

TEST REPORT

Artificial Intelligence Terminal Computer **Product**

Trade mark N/A

PP23TQA Model/Type reference

Serial Number N/A

EED32M00211501 **Report Number** FCC ID 2AWMI-PP23TQA

Date of Issue: Sep. 14, 2020

47 CFR Part 15 Subpart C **Test Standards**

Test result PASS

Prepared for:

Beijing Puppy Robotics Co., Ltd. Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

proved by

Report Seal

Reviewed by:

Jok Yang

Sunlight Sun

Date:

Sep. 14, 2020

Sam Chuang

Check No.:3915617794

Page 2 of 111

2 Version

Sep. 14, 2020	(E)	Original	
	Sep. 14, 2020	Sep. 14, 2020	Sep. 14, 2020 Original

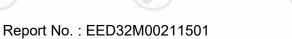
Report No.: EED32M00211501 Page 3 of 111

Test Summary

rest Summary		(6.77)		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

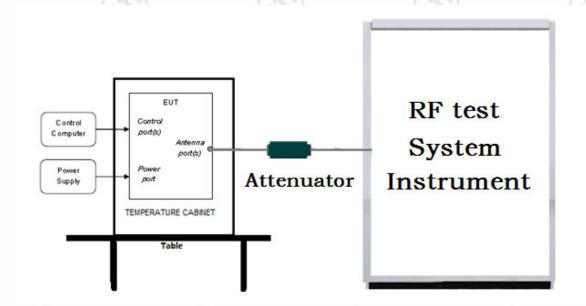
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested samples and the sample information are provided by the client.



4 Content

1 COVER PAGE				•••••	1
2 VERSION				•••••	
3 TEST SUMMARY.		Selection of the select	0.0		
	ENT				
					-
	ucted test setup				
	ted Emissions test setupucted Emissions test setup.				
	MENT				
	N				
	MATION				
	IATION				
	CRIPTION OF EUT				
	CIFICATION OF EUT				
	OF SUPPORT UNITS				
	V				
	M STANDARDS				
	FROM STANDARD CONDITIO				
	ATION REQUESTED BY THE C				
6.9 MEASUREMENT	UNCERTAINTY(95% CONFIDE	ENCE LEVELS, K=2)			9
7 EQUIPMENT LIST	•••••		•••••	•••••	10
8 RADIO TECHNICA	AL REQUIREMENTS SPEC	IFICATION			13
Annendix A): 20	OdB Occupied Bandwidth				18
	arrier Frequency Separation				
	well Time				
	opping Channel Number				
	onducted Peak Output Pow				
Appendix F): Ba	and-edge for RF Conducted	l Emissions			4
	F Conducted Spurious Emi				
	eudorandom Frequency Ho				
	enna Requirement				
	Power Line Conducted Em				
	estricted bands around fund diated Spurious Emissions.				
	TEST SETUP				
PHOTOGRAPHS OF	EUT CONSTRUCTIONAL	DETAILS		•••••	89



Report No. : EED32M00211501 Page 5 of 111

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

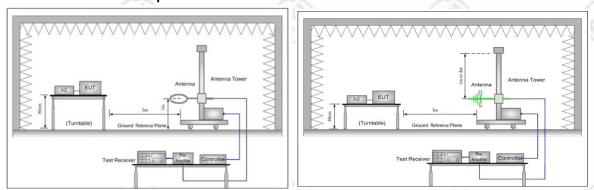


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

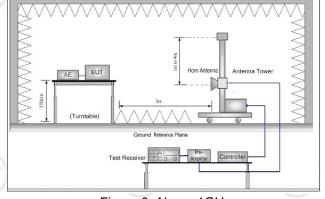
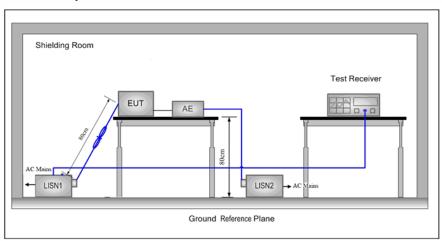


Figure 3. Above 1GHz



Page 6 of 111

Report No.: EED32M00211501

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environ	ment:	
Temperature:	24.0 °C	(0,0)
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test Mode	Tx/Rx	RF Channel			
l'est wode	I X/FX	Low(L)	Middle(M)	High(H)	
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 0	Channel 39	Channel78	
8DPSK(DH1,DH3,DH5)	2402WII IZ 2400 WITZ	2402MHz	2441MHz	2480MHz	

6 General Information

6.1 Client Information

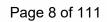
Applicant:	Beijing Puppy Robotics Co., Ltd.
Address of Applicant:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China
Manufacturer:	Beijing Puppy Robotics Co., Ltd.
Address of Manufacturer:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China
Factory:	Zhangzhou Wanlida Technology Co., Ltd.
Address of Factory:	Wanlida Industrial Zone, Jingcheng Town, Nanjing, Zhangzhou, Fujian, China

6.2 General Description of EUT

1.00						
Product Name:	Artificial Intell	Artificial Intelligence Terminal Computer				
Model No.(EUT):	PP23TQA					
Tark mark:	N/A			13		
EUT Supports Radios application	BT5.0 Dual n	node 2402MHz to 2480MHz		(0)		
Power Supply:	AC Adapter	MODEL:AP065G-19300 INPUT:100-240V~50/60Hz 1.5A Max OUTPUT:19V3A				
Sample Received Date:	Jul. 16, 2020	6.	(0,)			
Sample tested Date:	Jul. 16, 2020	to Sep. 04, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		(6,7)
Bluetooth Version:	BT Classic		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	205	
Number of Channel:	79	(3)	
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Test Power Grade:	Default		
Test Software of EUT:	QRCT		-0-
Antenna Type:	PIFA antenna		
Antenna Gain:	4.1 dBi		6
Test Voltage:	AC120V/60Hz		



(63)	^(*)	(8)	")	(A)		(600)	ll.
Operation	Frequency ea	ch of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No. : EED32M00211501 Page 9 of 111

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated oment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Report No. : EED32M00211501 Page 10 of 111

7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021			
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019 06-29-2020	07-25-2020 06-28-2021			
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(a)		·			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4						
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021			
PC-1	Lenovo	R4960d		<u> </u>	(6)			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021			
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3						

Conducted disturbance Test							
Equipment	Manufacturer	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		(
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				

Page 11 of 111

3M Semi/full-anechoic Chamber									
Equipment	Manufacturer	lanufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019 05-16-2020	07-25-2020 05-15-2021				
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021				
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020				
Multi device Controller	maturo	NCD/070/107 11112			<u></u>				
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019 06-29-2020	07-25-2020 06-28-2021				
Cable line	Fulai(7M)	SF106	5219/6A						
Cable line	Fulai(6M)	SF106	5220/6A	(-4)					
Cable line	Fulai(3M)	SF106	5216/6A	(C) /					
Cable line	Fulai(3M)	SF106	5217/6A						

Report No. : EED32M00211501 Page 12 of 111

1.431		(43)	(4)		[(8)
		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		(C.)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(C)	
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(c <u>i</u>)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
1	1	FCC Part15C	Subpart C-Intentional Radiators
1	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
3)	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
)	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

(cil)

Report No.: EED32M00211501

Page 14 of 111

Duty Cycle Result Table

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Limit	Verdict
	Ant1	LCH	4.643	5.513	76.82		PASS
GFSK	Ant1	МСН	4.557	5.426	76.82		PASS
	Ant1	HCH	6.510	7.380	76.82		PASS
π/4DQPSK	Ant1	LCH	5.883	7.258	63.31	('A)	PASS
	Ant1	MCH	5.503	6.878	63.31	<u>(31)</u>	PASS
	Ant1	HCH	3.395	4.770	63.31		PASS
	Ant1	LCH	6.492	7.357	76.96		PASS
8DPSK	Ant1	мсн	4.038	4.905	76.89		PASS
	Ant1	НСН	5.295	6.161	76.89		PASS



Test Graph

Report No. : EED32M00211501 Page 16 of 111

Report No. : EED32M00211501 Page 18 of 111

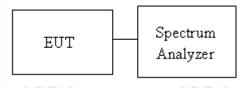
Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

<u>20 dB Bandwidth</u>: For reporting purposes only.

Occupied Bandwidth (99%): For reporting purposes only.


Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

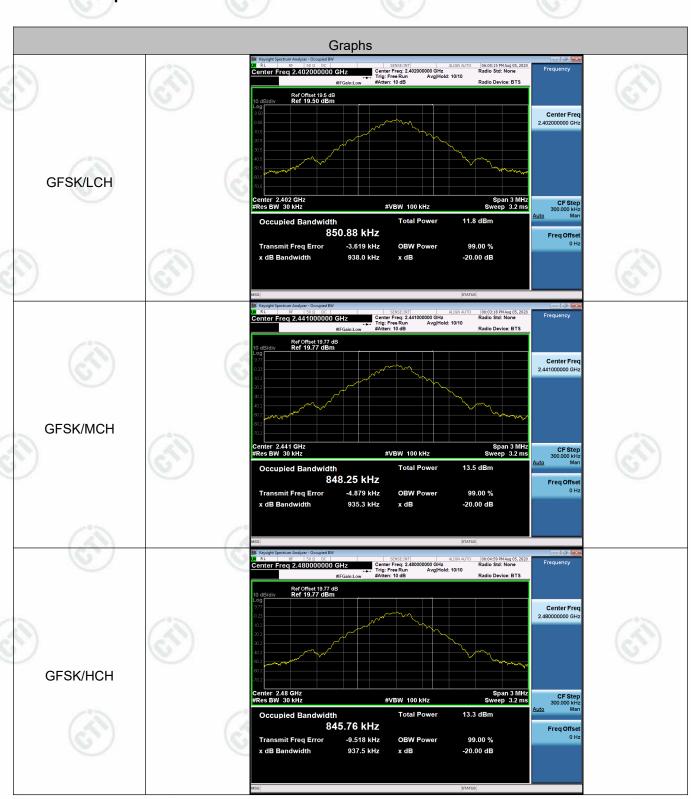
6.

Test Setup

Page 19 of 111

Test Result

Mode Channel.		20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict PASS	
GFSK	K LCH 0.9380		0.85088		
GFSK	МСН	0.9353	0.84825	PASS	
GFSK	НСН	0.9375	0.84576	PASS	
π/4DQPSK	LCH	1.278	1.1718	PASS	
π /4DQPSK	мсн	1.279	1.1690	PASS	
π /4DQPSK	НСН	1.277	1.1703	PASS	
8DPSK	LCH	1.291	1.1749	PASS	
8DPSK	мсн	1.290	1.1731	PASS	
8DPSK	нсн	1.293	1.1767	PASS	



Page 20 of 111

Test Graph

Page 21 of 111

Page 22 of 111

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

,	> two-thirds of the 20 dB bandwidth
Limit	/ two-tilings of the 20 db parigwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto.

 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

Test Setup

Page 24 of 111

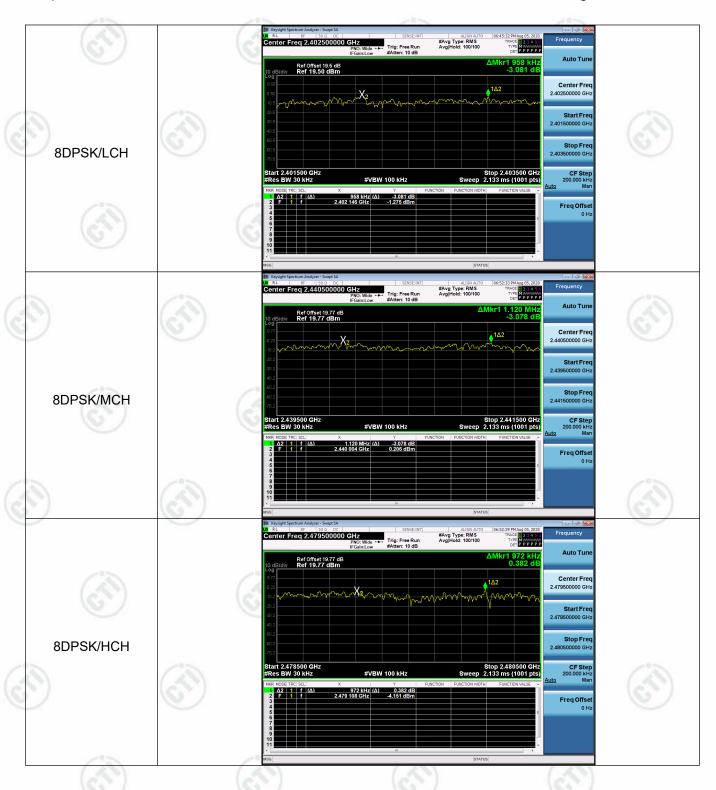
Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.096	PASS
GFSK	MCH	1.158	PASS
GFSK	HCH	0.990	PASS
π/4DQPSK	LCH	1.116	PASS
π/4DQPSK	MCH	0.982	PASS
π/4DQPSK	нсн	1.160	PASS
8DPSK	LCH	0.958	PASS
8DPSK	MCH	1.120	PASS
8DPSK	НСН	0.972	PASS

Test Graph



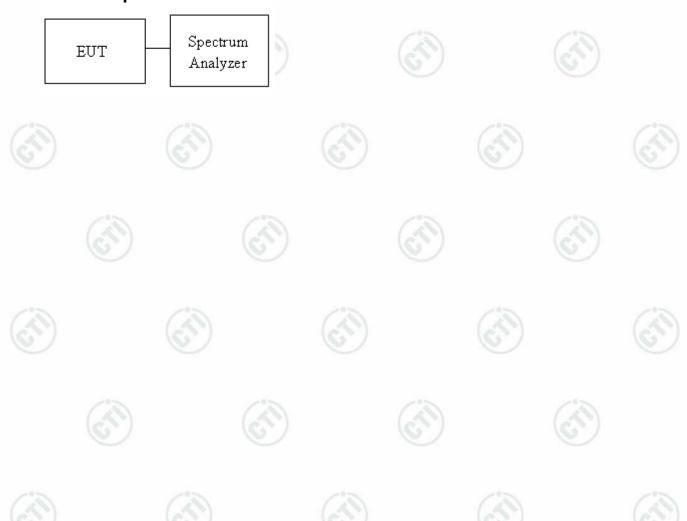
Page 26 of 111



Page 27 of 111

Appendix C): Dwell Time

Test Limit


According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

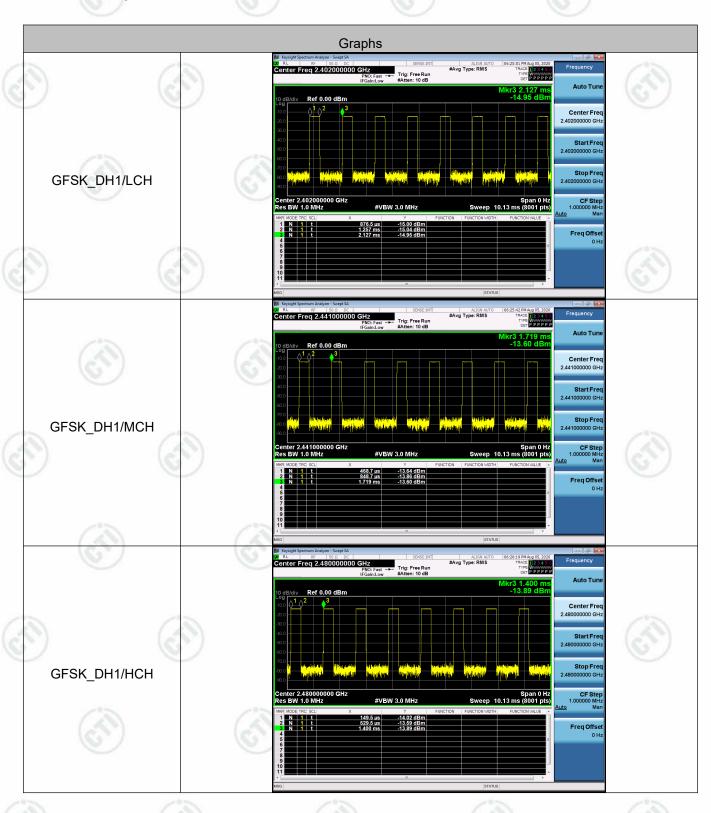
Test Setup

Page 29 of 111

Result Table

Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle	Verdict
GFSK	DH1	LCH	0.379997	320	0.122	0.30	PASS
GFSK	DH1	MCH	0.38	320	0.122	0.30	PASS
GFSK	DH1	НСН	0.38	320	0.122	0.30	PASS
GFSK	DH3	LCH	1.63527	160	0.262	0.65	PASS
GFSK	DH3	MCH	1.63526	160	0.262	0.65	PASS
GFSK	DH3	НСН	1.63653	160	0.262	0.65	PASS
GFSK	DH5	LCH	2.8704	106.7	0.306	0.76	PASS
GFSK	DH5	MCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	НСН	2.8612	106.7	0.305	0.76	PASS





Test Graph

Page 31 of 111



Page 32 of 111

Report No. : EED32M00211501 Page 33 of 111

Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

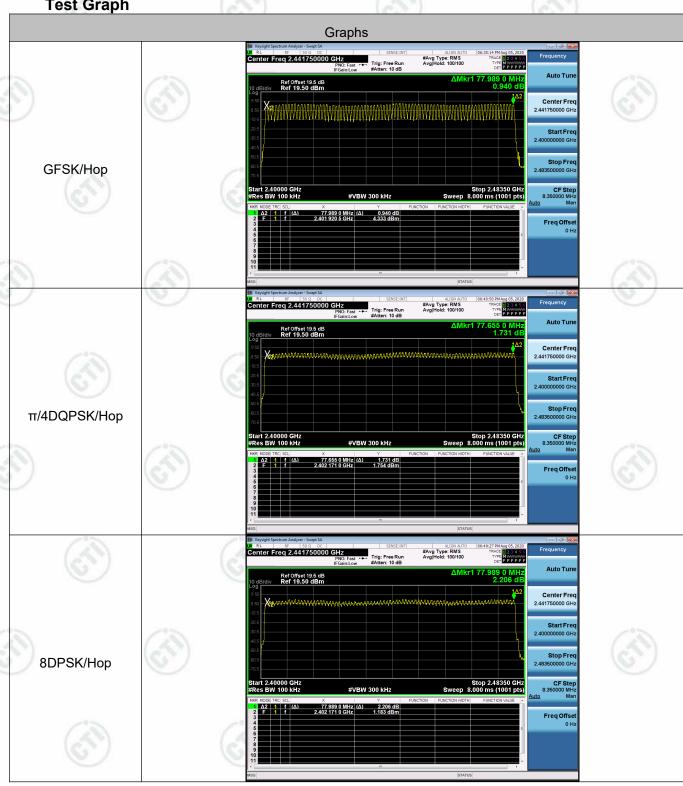
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

Test Setup

Page 34 of 111

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS



Report No.: EED32M00211501 Page 35 of 111

Test Graph

Report No. : EED32M00211501 Page 36 of 111

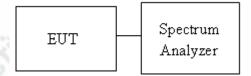
Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


C'5		
Limit	☐ Antenna with DG greater than 6 dBi:21dBm	
	[Limit = $30 - (DG - 6)$]	

Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Page 37 of 111

Result Table

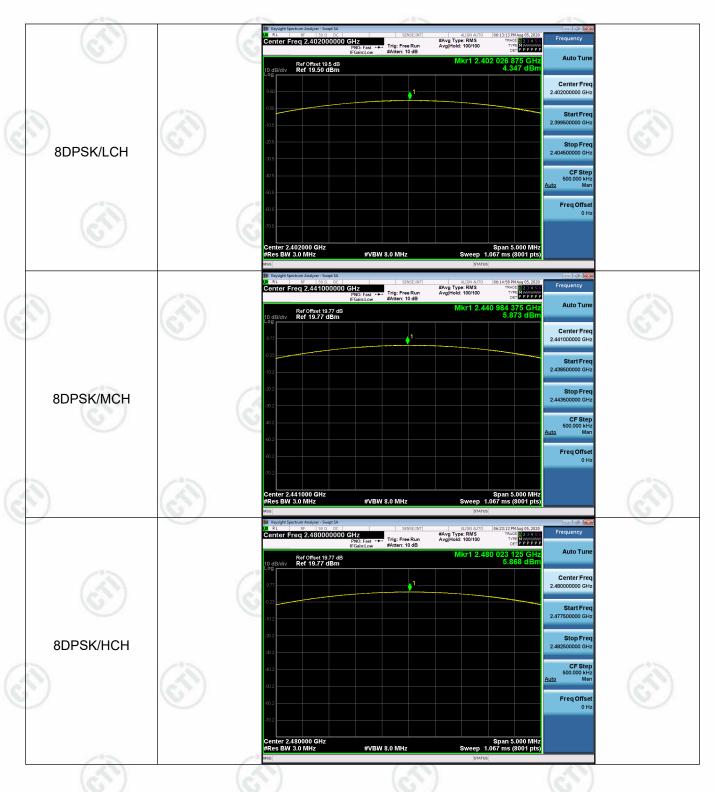
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	4.783	PASS
GFSK	MCH	6.432	PASS
GFSK	HCH	6.146	PASS
π/4DQPSK	LCH	3.997	PASS
π/4DQPSK	MCH	5.593	PASS
π/4DQPSK	HCH	5.489	PASS
8DPSK	LCH	4.347	PASS
8DPSK	MCH	5.873	PASS
8DPSK	HCH	5 868	PASS



Page 38 of 111

Test Graph

Page 39 of 111



Page 40 of 111

Page 41 of 111

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit	-20 dBc

.

Test Procedure

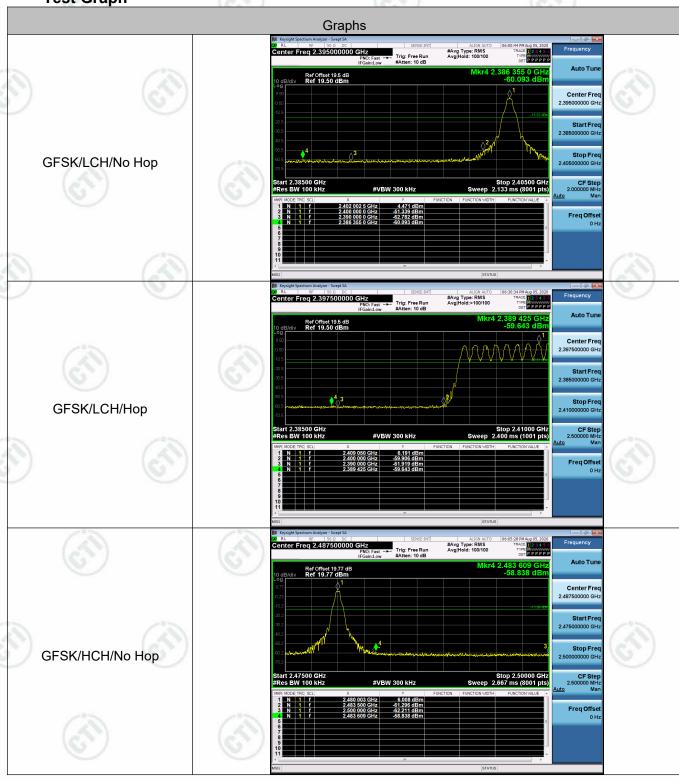
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Page 42 of 111

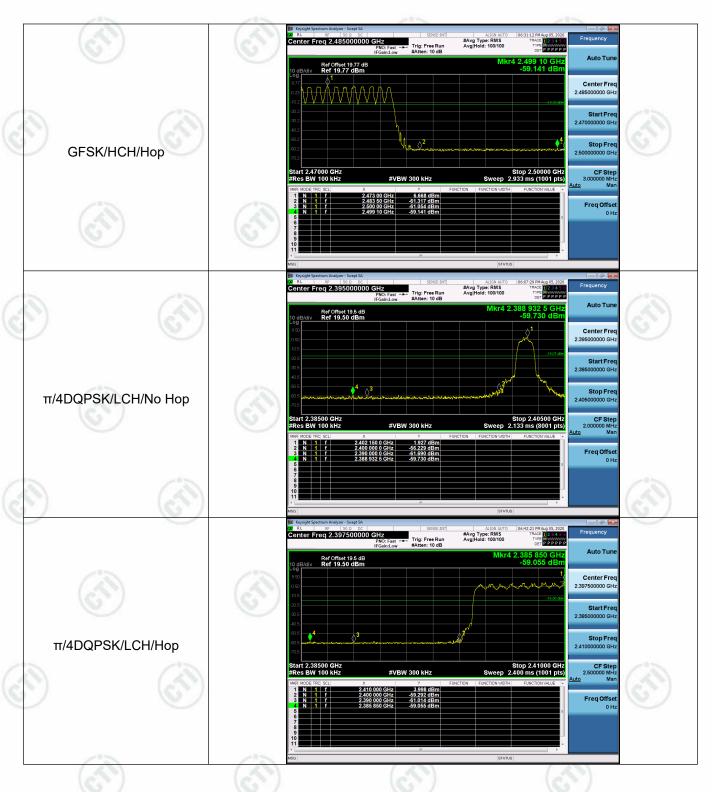
Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
0501		0.400	4.471	Off	-60.093	-15.53	PASS
GFSK	LCH	2402	6.191	On	-59.643	-13.81	PASS
05014		0.400	6.008	Off	-58.838	-13.99	PASS
GFSK	HCH	2480	6.668	On	-59.141	-13.33	PASS
/AD ODOK)	0.400	1.927	Off	-59.730	-18.07	PASS
π/4DQPSK	LCH	2402	3.998	On	-59.055	-16	PASS
-/4D0D0K	11011	0.400	3.538	Off	-59.448	-16.46	PASS
π/4DQPSK	HCH	2480	3.930	On	-58.651	-16.07	PASS
oppou	1011	0.400	1.936	Off	-60.101	-18.06	PASS
8DPSK	LCH	2402	3.779	On	-59.045	-16.22	PASS
ODDOK	11011	0400	3.703	Off	-58.474	-16.3	PASS
8DPSK	HCH	2480	4 265	On	-58 268	-15 74	PASS



Page 43 of 111

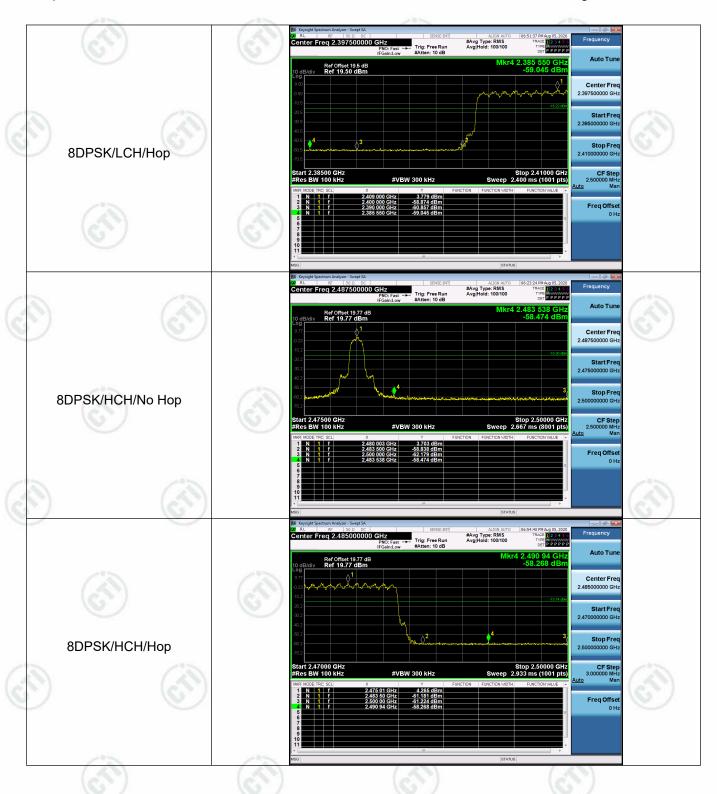
Test Graph



Page 44 of 111



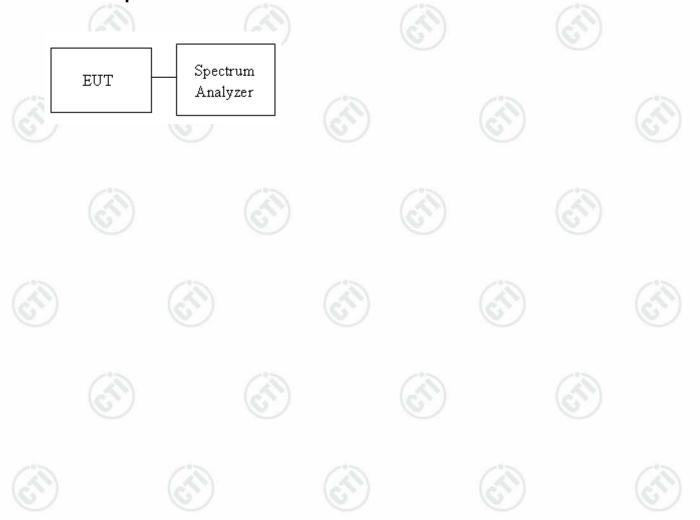
Page 45 of 111



Page 46 of 111

Appendix G): RF Conducted Spurious Emissions

Test Limit


According to §15.247(d),

1	Limit	-20 dBc

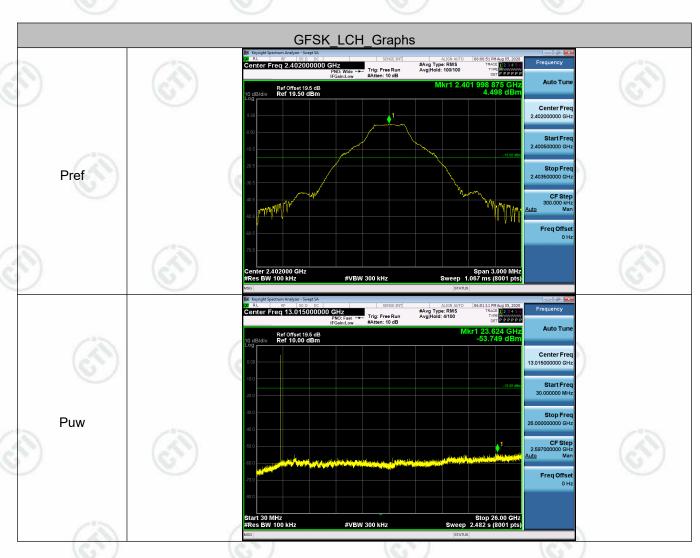
Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Test Setup

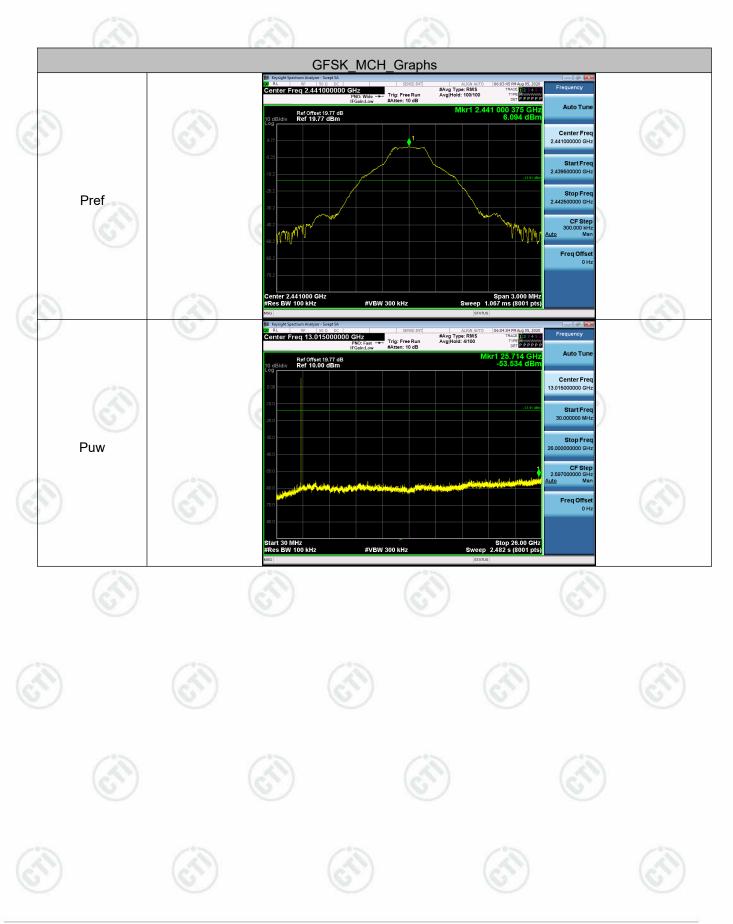
Page 48 of 111

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	4.498	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	6.094	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	5.934	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.784	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	3.233	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	3.565	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.908	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	3.371	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	3.594	<limit< td=""><td>PASS</td></limit<>	PASS



Page 49 of 111

Test Graph



Page 50 of 111

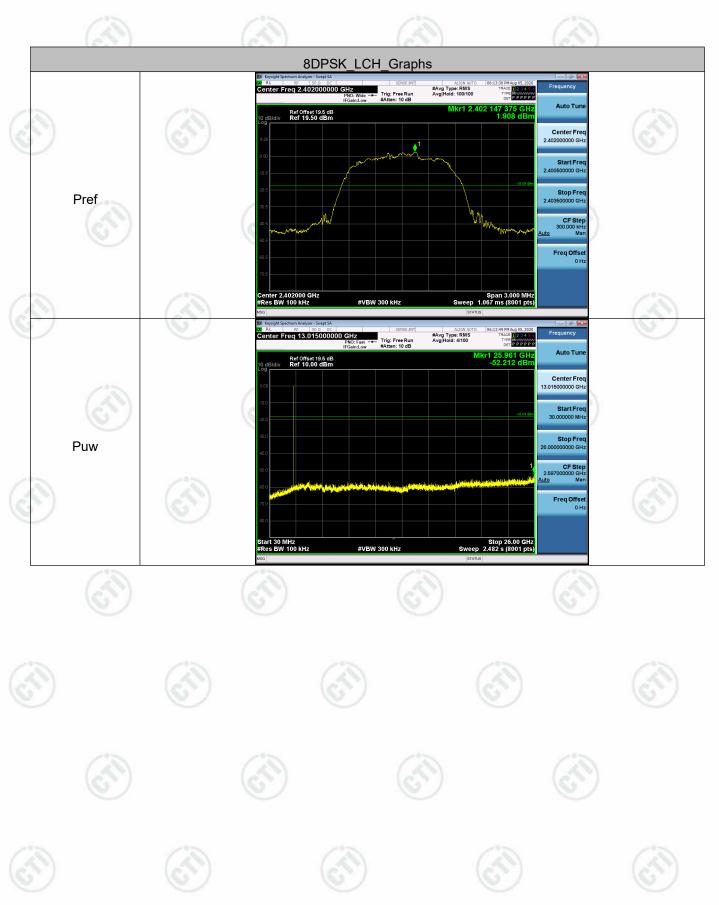
Page 51 of 111



Page 52 of 111

Page 53 of 111

Page 54 of 111



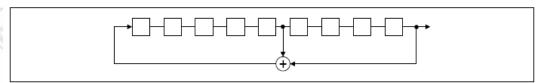
Page 55 of 111

Page 56 of 111

Page 57 of 111

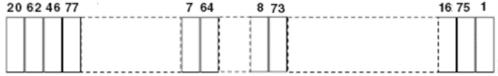
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channe carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:


Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

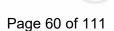
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

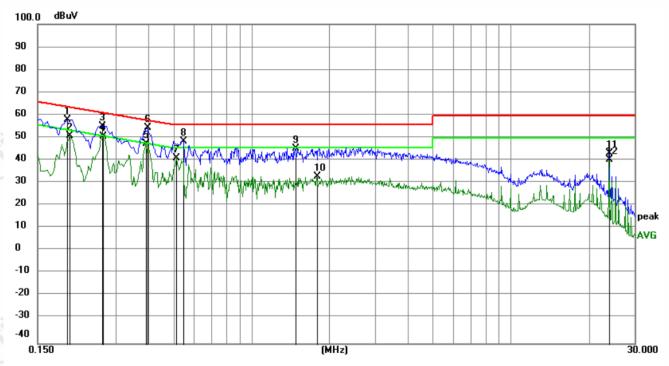


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.1 dBi.

Test Procedure	: Test frequency range :150KH	Test frequency range :150KHz-30MHz							
	 The mains terminal disturb The EUT was connected to Stabilization Network) which power cables of all other which was bonded to the grant for the unit being measure multiple power cables to a exceeded. 	o AC power source thro ich provides a 50Ω/50μl units of the EUT were c ground reference plane i ed. A multiple socket ou	ugh a LISN 1 (Line $H + SΩ$ linear imperionnected to a secon the same way as at let strip was used	Imped dance and LI the L to co					
	The tabletop EUT was plated reference plane. And for fluid horizontal ground reference.	oor-standing arrangeme		_					
	4) The test was performed we EUT shall be 0.4 m from the reference plane was bond 1 was placed 0.8 m from ground reference plane for plane. This distance was the All other units of the EUT LISN 2.	he vertical ground refere ed to the horizontal grou the boundary of the ur for LISNs mounted on petween the closest poir	ence plane. The vert und reference plane it under test and b top of the ground its of the LISN 1 an	tical great tical great the condect of the condect					
	 In order to find the maxim all of the interface cable conducted measurement. 			•					
Limit:	Frequency range (MHz)	Limit (dE	BuV)	10					
	r requericy range (wir iz)	Quasi-peak	Average	10.					
	0.15-0.5	66 to 56*	56 to 46*						
				I					
	0.5-5	56	46						

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency



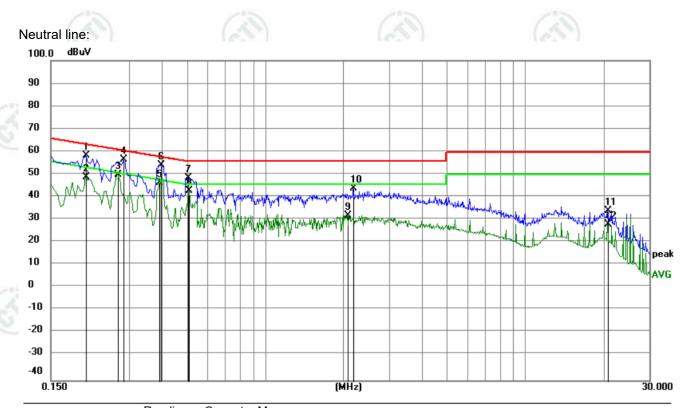
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1949	48.29	9.89	58.18	63.83	-5.65	QP	
2		0.1995	41.14	9.87	51.01	53.63	-2.62	AVG	
3		0.2670	45.64	9.84	55.48	61.21	-5.73	QP	
4		0.2686	40.85	9.84	50.69	51.16	-0.47	AVG	
5	*	0.3930	37.78	9.77	47.55	48.00	-0.45	AVG	
6		0.3975	44.78	9.77	54.55	57.91	-3.36	QP	
7		0.5155	31.74	9.71	41.45	46.00	-4.55	AVG	
8		0.5460	39.16	9.69	48.85	56.00	-7.15	QP	
9		1.4819	35.91	9.61	45.52	56.00	-10.48	QP	
10		1.7880	23.76	9.62	33.38	46.00	-12.62	AVG	
11		24.0000	33.22	10.11	43.33	60.00	-16.67	QP	
12		24.0000	30.63	10.11	40.74	50.00	-9.26	AVG	



	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
_	1	0.2040	48.62	9.87	58.49	63.45	-4.96	QP	
-	2	0.2040	39.29	9.87	49.16	53.45	-4.29	AVG	
-	3 *	0.2714	40.29	9.83	50.12	51.07	-0.95	AVG	
	4	0.2850	46.87	9.83	56.70	60.67	-3.97	QP	
	5	0.3930	37.00	9.77	46.77	48.00	-1.23	AVG	
_	6	0.3975	44.73	9.77	54.50	57.91	-3.41	QP	
	7	0.5055	39.16	9.72	48.88	56.00	-7.12	QP	
	8	0.5100	33.52	9.71	43.23	46.00	-2.77	AVG	
_	9	2.0670	22.82	9.63	32.45	46.00	-13.55	AVG	
	10	2.1795	34.49	9.64	44.13	56.00	-11.87	QP	
	11	20.7375	24.47	10.06	34.53	60.00	-25.47	QP	
_	12	20.7375	18.44	10.06	28.50	50.00	-21.50	AVG	

Notes:

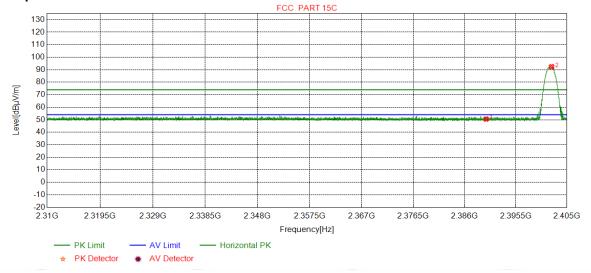
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32M00211501 Page 63 of 111

Appendix K) Restricted bands around fundamental frequency (Radiated)

ı	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		Al 4011-	Peak	1MHz	3MHz	Peak	5
		Above 1GHz	Peak	1MHz	10Hz	Average	
-	Test Procedure:	Below 1GHz test procedu	re as below:				
		 a. The EUT was placed of at a 3 meter semi-anecd determine the position of the EUT was set 3 methods was mounted on the topolarization of the anternal height is well determine the maximum polarizations of the anternal was tuned table was turned from the antennal was tuned table was turned from the European of the European o	n the top of a rota hoic camber. The of the highest racters away from the of a variable-hearing are set to make the field are set to Peaum Hold Mode. Ind of the restricted pliance. Also meum analyzer plot.	e table wand a diation. The interference ight anterneter to food strength hake the newas arrand meter to degrees tak Detect I ded band casure any	ence-receinna tower. ur meters and Both horneasuremented to its ware 4 meters and find the refunction and losest to the remissions	iving antenna above the gro rizontal and vient. worst case ar and the rotata maximum rea nd Specified he transmit s in the restric	o, which ound to ertical nd then able iding.
		g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the li. The radiation measurer Transmitting mode, and j. Repeat above procedure	e is the test site, ber and change f ne distance is 1 m owest channel , t ments are perforr I found the X axis	form table neter and the Highes ned in X, s positioni	0.8 metre table is 1.5 st channel Y, Z axis p ng which it	to 1.5 metre). positioning for t is worse cas	
	Limit:	Frequency	Limit (dBuV/n			mark	
		30MHz-88MHz	40.0	,	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	CA		eak Value	
		216MHz-960MHz	46.0	10	Quasi-pe	eak Value	
		960MHz-1GHz	54.0			eak Value	
			54.0			ge Value	
		Above 1GHz	74.0		-	Value	
		(6.7)			1 3 3 111		





Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.05	50.55	74.00	23.45	Pass	Horizontal
2	2402.1498	32.26	13.31	-43.12	89.90	92.35	74.00	-18.35	Pass	Horizontal

Pass

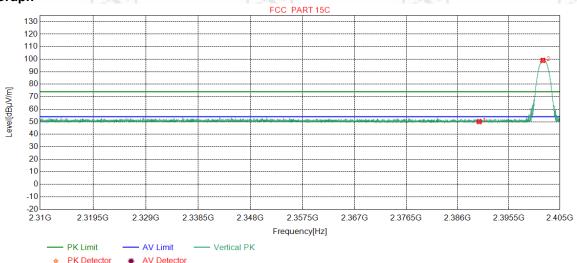
Vertical

-25.07

Report No. : EED32M00211501 Page 65 of 111

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

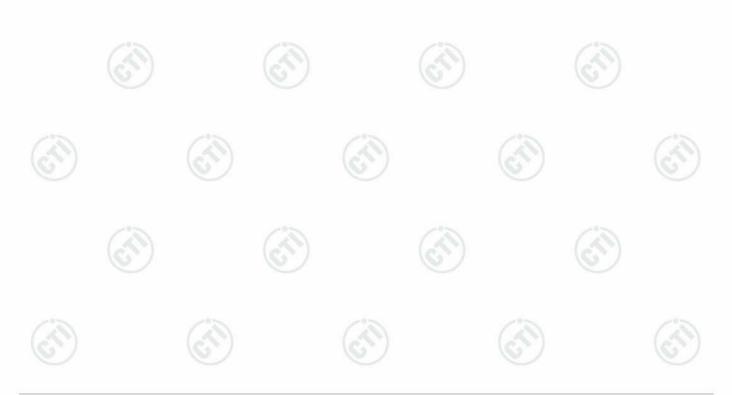

2

2401.8395

32.26

13.31

-43.12

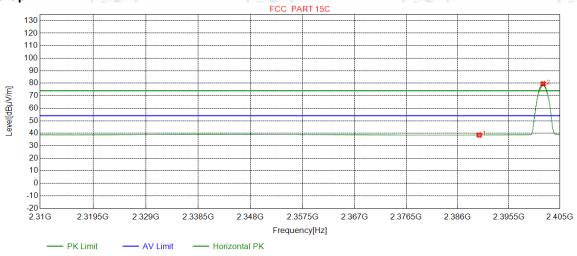


Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2390.0000 32.25 1 13.37 -43.12 47.63 50.13 74.00 23.87 Vertical

96.62

99.07

74.00



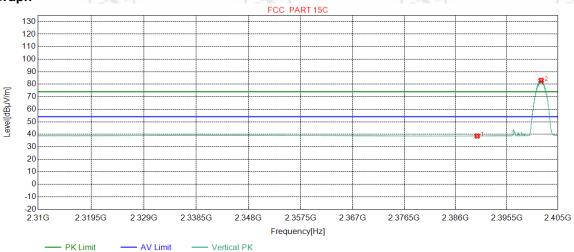
Page 66 of 111 Report No.: EED32M00211501

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

★ PK Detector * AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.09	38.59	54.00	15.41	Pass	Horizontal
2	2401.8838	32.26	13.31	-43.12	77.09	79.54	54.00	-25.54	Pass	Horizontal



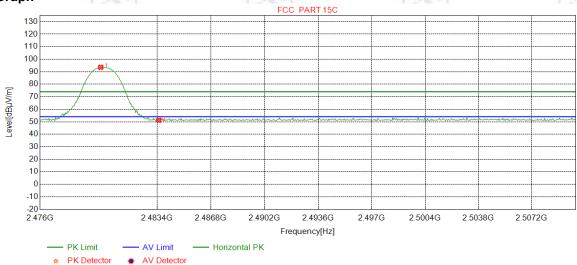
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

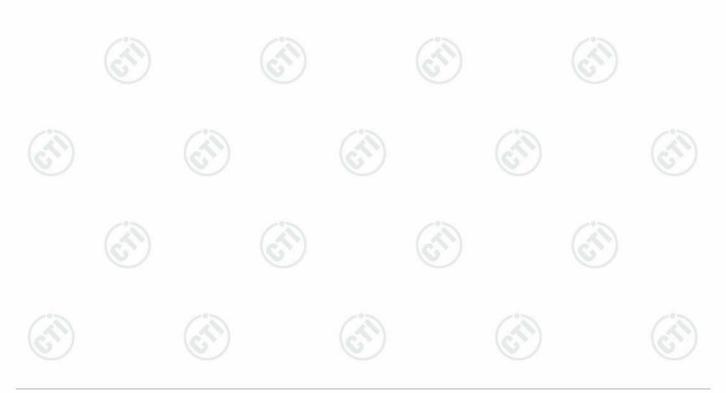
— PK Limit — AV Limit — Vertical PK

★ PK Detector

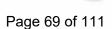

★ AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.13	38.63	54.00	15.37	Pass	Vertical
2	2401.8838	32.26	13.31	-43.12	80.61	83.06	54.00	-29.06	Pass	Vertical

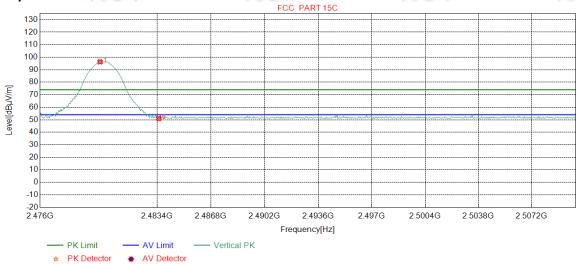


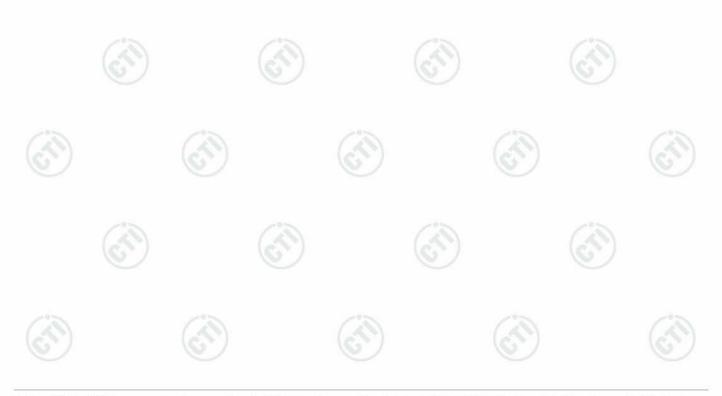


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

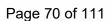


Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2479.8298 -19.55 1 32.37 13.39 -43.10 90.89 93.55 74.00 Horizontal Pass 13.38 2 2483.5000 32.38 -43.11 48.51 51.16 74.00 22.84 Horizontal

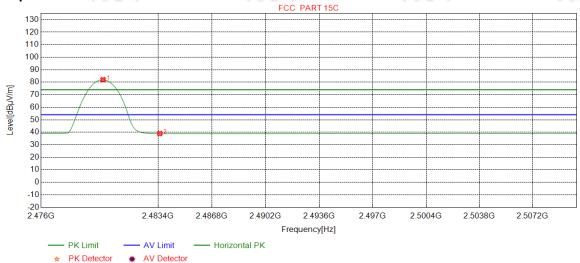


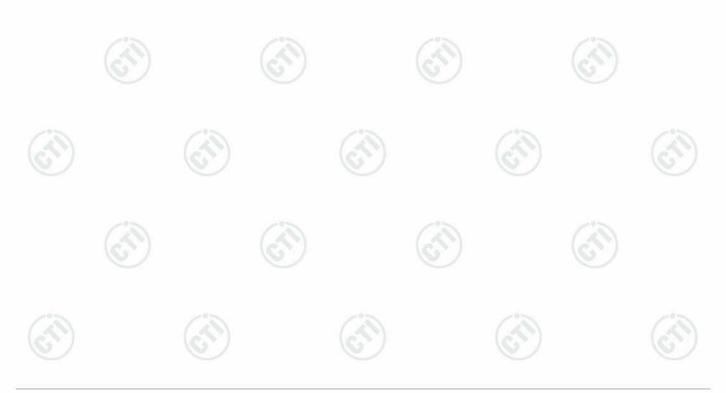


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		



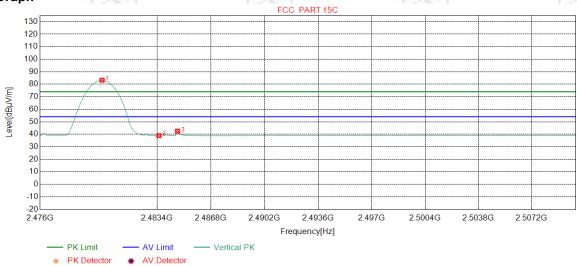
NO	Freq. [MHz]	Factor [dB]	loss [dB]	gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	93.64	96.30	74.00	-22.30	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.35	51.00	74.00	23.00	Pass	Vertical





Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2479.9149 32.37 -28.06 1 13.39 -43.10 79.40 82.06 54.00 Horizontal Pass 13.38 2 2483.5000 32.38 -43.11 36.32 38.97 54.00 15.03 Horizontal

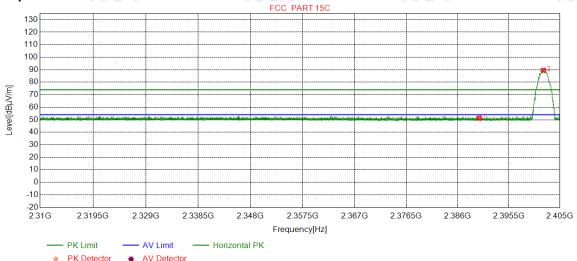


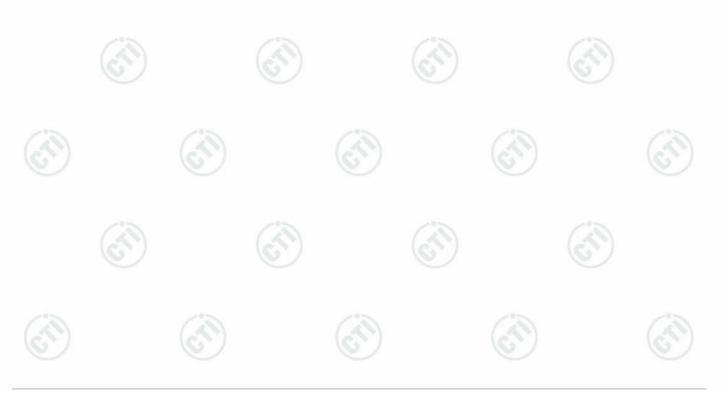


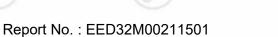
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2479.9149 -29.20 1 32.37 13.39 -43.10 80.54 83.20 54.00 Vertical Pass 2 2483.5000 32.38 13.38 -43.11 36.31 38.96 54.00 15.04 Vertical **Pass** 3 2484.6809 32.38 13.37 -43.10 39.82 42.47 54.00 11.53 Vertical

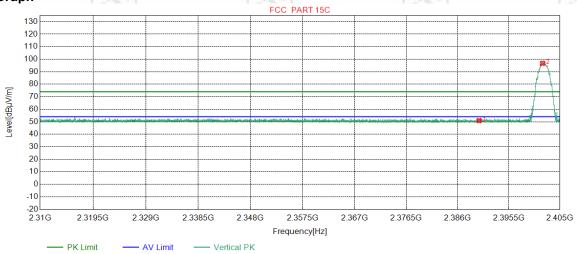
AV Detector


www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333




Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

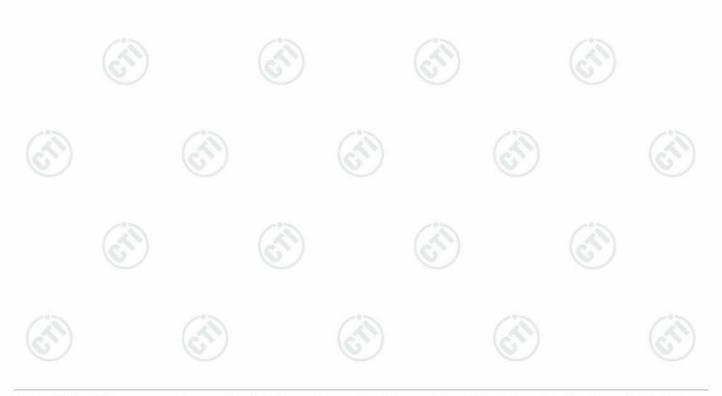
Ant Cable Pream Freq. Reading Limit Margin Level Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2390.0000 1 32.25 13.37 -43.12 48.87 51.37 74.00 22.63 Horizontal Pass 2 2401.9345 32.26 13.31 -43.12 87.00 89.45 74.00 -15.45 Horizontal



Mode: 8DPSK Transmitting Channel: 2402

Remark: PK

Test Graph

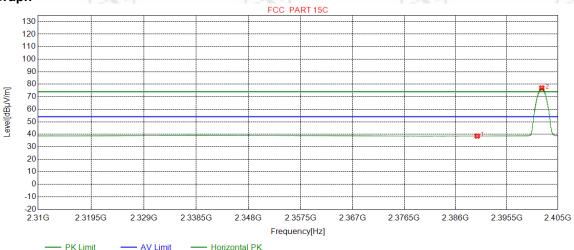


PK Limit — AV Limit — Vertical PF

★ PK Detector

★ AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.42	50.92	74.00	23.08	Pass	Vertical
2	2401.7825	32.26	13.31	-43.12	94.26	96.71	74.00	-22.71	Pass	Vertical

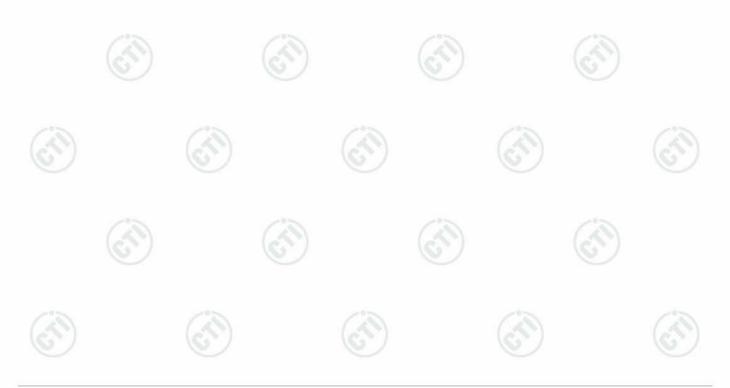


Report No.: EED32M00211501

Page 74 of 111

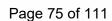
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

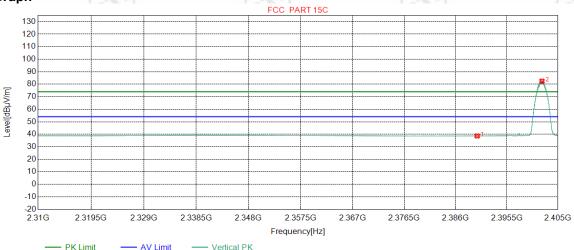


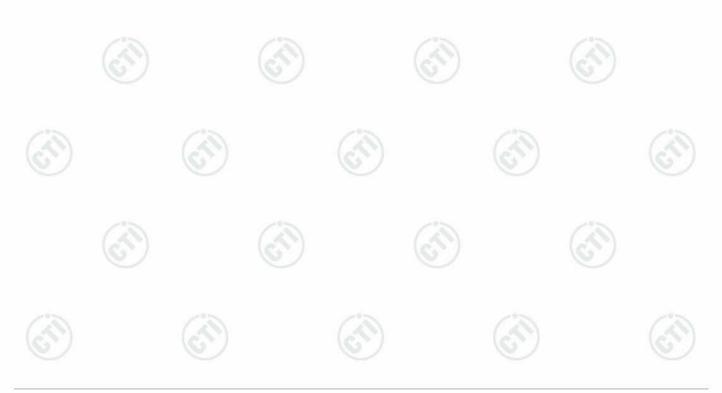
PK Limit — AV Limit — Horizontal PK

★ PK Detector


★ AV Detector

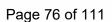
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.07	38.57	54.00	15.43	Pass	Horizontal
2	2401.9978	32.26	13.31	-43.12	74.51	76.96	54.00	-22.96	Pass	Horizontal



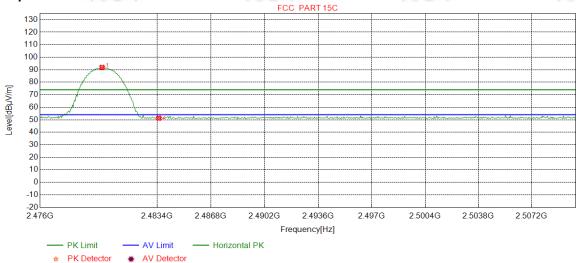


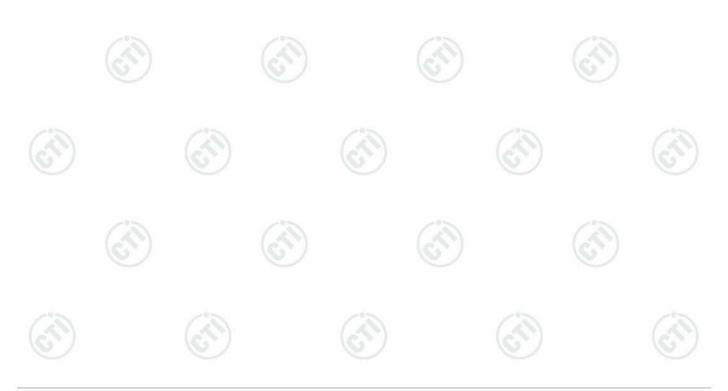
Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph



	Freq.	Ant	Cable	Pream	Reading	Level	Limit	Margin		
NO	[MHz]	Factor [dB]	loss [dB]	gain [dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Vertical
2	2402.0358	32.26	13.31	-43.12	80.02	82.47	54.00	-28.47	Pass	Vertical

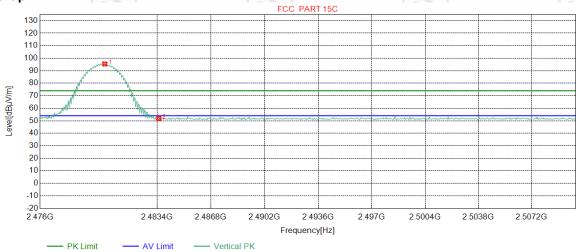




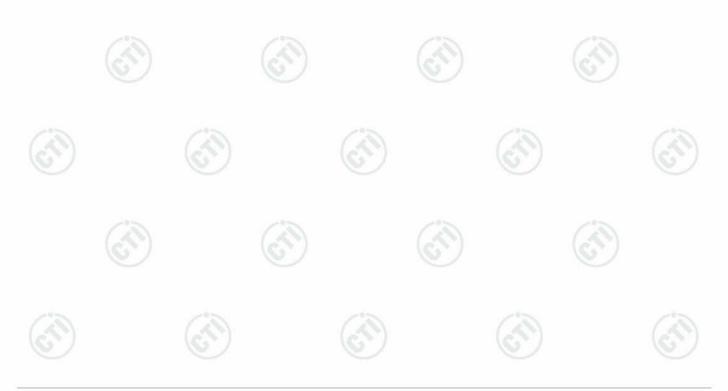
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2479.9149 32.37 -17.85 1 13.39 -43.10 89.19 91.85 74.00 Horizontal Pass 13.38 2 2483.5000 32.38 -43.11 48.60 51.25 74.00 22.75 Horizontal


★ PK Detector

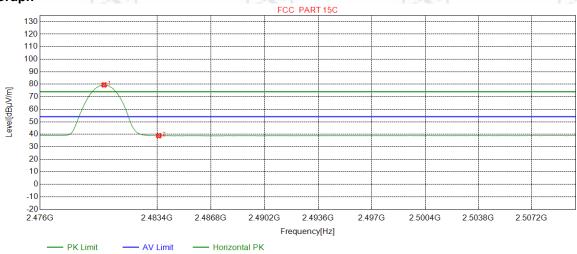
AV Detector



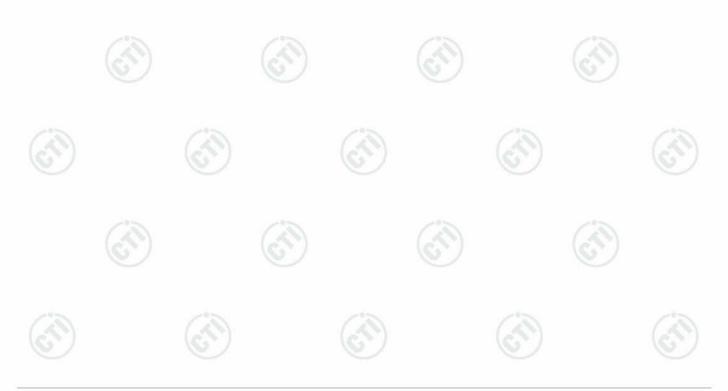
Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

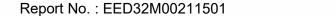
Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2480.0851 32.37 1 13.39 -43.10 92.76 95.42 74.00 -21.42 Vertical Pass 2 2483.5000 32.38 13.38 -43.11 49.24 51.89 74.00 22.11 Vertical


★ PK Detector

AV Detector

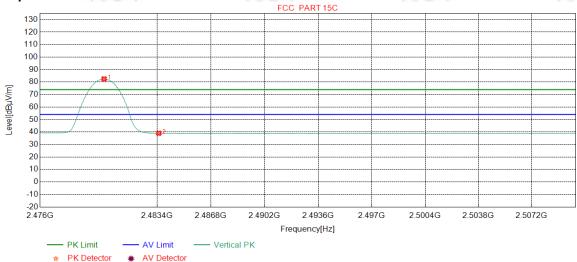


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph



Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] Pass 2480.0426 32.37 -25.45 1 13.39 -43.10 76.79 79.45 54.00 Horizontal Pass 13.38 2 2483.5000 32.38 -43.11 36.22 38.87 54.00 15.13 Horizontal



Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	79.94	82.60	54.00	-28.60	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.35	39.00	54.00	15.00	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00211501 Page 80 of 111

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1CHz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

960MHz-1GHz

Above 1GHz

Limit:	Fraguenov	Field strength	Limit	Remark	Measurement
	Frequency	(microvolt/meter) (dBuV/m)		Remark	distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-)	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
(0,)	216MHz-960MHz	200	46.0	Quasi-peak	3

500

500

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

54.0

54.0

Quasi-peak

Average

Report No.: EED32M00211501

Page 81 of 111

Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

	Mode:			ransmitting]		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	34.9475	10.70	0.65	-31.43	38.66	18.58	40.00	21.42	Pass	Н	PK
2	123.9054	8.61	1.31	-32.04	46.26	24.14	43.50	19.36	Pass	Н	PK
3	265.5396	12.51	1.94	-31.87	56.40	38.98	46.00	7.02	Pass	Н	PK
4	342.3712	14.13	2.21	-31.84	57.87	42.37	46.00	3.63	Pass	Н	PK
5	532.0252	17.64	2.77	-31.92	53.47	41.96	46.00	4.04	Pass	Н	PK
6	840.1280	21.38	3.50	-31.89	44.09	37.08	46.00	8.92	Pass	Н	PK
7	35.0445	10.71	0.65	-31.42	41.37	21.31	40.00	18.69	Pass	V	PK
8	56.1926	12.21	0.85	-31.92	40.15	21.29	40.00	18.71	Pass	V	PK
9	150.0010	7.55	1.45	-32.01	48.76	25.75	43.50	17.75	Pass	V	PK
10	355.5646	14.42	2.25	-31.85	57.04	41.86	46.00	4.14	Pass	V	PK
11	532.0252	17.64	2.77	-31.92	51.45	39.94	46.00	6.06	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	43.79	36.91	46.00	9.09	Pass	V	PK

Transmitter Emission above 1GHz

Mode	Mode:			Γransmitti	ng			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1775.8776	30.22	3.28	-42.70	54.98	45.78	74.00	28.22	Pass	Н	PK
2	4253.0835	34.15	4.50	-42.89	53.25	49.01	74.00	24.99	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	47.08	43.33	74.00	30.67	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.47	46.43	74.00	27.57	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.55	48.72	74.00	25.28	Pass	Н	PK
6	11570.571	38.96	7.52	-41.99	48.62	53.11	74.00	20.89	Pass	Н	PK
7	1594.4594	29.02	3.07	-42.91	56.54	45.72	74.00	28.28	Pass	V	PK
8	3192.0128	33.28	4.64	-43.11	53.57	48.38	74.00	25.62	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.45	43.70	74.00	30.30	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.65	47.61	74.00	26.39	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.23	49.40	74.00	24.60	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.94	51.95	74.00	22.05	Pass	V	PK

Mode	Mode:			Transmitti	ng		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1777.6778	30.23	3.28	-42.70	56.73	47.54	74.00	26.46	Pass	Н	PK
2	4254.0836	34.16	4.50	-42.90	53.78	49.54	74.00	24.46	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	46.38	42.89	74.00	31.11	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.53	46.67	74.00	27.33	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	48.13	50.45	74.00	23.55	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	45.80	51.00	74.00	23.00	Pass	Н	PK
7	1990.6991	31.64	3.46	-43.18	57.69	49.61	74.00	24.39	Pass	V	PK
8	4252.0835	34.15	4.51	-42.90	52.75	48.51	74.00	25.49	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	48.32	44.83	74.00	29.17	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.45	46.59	74.00	27.41	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.94	49.26	74.00	24.74	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	45.18	50.38	74.00	23.62	Pass	V	PK



Page 83 of 111

Mode	Mode:			Transmitti	ng		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1992.8993	31.65	3.46	-43.18	55.55	47.48	74.00	26.52	Pass	Н	PK
2	4249.0833	34.15	4.51	-42.90	53.62	49.38	74.00	24.62	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.16	44.68	74.00	29.32	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.89	47.17	74.00	26.83	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.71	48.17	74.00	25.83	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	47.27	52.77	74.00	21.23	Pass	Н	PK
7	2165.9166	31.93	3.65	-43.16	60.37	52.79	74.00	21.21	Pass	V	PK
8	4248.0832	34.15	4.51	-42.90	56.29	52.05	74.00	21.95	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.65	45.17	74.00	28.83	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	47.48	47.76	74.00	26.24	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.58	49.04	74.00	24.96	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	47.54	53.04	74.00	20.96	Pass	V	PK

Mode	Mode:			Transmit	ting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1995.8996	31.67	3.47	-43.19	58.11	50.06	74.00	23.94	Pass	Н	PK
2	4249.0833	34.15	4.51	-42.90	53.12	48.88	74.00	25.12	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	47.27	43.52	74.00	30.48	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.99	46.95	74.00	27.05	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.65	48.82	74.00	25.18	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.31	51.32	74.00	22.68	Pass	Н	PK
7	1990.4991	31.64	3.46	-43.18	57.99	49.91	74.00	24.09	Pass	V	PK
8	4255.0837	34.16	4.50	-42.90	55.29	51.05	74.00	22.95	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	47.26	43.51	74.00	30.49	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.23	46.19	74.00	27.81	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.60	48.77	74.00	25.23	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.82	51.83	74.00	22.17	Pass	V	PK

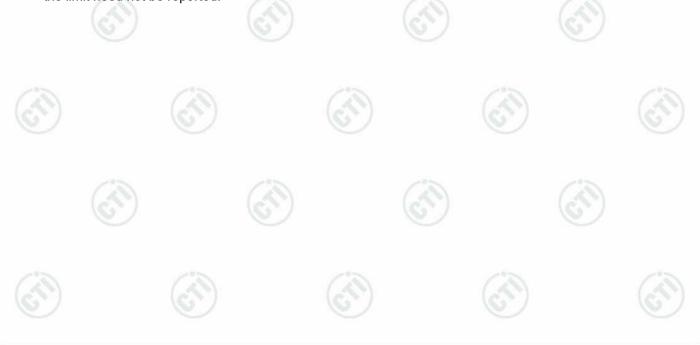
Report No.: EED32M00211501

Page 84 of 111

Mode	Mode:			8DPSK Transmitting						2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1994.6995	31.67	3.46	-43.19	55.80	47.74	74.00	26.26	Pass	Н	PK
2	4254.0836	34.16	4.50	-42.90	50.66	46.42	74.00	27.58	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	46.51	43.02	74.00	30.98	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	46.78	46.92	74.00	27.08	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	46.24	48.56	74.00	25.44	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	45.99	51.19	74.00	22.81	Pass	Н	PK
7	1992.2992	31.65	3.46	-43.18	57.02	48.95	74.00	25.05	Pass	Н	AV
8	4252.0835	34.15	4.51	-42.90	56.84	52.60	74.00	21.40	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	46.49	43.00	74.00	31.00	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	46.74	46.88	74.00	27.12	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	47.45	49.77	74.00	24.23	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	45.56	50.76	74.00	23.24	Pass	V	PK

Report No. : EED32M00211501 Page 85 of 111

	192	1		100					(63.7)			
Mod	le:		8DPSK Transmitting					Channel:		2480		
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1997.6998	31.68	3.47	-43.19	55.48	47.44	74.00	26.56	Pass	Н	PK	
2	4252.0835	34.15	4.51	-42.90	52.48	48.24	74.00	25.76	Pass	Н	PK	
3	4960.0000	34.50	4.82	-42.80	48.30	44.82	74.00	29.18	Pass	Н	PK	
4	7440.0000	36.54	5.85	-42.11	47.12	47.40	74.00	26.60	Pass	Н	PK	
5	9920.0000	37.77	6.79	-42.10	46.83	49.29	74.00	24.71	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.90	47.07	52.57	74.00	21.43	Pass	Н	PK	
7	1998.2998	31.69	3.47	-43.20	58.24	50.20	74.00	23.80	Pass	V	PK	
8	4256.0837	34.16	4.50	-42.90	55.70	51.46	74.00	22.54	Pass	V	PK	
9	4960.0000	34.50	4.82	-42.80	47.58	44.10	74.00	29.90	Pass	V	PK	
10	7440.0000	36.54	5.85	-42.11	47.00	47.28	74.00	26.72	Pass	V	PK	
11	9920.0000	37.77	6.79	-42.10	45.68	48.14	74.00	25.86	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.90	46.57	52.07	74.00	21.93	Pass	V	PK	


Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

