

Report No. : EED32M00211502 Page 1 of 52

Product : Artificial Intelligence Terminal Computer

Trade mark : N/A

Model/Type reference : PP23TQA

Serial Number : N/A

Report Number : EED32M00211502 **FCC ID** : 2AWMI-PP23TQA

Date of Issue : Sep. 14, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Beijing Puppy Robotics Co., Ltd. Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

proved by

Report Seal

unlight Sun

Reviewed by:

Jok Yang

Sunlight Sun

Date:

Sep. 14, 2020

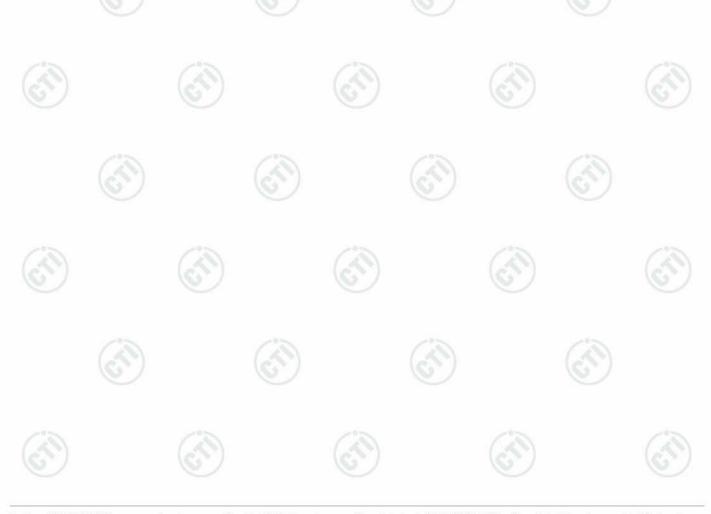
Sam Chuang

Check No.:3915617794

2 Version

Version No. Date		Description
00	Sep. 14, 2020	Original
	(35)	

Page 3 of 52


3 Test Summary

o root oanniary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

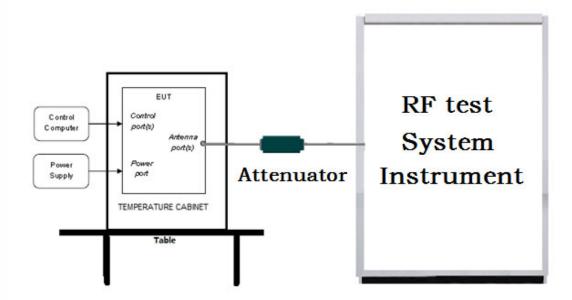
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Page 4 of 52

4 Content

1 COVER PAGE	1
2 VERSION	
3 TEST SUMMARY	3
4 CONTENT	
5 TEST REQUIREMENT	
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION.	
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	49
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	52



Report No.: EED32M00211502 Page 5 of 52

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

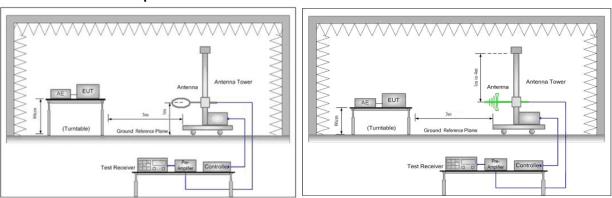


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

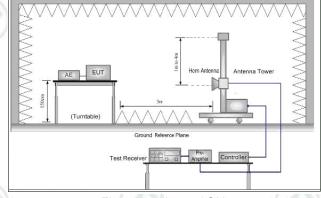
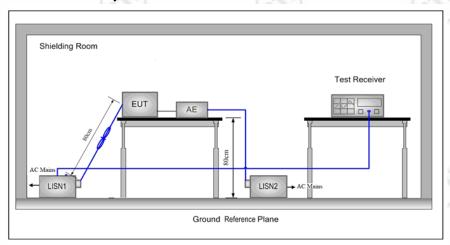
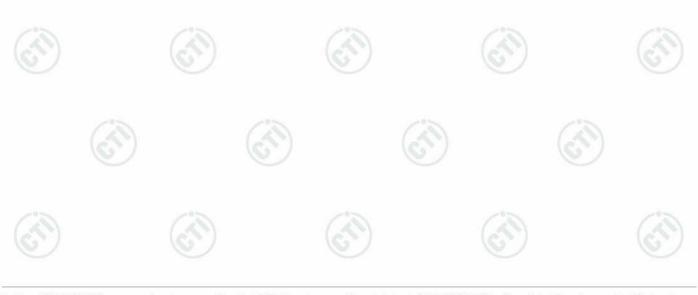



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010mbar				

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.400.441 0.400.441	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No. : EED32M00211502 Page 7 of 52

6 General Information

6.1 Client Information

Applicant:	Beijing Puppy Robotics Co., Ltd.	
Address of Applicant:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing,China	
Manufacturer:	Beijing Puppy Robotics Co., Ltd.	
Address of Manufacturer:	Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing,China	
Factory:	Zhangzhou Wanlida Technology Co., Ltd.	
Address of Factory:	Wanlida Industrial Zone, Jingcheng Town, Nanjing, Zhangzhou, Fujian, China	

6.2 General Description of EUT

Product Name:	Artificial Intellig	Artificial Intelligence Terminal Computer		
Model No.(EUT):	PP23TQA	PP23TQA		
Trade mark:	N/A	N/A		
EUT Supports Radios application:	BT5.0 Dual mode 2402MHz to 2480MHz			(40)
Power Supply:	AC Adapter	MODEL:AP065G-19300 ter INPUT:100-240V~50/60Hz 1.5A Max OUTPUT:19V3A		0
Sample Received Date:	Jul. 16, 2020		15	
Sample tested Date:	Jul. 16, 2020 to Sep. 04, 2020			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		-0-
Bluetooth Version:	BLE		(40)
Modulation Type:	GFSK	0	6
Number of Channel:	40		
Test Power Grade:	Default		
Test Software of EUT:	QRCT	The second	(F)
Antenna Type and Gain:	Type: PIFA antenna Gain:4.1dBi		(C)
Test Voltage:	AC120V/60Hz		

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No. : EED32M00211502 Page 9 of 52

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

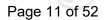
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2 RF power, conducted		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
-3	Dadieted Country emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4 Conduction emission		3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00211502 Page 10 of 52

7 Equipment List

		RF test s	system			
Equipment	Equipment Manufacturer		Mode No. Serial Number		Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021	
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019 06-29-2020	07-25-2020 06-28-2021	
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(A)	(3	
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021	
PC-1	Lenovo	R4960d				
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128			(I)	
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			



	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019 05-16-2020	07-25-2020 05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(F)		(e/1)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019 06-29-2020	07-25-2020 06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/ -)
Cable line	Fulai(3M)	SF106	5217/6A	(AN)	(

Page 12 of 52

F !	M f t	MadalNa	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	line Times SFT205-NMSM- 2.50M	2.50M	393495-0001	(4)	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(E)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		/3
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C))
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M00211502 Page 13 of 52

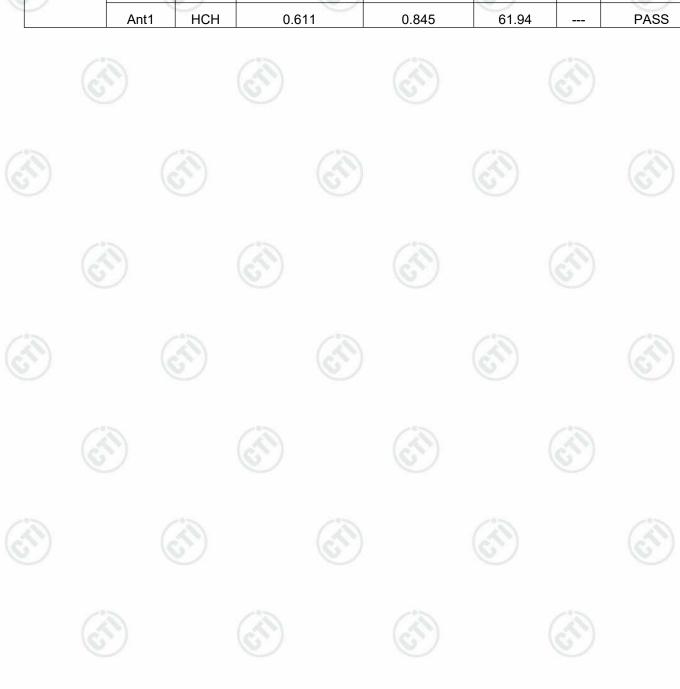
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

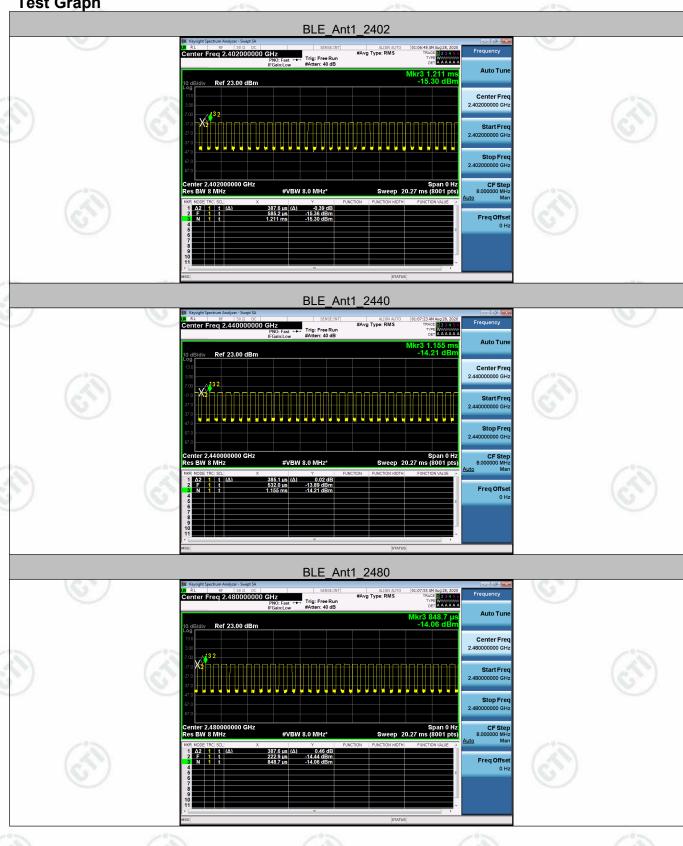
Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Duty Cycle

Result Table


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Limit	Verdict
	Ant1	LCH	0.972	1.211	61.94		PASS
BLE	Ant1	МСН	0.917	1.155	61.79		PASS
	Ant1	НСН	0.611	0.845	61.94		PASS

Report No.: EED32M00211502 Page 15 of 52

Test Graph

Report No. : EED32M00211502 Page 16 of 52

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

,	Limit	Shall be at least 500kHz
	Limit	Oriali de at least 500ki iz

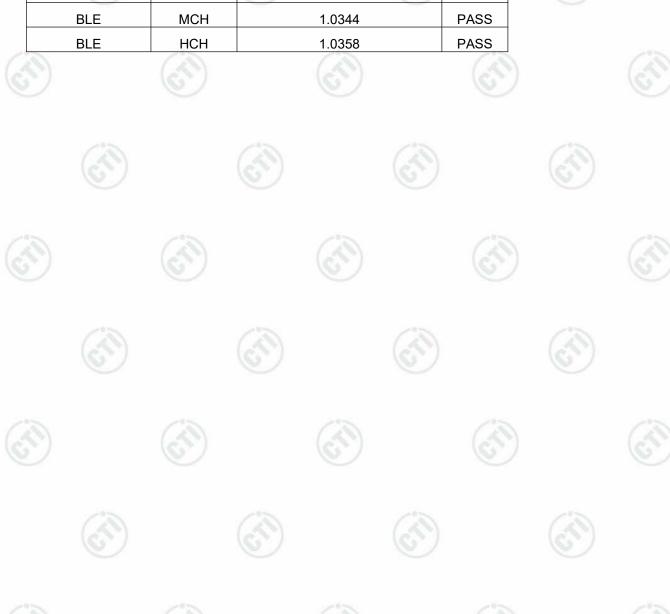
Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup


Test Result

6 dB Bandwidth

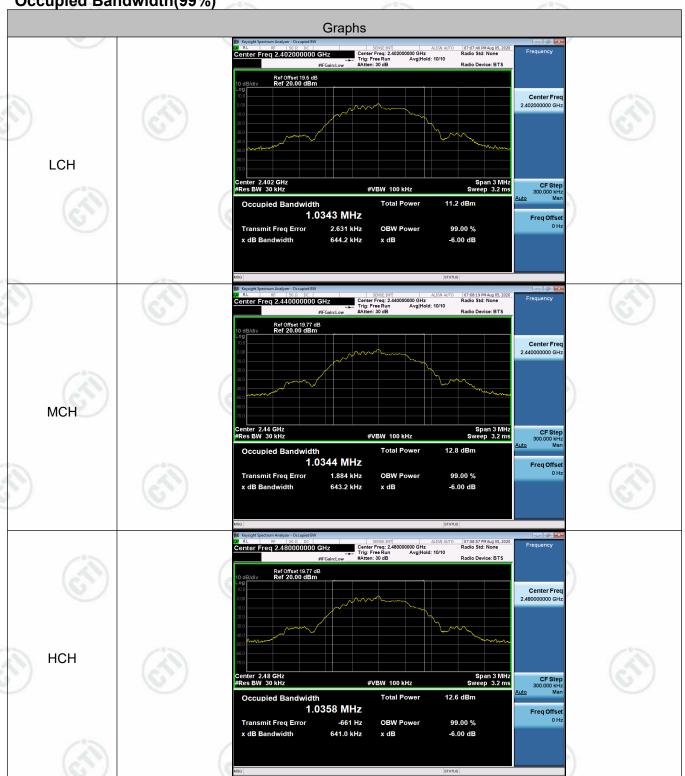
Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6650	PASS
BLE	MCH	0.6630	PASS
BLE	НСН	0.6629	PASS

Occupied Bandwidth(99%)


 0					
Mode	Channel	99% OBW[MHz]	Verdict		
BLE	LCH	1.0343	PASS		
BLE	МСН	1.0344	PASS		
BLE	HCH	1.0358	PASS		

Report No. : EED32M00211502 Page 18 of 52

Test Graphs 6 dB Bandwidth



Report No.: EED32M00211502 Page 19 of 52

Occupied Bandwidth(99%)

Report No.: EED32M00211502 Page 20 of 52

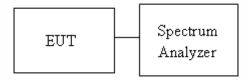
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

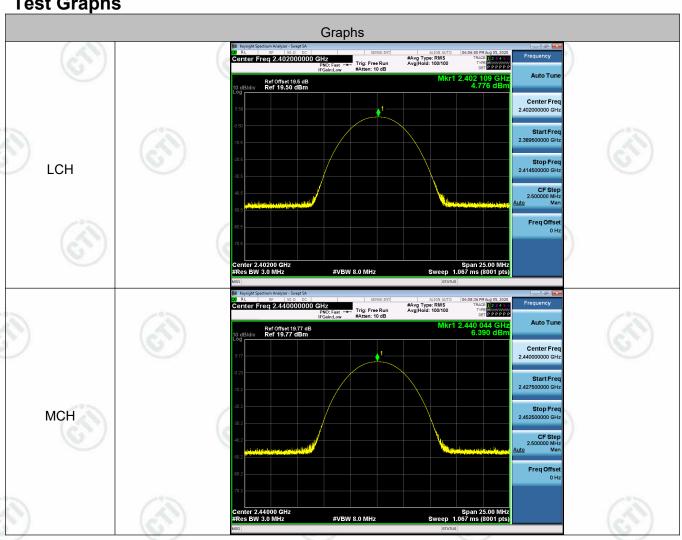

Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]
	Point-to-point operation

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

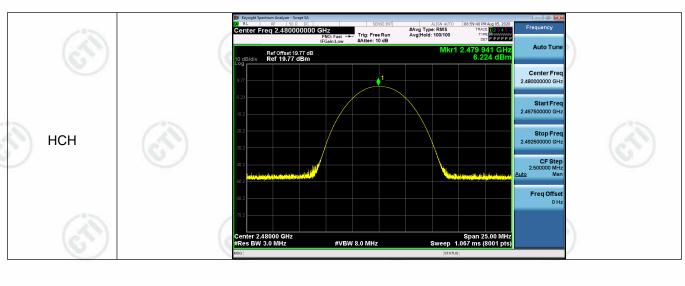


Report No.: EED32M00211502 Page 21 of 52

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	4.776	PASS
BLE	MCH	6.39	PASS
BLE	НСН	6.224	PASS

Test Graphs



Report No. : EED32M00211502 Page 23 of 52

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Report No. : EED32M00211502 Page 24 of 52

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	4.567	-60.357	-15.43	PASS
BLE	НСН	6.133	-59.723	-13.87	PASS

Test Graphs

Report No. : EED32M00211502 Page 25 of 52

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

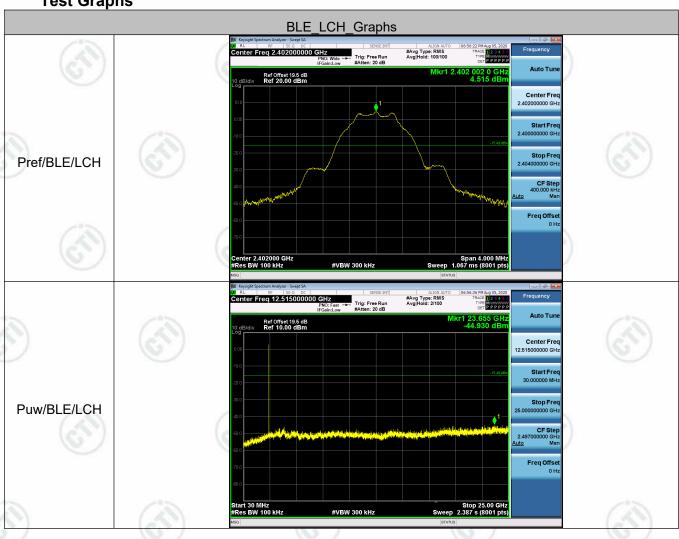
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

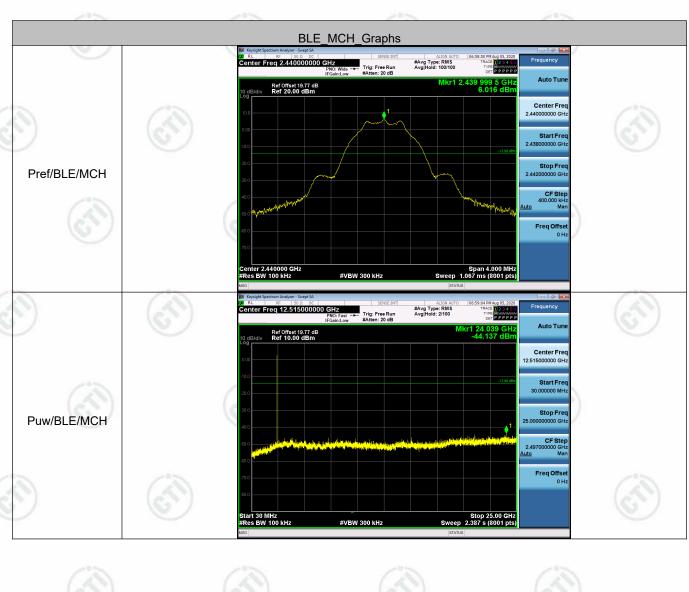
Test Setup



Report No. : EED32M00211502 Page 26 of 52

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	4.515	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	6.016	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	5.944	<limit< td=""><td>PASS</td></limit<>	PASS


Test Graphs



Report No.: EED32M00211502 Page 29 of 52

Appendix E): Power Spectral Density

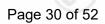
Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	I onte-to-point operation .

Test Procedure

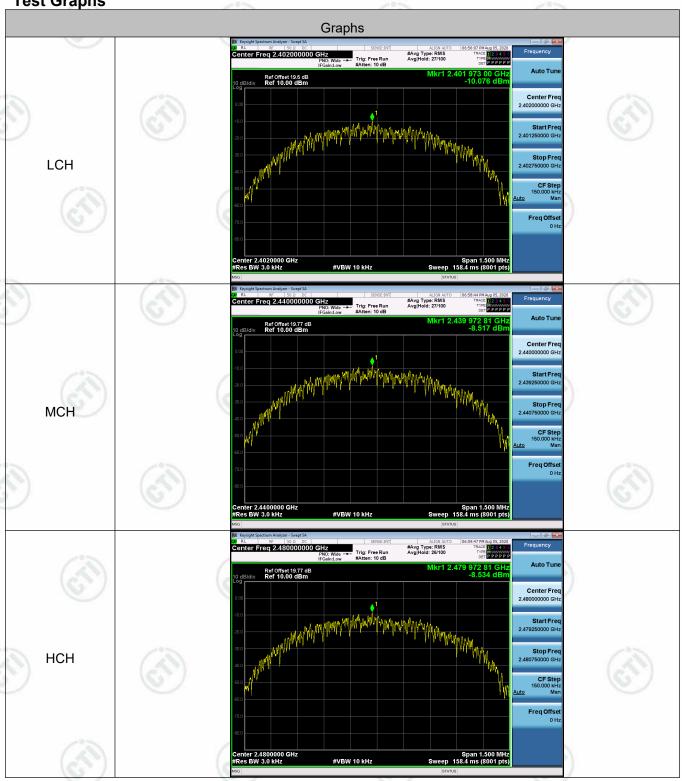

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-10.076	PASS
BLE	MCH	-8.517	PASS
BLE	НСН	-8.534	PASS



Report No.: EED32M00211502 Page 31 of 52

Test Graphs

Report No.: EED32M00211502 Page 32 of 52

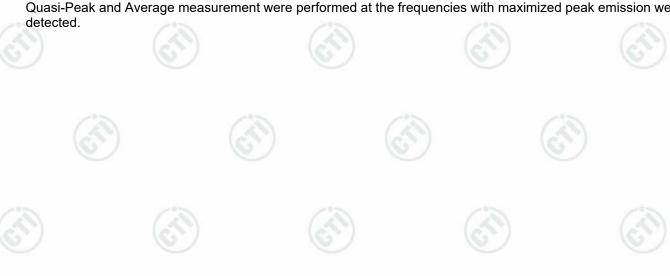
Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

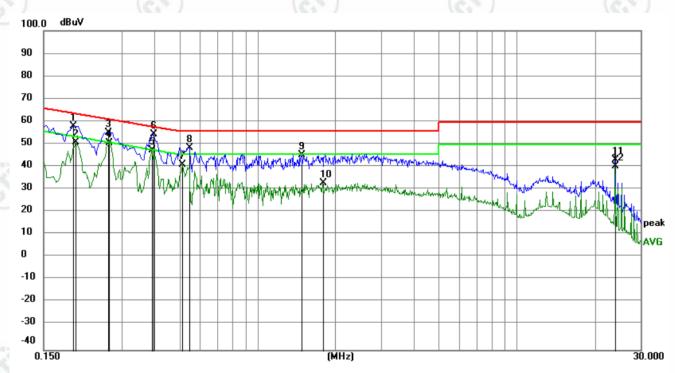
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.1 dBi.

Report No.: EED32M00211502 Page 33 of 52

Test Procedure:	Test frequency	y range :150KHz-	30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT w	as connected to	AC power source thre	ough a LISN 1 (Liı	ne Impedanc				
			nits of the EUT were						
			ound reference plane						
			I. A multiple socket of ingle LISN provided t						
	reference		d upon a non-metall or-standing arrangem plane,						
	4) The test wa	as performed with	n a vertical ground refer						
	reference p	olane was bonded	d to the horizontal gro	ound reference pla	ane. The LIS				
		1 was placed 0.8 m from the boundary of the unit under test and bonded to a							
		ground reference plane for LISNs mounted on top of the ground reference							
	plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the								
	All other ur	nits of the EUT ar	nd associated equipm	nent was at least (0.8 m from th				
	All other un LISN 2.	nits of the EUT ar	nd associated equipn	nent was at least (0.8 m from th				
	LISN 2.		nd associated equipn emission, the relativ						
	LISN 2. 5) In order to f of the int	find the maximum erface cables m		e positions of equ	ipment and a				
(cří)	LISN 2. 5) In order to f of the int	find the maximum	emission, the relativ	e positions of equ	ipment and a				
Limit:	LISN 2. 5) In order to f of the int conducted	find the maximum erface cables m measurement.	emission, the relativ	re positions of equ ccording to ANS	ipment and a				
_imit:	LISN 2. 5) In order to f of the int conducted	find the maximum erface cables m	emission, the relativ nust be changed a Limit (c	re positions of equ ccording to ANS	ipment and a				
Limit:	LISN 2. 5) In order to to for the intoconducted Frequency	find the maximum erface cables m measurement.	emission, the relativ	re positions of equ ccording to ANS	ipment and a				
_imit:	LISN 2. 5) In order to 1 of the int conducted Frequency 0.1	find the maximum erface cables m measurement.	emission, the relativ nust be changed a Limit (c	re positions of equ ccording to ANS IBµV)	ipment and a				
Limit:	LISN 2. 5) In order to 1 of the int conducted Frequency 0.1	find the maximum erface cables measurement. range (MHz) 5-0.5	Limit (c	e positions of equiconding to ANS BBµV) Average 56 to 46*	ipment and a				
Limit:	LISN 2. 5) In order to 1 of the int conducted Frequency 0.1 0. 5 * The limit dec MHz to 0.5	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly was maximum maximum measurement.	Limit (concept) Quasi-peak 66 to 56* 56 60 with the logarithm of	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the	ipment and a				
Limit:	LISN 2. 5) In order to 1 of the int conducted Frequency 0.1 0. 5 * The limit dec MHz to 0.5	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly was maximum maximum measurement.	Limit (c Quasi-peak 66 to 56* 56	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the	ipment and a				
Limit:	LISN 2. 5) In order to 1 of the int conducted Frequency 0.1 0. 5 * The limit dec MHz to 0.5	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly was maximum maximum measurement.	Limit (concept) Quasi-peak 66 to 56* 56 60 with the logarithm of	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the	ipment and a				
leasurement Data n initial pre-scan w	LISN 2. 5) In order to to for the introducted Frequency 0.1 0. * The limit dec MHz to 0.5 NOTE: The local as performed on the	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly word MHz. ower limit is application.	Limit (concentration) Quasi-peak 66 to 56* 56 60 With the logarithm of able at the transition	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and a				
leasurement Data n initial pre-scan w luasi-Peak and Ave	LISN 2. 5) In order to to for the introducted Frequency 0.1 0. * The limit dec MHz to 0.5 NOTE: The local as performed on the	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly word MHz. ower limit is application.	Limit (concentration) Quasi-peak 66 to 56* 56 60 With the logarithm of able at the transition	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and a				
leasurement Data n initial pre-scan w	LISN 2. 5) In order to to for the introducted Frequency 0.1 0. * The limit dec MHz to 0.5 NOTE: The local as performed on the	find the maximum erface cables measurement. range (MHz) 5-0.5 5-5 -30 creases linearly word MHz. ower limit is application.	Limit (concentration) Quasi-peak 66 to 56* 56 60 With the logarithm of able at the transition	re positions of equicording to ANS BBµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and a				


Page 34 of 52

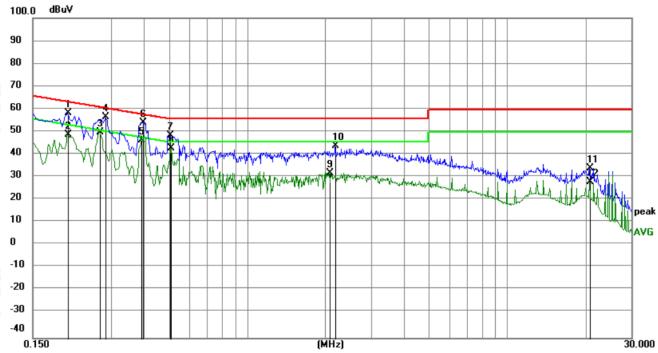
Product : Artificial Intelligence Terminal Model/Type reference : PP23TQA

Computer

Temperature : 25° **Humidity** : 52%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1949	48.29	9.89	58.18	63.83	-5.65	QP	
2		0.1995	41.14	9.87	51.01	53.63	-2.62	AVG	
3		0.2670	45.64	9.84	55.48	61.21	-5.73	QP	
4		0.2686	40.85	9.84	50.69	51.16	-0.47	AVG	
5	*	0.3930	37.78	9.77	47.55	48.00	-0.45	AVG	
6		0.3975	44.78	9.77	54.55	57.91	-3.36	QP	
7		0.5155	31.74	9.71	41.45	46.00	-4.55	AVG	
8		0.5460	39.16	9.69	48.85	56.00	-7.15	QP	
9		1.4819	35.91	9.61	45.52	56.00	-10.48	QP	
10		1.7880	23.76	9.62	33.38	46.00	-12.62	AVG	
11		24.0000	33.22	10.11	43.33	60.00	-16.67	QP	
12		24.0000	30.63	10.11	40.74	50.00	-9.26	AVG	



Page 35 of 52

		_	Reading	Correct	Measure-		Manain		
No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2040	48.62	9.87	58.49	63.45	-4.96	QP	
2		0.2040	39.29	9.87	49.16	53.45	-4.29	AVG	
3	*	0.2714	40.29	9.83	50.12	51.07	-0.95	AVG	
4		0.2850	46.87	9.83	56.70	60.67	-3.97	QP	
5		0.3930	37.00	9.77	46.77	48.00	-1.23	AVG	
6		0.3975	44.73	9.77	54.50	57.91	-3.41	QP	
7		0.5055	39.16	9.72	48.88	56.00	-7.12	QP	
8		0.5100	33.52	9.71	43.23	46.00	-2.77	AVG	
9		2.0670	22.82	9.63	32.45	46.00	-13.55	AVG	
10		2.1795	34.49	9.64	44.13	56.00	-11.87	QP	
11		20.7375	24.47	10.06	34.53	60.00	-25.47	QP	
12		20.7375	18.44	10.06	28.50	50.00	-21.50	AVG	

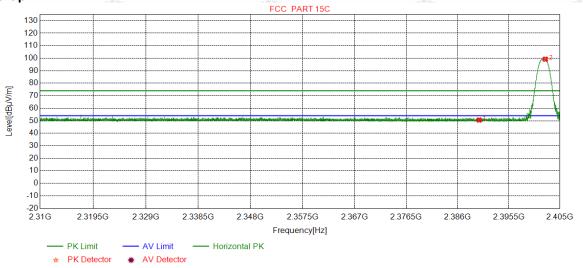
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

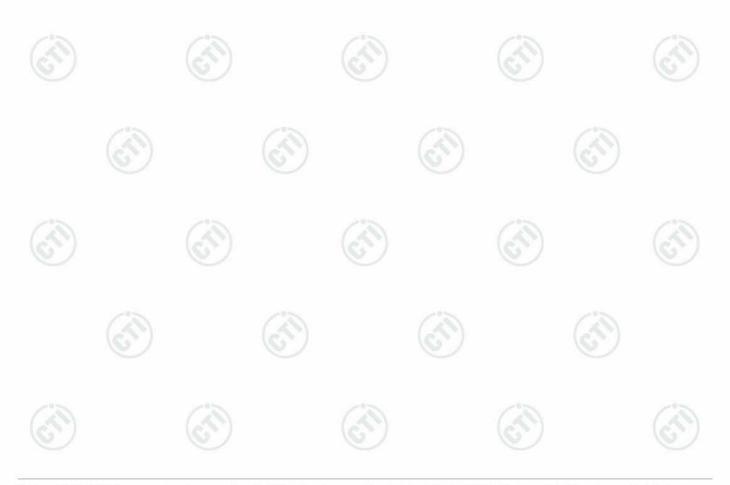
Report No. : EED32M00211502 Page 36 of 52

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak	201
	Above 1GHz	Peak	1MHz	10Hz	Average	1
Test Procedure:	Below 1GHz test procedu	ure as below:	6)	1	0
	Test method Refer as KDE a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the ant d. For each suspected er the antenna was tuned was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest	s 558074 D01 v0 on the top of a ro choic camber. The of the highest ra- eters away from op of a variable- varied from one m value of the fit tenna are set to mission, the EUT I to heights from rees to 360 degrem was set to Pe um Hold Mode. end of the restrict oppliance. Also m rum analyzer plo- channel	tating table he table was adiation. the interfer neight ante meter to for eld strengt make the range of the meter to frees to find eak Detect cted band of the table and table	e 0.8 meter as rotated 3 ence-recei nna tower. our meters h. Both hor neasurement aged to its 4 meters a the maxin Function a	above the grant above the grant and vent. worst case and the rotate and specified the transmit in the restri	to a, which ound to rertical and then able cted
	g. Different between above to fully Anechoic Chammats 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, an j. Repeat above procedure.	ve is the test site aber change form 1 meter and tablowest channel, ments are performents are found the X ax	n table 0.8 le is 1.5 me the Highes rmed in X, kis position	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Aboositioning for t is worse car	ove r
Limit:	Frequency	Limit (dBµV			mark	
	30MHz-88MHz	40.0			eak Value	
	88MHz-216MHz	43.			eak Value	
	216MHz-960MHz	46.0	- 1 4	Quasi-pe		
	960MHz-1GHz	54.0	- 12	/	eak Value	
	3001VII 12-101 12	54.0		· ·	ge Value	
	Above 1GHz	74.0		 	Value	
		74.0	J	reak	value	
(63)	(6.)	(e.,	/		67/	



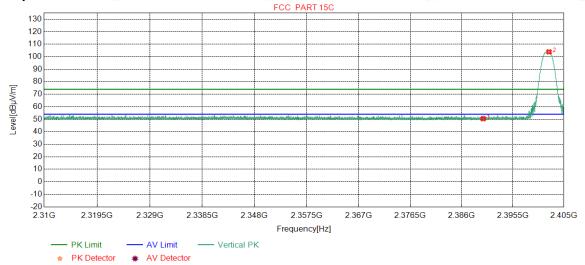
Report No. : EED32M00211502 Page 37 of 52

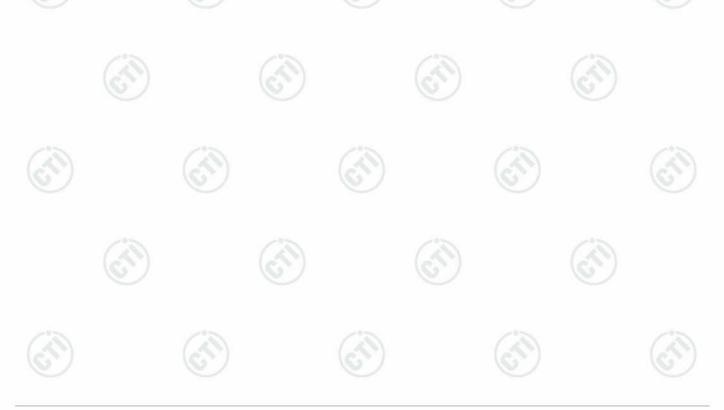

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

1	2390.0000	32.25	13.37	-43.12	48.07	50.57	74.00	23.43	Pass	Horizontal
2	2402.2828	32.26	13.31	-43.12	96.75	99.20	74.00	-25.20	Pass	Horizontal

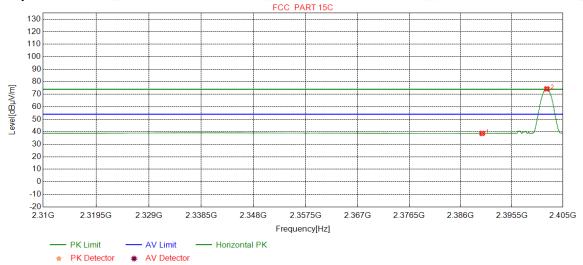


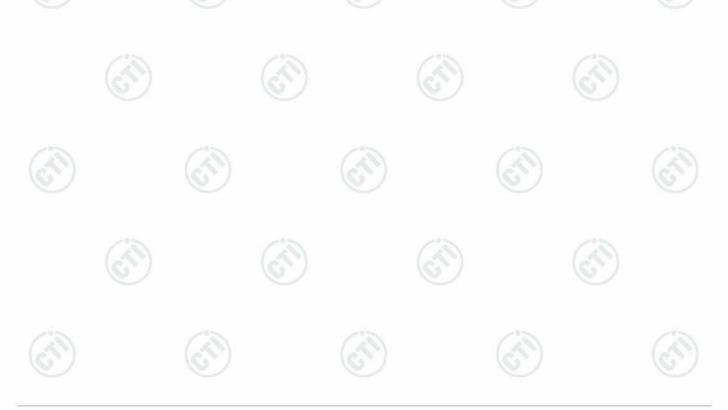

Page 38 of	52
------------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

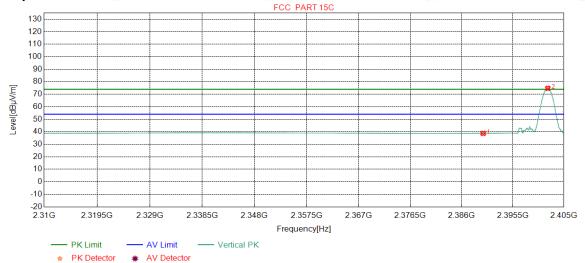
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.93	50.43	74.00	23.57	Pass	Vertical
2	2402.2321	32.26	13.31	-43.12	101.40	103.85	74.00	-29.85	Pass	Vertical

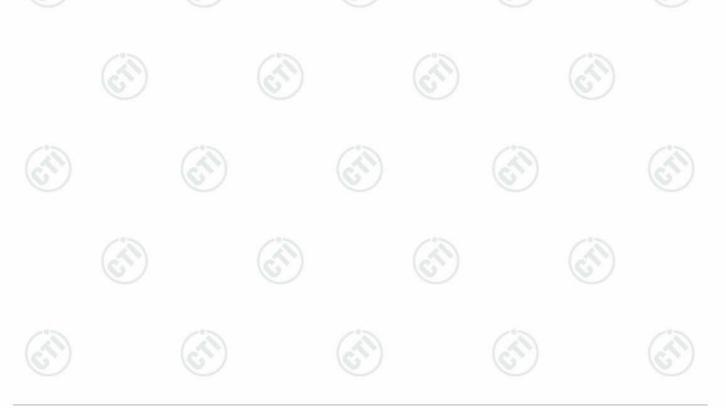



Page	39	of	52
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

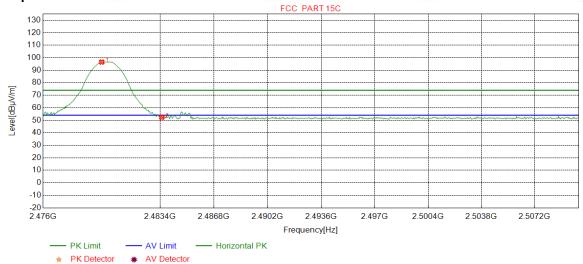
Test Graph

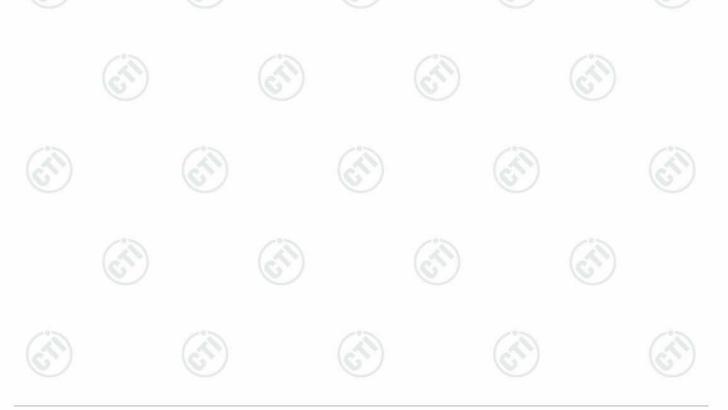

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.18	38.68	54.00	15.32	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	71.82	74.27	54.00	-20.27	Pass	Horizontal



Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	AV			

Test Graph

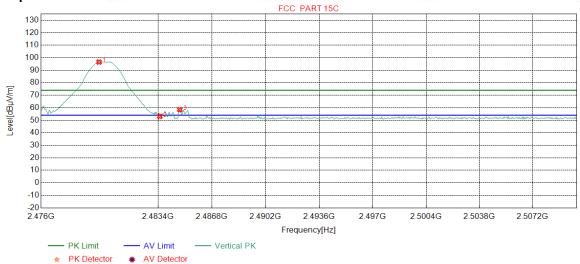

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.23	38.73	54.00	15.27	Pass	Vertical
2	2401.9978	32.26	13.31	-43.12	72.28	74.73	54.00	-20.73	Pass	Vertical

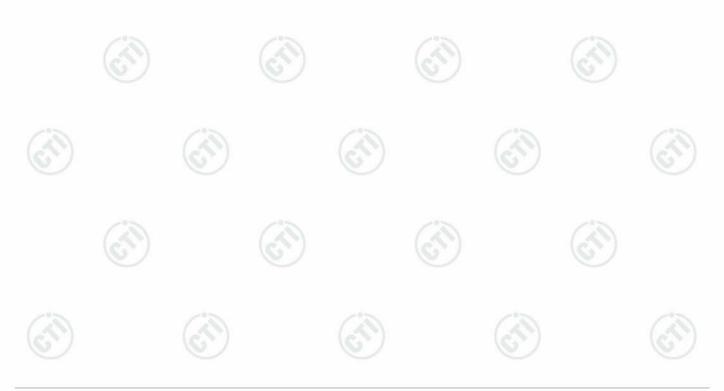


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

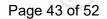
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	93.83	96.49	74.00	-22.49	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.74	52.39	74.00	21.61	Pass	Horizontal

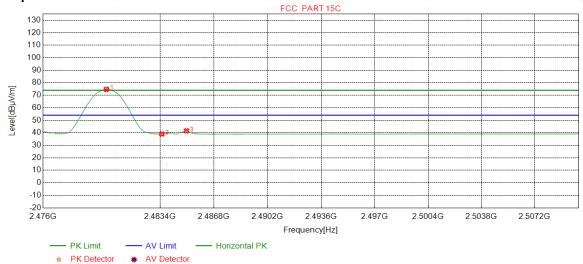



Page	42	of	52
3 -			

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		


Test Graph

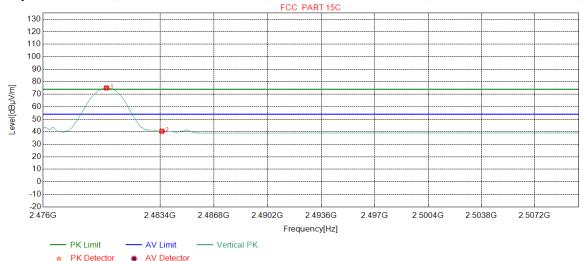
									100		
1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.6596	32.37	13.39	-43.10	93.83	96.49	74.00	-22.49	Pass	Vertical
	2	2483.5000	32.38	13.38	-43.11	50.44	53.09	74.00	20.91	Pass	Vertical
	3	2484.7660	32.38	13.37	-43.10	55.80	58.45	74.00	15.55	Pass	Vertical



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

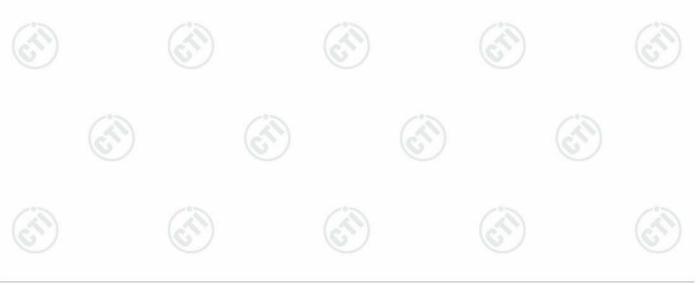
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	72.03	74.69	54.00	-20.69	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.38	39.03	54.00	14.97	Pass	Horizontal
3	2485.0638	32.38	13.37	-43.11	38.85	41.49	54.00	12.51	Pass	Horizontal



Page 44 of 52	4 of 52	44	Page
---------------	---------	----	------

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	72.36	75.02	54.00	-21.02	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	37.75	40.40	54.00	13.60	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00211502 Page 45 of 52

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
9	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4CUs	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

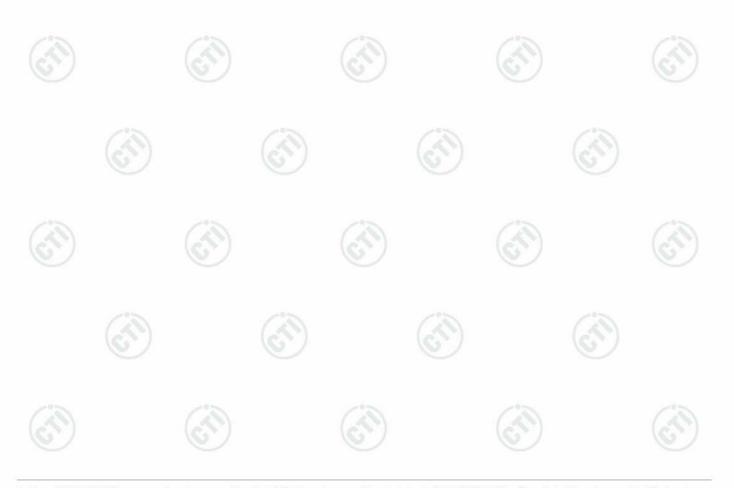
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

			• •
ı		m	it:
L	_,		ıı.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.7)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No. : EED32M00211502 Page 46 of 52

Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	105.8616	10.94	1.21	-32.00	46.82	26.97	43.50	16.53	Pass	Н	PK
2	252.2492	12.24	1.89	-31.89	59.05	41.29	46.00	4.71	Pass	Н	PK
3	345.1845	14.19	2.22	-31.85	57.36	41.92	46.00	4.08	Pass	Н	PK
4	532.0252	17.64	2.77	-31.92	49.00	37.49	46.00	8.51	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	44.19	34.62	46.00	11.38	Pass	Н	PK
6	839.8370	21.38	3.50	-31.89	43.76	36.75	46.00	9.25	Pass	Н	PK
7	58.2298	11.88	0.88	-31.85	37.86	18.77	40.00	21.23	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	43.23	20.22	43.50	23.28	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	47.27	28.17	43.50	15.33	Pass	V	PK
10	347.9978	14.26	2.22	-31.86	57.48	42.10	46.00	3.90	Pass	V	PK
11	532.0252	17.64	2.77	-31.92	41.52	30.01	46.00	15.99	Pass	V	PK
12	840.0310	21.38	3.50	-31.89	43.52	36.51	46.00	9.49	Pass	V	PK

Transmitter Emission above 1GHz

Mode	Mode:		BLE GFS	itting		Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1773.6774	30.21	3.27	-42.70	54.20	44.98	74.00	29.02	Pass	Н	PK
2	3193.0129	33.28	4.64	-43.10	52.29	47.11	74.00	26.89	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.62	44.87	74.00	29.13	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	45.98	45.94	74.00	28.06	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	49.89	52.06	74.00	21.94	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.86	51.87	74.00	22.13	Pass	Н	PK
7	1592.4592	29.01	3.06	-42.91	58.80	47.96	74.00	26.04	Pass	V	PK
8	4251.0834	34.15	4.51	-42.90	55.87	51.63	74.00	22.37	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	49.38	45.63	74.00	28.37	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.16	47.12	74.00	26.88	Pass	V	PK
11	9606.4404	37.64	6.62	-42.09	54.23	56.40	74.00	17.60	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.45	51.46	74.00	22.54	Pass	V	PK
13	9606.4397	37.64	6.62	-42.10	40.07	42.23	54.00	11.77	Pass	V	AV

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1064.4064	27.96	2.52	-43.02	58.58	46.04	74.00	27.96	Pass	Н	PK
2	1780.2780	30.25	3.28	-42.70	57.17	48.00	74.00	26.00	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	47.17	43.67	74.00	30.33	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	48.21	48.34	74.00	25.66	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	48.13	50.46	74.00	23.54	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.79	51.98	74.00	22.02	Pass	Н	PK
7	1596.2596	29.04	3.07	-42.92	59.89	49.08	74.00	24.92	Pass	V	PK
8	4252.0835	34.15	4.51	-42.90	55.94	51.70	74.00	22.30	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	47.84	44.34	74.00	29.66	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.52	46.65	74.00	27.35	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	50.89	53.22	74.00	20.78	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.70	50.89	74.00	23.11	Pass	V	PK

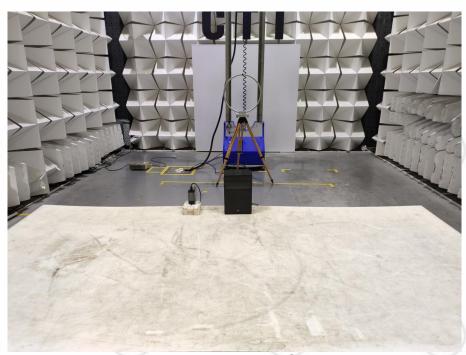
Mode	Mode:		BLE GFSK Transmitting					Channel: 2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1997.6998	31.68	3.47	-43.19	56.47	48.43	74.00	25.57	Pass	Н	PK
2	4252.0835	34.15	4.51	-42.90	52.16	47.92	74.00	26.08	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.51	45.03	74.00	28.97	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.22	47.50	74.00	26.50	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	49.14	51.60	74.00	22.40	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.78	52.28	74.00	21.72	Pass	Н	PK
7	1998.0998	31.69	3.47	-43.20	59.50	51.46	74.00	22.54	Pass	V	PK
8	4258.0839	34.16	4.49	-42.89	55.36	51.12	74.00	22.88	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.55	45.07	74.00	28.93	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	49.62	49.90	74.00	24.10	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	50.37	52.83	74.00	21.17	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.83	52.33	74.00	21.67	Pass	V	PK

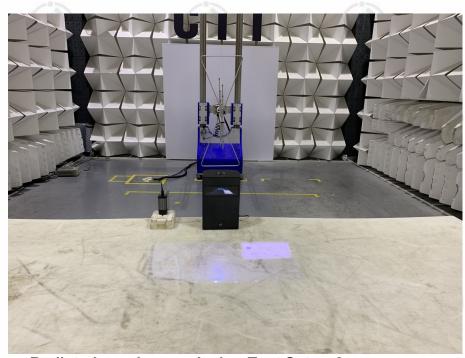
- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.




Report No. : EED32M00211502 Page 49 of 52

PHOTOGRAPHS OF TEST SETUP

Test model No.:PP23TQA

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Page 50 of 52 Report No.: EED32M00211502

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32M00211501 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

