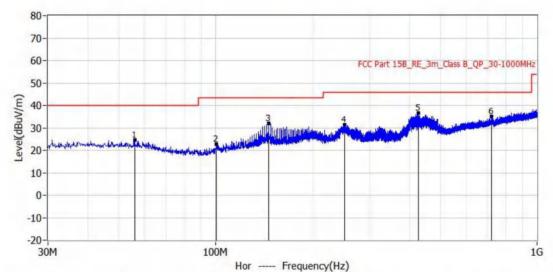
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.


Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

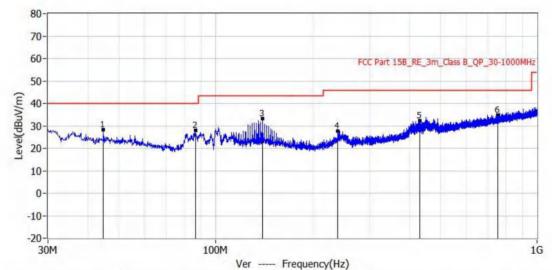


17.4 TEST DATA

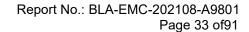
BLE 1M

[TestMode: TX]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A98	
EUT: Bluetooth module5.2	Test Engineer: York	
M/N: PTR5620+-ANK	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-09-09 13:56:28	

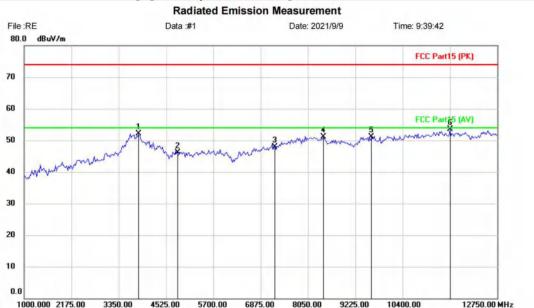


No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	55.826MHz	40.0	24.6	-15.4	1.0	23.6	QP	Hor	100.0	0.0
2*	100.204MHz	43.5	22.7	-20.8	2.1	20.6	QP	Hor	100.0	0.0
3*	145.915MHz	43.5	32.1	-11.4	8.5	23.6	QP	Hor	100.0	23.0
4*	251.645MHz	46.0	31.5	-14.5	8.8	22.7	QP	Hor	100.0	283.0
5*	426.366MHz	46.0	36.5	-9.5	8.9	27.6	QP	Hor	100.0	152.0
6*	721.731MHz	46.0	35.1	-10.9	2.7	32.4	QP	Hor	100.0	0.0



[TestMode: TX]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A98	
EUT: Bluetooth module5.2	Test Engineer: York	
M/N: PTR5620+-ANK	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-09-09 13:58:12	



No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	44.671MHz	40.0	28.3	-11.7	4.3	24.0	QP	Ver	100.0	332.0
2*	86.503MHz	40.0	27.9	-12.1	8.4	19.5	QP	Ver	100.0	147.0
3*	139.853MHz	43.5	33.3	-10.2	9.6	23.7	QP	Ver	100.0	307.0
4*	240.005MHz	46.0	27.8	-18.2	5.0	22.8	QP	Ver	100.0	357.0
5*	431.580MHz	46.0	32.4	-13.6	4.8	27.6	QP	Ver	100.0	48.0
6*	753.256MHz	46.0	34.8	-11.2	1.7	33.1	QP	Ver	100.0	113.0

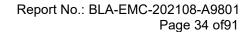
[TestMode: TX Low channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-L Note: Polarization:


Horizontal

Temperature: Humidity:

Power: Distance:

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3843.500	45.01	7.12	52.13	74.00	-21.87	peak			
2		4804.000	42.45	3.71	46.16	74.00	-27.84	peak			
3		7206.000	42.01	5.96	47.97	74.00	-26.03	peak			
4		8426.000	42.93	8.24	51.17	74.00	-22.83	peak			
5		9608.000	41.82	9.29	51.11	74.00	-22.89	peak			
6	*	11575.000	41.50	12.02	53.52	74.00	-20.48	peak			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX Low channel]; [Polarity: Vertical]

Radiated Emission Measurement File:RE Data:#2 Date: 2021/9/9 Time: 9:44:27 80.0 dBuV/m FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10 1000.000 2175.00 3350.00 4525.00 5700.00 9225.00 12750.00 MHz

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-L Note:

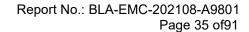
Polarization:

Vertical

8050.00

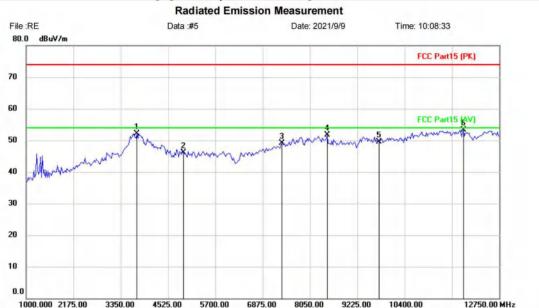
Temperature: Humidity:

10400.00


Distance:

6875.00

Power:


No. M	VIk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	3	3608.500	44.25	7.80	52.05	74.00	-21.95	peak			
2	4	4804.000	43.83	3.71	47.54	74.00	-26.46	peak			
3	7	7206.000	41.23	5.96	47.19	74.00	-26.81	peak			
4	8	3167.500	43.64	8.17	51.81	74.00	-22.19	peak			
5	9	9608.000	40.99	9.29	50.28	74.00	-23.72	peak			
6	* 11	1316.500	41.19	11.88	53.07	74.00	-20.93	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX middle channel]; [Polarity: Horizontal]

Site

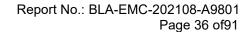
Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK

Mode: TX-M

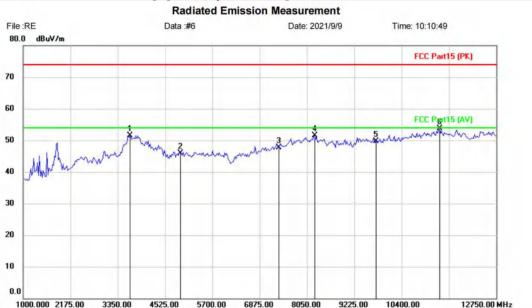
Note:

Polarization:


Horizontal

Temperature: Humidity:

Power: Distance:


No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	3749.500	44.39	7.69	52.08	74.00	-21.92	peak			
2	4882.000	42.73	3.36	46.09	74.00	-27.91	peak			
3	7323.000	42.75	6.43	49.18	74.00	-24.82	peak			
4	8473.000	43.54	8.17	51.71	74.00	-22.29	peak			
5	9764.000	39.86	9.63	49.49	74.00	-24.51	peak			
6 *	11857.000	41.93	11.47	53.40	74.00	-20.60	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX middle channel]; [Polarity: Vertical]

Site

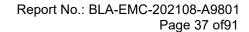
Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-M

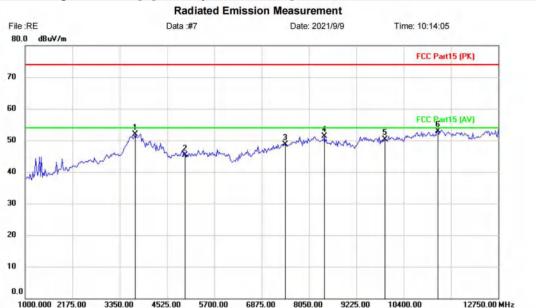
Polarization:

Vertical


Temperature: Humidity:

Power: Distance:

Note:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3655.500	43.84	7.76	51.60	74.00	-22.40	peak			
2		4882.000	42.59	3.36	45.95	74.00	-28.05	peak			
3		7323.000	41.27	6.43	47.70	74.00	-26.30	peak			
4		8238.000	43.37	8.22	51.59	74.00	-22.41	peak			
5		9764.000	40.00	9.63	49.63	74.00	-24.37	peak			
6	* .	11340.000	41.79	11.85	53.64	74.00	-20.36	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

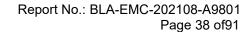
[TestMode: TX high channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK)

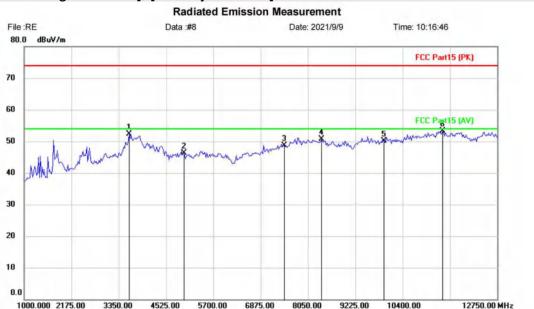
EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-H Note: Polarization:


Horizontal

Temperature: Humidity:

Power: Distance:


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3726.000	44.25	7.70	51.95	74.00	-22.05	peak			
2		4960.000	41.51	3.75	45.26	74.00	-28.74	peak			
3		7440.000	41.76	6.86	48.62	74.00	-25.38	peak			
4		8426.000	42.99	8.24	51.23	74.00	-22.77	peak			
5		9920.000	40.20	10.16	50.36	74.00	-23.64	peak			
6	*	11246.000	40.94	11.98	52.92	74.00	-21.08	peak			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX high channel]; [Polarity: Vertical]

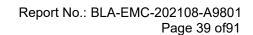
Site

Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-H Note: Polarization:

Vertical

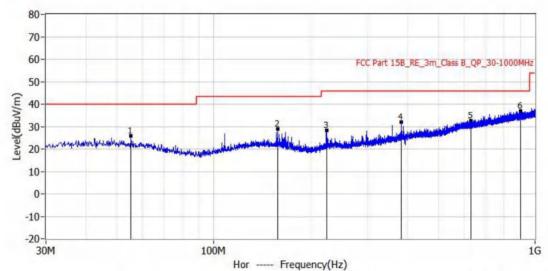

Temperature:

Humidity:

Power: Distance:

No. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	3608.500	44.56	7.80	52.36	74.00	-21.64	peak			
2	4960.000	42.50	3.75	46.25	74.00	-27.75	peak			
3	7440.000	41.87	6.86	48.73	74.00	-25.27	peak			
4	8379.000	42.52	8.27	50.79	74.00	-23.21	peak			
5	9920.000	39.90	10.16	50.06	74.00	-23.94	peak			
6 *	11387.000	41.56	11.78	53.34	74.00	-20.66	peak			

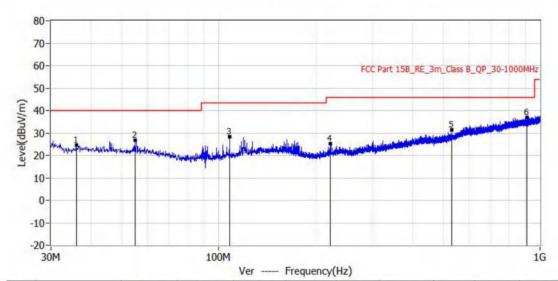
*:Maximum data x:Over limit !:over margin \(\text{Reference Only}



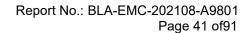
BLE 2M

[TestMode: TX]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A98	
EUT: Bluetooth module5.2	Test Engineer: York	
M/N: PTR5620+-ANK	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-09-15 10:34:59	



No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	55.220MHz	40.0	25.9	-14.1	2.3	23.6	QP	Hor	100.0	182.0
2*	158.040MHz	43.5	29.0	-14.5	5.7	23.3	QP	Hor	100.0	0.0
3*	224.606MHz	46.0	28.2	-17.8	6.2	22.0	QP	Hor	100.0	309.0
4*	382.959MHz	46.0	31.9	-14.1	5.2	26.7	QP	Hor	100.0	331.0
5*	630.066MHz	46.0	32.7	-13.3	1.2	31.5	QP	Hor	100.0	56.0
6*	903.364MHz	46.0	36.8	-9.2	1.8	35.0	QP	Hor	100.0	279.0



[TestMode: TX]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A98	
EUT: Bluetooth module5.2	Test Engineer: York	
M/N: PTR5620+-ANK	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-09-15 10:32:25	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	35.941MHz	40.0	24.7	-15.3	1.0	23.7	QP	Ver	100.0	0.0
2*	54.735MHz	40.0	26.7	-13.3	3.0	23.7	QP	Ver	100.0	267.0
3*	107.964MHz	43.5	28.2	-15.3	6.7	21.5	QP	Ver	100.0	229.0
4*	222.424MHz	46.0	25.3	-20.7	3.4	21.9	QP	Ver	100.0	330.0
5*	531.248MHz	46.0	31.5	-14.5	2.2	29.3	QP	Ver	100.0	5.0
6*	908.456MHz	46.0	37.0	-9.0	1.9	35.1	QP	Ver	100.0	154.0

[TestMode: TX Low channel]; [Polarity: Horizontal]

3350.00

4525.00

5700.00

Radiated Emission Measurement File:RE Data :#13 Date: 2021/9/10 Time: 14:23:42 80.0 dBuV/m FCC Part15 (PK) 70 60 FCC Pag15 (AV) 50 40 30 20 10

Site

Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

1000.000 2175.00

Mode: TX-L Note: 6875.00 80 Polarization:

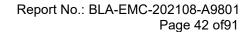
Horizontal

9225.00

8050.00

Temperature: Humidity:

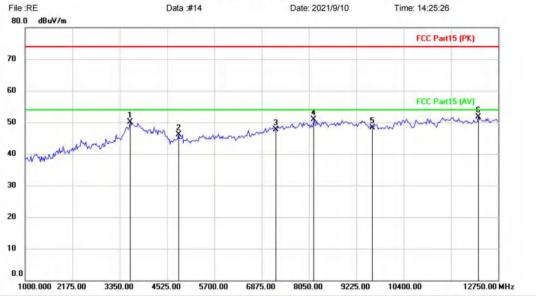
12750.00 MHz


10400.00

Power:

Distance:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		3843.500	44.01	7.12	51.13	74.00	-22.87	peak			
2		4804.000	41.95	3.71	45.66	74.00	-28.34	peak			
3		6428.500	43.46	3.95	47.41	74.00	-26.59	peak			
4		7206.000	41.51	5.96	47.47	74.00	-26.53	peak			
5		9608.000	41.82	9.29	51.11	74.00	-22.89	peak			
6	*	11457.500	40.86	11.84	52.70	74.00	-21.30	peak			


*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX Low channel]; [Polarity: Vertical]

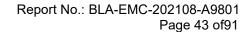
Radiated Emission Measurement

Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK

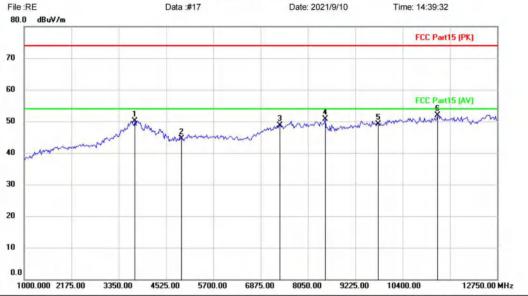
Mode: TX-L Note: Polarization: Vertical


Power:

Temperature: Humidity:

Distance:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	3608.500	42.26	7.79	50.05	74.00	-23.95	peak			
2	4804.000	42.33	3.71	46.04	74.00	-27.96	peak			
3	7206.000	41.73	5.96	47.69	74.00	-26.31	peak			
4	8167.500	42.64	8.17	50.81	74.00	-23.19	peak			
5	9608.000	38.99	9.29	48.28	74.00	-25.72	peak			
6 *	12256.500	40.37	11.43	51.80	74.00	-22.20	peak			


*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

[TestMode: TX middle channel]; [Polarity: Horizontal]

Radiated Emission Measurement Data :#17

Site

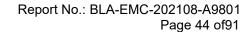
Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-M

Note:

Polarization: Horizontal


Power:

Temperature: Humidity:

Distance:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	3749.500	42.39	7.69	50.08	74.00	-23.92	peak			
	4884.000	41.25	3.34	44.59	74.00	-29.41	peak			
	7326.000	42.24	6.44	48.68	74.00	-25.32	peak			
	8473.000	42.54	8.17	50.71	74.00	-23.29	peak			
	9768.000	39.54	9.63	49.17	74.00	-24.83	peak			
* .	11269.500	39.94	11.94	51.88	74.00	-22.12	peak			
		MHz 3749.500 4884.000 7326.000 8473.000	Mk. Freq. Level MHz dBuV 3749.500 42.39 4884.000 41.25 7326.000 42.24 8473.000 42.54 9768.000 39.54	Mk. Freq. Level dBuV dB 3749.500 42.39 7.69 4884.000 41.25 3.34 7326.000 42.24 6.44 8473.000 42.54 8.17 9768.000 39.54 9.63	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 3749.500 42.39 7.69 50.08 4884.000 41.25 3.34 44.59 7326.000 42.24 6.44 48.68 8473.000 42.54 8.17 50.71 9768.000 39.54 9.63 49.17	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 3749.500 42.39 7.69 50.08 74.00 4884.000 41.25 3.34 44.59 74.00 7326.000 42.24 6.44 48.68 74.00 8473.000 42.54 8.17 50.71 74.00 9768.000 39.54 9.63 49.17 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 3749.500 42.39 7.69 50.08 74.00 -23.92 4884.000 41.25 3.34 44.59 74.00 -29.41 7326.000 42.24 6.44 48.68 74.00 -25.32 8473.000 42.54 8.17 50.71 74.00 -23.29 9768.000 39.54 9.63 49.17 74.00 -24.83	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 3749.500 42.39 7.69 50.08 74.00 -23.92 peak 4884.000 41.25 3.34 44.59 74.00 -29.41 peak 7326.000 42.24 6.44 48.68 74.00 -25.32 peak 8473.000 42.54 8.17 50.71 74.00 -23.29 peak 9768.000 39.54 9.63 49.17 74.00 -24.83 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 3749.500 42.39 7.69 50.08 74.00 -23.92 peak 4884.000 41.25 3.34 44.59 74.00 -29.41 peak 7326.000 42.24 6.44 48.68 74.00 -25.32 peak 8473.000 42.54 8.17 50.71 74.00 -23.29 peak 9768.000 39.54 9.63 49.17 74.00 -24.83 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 3749.500 42.39 7.69 50.08 74.00 -23.92 peak 4884.000 41.25 3.34 44.59 74.00 -29.41 peak 7326.000 42.24 6.44 48.68 74.00 -25.32 peak 8473.000 42.54 8.17 50.71 74.00 -23.29 peak 9768.000 39.54 9.63 49.17 74.00 -24.83 peak

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX middle channel]; [Polarity: Vertical]

3350.00

4525.00

5700.00

Radiated Emission Measurement File:RE Data :#18 Date: 2021/9/10 Time: 14:45:25 80.0 dBuV/m FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10

Site

Note:

Limit: FCC Part15 (PK)

EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

1000.000 2175.00

Mode: TX-M

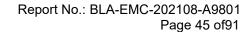
6875.00 8 Polarization:

Vertical

9225.00

8050.00

Temperature: Humidity: 12750.00 MHz


10400.00

Power:

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	3796.500	44.92	7.65	52.57	74.00	-21.43	peak			
2		4884.000	42.11	3.34	45.45	74.00	-28.55	peak			
3		6452.000	41.90	4.02	45.92	74.00	-28.08	peak			
4		7326.000	40.76	6.44	47.20	74.00	-26.80	peak			
5		9768.000	37.36	9.63	46.99	74.00	-27.01	peak			
6		11340.000	39.29	11.85	51.14	74.00	-22.86	peak			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX high channel]; [Polarity: Horizontal]

3350.00

4525.00

5700.00

Radiated Emission Measurement File:RE Data :#19 Date: 2021/9/10 Time: 14:51:05 80.0 dBuV/m FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10

Site

Limit: FCC Part15 (PK)

1000.000 2175.00

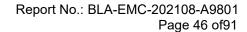
EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-H Note: 6875.00 80 Polarization:

Horizontal

9225.00

8050.00


Temperature: Humidity: 12750.00 MHz

10400.00

Power: Distance:

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	3867.000	44.02	6.82	50.84	74.00	-23.16	peak			
2	4960.000	41.01	3.75	44.76	74.00	-29.24	peak			
3	7440.000	40.26	6.86	47.12	74.00	-26.88	peak			
4	8426.000	41.99	8.24	50.23	74.00	-23.77	peak			
5 *	9920.000	41.20	10.16	51.36	74.00	-22.64	peak			
6	11340.000	39.39	11.85	51.24	74.00	-22.76	peak			

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX high channel]; [Polarity: Vertical]

Proof of the content of the conte

Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

1000.000 2175.00

3350.00

4525.00

5700.00

M/N: PTR5620+-ANK

Mode: TX-H Note:

10

6875.00 80 Polarization:

Vertical

9225.00

8050.00

Temperature: Humidity:

12750.00 MHz

10400.00

Power: Distance:

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	3608.500	42.57	7.79	50.36	74.00	-23.64	peak			
	4960.000	41.00	3.75	44.75	74.00	-29.25	peak			
	7440.000	40.87	6.86	47.73	74.00	-26.27	peak			
	8661.000	41.05	7.91	48.96	74.00	-25.04	peak			
	9920.000	38.90	10.16	49.06	74.00	-24.94	peak			
*	11340.000	40.15	11.85	52.00	74.00	-22.00	peak			
		MHz 3608.500 4960.000 7440.000 8661.000	Mk. Freq. Level MHz dBuV 3608.500 42.57 4960.000 41.00 7440.000 40.87 8661.000 41.05 9920.000 38.90	Mk. Freq. Level dBuV Factor dBuV 3608.500 42.57 7.79 4960.000 41.00 3.75 7440.000 40.87 6.86 8661.000 41.05 7.91 9920.000 38.90 10.16	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 3608.500 42.57 7.79 50.36 4960.000 41.00 3.75 44.75 7440.000 40.87 6.86 47.73 8661.000 41.05 7.91 48.96 9920.000 38.90 10.16 49.06	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 3608.500 42.57 7.79 50.36 74.00 4960.000 41.00 3.75 44.75 74.00 7440.000 40.87 6.86 47.73 74.00 8661.000 41.05 7.91 48.96 74.00 9920.000 38.90 10.16 49.06 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 3608.500 42.57 7.79 50.36 74.00 -23.64 4960.000 41.00 3.75 44.75 74.00 -29.25 7440.000 40.87 6.86 47.73 74.00 -26.27 8661.000 41.05 7.91 48.96 74.00 -25.04 9920.000 38.90 10.16 49.06 74.00 -24.94	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 3608.500 42.57 7.79 50.36 74.00 -23.64 peak 4960.000 41.00 3.75 44.75 74.00 -29.25 peak 7440.000 40.87 6.86 47.73 74.00 -26.27 peak 8661.000 41.05 7.91 48.96 74.00 -25.04 peak 9920.000 38.90 10.16 49.06 74.00 -24.94 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 3608.500 42.57 7.79 50.36 74.00 -23.64 peak 4960.000 41.00 3.75 44.75 74.00 -29.25 peak 7440.000 40.87 6.86 47.73 74.00 -26.27 peak 8661.000 41.05 7.91 48.96 74.00 -25.04 peak 9920.000 38.90 10.16 49.06 74.00 -24.94 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 3608.500 42.57 7.79 50.36 74.00 -23.64 peak 4960.000 41.00 3.75 44.75 74.00 -29.25 peak 7440.000 40.87 6.86 47.73 74.00 -26.27 peak 8661.000 41.05 7.91 48.96 74.00 -25.04 peak 9920.000 38.90 10.16 49.06 74.00 -24.94 peak

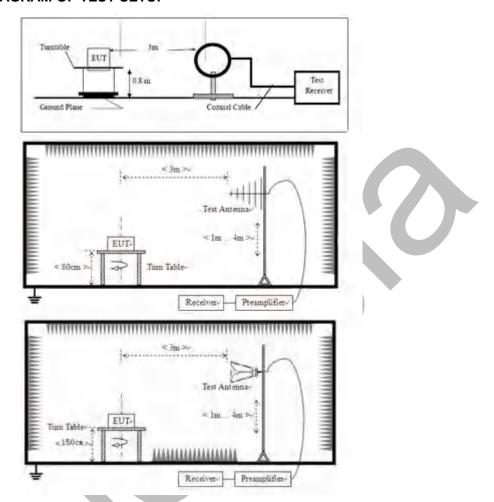
*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Report No.: BLA-EMC-202108-A9801

Page 47 of 91

18 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Sven
Temperature	25℃
Humidity	52%


18.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

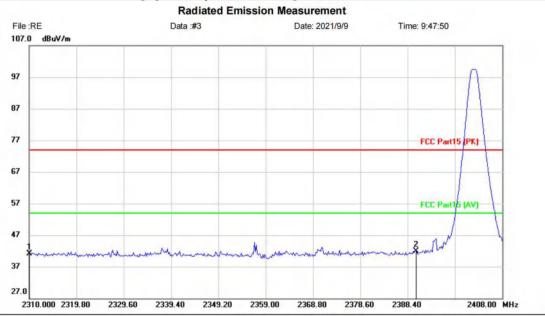
Report No.: BLA-EMC-202108-A9801

Page 49 of 91

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Report No.: BLA-EMC-202108-A9801

Page 50 of 91

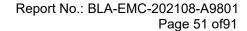
18.4 TEST DATA

BLE 1M

[TestMode: TX Low channel]; [Polarity: Horizontal]

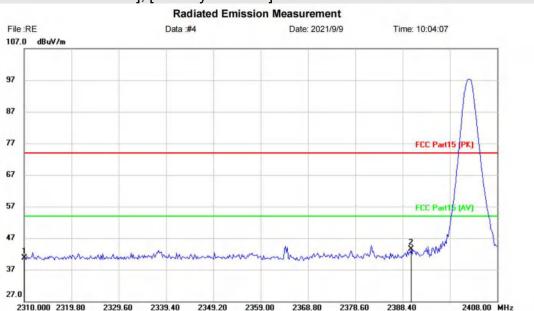
Site Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK


Mode: TX-L Note:

Polarization:	Horizontal	Temperature	9:
Power:		Humidity:	%

Distance:


No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	45.75	-4.61	41.14	74.00	-32.86	peak			
2	*	2390.000	46.17	-4.27	41.90	74.00	-32.10	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

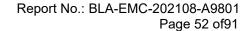
[TestMode: TX Low channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

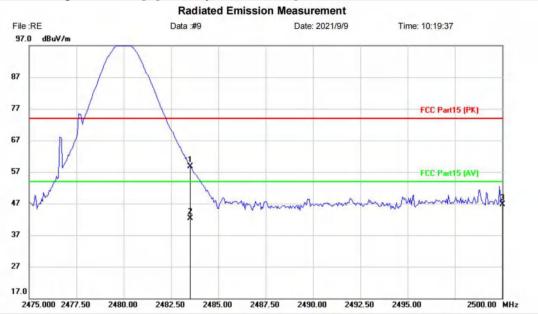
M/N: PTR5620+-ANK

Mode: TX-L Note: Polarization: Vertical


Power:

Temperature: Humidity:

Distance:


No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	45.24	-4.61	40.63	74.00	-33.37	peak			
2	*	2390.000	47.78	-4.27	43.51	74.00	-30.49	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

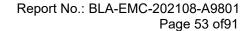
[TestMode: TX high channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK

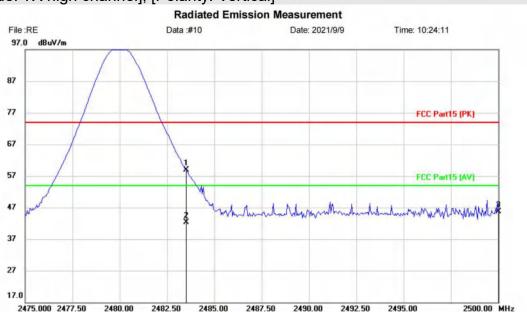
Mode: TX-H Note: Polarization:


Horizontal

Temperature: Humidity:

Power: Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	62.45	-3.84	58.61	74.00	-15.39	peak			
2	*	2483.500	46.05	-3.84	42.21	54.00	-11.79	AVG			
3		2500.000	50.48	-3.78	46.70	74.00	-27.30	peak			


*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

[TestMode: TX high channel]; [Polarity: Vertical]

2480.00

Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK

Mode: TX-H Note:

2487.50 Polarization:

Vertical

2490.00

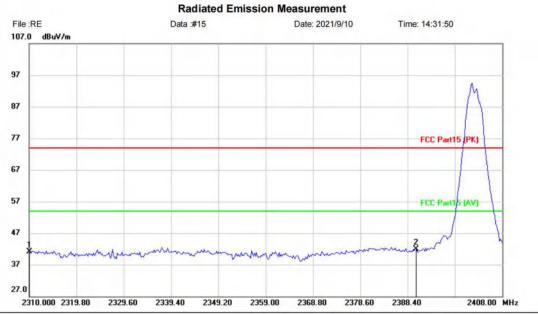
Temperature: Humidity:

2495.00

Power: Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	62.82	-3.84	58.98	74.00	-15.02	peak			
2	*	2483.500	46.14	-3.84	42.30	54.00	-11.70	AVG			
3		2500.000	49.51	-3.78	45.73	74.00	-28.27	peak			

!:over margin *:Maximum data x:Over limit (Reference Only



Report No.: BLA-EMC-202108-A9801

Page 54 of 91

BLE 2M

[TestMode: TX Low channel]; [Polarity: Horizontal]

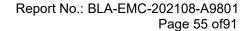
Site

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2

M/N: PTR5620+-ANK

Mode: TX-L Note: Polarization:

Horizontal

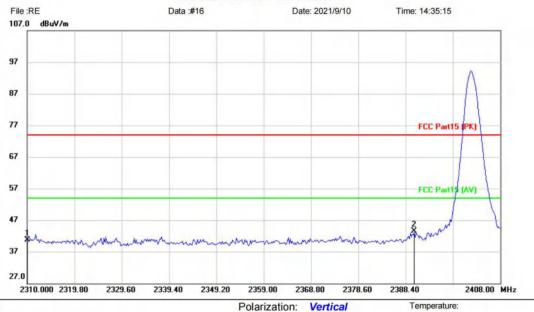

Temperature:

Humidity: %

Power: Distance:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	45.75	-4.61	41.14	74.00	-32.86	peak			
2	*	2390.000	46.17	-4.27	41.90	74.00	-32.10	peak			

*:Maximum data x:Over limit !:over margin (Reference Only



Humidity:

[TestMode: TX Low channel]; [Polarity: Vertical]

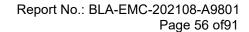
Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

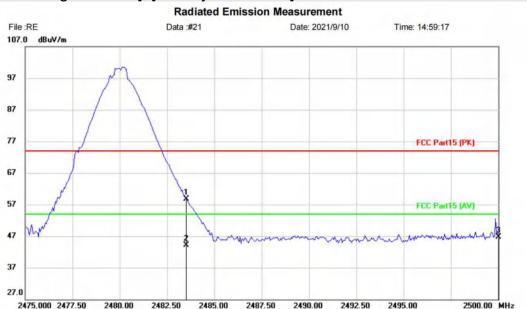
EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-L Note:


Polarization:

Power:

Distance:


No. M	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	45.24	-4.61	40.63	74.00	-33.37	peak			
2	*	2390.000	47.78	-4.27	43.51	74.00	-30.49	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

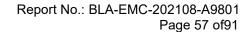
Site

Note:

Limit: FCC Part15 (PK) EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-H

Polarization:


Horizontal

Temperature: Humidity:

Power: Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	62.45	-3.84	58.61	74.00	-15.39	peak			
2	*	2483.500	48.02	-3.84	44.18	54.00	-9.82	AVG			
3		2500.000	50.48	-3.78	46.70	74.00	-27.30	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

FCC Part15 (AV)

[TestMode: TX high channel]; [Polarity: Vertical]

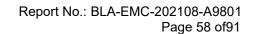
Limit: FCC Part15 (PK) EUT: Bluetooth module5.2 M/N: PTR5620+-ANK

Mode: TX-H Note:

Site

67

57


Polarization: Vertical Temperature:

Power: Humidity: %

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	62.82	-3.84	58.98	74.00	-15.02	peak			
2	*	2483.500	46.99	-3.84	43.15	54.00	-10.85	AVG			
3		2500.000	49.51	-3.78	45.73	74.00	-28.27	peak			

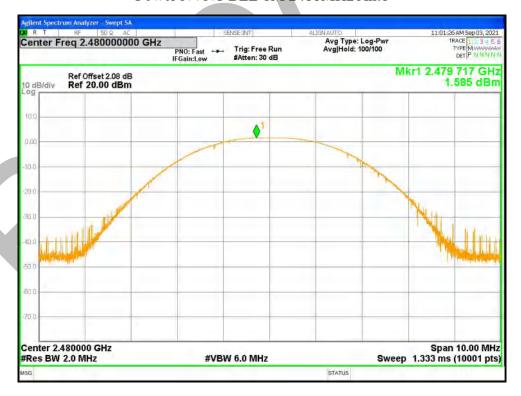
*:Maximum data x:Over limit !:over margin (Reference Only

19 APPENDIX

Maximum Conducted Output Power

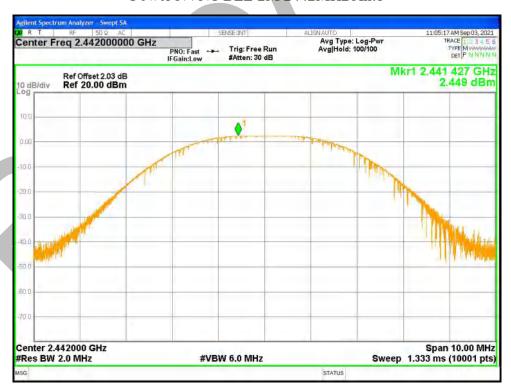
Condition	Mode	Frequency	Antenna	Conducted Power	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	2.834	2.834	30	Pass
	1M						
NVNT	BLE	2442	Ant1	2.423	2.423	30	Pass
	1M						
NVNT	BLE	2480	Ant1	1.585	1.585	30	Pass
	1M						
NVNT	BLE	2402	Ant1	2.842	2.842	30	Pass
	2M						
NVNT	BLE	2442	Ant1	2.449	2.449	30	Pass
	2M						
NVNT	BLE	2480	Ant1	1.607	1.607	30	Pass
	2M						

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1



Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

Report No.: BLA-EMC-202108-A9801

Page 62 of 91

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant1	0.686	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.671	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.669	0.5	Pass
	1M					
NVNT	BLE	2402	Ant1	1.127	0.5	Pass
	2M					
NVNT	BLE	2442	Ant1	1.171	0.5	Pass
	2M					
NVNT	BLE	2480	Ant1	1.025	0.5	Pass
	2M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

Report No.: BLA-EMC-202108-A9801

Page 66 of91

Occupied Channel Bandwidth

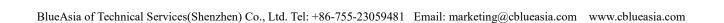
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.035951056
NVNT	BLE 1M	2442	Ant1	1.035729007
NVNT	BLE 1M	2480	Ant1	1.037149724
NVNT	BLE 2M	2402	Ant1	2.030645051
NVNT	BLE 2M	2442	Ant1	2.042117694
NVNT	BLE 2M	2480	Ant1	2.025316197

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1

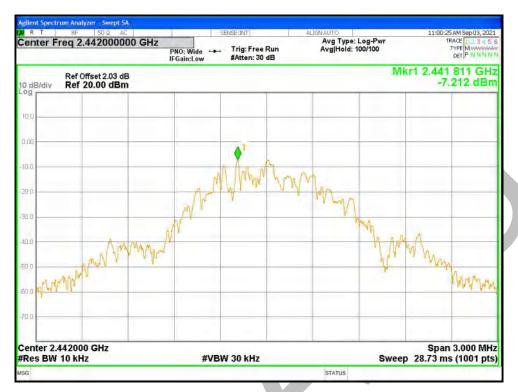

OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1

Report No.: BLA-EMC-202108-A9801

Page 70 of 91

Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.809	8	Pass
NVNT	BLE 1M	2442	Ant1	-7.212	8	Pass
NVNT	BLE 1M	2480	Ant1	-8.055	8	Pass
NVNT	BLE 2M	2402	Ant1	-7.441	8	Pass
NVNT	BLE 2M	2442	Ant1	-7.881	8	Pass
NVNT	BLE 2M	2480	Ant1	-8.674	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

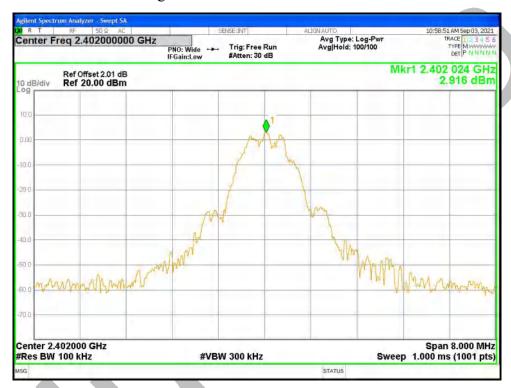
PSD NVNT BLE 1M 2480MHz Ant1

PSD NVNT BLE 2M 2402MHz Ant1



PSD NVNT BLE 2M 2442MHz Ant1

PSD NVNT BLE 2M 2480MHz Ant1

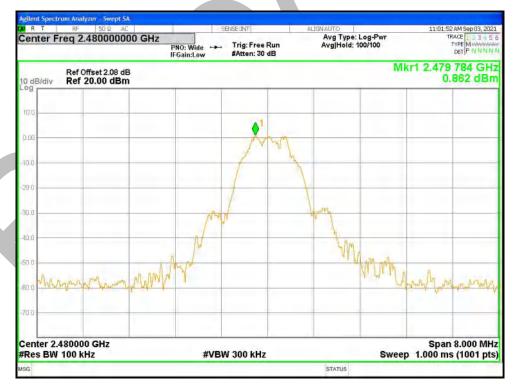

Report No.: BLA-EMC-202108-A9801

Page 74 of91

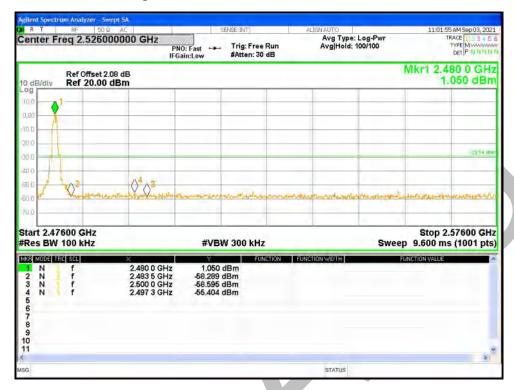
Band Edge


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-58.3	-30	Pass
NVNT	BLE 1M	2480	Ant1	-56.26	-30	Pass
NVNT	BLE 2M	2402	Ant1	-58.57	-30	Pass
NVNT	BLE 2M	2480	Ant1	-54.86	-30	Pass

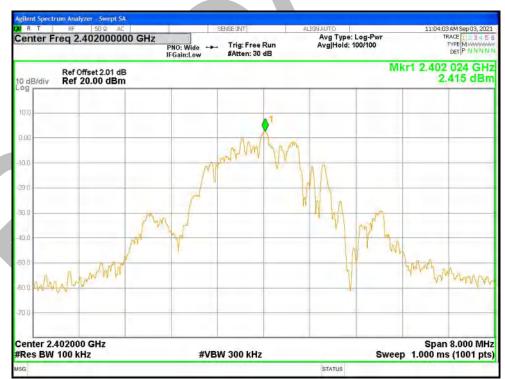
Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



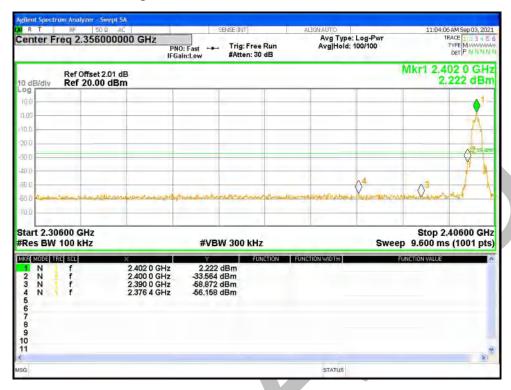
Band Edge NVNT BLE 1M 2402MHz Ant1 Emission



Band Edge NVNT BLE 1M 2480MHz Ant1 Ref



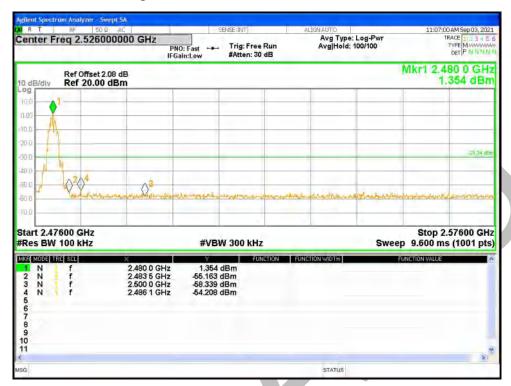
Band Edge NVNT BLE 1M 2480MHz Ant1 Emission



Band Edge NVNT BLE 2M 2402MHz Ant1 Ref



Band Edge NVNT BLE 2M 2402MHz Ant1 Emission



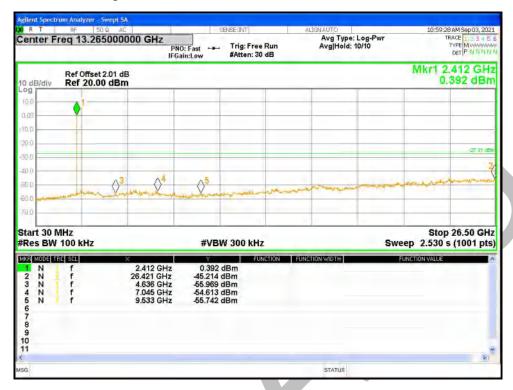
Band Edge NVNT BLE 2M 2480MHz Ant1 Ref

Band Edge NVNT BLE 2M 2480MHz Ant1 Emission

Report No.: BLA-EMC-202108-A9801

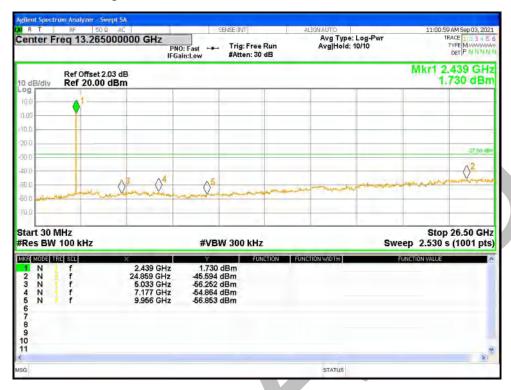
Page 79 of 91

Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-47.9	-30	Pass
NVNT	BLE 1M	2442	Ant1	-47.91	-30	Pass
NVNT	BLE 1M	2480	Ant1	-45.91	-30	Pass
NVNT	BLE 2M	2402	Ant1	-47.82	-30	Pass
NVNT	BLE 2M	2442	Ant1	-47.83	-30	Pass
NVNT	BLE 2M	2480	Ant1	-46.29	-30	Pass

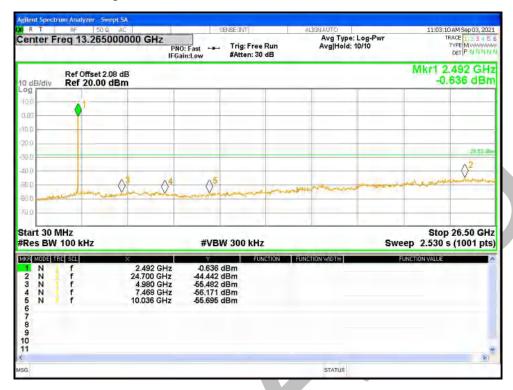
Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission



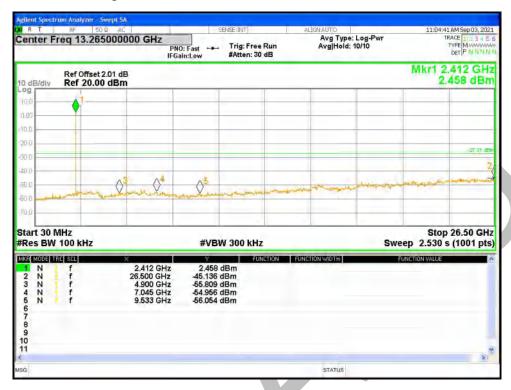
Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission



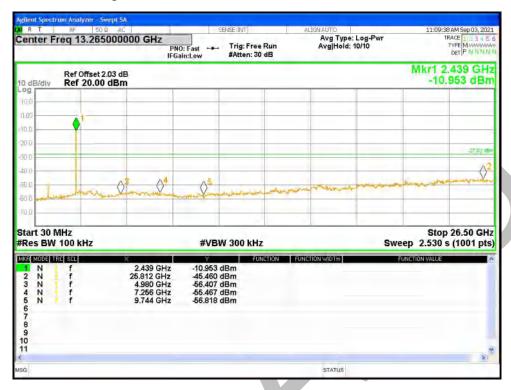
Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission



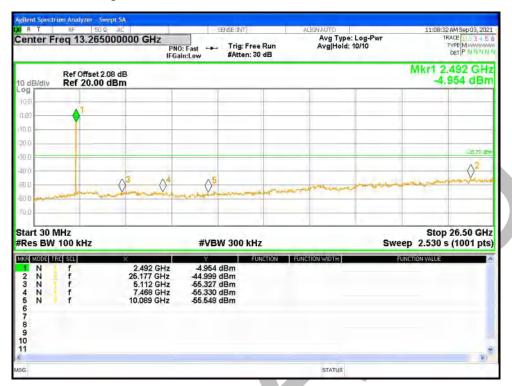
Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Emission



Tx. Spurious NVNT BLE 2M 2442MHz Ant1 Ref

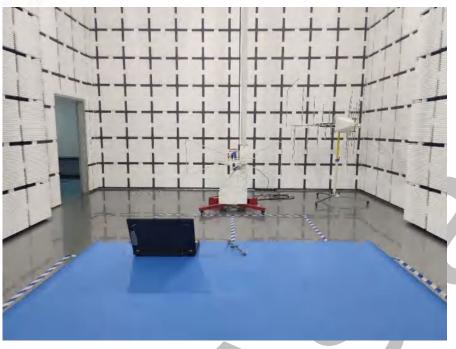
Tx. Spurious NVNT BLE 2M 2442MHz Ant1 Emission



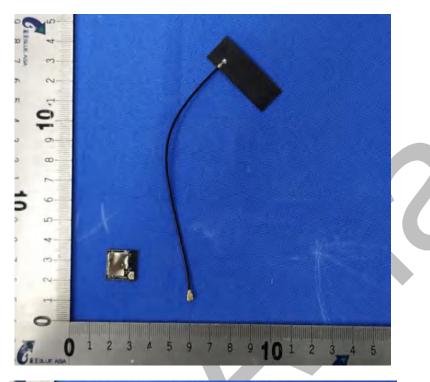
Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Ref

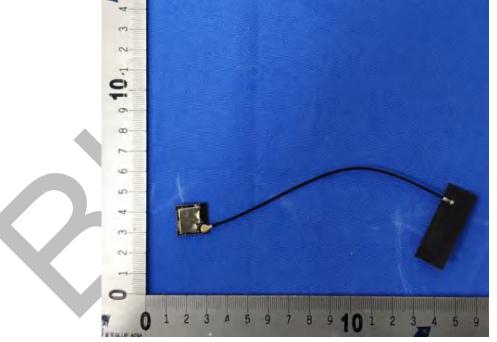
Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Emission

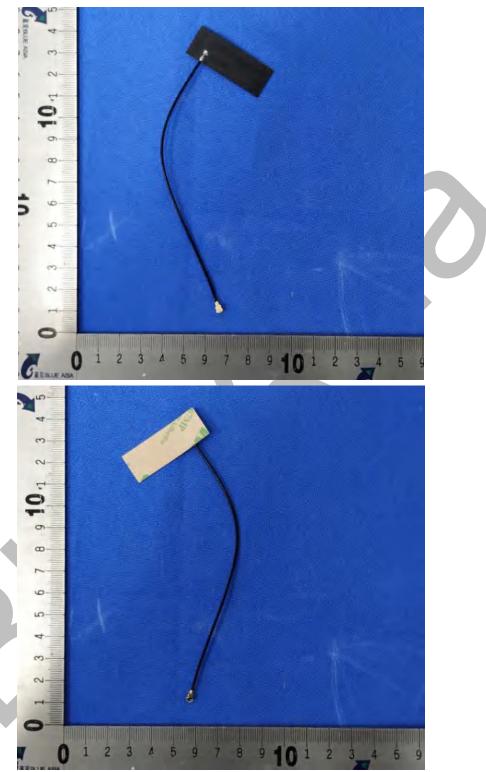
APPENDIX A: PHOTOGRAPHS OF TEST SETUP


Conducted Emissions at AC Power Line (150kHz-30MHz)

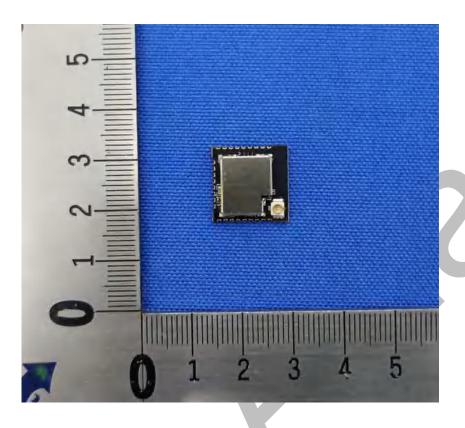
Radiated Spurious Emissions

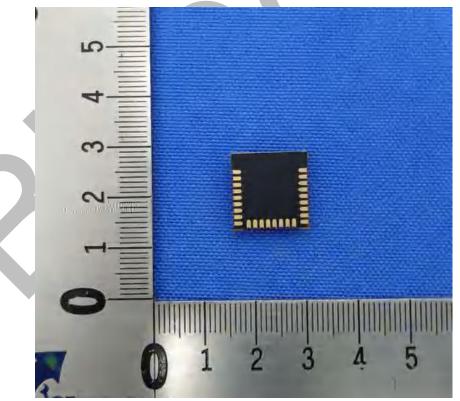


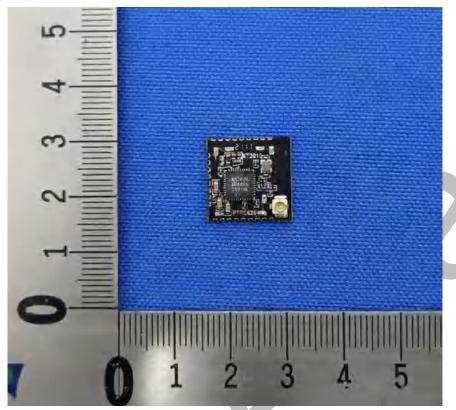




APPENDIX B: PHOTOGRAPHS OF EUT







----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.