

Page 2 of 49

2 Version

	Version No.		Date	$(\langle \gamma \rangle)$	Descriptio	n (🔊)	
-	00	J	lul.14, 2020		Original		
(S)					(J)		

Report No. : EED32M00052602

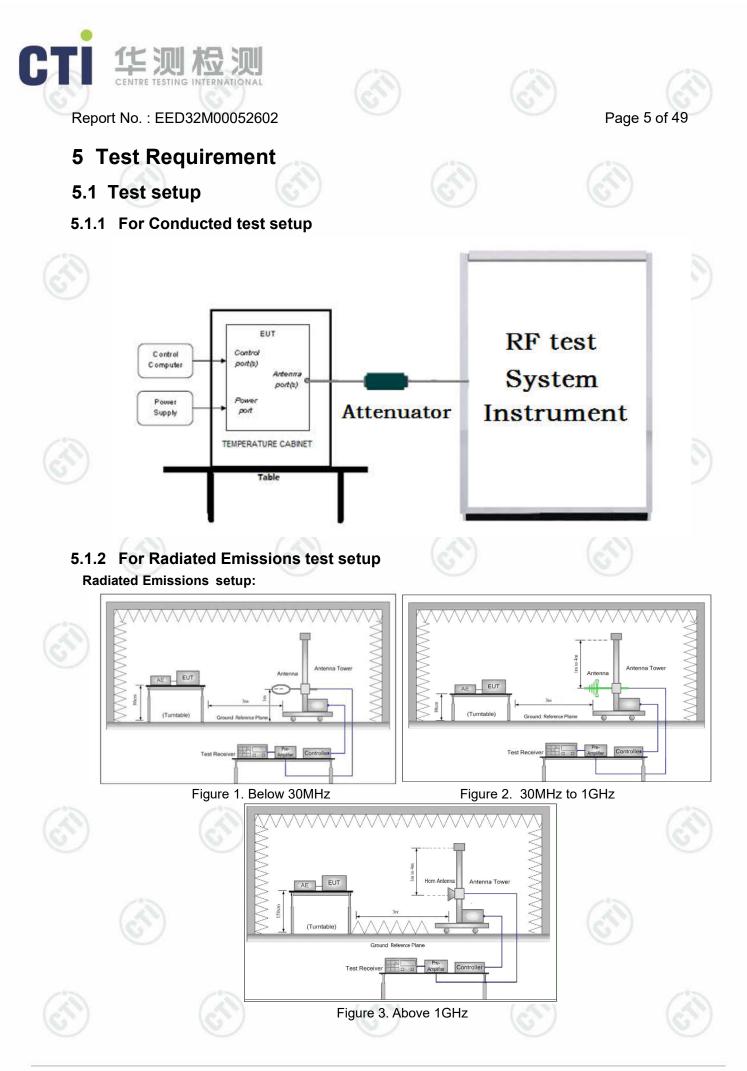
3 Test Summary

Page 3 of 49

, ioot o annun y			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

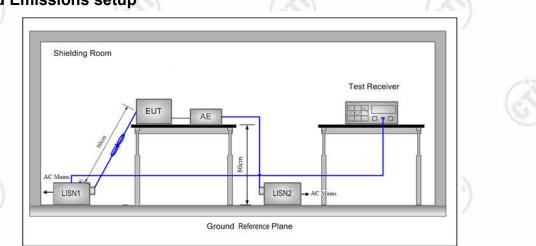
Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



Report No. : EED32M00052602

Page 4 of 49

4 Content	
1 COVER PAGE	
2 VERSION	<u> </u>
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	
 5.1 TEST SETUP 5.1.1 For Conducted test setup	0
6 GENERAL INFORMATION	
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 	
7 EQUIPMENT LIST	1
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
DUTY CYCLE Appendix A): 6dB Occupied Bandwidth	
Appendix B): Conducted Peak Output Power	
Appendix C): Band-edge for RF Conducted Emissions	
Appendix D): RF Conducted Spurious Emissions	
Appendix E): Power Spectral Density	
Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission	
Appendix G). AC Fower Line Conducted Emission	
Appendix II) Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	



5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	6)		6
Temperature:	23.0 °C		
Humidity:	54 % RH	maked tak	
Atmospheric Pressure:	1010mbar		
		8.3	8 - J.L.

5.3 Test Condition

Test channel:

12	Test Mode	Tx/Rx	1	RF Channel	10
(A)	Test Mode		Low(L)	Middle(M)	High(H)
C	050%		Channel 0	Channel 19	Channel 39
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mode rate.	e with all kind of m	odulation and a	Ill kind of data
		67)	0	6	7

6 General Information

6.1 Client Information

Applicant:	Beijing Puppy Robotics Co., Ltd.
Address of Applicant:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China
Manufacturer:	Beijing Puppy Robotics Co., Ltd.
Address of Manufacturer:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China
Factory:	Zhang zhou Wanlida Technology Co., Ltd.
Address of Factory:	Wanlida Industrial Zone, Jingcheng Town, Nanjing, Zhangzhou, Fujian, China

6.2 General Description of EUT

Product Name:	Artificial Intelli	gence Terminal Computer				
Model No.(EUT):	PP23TQB	PP23TQB				
Trade mark:	N/A	N/A				
EUT Supports Radios application:	BT5.0 Dual m	ode 2402MHz to 2480MHz				
Power Supply:	AC Adapter	MODEL:AP065G-19300 INPUT:100-240V~50/60Hz1.5AMax OUTPUT:19V3A	(C)			
(I)	Battery	Model:BT-J003 3LPC5/60/102 Rated Capacity:5000mAh Power Rating:11.55V 5000mAh 57.75Wh				
Sample Received Date:	Mar. 19, 2020					
Sample tested Date:	Mar. 19, 2020	to Jun. 23, 2020				

6.3 Product Specification subjective to this standard

	_				
Operation Frequency:	2402MHz~2480MHz		(C)		6
Bluetooth Version:	5.0				
Modulation Technique:	DSSS				
Modulation Type:	GFSK				
Number of Channel:	40	0)		S)	
Test Power Grade:	Default				
Test Software of EUT:	QRCT		100		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antenna Type and Gain:	Type:FPC antenna				(\sim)
	Gain:3.5 dBi		V		V
Test Voltage:	AC120V/60Hz				

Page 7 of 49

Page 8 of 49

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Page 9 of 49

6.4 Description of Support Units

The EUT has been tested with associated equipment below

-	ssociated	Manufactu re	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spundus emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

A BOARD I					
		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$(\underline{\circ})$		9
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		07	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	C	(<u></u>

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-20-2019 04-28-2020	05-19-2020 04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019 05-29-2020	06-13-2020 05-28-2021	
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188	06-20-2019 06-11-2020	06-19-2020 06-10-2021	



Page 11 of 49

		3M 3	Semi/full-anecho	ic Chamber		
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
	3M Chamber & Accessory Equipment	ТDК	SAC-3		05-24-2019	05-23-2022
97	RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
	Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
	Multi device Controller	maturo	NCD/070/107 11112	(2 5)		(\land)
	Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
	Cable line	Fulai(7M)	SF106	5219/6A		
	Cable line	Fulai(6M)	SF106	5220/6A		
3	Cable line	Fulai(3M)	SF106	5216/6A	1	
1	Cable line	Fulai(3M)	SF106	5217/6A	()	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 12 of 49

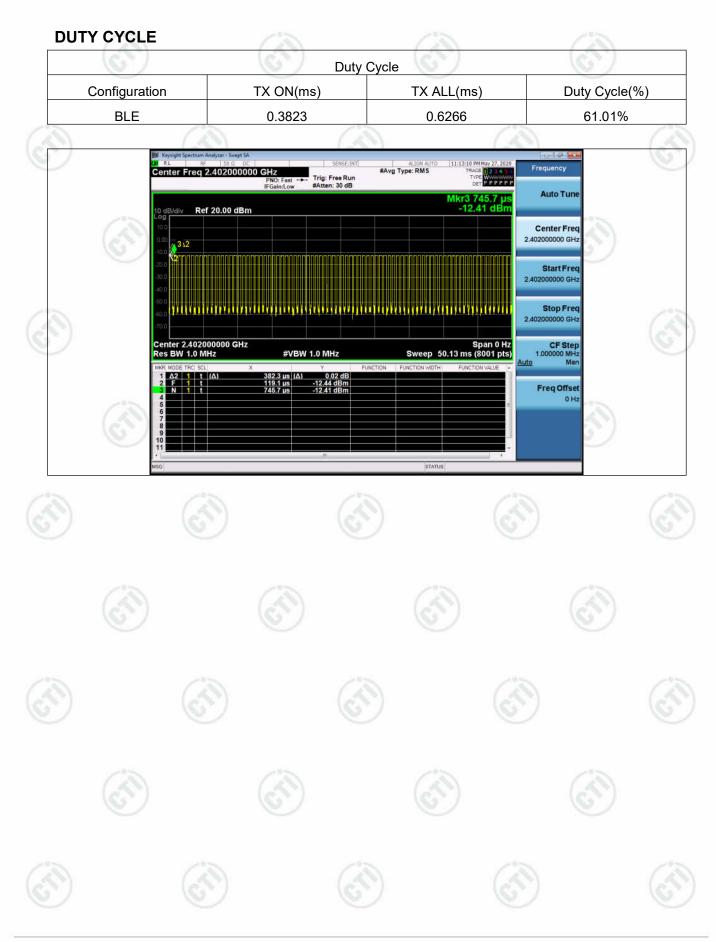
		3M full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	05-21-2020 05-19-2021
Preamplifier	EMCI	EMC001330	980563	05-08-2019 04-22-2020	05-07-2020 04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019 04-27-2020	04-29-2020 04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		- (
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u>o</u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	28	

8 Radio Technical Requirements Specification

Reference documents for testing:

Ν	lo.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
Taa	4 D	eeulte Lietu	

Test Results List:

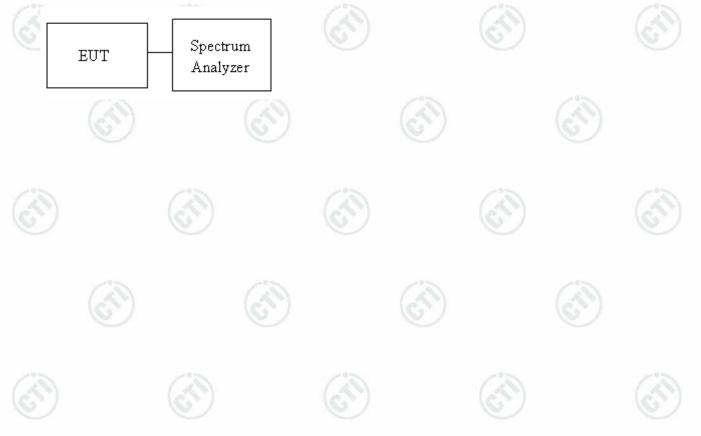

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :


2	Limit	Shall be at least 500kHz	
\sim			

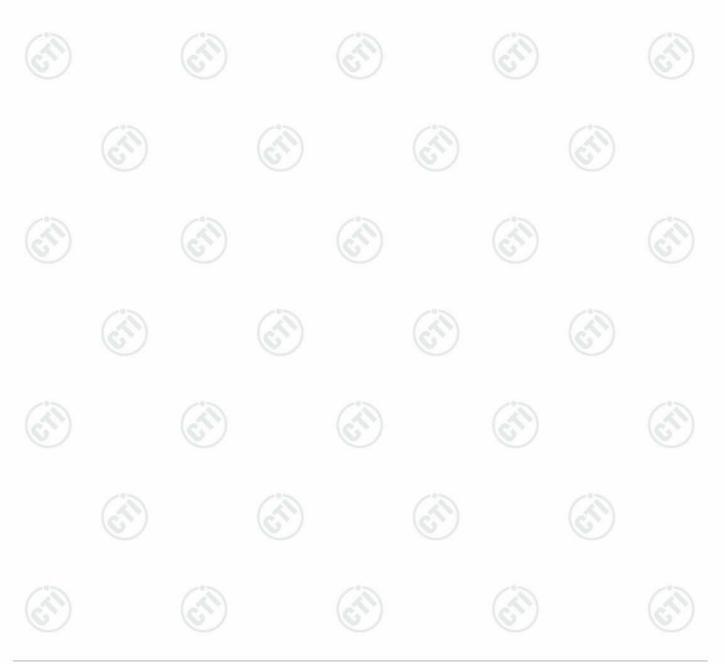
Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 , section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report. <u>Test Setup</u>

Report No. : EED32M00052602

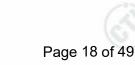

<u>Test Result</u>

6dB OBW

	Mode	Channel	6dB Bandwidth [MHz]	Verdict
	BLE	LCH	0.6675	PASS
2	BLE	MCH	0.6642	PASS
	BLE	HCH	0.6686	PASS

<u>99% OBW</u>

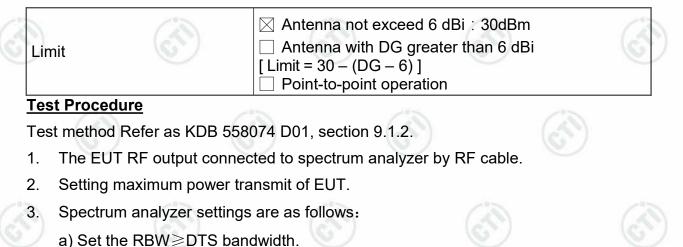
Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0344	PASS
BLE	MCH	1.0351	PASS
BLE	HCH	1.0367	PASS


6dB OBW

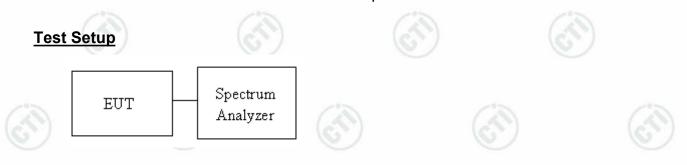


99% OBW

Page 19 of 49


Appendix B): Conducted Peak Output Power

Test Limit


According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

- b) Set VBW≥[3×RBW].
- c) Set span≥[3xRBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Report No. : EED32M00052602



Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	7.233	PASS
BLE	MCH	8.505	PASS
BLE	HCH	7.498	PASS

Test Graphs

Page 21 of 49

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

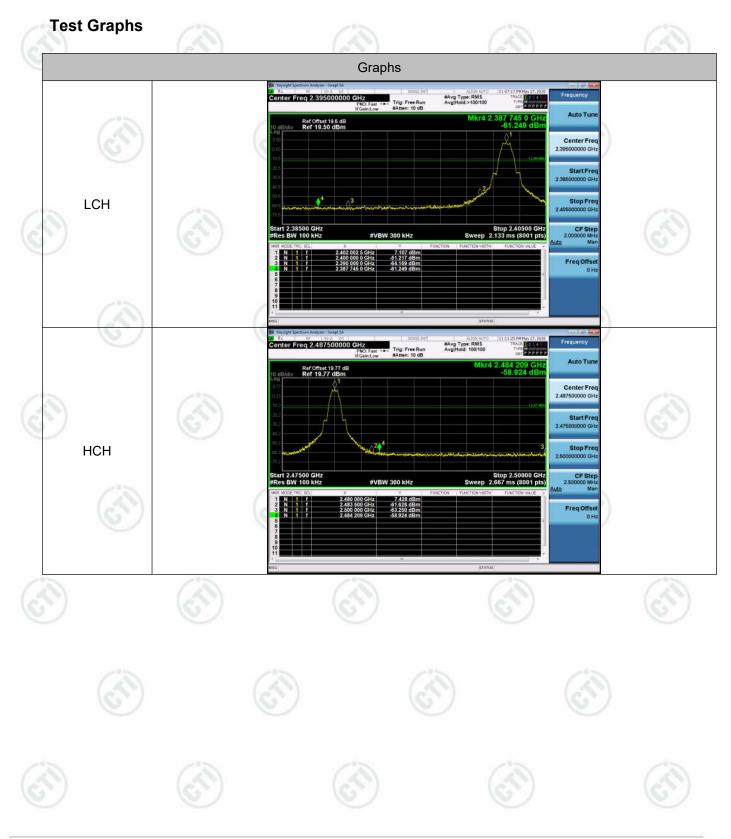
Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	7.107	-61.249	-12.89	PASS
BLE	HCH	7.428	-58.924	-12.57	PASS

Page 23 of 49

Report No. : EED32M00052602

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

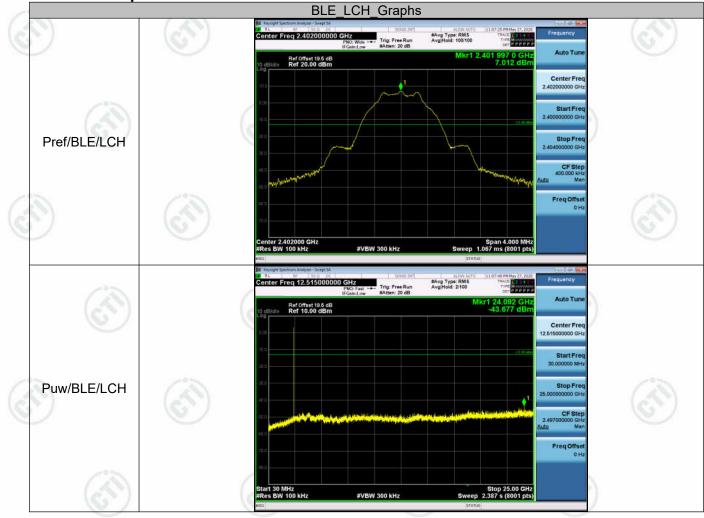
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

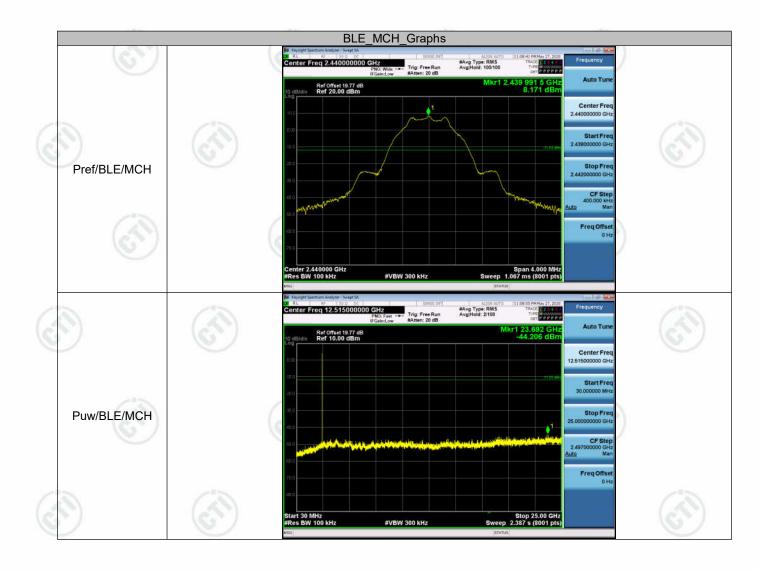
Report No. : EED32M00052602



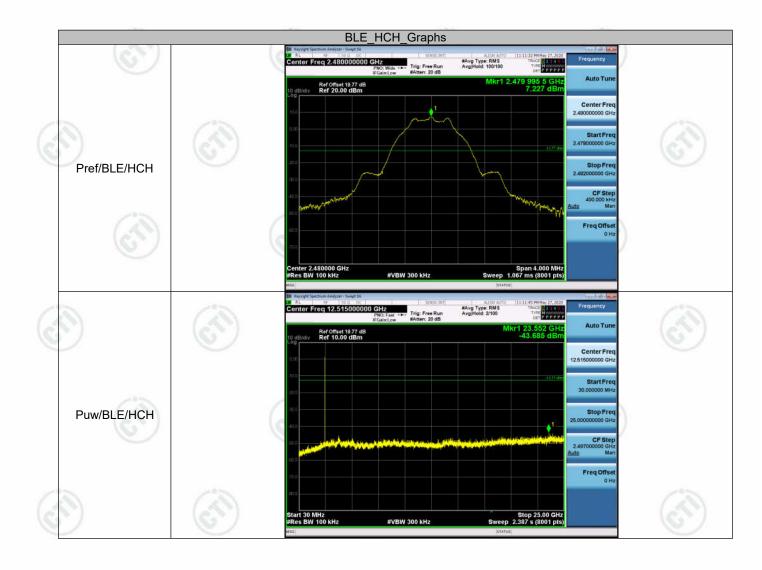
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict		
BLE	LCH	7.012	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	MCH	8.171	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	HCH	7.227	<limit< td=""><td>PASS</td></limit<>	PASS		
		-				

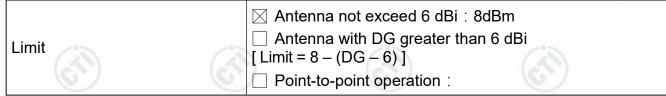
Test Graphs



Page 25 of 49



Page 26 of 49



Appendix E): Power Spectral Density

Test Limit

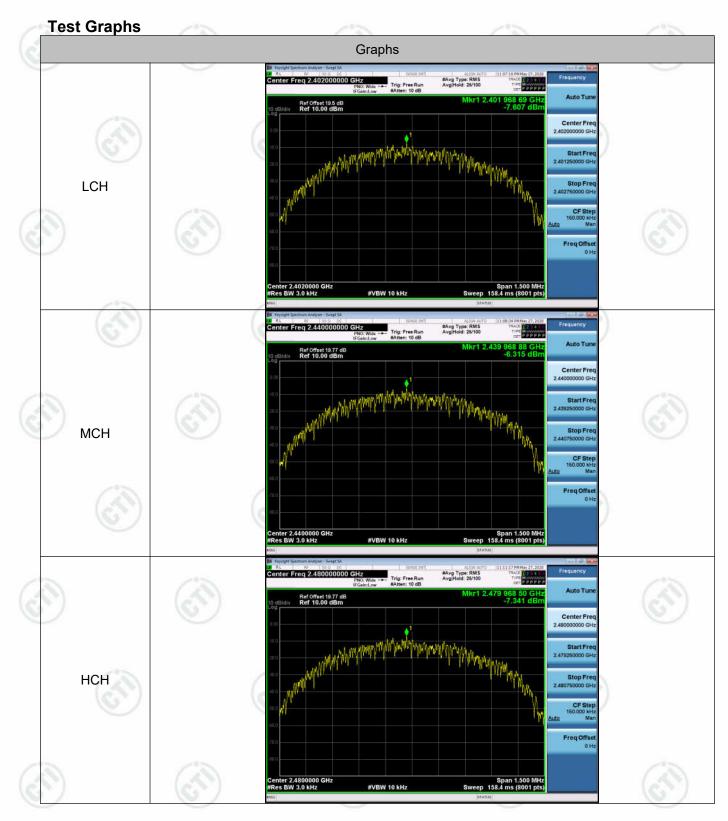
According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level. Measure and record the result of power spectral density. in the test report.



Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-7.607	PASS
BLE	MCH	-6.315	PASS
BLE	HCH	-7.341	PASS

Appendix F): Antenna Requirement

15.203 requirement:

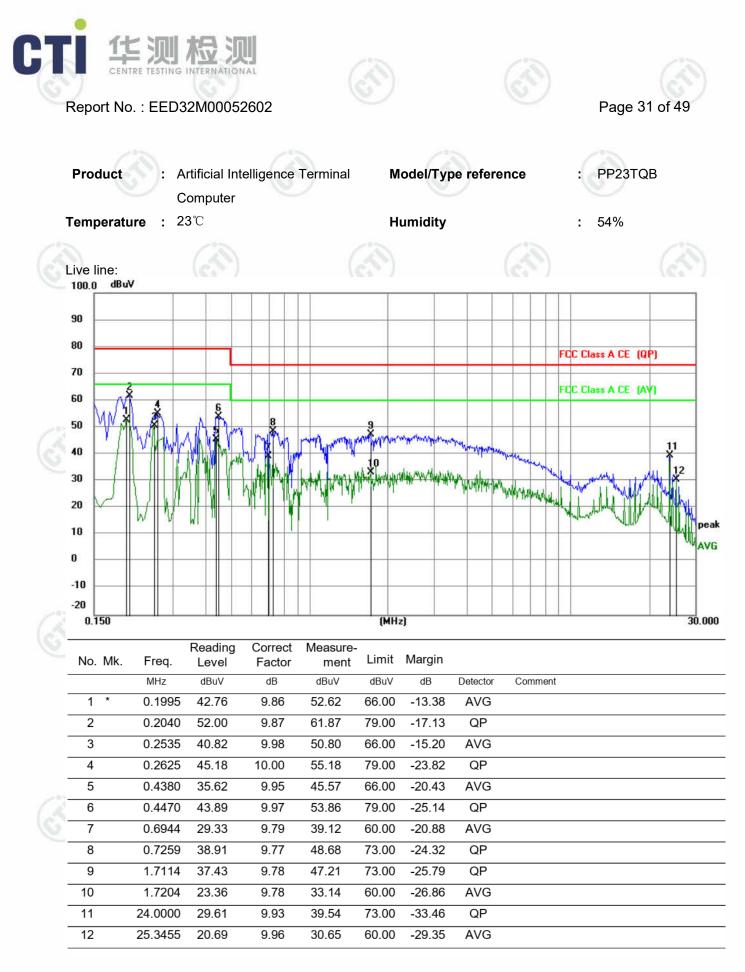
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.5 dBi.


Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	-30MHz	(\mathbf{G}^{*})							
	 The mains terminal disturban The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr 	AC power source throm h provides a 50Ω/50μl hits of the EUT were c ound reference plane	ugh a LISN 1 (Line Η + 5Ω linear imp onnected to a sec n the same way a	e Impedan edance. T cond LISN s the LISN						
	for the unit being measured multiple power cables to a s exceeded.									
(A)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangeme								
	 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 									
	1 was placed 0.8 m from t ground reference plane fo plane. This distance was be All other units of the EUT a LISN 2.	r LISNs mounted on etween the closest poir	top of the grour nts of the LISN 1 a	nd referen and the EU						
(A)	5) In order to find the maximum of the interface cables n conducted measurement.									
Limit:		Limit (dE	3μV)							
	Frequency range (MHz)	Quasi-peak	Average	~~~						
	0.15-0.5	66 to 56*	56 to 46*							
1	0.5-5	56	46							
				e						
	5-30	60	50	O						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Ì

Neutral line: dBuV 100.0 90 80 FCC Class A CE (QP) 70 FCC Class A CE (AV) 60 5 50 40 WWWWWWWW 30 when 20 peak 10 AVG 0 -10 -20 30.000 0.150 (MHz)

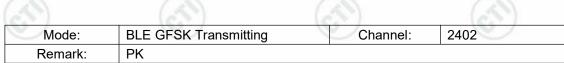
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1905	43.46	9.86	53.32	66.00	-12.68	AVG	
2		0.1949	56.31	9.86	66.17	79.00	-12.83	QP	
3		0.2535	47.42	9.98	57.40	79.00	-21.60	QP	
4		0.2535	38.14	9.98	48.12	66.00	-17.88	AVG	
5		0.4245	48.01	9.93	57.94	79.00	-21.06	QP	
6		0.4515	30.97	9.97	40.94	66.00	-25.06	AVG	
7		0.5279	45.05	10.03	55.08	73.00	-17.92	QP	
8		0.5459	28.89	10.02	38.91	60.00	-21.09	AVG	
9		1.0274	36.19	9.74	45.93	73.00	-27.07	QP	
10		1.0769	23.54	9.74	33.28	60.00	-26.72	AVG	
11		2.3054	23.95	9.79	33.74	60.00	-26.26	AVG	
12		2.4269	36.18	9.79	45.97	73.00	-27.03	QP	

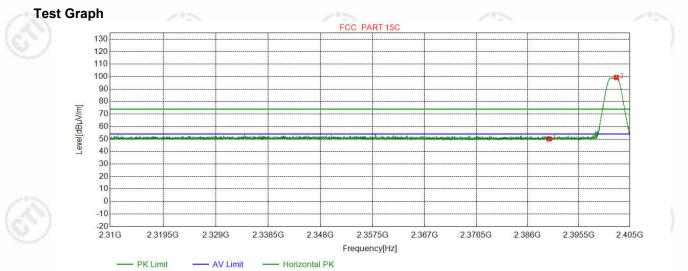
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

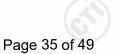
Receiver Setup:	Frequency	Detector RBW		VBW Remark								
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	×						
0		Peak	1MHz	3MHz	Peak							
2	Above 1GHz	Peak	1MHz	10Hz	Average	e)						
Test Procedure:	Below 1GHz test proced	Below 1GHz test procedure as below:										
	 Test method Refer as KDI a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the an d. For each suspected e the antenna was tune was turned from 0 deg e. The test-receiver syst 	on the top of a ro choic camber. T of the highest ra eters away from op of a variable-l varied from one um value of the fi tenna are set to mission, the EUT d to heights from grees to 360 deg	otating table he table wa adiation. the interfer neight anter meter to fo ield strength make the n Γ was arran 1 meter to rees to find	e 0.8 meter is rotated 3 ence-recei na tower. our meters n. Both hor neasureme ged to its 4 meters the maxin	360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading	to a, whice round vertica nd the able						
	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest	num Hold Mode. end of the restric mpliance. Also m trum analyzer plo channel	cted band c neasure any	losest to ti emission	he transmit s in the restr	icted						
	 Bandwidth with Maxim f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. G. Different between about to fully Anechoic Chara 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, and the spect of the spect o	num Hold Mode. end of the restrict mpliance. Also m trum analyzer pla channel ure as below: we is the test site nber change form a 1 meter and tab owest channel , ements are perform of found the X as	cted band o neasure any ot. Repeat f e, change fi m table 0.8 le is 1.5 me the Highest prmed in X, xis position	rom Semi- meter to 1 ter). Y, Z axis p ing which i	he transmit s in the restri ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca	icted dulation nambe ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	num Hold Mode. end of the restrict mpliance. Also m trum analyzer pla channel ure as below: we is the test site nber change form a 1 meter and tab owest channel , ements are perform d found the X as ures until all freq	cted band o neasure any ot. Repeat f e, change fi m table 0.8 le is 1.5 me the Highest prmed in X, xis positioni uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	he transmit s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete.	icted dulation nambe ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , ements are perform of found the X as ures until all freq Limit (dBµV	cted band c neasure any ot. Repeat f e, change fi m table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	he transmit s in the restription ower and mo Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete. mark	icted dulation nambo ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , ements are perform to found the X as ures until all freq Limit (dBµV 40.	cted band o neasure any ot. Repeat f e, change fi m table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me /m @3m) 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	he transmit s in the restri- ower and mo Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete. mark eak Value	icted dulation nambo ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , ements are perform of found the X as ures until all freq Limit (dBµV	cted band c neasure any ot. Repeat f n table 0.8 le is 1.5 me the Highest prmed in X, xis positioni uencies me /m @3m) 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	he transmit s in the restr ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value eak Value	icted dulation nambo ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form a 1 meter and tab owest channel , ements are perfor and found the X as ures until all freq Limit (dBµV 40.0 43.3	cted band o neasure any ot. Repeat f e, change fi m table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me (m @3m) 0 5 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ref Quasi-pe Quasi-pe	he transmit s in the restri- ower and mo Anechoic Cl .5 meter(Ab oositioning for t is worse ca as complete. mark eak Value eak Value eak Value	icted dulation nambe ove						
Limit:	Bandwidth with Maxim f. Place a marker at the frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site obser change forr a 1 meter and tab owest channel , ements are perforn d found the X az ures until all freq Limit (dBµV 40.0 43.1	cted band o neasure any ot. Repeat f e, change fir n table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me (/m @3m) 0 5 0 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Quasi-pe Quasi-pe Quasi-pe	he transmit s in the restr ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value eak Value	icted dulation nambe ove						

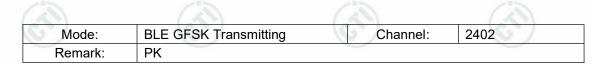


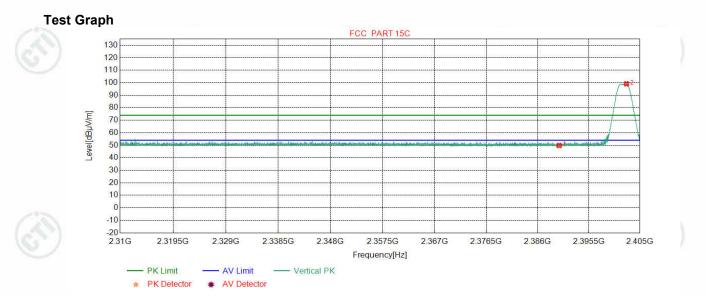


Test plot as follows:

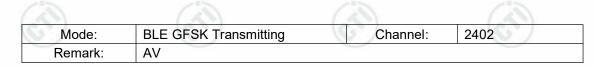
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.56	50.06	74.00	23.94	Pass	Horizontal
2	2402.4728	32.26	13.31	-43.11	96.82	99.28	74.00	-25.28	Pass	Horizontal
0	°)	62	S)	•	(2)		(3))		$(c^{(n)})$

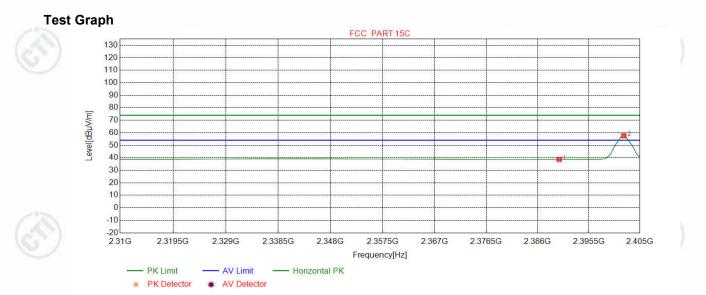




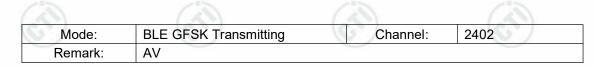


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.32	49.82	74.00	24.18	Pass	Vertical
2	2402.4918	32.26	13.31	-43.11	96.65	99.11	74.00	-25.11	Pass	Vertical
12	A	1.1	1							



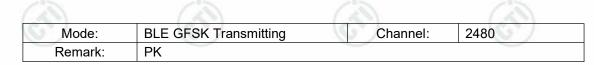


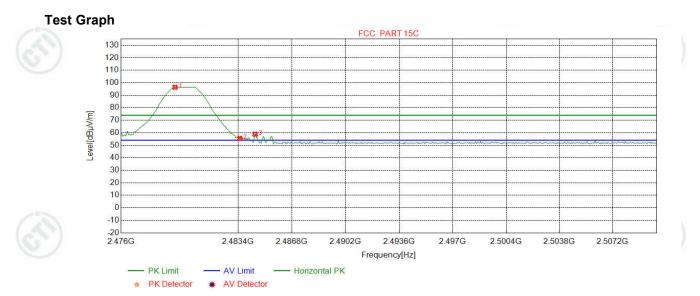
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.21	38.71	54.00	15.29	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	55.15	57.60	54.00	-3.60	Pass	Horizontal
12	S	10	1				(1)			



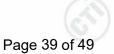


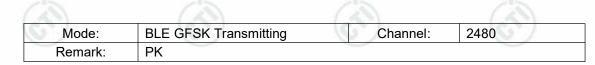
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.20	38.70	54.00	15.30	Pass	Vertical
2	2401.9598	32.26	13.31	-43.12	55.36	57.81	54.00	-3.81	Pass	Vertical
12	2	10	A							

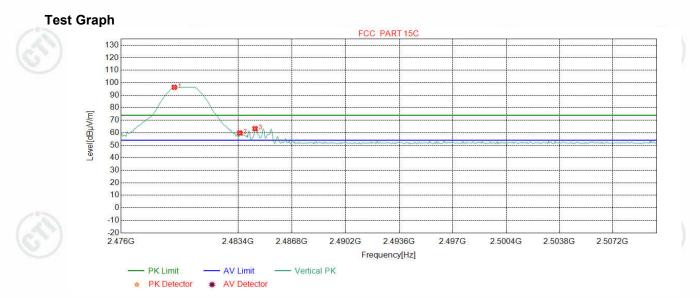




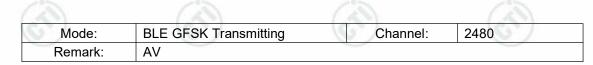
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.4043	32.37	13.39	-43.10	93.67	96.33	74.00	-22.33	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	52.75	55.40	74.00	18.60	Pass	Horizontal
3	2484.4681	32.38	13.37	-43.10	56.17	58.82	74.00	15.18	Pass	Horizontal
6)	6	9	•	67		(O)	/		67

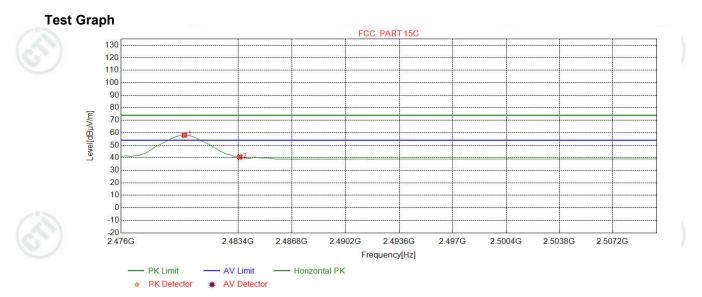




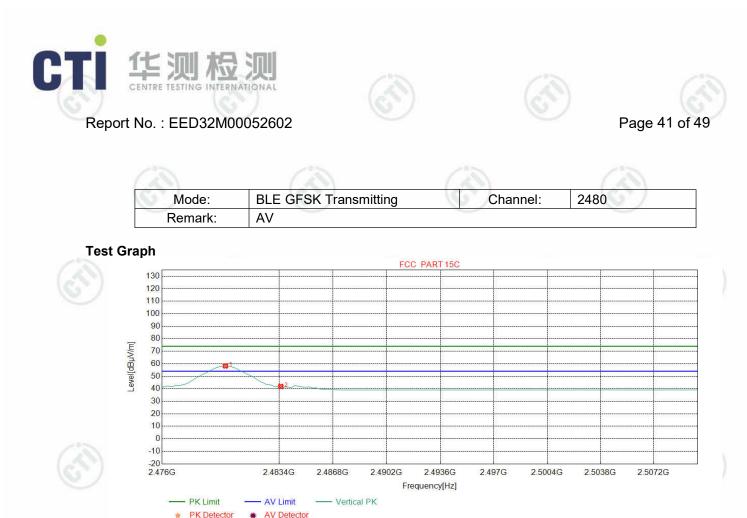


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.3617	32.37	13.39	-43.10	93.67	96.33	74.00	-22.33	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	57.19	59.84	74.00	14.16	Pass	Vertical
3	2484.4681	32.38	13.37	-43.10	60.60	63.25	74.00	10.75	Pass	Vertical
6).	6	9	•	67		67			67





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	55.40	58.06	54.00	-4.06	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	37.98	40.63	54.00	13.37	Pass	Horizontal
12	2	1.1	10				(1)			



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	55.53	58.19	54.00	-4.19	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	39.23	41.88	54.00	12.12	Pass	Vertical

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(3)		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:						
 a. The EUT was p camber. The ta b. The EUT was s 	as KDB 558074 D01, Section blaced on the top of a rotating table was rotated 360 degrees to set 3 meters away from the inter antenna tower.	able 0.8 meters a determine the p	osition of th	ne highest r	adiation.	
c. The antenna he	eight is varied from one meter t	o four meters ab	ove the gro	und to dete	rmine the maxi	mum valu
 For each suspended to the subset of the subse	ngth. Both horizontal and vertic ected emission, the EUT was a meter to 4 meters (for the test f rotatable was turned from 0 de	rranged to its wo frequency of belo	rst case and w 30MHz, t	d then the a the antenna I the maxim	antenna was tur a was tuned to h	ned to
e. The test-receiv	er system was set to Peak Dete level of the EUT in peak mode	ect Function and			vith Maximum F	

Above 1GHz test procedure as below:

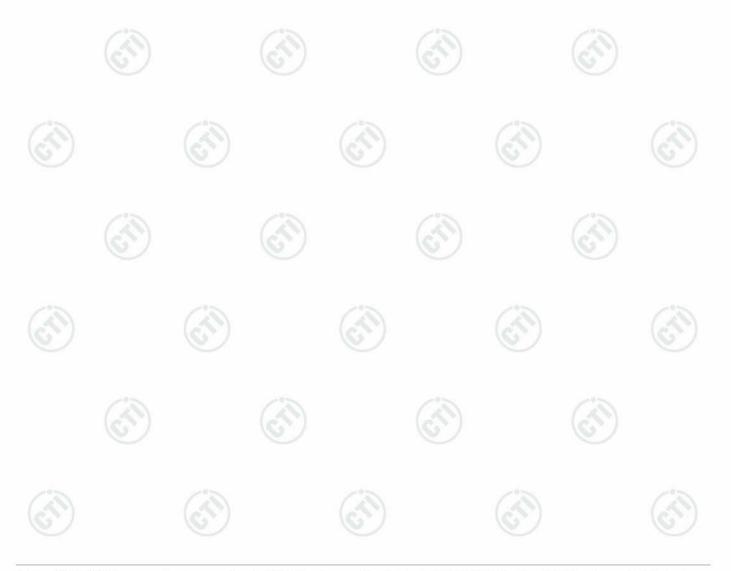
Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel ,the middle channel ,the Highest channel h.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X i. axis positioning which it is worse case.
 - Measurement Field strength Limit Remark Frequency distance (m) (microvolt/meter) (dBµV/m) 0.009MHz-0.490MHz 2400/F(kHz) 300 . 0.490MHz-1.705MHz 24000/F(kHz) _ -1 30 1.705MHz-30MHz 30 30 _ _ 30MHz-88MHz 100 40.0 Quasi-peak 3 150 3 88MHz-216MHz 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 3 54.0 Quasi-peak 500 54.0 3 Above 1GHz Average Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit

applicable to the equipment under test. This peak limit applies to the total

Repeat above procedures until all frequencies measured was complete. i.

peak emission level radiated by the device.



Report No. : EED32M00052602

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e:		BLE G	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	52.4092	12.81	0.82	-32.04	40.02	21.61	40.00	18.39	Pass	Н	PK
2	85.3925	8.34	1.06	-32.00	43.78	21.18	40.00	18.82	Pass	н	PK
3	137.0017	7.35	1.37	-32.00	49.69	26.41	43.50	17.09	Pass	Н	PK
4	240.0260	11.94	1.84	-31.90	45.69	27.57	46.00	18.43	Pass	Н	PK
5	533.1893	17.66	2.77	-31.92	47.74	36.25	46.00	9.75	Pass	н	PK
6	712.7543	19.94	3.19	-32.11	42.63	33.65	46.00	12.35	Pass	Н	PK
7	85.3925	8.34	1.06	-32.00	53.82	31.22	40.00	8.78	Pass	V	PK
8	115.5626	9.95	1.27	-32.06	51.06	30.22	43.50	13.28	Pass	V	PK
9	137.5838	7.32	1.38	-32.00	57.67	34.37	43.50	9.13	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	50.02	31.90	46.00	14.10	Pass	V	PK
11	433.2693	15.93	2.46	-31.84	40.48	27.03	46.00	18.97	Pass	V	PK
12	830.5241	21.27	3.47	-31.97	45.08	37.85	46.00	8.15	Pass	V	PK
		1									

Report No. : EED32M00052602

Transmitter Emission above 1GHz

Mode:		BLE GF	SK Transn	nitting		Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1992.6993	31.65	3.46	-43.18	55.49	47.42	74.00	26.58	Pass	Н	PK
2	3192.0128	33.28	4.64	-43.11	51.74	46.55	74.00	27.45	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	47.46	43.71	74.00	30.29	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	47.08	47.04	74.00	26.96	Pass	Н	PK
5	9606.4404	37.64	6.62	-42.09	50.84	53.01	74.00	20.99	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.94	51.95	74.00	22.05	Pass	н	PK
7	2000.1000	31.70	3.47	-43.20	59.50	51.47	74.00	22.53	Pass	V	PK
8	3189.0126	33.28	4.63	-43.10	56.37	51.18	74.00	22.82	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.94	44.19	74.00	29.81	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.90	46.86	74.00	27.14	Pass	V	PK
11	9608.4406	37.64	6.63	-42.10	54.01	56.18	74.00	17.82	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	45.86	50.87	74.00	23.13	Pass	V	PK
13	9608.4401	37.64	6.63	-42.10	36.15	38.32	54.00	15.68	Pass	V	AV

Mode	Mode:		BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1063.8064	27.96	2.52	-43.03	56.18	43.63	74.00	30.37	Pass	Н	PK
2	1780.4780	30.25	3.28	-42.69	55.60	46.44	74.00	27.56	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	47.32	43.82	74.00	30.18	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	45.90	46.03	74.00	27.97	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	48.51	50.84	74.00	23.16	Pass	Н	PK
6	12200.000	39.42	7.67	-41.90	46.10	51.29	74.00	22.71	Pass	Н	PK
7	1993.4994	31.66	3.46	-43.18	58.92	50.86	74.00	23.14	Pass	V	PK
8	3194.0129	33.28	4.64	-43.10	53.91	48.73	74.00	25.27	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	47.95	44.45	74.00	29.55	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.50	46.63	74.00	27.37	Pass	V	PK
11	9762.4508	37.70	6.72	-42.09	53.43	55.76	74.00	18.24	Pass	V	PK
12	12200.000	39.42	7.67	-41.90	45.78	50.97	74.00	23.03	Pass	V	PK
13	9762.4518	37.70	6.72	-42.10	34.15	36.47	54.00	17.53	Pass	V	AV
0						1					1

(S

S

Page 45 of 49

Mode	Mode:			SK Transn	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1994.2994	31.66	3.46	-43.18	54.18	46.12	74.00	27.88	Pass	Н	PK
2	4261.0841	34.17	4.49	-42.90	51.75	47.51	74.00	26.49	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.48	45.00	74.00	29.00	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	50.52	50.80	74.00	23.20	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	48.31	50.77	74.00	23.23	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	46.10	51.60	74.00	22.40	Pass	Н	PK
7	1596.8597	29.04	3.07	-42.91	62.13	51.33	74.00	22.67	Pass	V	PK
8	1993.8994	31.66	3.46	-43.18	59.44	51.38	74.00	22.62	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.93	45.45	74.00	28.55	Pass	V	PK
10	7438.2959	36.54	5.85	-42.11	52.33	52.61	74.00	21.39	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.49	48.95	74.00	25.05	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	47.38	52.88	74.00	21.12	Pass	V	PK
0	1	1			0		6	0.1		0	9

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32M00052601 for EUT external and internal photos.

