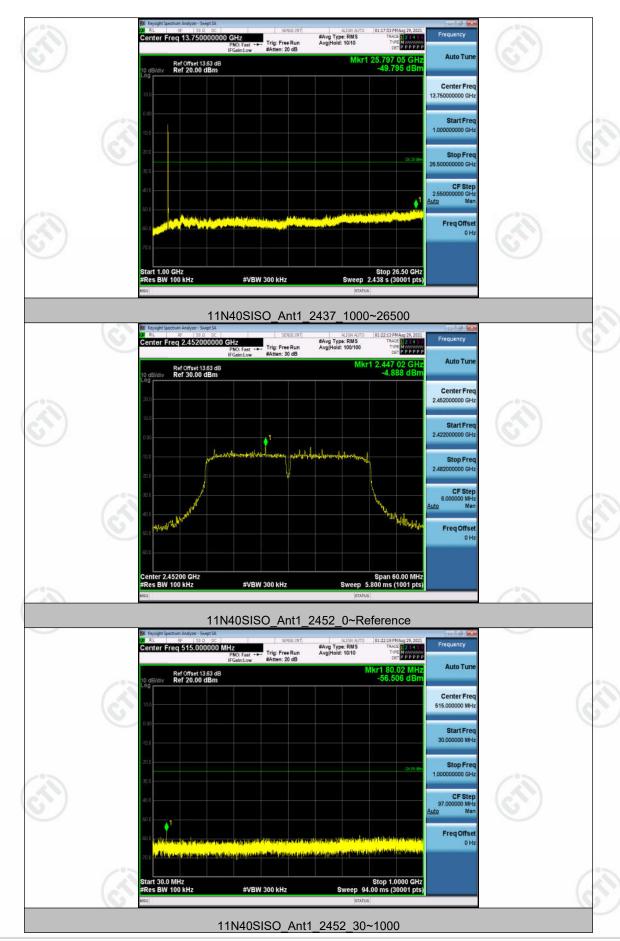
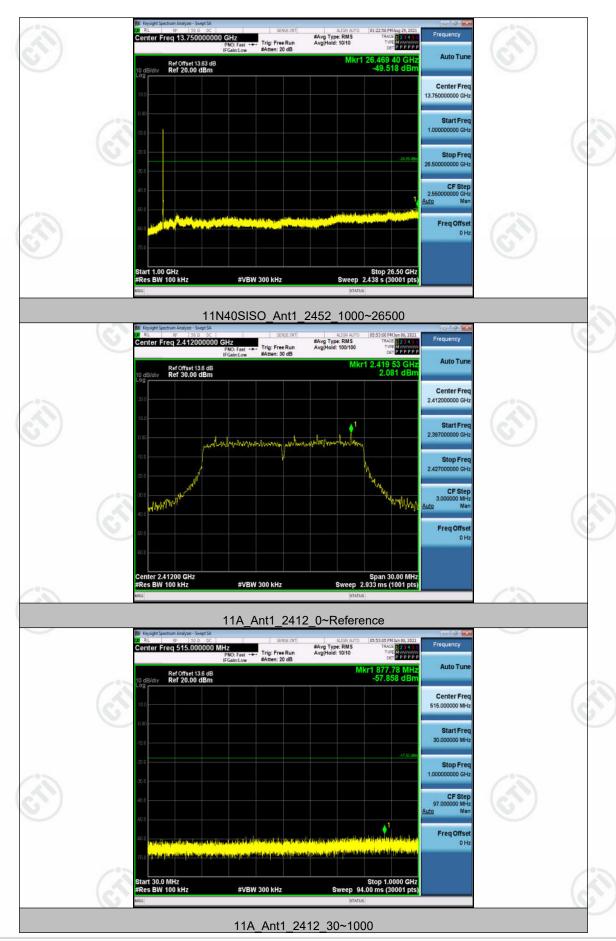


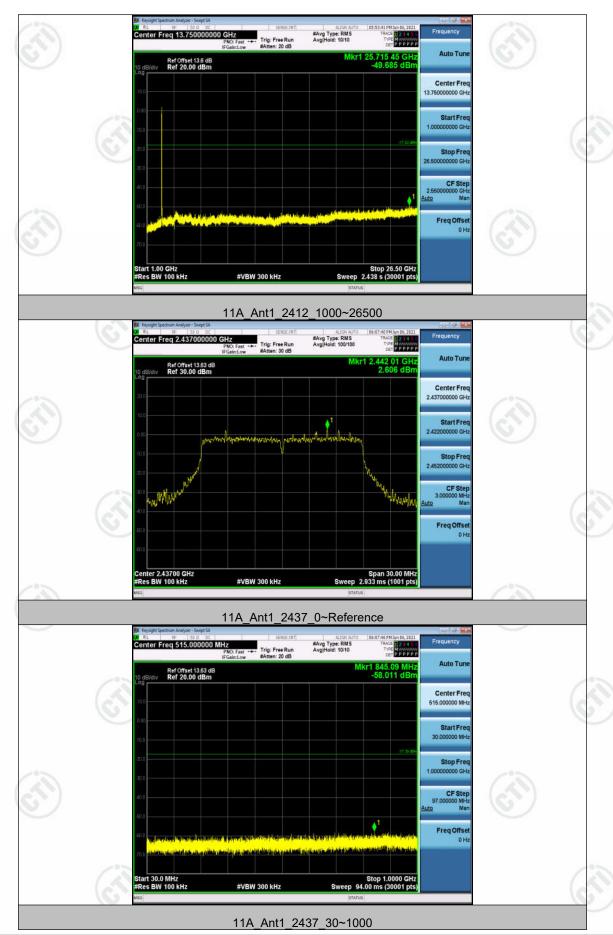
Report No. : EED32N80153703 Page 57 of 105



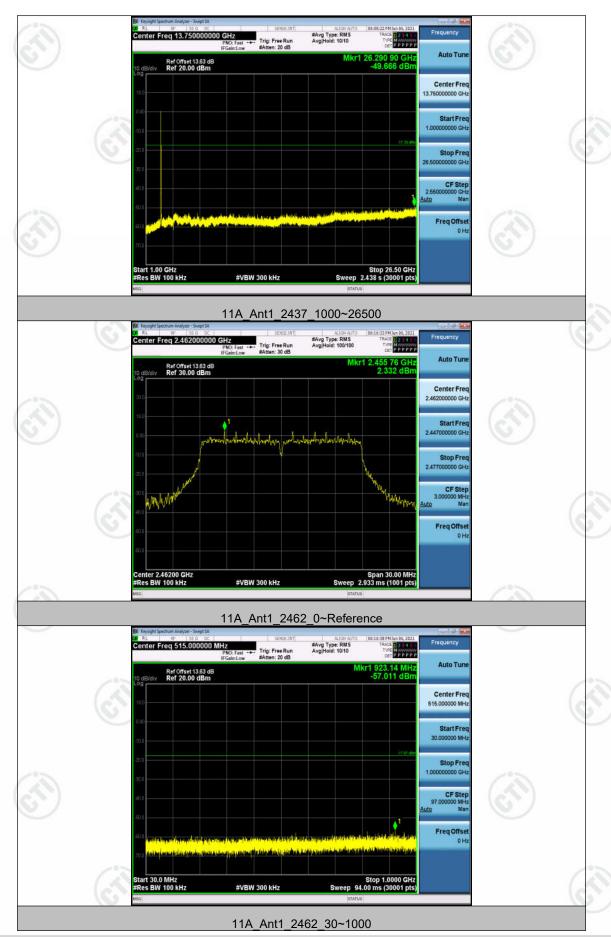
Report No. : EED32N80153703 Page 58 of 105



Report No. : EED32N80153703 Page 59 of 105

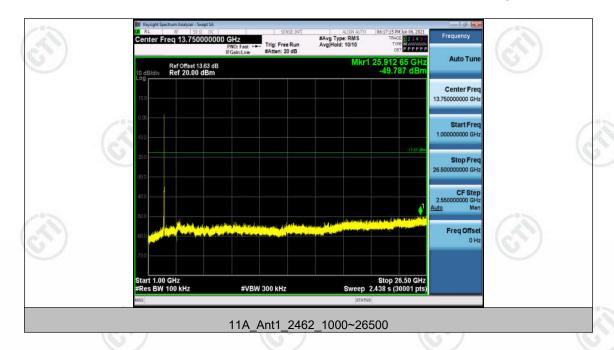


Report No. : EED32N80153703 Page 60 of 105



Report No. : EED32N80153703 Page 61 of 105

Report No. : EED32N80153703 Page 62 of 105



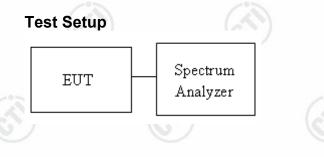
Page 63 of 105

Report No. : EED32N80153703 Page 64 of 105

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

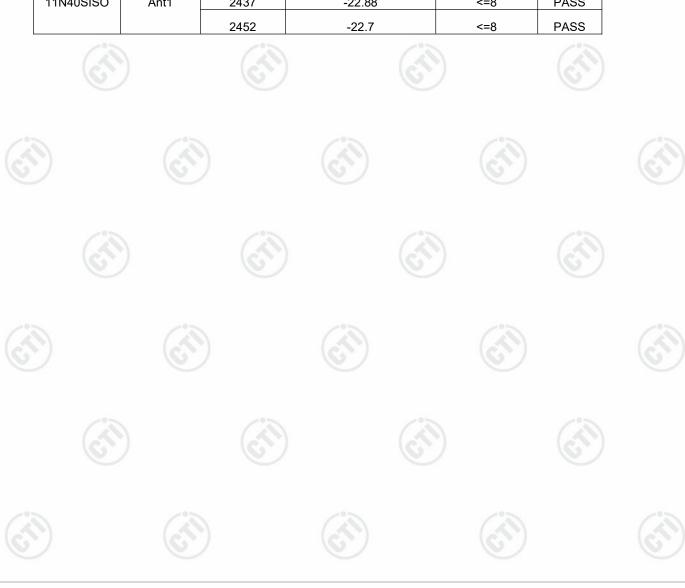

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	☐ Antenna with DG greater than 6 dBi : [Limit = 8 – (DG – 6)]	
	Point-to-point operation :	

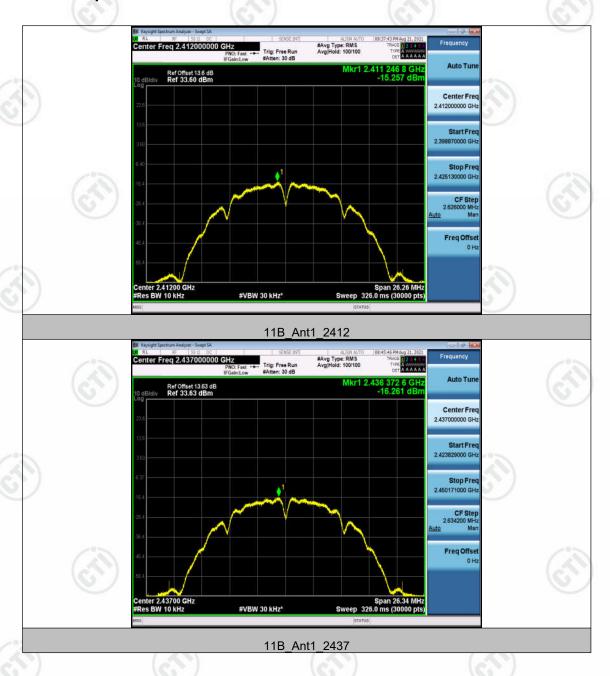
Test Procedure

Test method Refer as KDB 558074 D01.

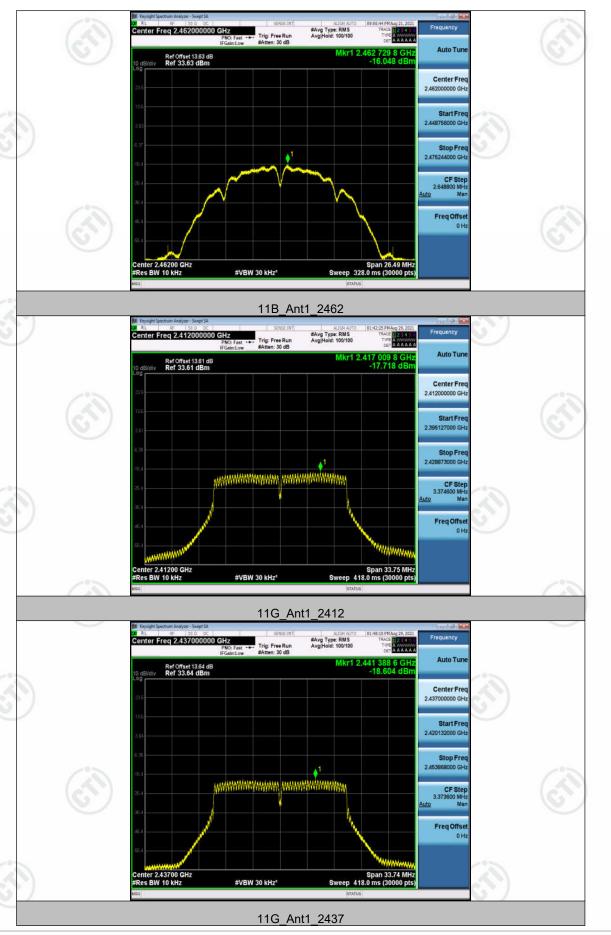
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

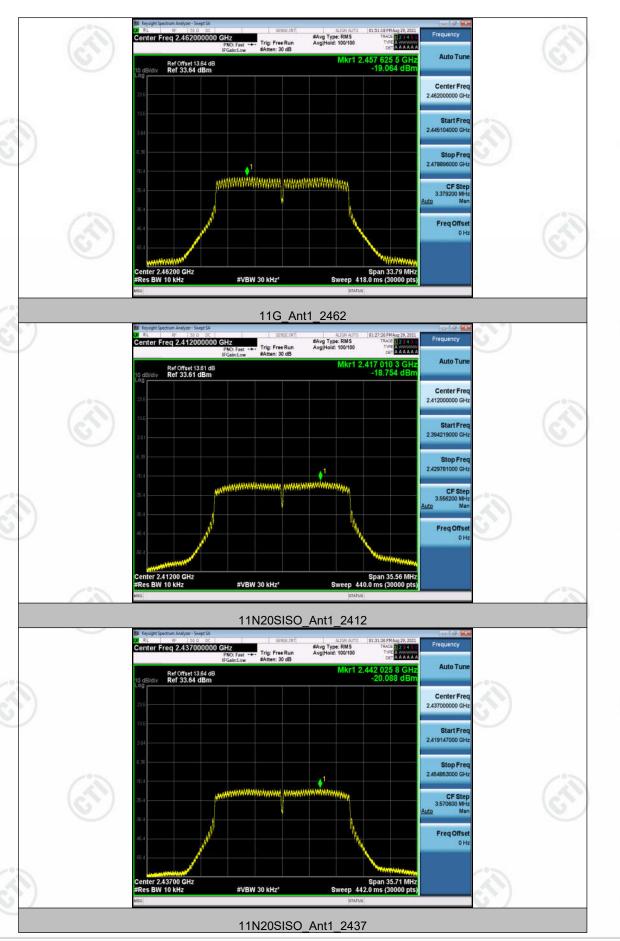


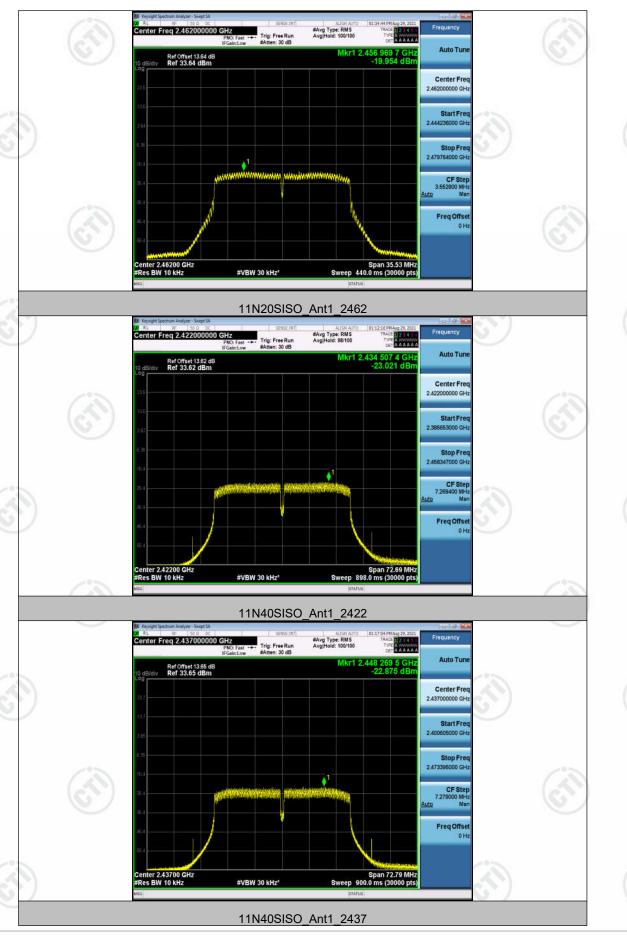
Report No.: EED32N80153703 Page 65 of 105


Result Table

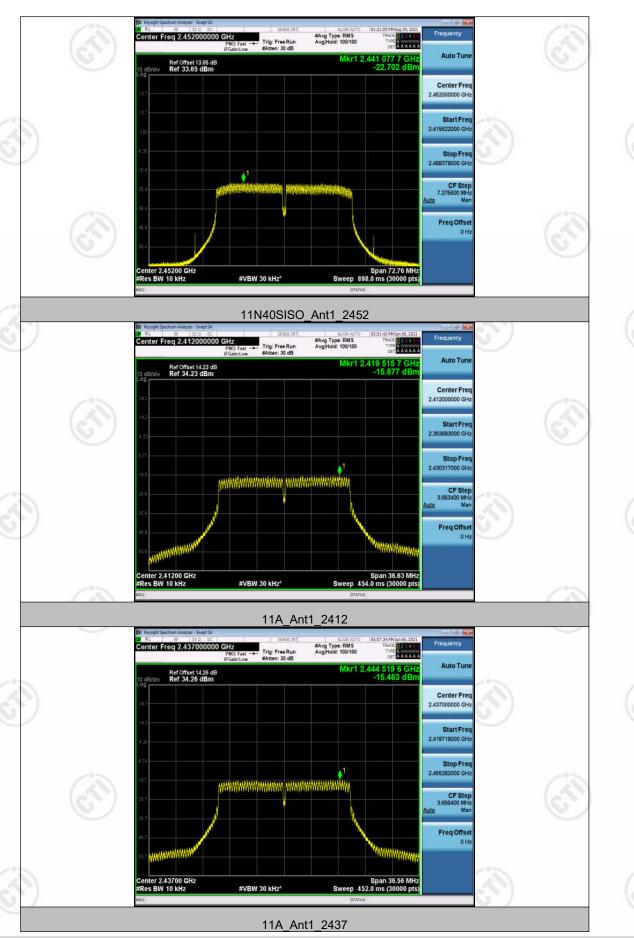
	f				
TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2412	-15.26	<=8	PASS
11B	Ant1	2437	-16.26	<=8	PASS
1	6	2462	-16.05	<=8	PASS
		2412	-17.72	<=8	PASS
11G	Ant1	2437	-18.6	<=8	PASS
(2))	2462	-19.06	<=8	PASS
		2412	-18.75	<=8	PASS
11N20SISO	Ant1	2437	-20.09	<=8	PASS
	/3	2462	-19.95	<=8	PASS
•)	(67)	2422	-23.14	<=8	PASS
11N40SISO	Ant1	2437	-22.88	<=8	PASS
		2452	-22.7	<=8	PASS

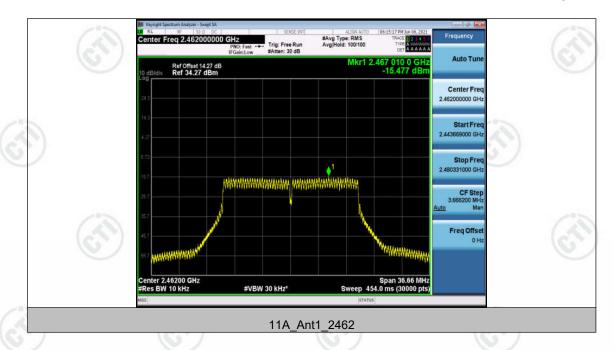

Report No. : EED32N80153703 Page 66 of 105





Report No. : EED32N80153703 Page 68 of 105

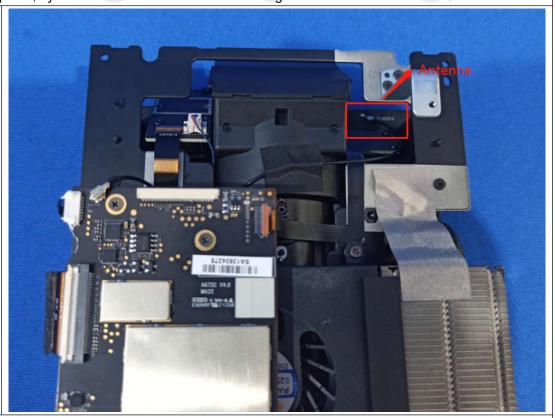




Page 71 of 105

Report No.: EED32N80153703 Page 72 of 105

Appendix F): Antenna Requirement


15.203 requirement:

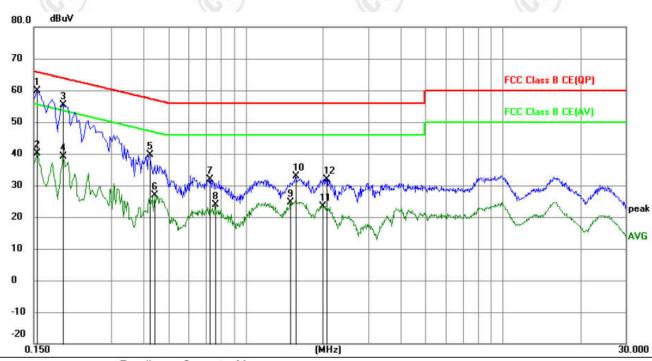
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

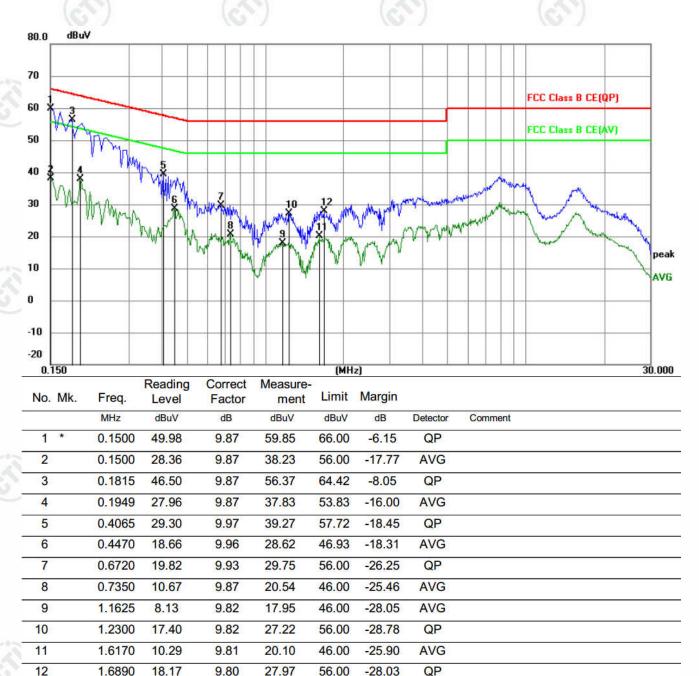
The antenna is integrated on the main FPC and no consideration of replacement. The best case gain of the antenna is 3.4 dBi.


Report No.: EED32N80153703 Page 73 of 105

Test Procedure:	Test frequency range :150KHz-	30MHz	(0,)				
	The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance						
	Stabilization Network) which						
	power cables of all other u	inits of the EUT wer	e connected to a sec	cond LISN			
	which was bonded to the gr						
	the unit being measured. A power cables to a single LIS	SN provided the rating	of the LISN was not	exceeded.			
	3) The tabletop EUT was place reference plane. And for floor horizontal ground reference	oor-standing arrange		•			
	4) The test was performed with	120.00	erence plane. The re	ar of the EU			
	shall be 0.4 m from the	vertical ground refe	rence plane. The ve	rtical grour			
	reference plane was bonde						
	was placed 0.8 m from the	-					
	reference plane for LISNs distance was between the distance was between						
	of the EUT and associated						
	5) In order to find the maximum	• •					
	the interface cables must						
	measurement.						
Limit:							
	(1411)	Limit (c	lBμV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* The limit decreases linearly w to 0.50 MHz.	ith the logarithm of th	e frequency in the rar	nge 0.15 MH			
	NOTE : The lower limit is applic	able at the transition	frequency				
leasurement Data							
n initial pro coop wa	a parformed on the live and neutr	al lines with neels dets	notor (C)				
	s performed on the live and neutra						
≀uasi-Peak and Aver	age measurement were performe	d at the frequencies v	vith maximized peak e	emission we			
etected.							

Page 74 of 105

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	49.92	9.87	59.79	65.75	-5.96	QP	
2		0.1545	30.21	9.87	40.08	55.75	-15.67	AVG	
3		0.1949	45.61	9.87	55.48	63.83	-8.35	QP	
4		0.1949	29.14	9.87	39.01	53.83	-14.82	AVG	
5		0.4245	29.54	9.97	39.51	57.36	-17.85	QP	
6		0.4425	16.95	9.96	26.91	47.01	-20.10	AVG	
7		0.7260	21.92	9.87	31.79	56.00	-24.21	QP	
8		0.7620	14.02	9.86	23.88	46.00	-22.12	AVG	
9		1.4910	14.80	9.81	24.61	46.00	-21.39	AVG	
10		1.5630	22.99	9.81	32.80	56.00	-23.20	QP	
11		1.9950	13.65	9.79	23.44	46.00	-22.56	AVG	
12		2.0625	22.15	9.79	31.94	56.00	-24.06	QP	
_									



Report No.: EED32N80153703 Page 75 of 105

Neutral line:

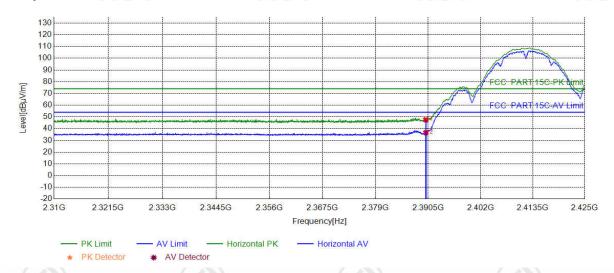
Notes:

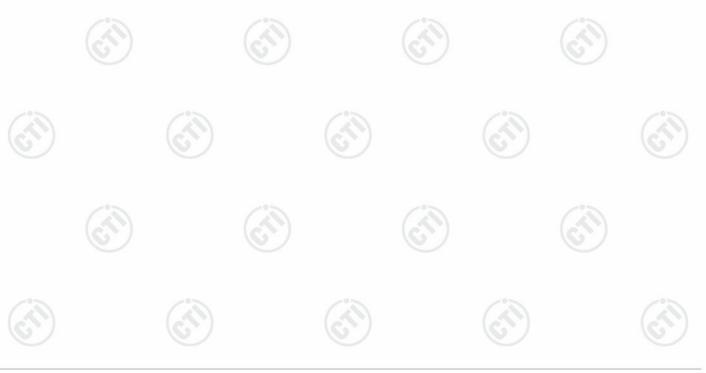
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page 76 of 105 Report No.: EED32N80153703

Appendix H): Restricted bands around fundamental frequency (Radiated)

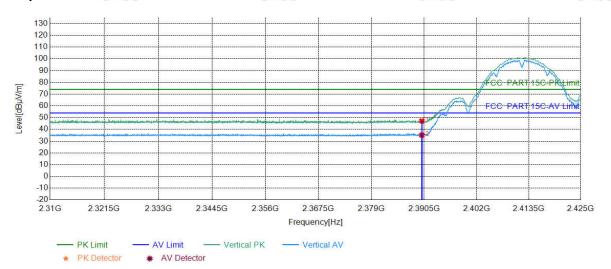
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	k
	AL 40U	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	(6)
est Procedure:	Below 1GHz test proced Test method Refer as KE a. The EUT was placed at a 3 meter semi-an determine the positio b. The EUT was set 3 n was mounted on the c. The antenna height is determine the maxim polarizations of the a	OB 558074 D01 on the top of a rolechoic camber. The highest range of the highest range of a variable-range of a variable-range of the file.	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters n. Both hor	360 degrees iving antenna above the grizontal and	to a, whice round
	d. For each suspected of the antenna was turned from 0 de e. The test-receiver sys	emission, the EUT ed to heights from grees to 360 degr	was arran 1 meter to rees to find	ged to its v 4 meters a the maxin	worst case a and the rotat num reading	able
	f. Place a marker at the frequency to show co bands. Save the spector for lowest and highes	e end of the restric empliance. Also m ctrum analyzer plo	easure any	losest to the	s in the restr	
	f. Place a marker at the frequency to show co bands. Save the specifor lowest and highest Above 1GHz test process.	e end of the restrice ompliance. Also motrum analyzer plo of channel dure as below:	easure any ot. Repeat t	elosest to the control of the contro	s in the restr ower and mo	dulatio
	f. Place a marker at the frequency to show co bands. Save the spector for lowest and highest	e end of the restrict ompliance. Also mottrum analyzer plact channel dure as below: ove is the test site imber change forms 1 meter and table lowest channel, the rements are perfound found the X axia	easure any ot. Repeat for the control of the contro	closest to the community emissions for each posterior of the community of	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning for t is worse ca	hambe bove or use.
imit:	f. Place a marker at the frequency to show co bands. Save the spector lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Chan 18GHz the distance in the interest of the EUT in	e end of the restrict ompliance. Also more trum analyzer plact channel dure as below: ove is the test site of the standard table of	easure any ot. Repeat to e, change find table 0.8 de is 1.5 me he Highest rmed in X, kis positioni uencies me	closest to the commissions of each posterior of the commissions of the commission of the	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning for t is worse ca	hambe bove or use.
imit:	f. Place a marker at the frequency to show con bands. Save the specifor lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Change 18GHz the distance in the interest of the EUT in the interest of the EU	e end of the restrict ompliance. Also mottrum analyzer plact channel dure as below: ove is the test site of the change form is 1 meter and table lowest channel, the rements are perfound found the X and dures until all frequents (dBµV).	easure any ot. Repeat for table 0.8 le is 1.5 months and in X, kis position uencies med/m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	Anechoic Cl. 5 meter (Aboositioning for tis worse cases complete.	hambe bove or use.
imit:	f. Place a marker at the frequency to show co bands. Save the specifor lowest and highest Above 1GHz test process. Above 1GHz test process. G. Different between above to fully Anechoic Charansel t	e end of the restrict ompliance. Also more trum analyzer place to channel dure as below: ove is the test site test site test and table dowest channel, the rements are perfound found the X and dures until all frequents (dBµV).	easure any ot. Repeat for table 0.8 le is 1.5 mother Highest rmed in X, kis position uencies med/m @3m)	rom Semi- meter to 1 channel Y, Z axis p ing which i easured wa	Anechoic Cl .5 meter(Ab positioning for t is worse ca as complete.	hambe bove or use.
imit:	f. Place a marker at the frequency to show con bands. Save the specifor lowest and highest Above 1GHz test process. Above 1GHz test process. G. Different between above to fully Anechoic Change 18GHz the distance in the interest of the EUT in the interest of the	e end of the restrict ompliance. Also mottrum analyzer plot of channel dure as below: ove is the test site of the change forms 1 meter and table lowest channel, the rements are perfound found the X and dures until all frequency the change of the X and the	easure any ot. Repeat for table 0.8 le is 1.5 months to the Highest rmed in X, kis position uencies med/m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Cl. 5 meter (Aboositioning for tis worse cases complete. mark eak Value eak Value	hambe bove or use.
imit:	f. Place a marker at the frequency to show co bands. Save the spector lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Chanal 18GHz the distance in the interest of the EUT	e end of the restrict ompliance. Also more trum analyzer place to channel dure as below: ove is the test site of the second table of the second table of the second found the X and the X	easure any ot. Repeat for the control of the contro	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cl. 5 meter(Abecositioning for tis worse cases complete. mark eak Value eak Value	hambe bove or use.
Limit:	f. Place a marker at the frequency to show con bands. Save the specifor lowest and highest Above 1GHz test process. Above 1GHz test process. G. Different between above to fully Anechoic Change 18GHz the distance in the interest of the EUT in the interest. The radiation measure that Transmitting mode, and interest in the interest of the interest o	e end of the restrict ompliance. Also mottrum analyzer plot of channel dure as below: ove is the test site of the change forms 1 meter and tab lowest channel, the rements are perfound found the X and dures until all frequency with the change forms and found the X and dures until all frequency with the change forms are perfound found the X and dures until all frequency with the change forms and found the X and dures until all frequency with the change forms and found the X and dures until all frequency with the change forms and the change forms are changed forms.	easure any ot. Repeat for table 0.8 le is 1.5 months he Highest rmed in X, kis position uencies mediate (m @3m)	closest to the composition of each position of each posit	Anechoic Cl. 5 meter (Aboositioning for tis worse cases complete. mark eak Value eak Value eak Value	hambe bove or use.
imit:	f. Place a marker at the frequency to show co bands. Save the spector lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Chanal 18GHz the distance in the interest of the EUT	e end of the restrict ompliance. Also more trum analyzer place to channel dure as below: ove is the test site of the second table of the second table of the second found the X and the X	easure any ot. Repeat for table 0.8 le is 1.5 mother Highest rmed in X, kis position uencies med (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Cl. 5 meter(Abecositioning for tis worse cases complete. mark eak Value eak Value	hambe bove or use.

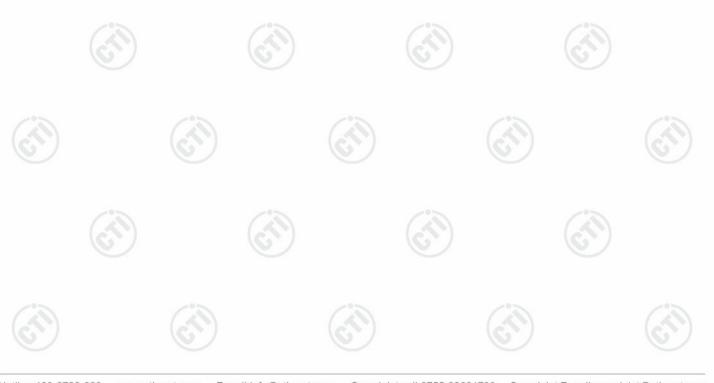



Report No.: EED32N80153703 Page 77 of 105

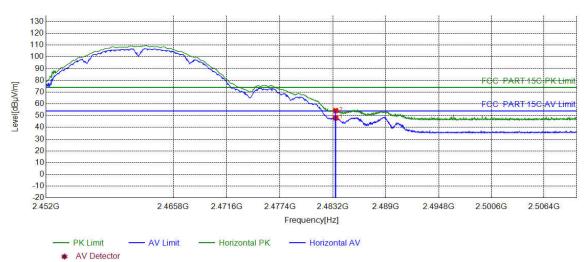
Test plot as follows:

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:			


	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.000	5.77	41.79	47.56	74.00	26.44	PASS	Horizontal	PK
9	2	2390.000	5.77	30.76	36.53	54.00	17.47	PASS	Horizontal	AV

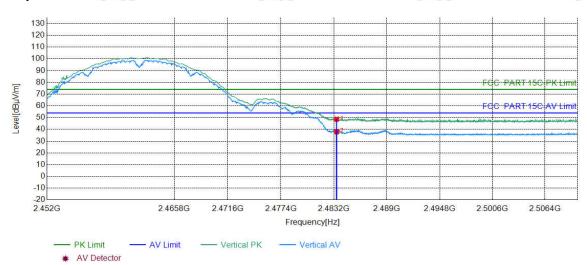


Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:			


	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ı	1	2390.00	5.77	41.41	47.18	74.00	26.82	PASS	Vertical	PK
	2	2390.00	5.77	29.38	35.15	54.00	18.85	PASS	Vertical	AV



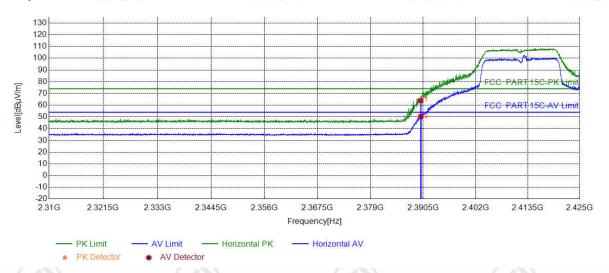
600	16.71		16.7
Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:			

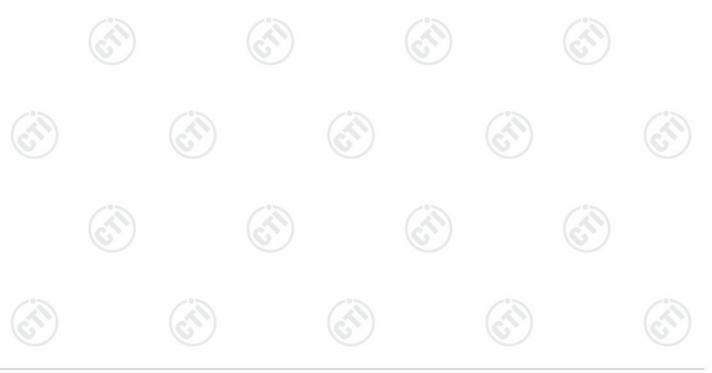

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	41.43	48.00	54.00	6.00	PASS	Horizontal	AV
2	2483.50	6.57	47.74	54.31	74.00	19.69	PASS	Horizontal	PK



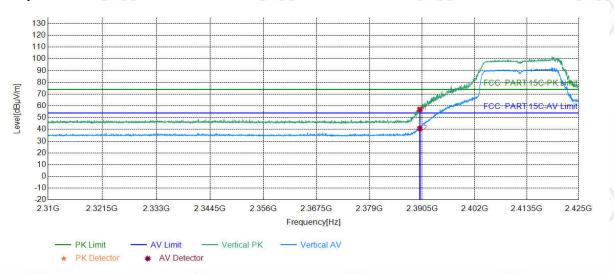
Page 80 of 105 Report No.: EED32N80153703

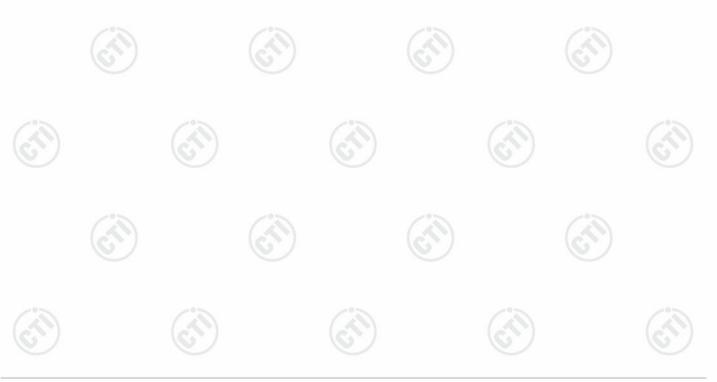
Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:			


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	42.13	48.70	74.00	25.30	PASS	Vertical	PK
2	2483.50	6.57	31.41	37.98	54.00	16.02	PASS	Vertical	AV

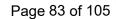


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:			

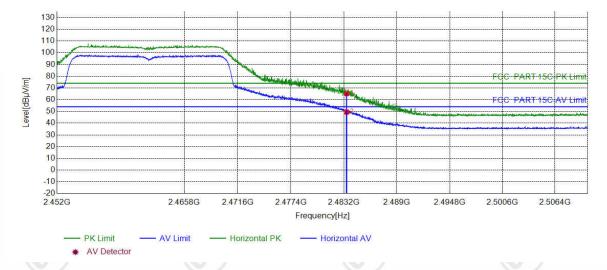

	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.00	5.77	58.24	64.01	74.00	9.99	PASS	Horizontal	PK
9	2	2390.00	5.77	44.49	50.26	54.00	3.74	PASS	Horizontal	AV

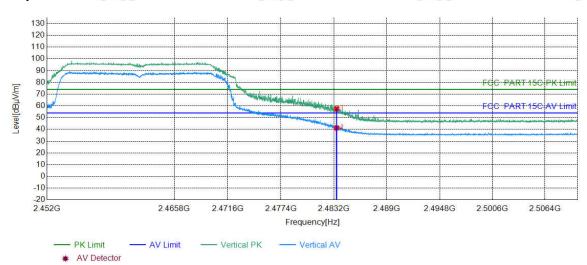


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:		1	

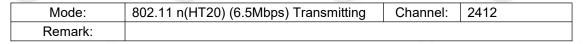


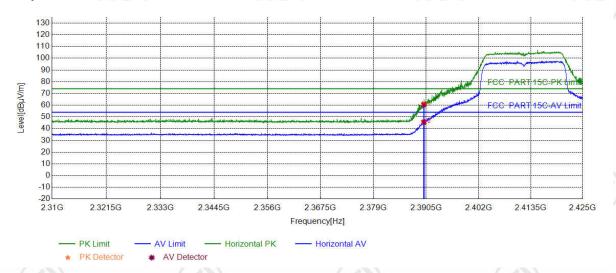
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ı	1	2390.00	5.77	51.34	57.11	74.00	16.89	PASS	Vertical	PK
	2	2390.00	5.77	35.04	40.81	54.00	13.19	PASS	Vertical	AV

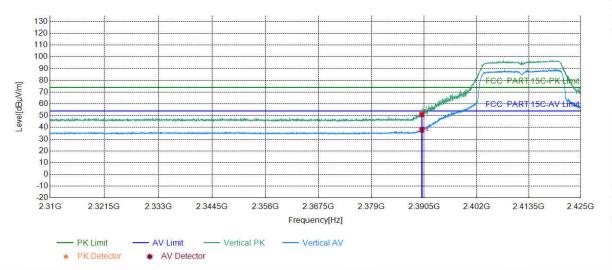


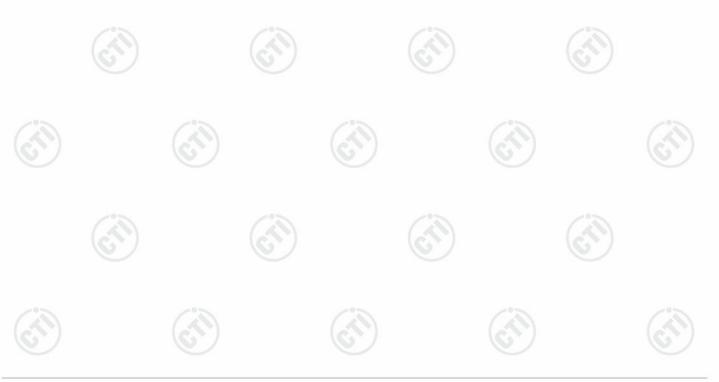

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	58.66	65.23	74.00	8.77	PASS	Horizontal	PK
2	2483.50	6.57	42.90	49.47	54.00	4.53	PASS	Horizontal	AV

Control of the Contro	16.4.7.7	A CONTRACTOR OF THE PARTY OF TH	15.4
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:			

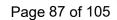



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	51.01	57.58	74.00	16.42	PASS	Vertical	PK
2	2483.50	6.57	34.68	41.25	54.00	12.75	PASS	Vertical	AV

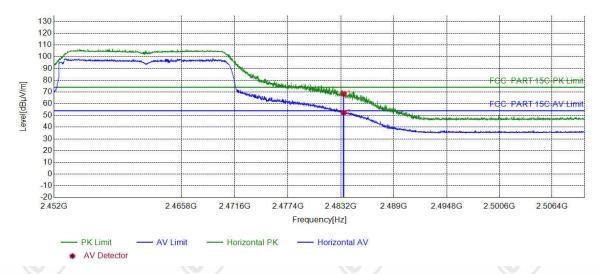

	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.00	5.77	54.89	60.66	74.00	13.34	PASS	Horizontal	PK
9	2	2390.00	5.77	39.83	45.60	54.00	8.40	PASS	Horizontal	AV

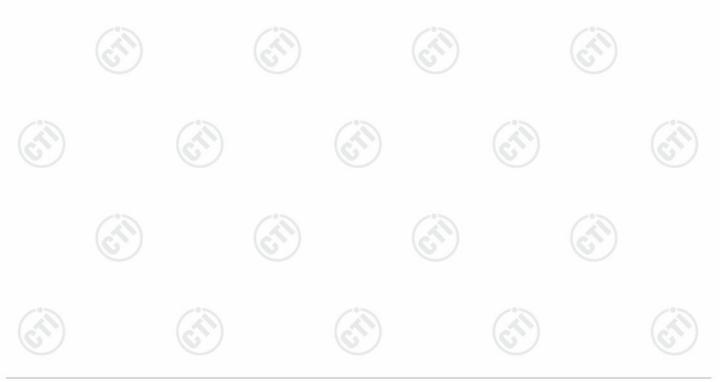


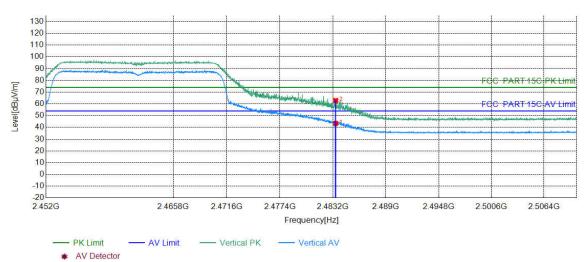
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412	
Remark:				

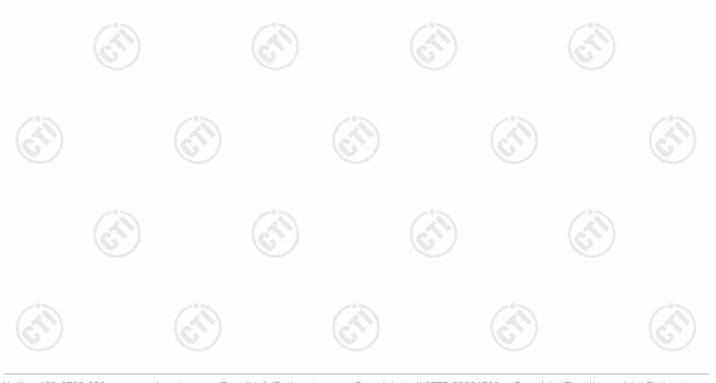


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.00	5.77	45.22	50.99	74.00	23.01	PASS	Vertical	PK
2	2390.00	5.77	32.03	37.80	54.00	16.20	PASS	Vertical	AV





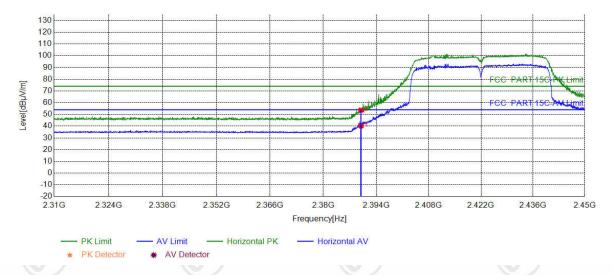

1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.50	6.57	61.94	68.51	74.00	5.49	PASS	Horizontal	PK
	2	2483.50	6.57	45.73	52.30	54.00	1.70	PASS	Horizontal	AV

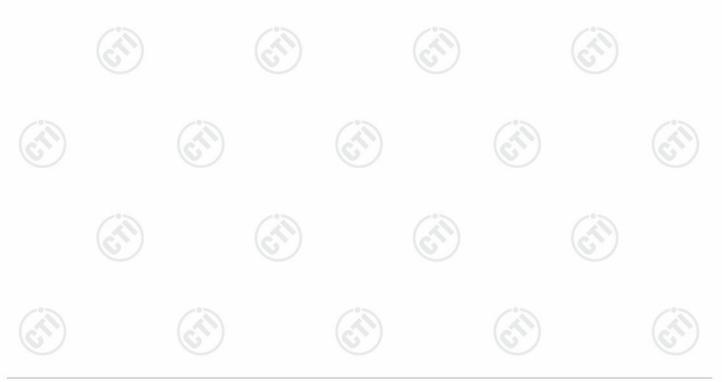


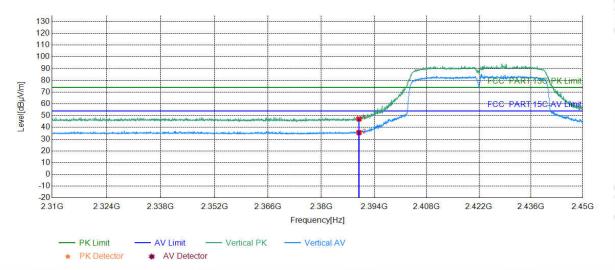
Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:			_



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	36.85	43.42	54.00	10.58	PASS	Vertical	AV
2	2483.50	6.57	56.31	62.88	74.00	11.12	PASS	Vertical	PK

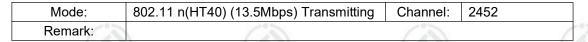


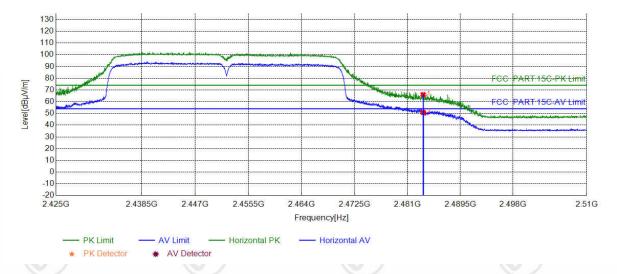



1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.00	5.77	34.45	40.22	54.00	13.78	PASS	Horizontal	AV
	2	2390.00	5.77	47.91	53.68	74.00	20.32	PASS	Horizontal	PK

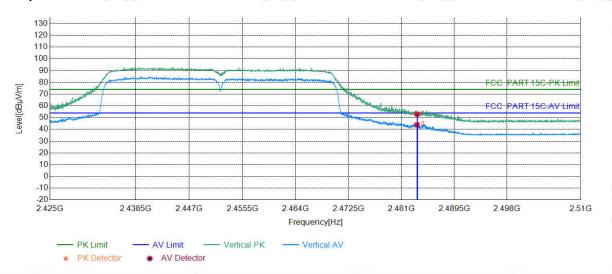


Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422	
Remark:				


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.00	5.77	41.45	47.22	74.00	26.78	PASS	Vertical	PK
2	2390.00	5.77	29.83	35.60	54.00	18.40	PASS	Vertical	AV



	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.50	6.57	59.46	66.03	74.00	7.97	PASS	Horizontal	PK
7	2	2483.50	6.57	44.28	50.85	54.00	3.15	PASS	Horizontal	AV



Report No.: EED32N80153703 Page 92 of 105

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:			

Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.50	6.57	46.42	52.99	74.00	21.01	PASS	Vertical	PK
2	2483.50	6.57	37.25	43.82	54.00	10.18	PASS	Vertical	AV

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

1 67 2 7	1,000			18.7
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab 21/2 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel, the middle channel ,the Highest channel .
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

	m	IΤ

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)		-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	=	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

QP Detector

930.8321

AV Detector

-4.67


37.72

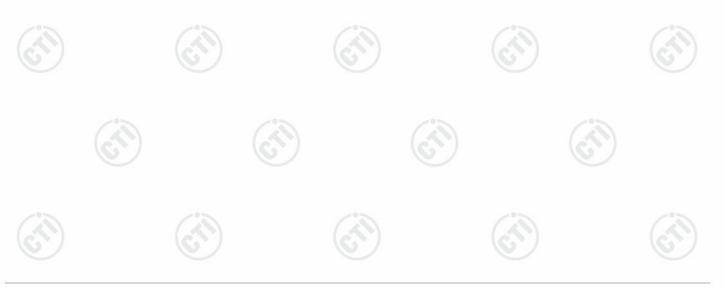
Report No.: EED32N80153703 Page 94 of 105

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b Channel 2412MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode:	802.11 b Transmitting	Channel:	2412
Remark:			

100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	31.9402	-19.71	51.30	31.59	40.00	8.41	PASS	Horizontal	PK
	2	73.5574	-21.43	50.76	29.33	40.00	10.67	PASS	Horizontal	PK
	3	161.1571	-21.07	44.96	23.89	43.50	19.61	PASS	Horizontal	PK
	4	263.9874	-16.27	52.06	35.79	46.00	10.21	PASS	Horizontal	PK
	5	372.0562	-13.51	51.31	37.80	46.00	8.20	PASS	Horizontal	PK

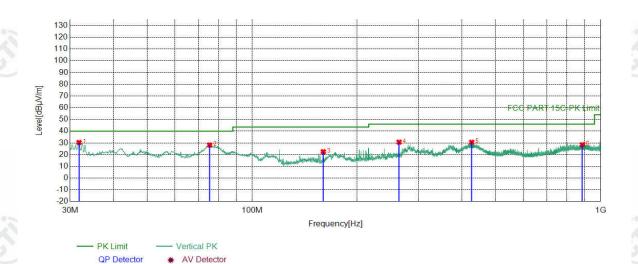

46.00

12.95

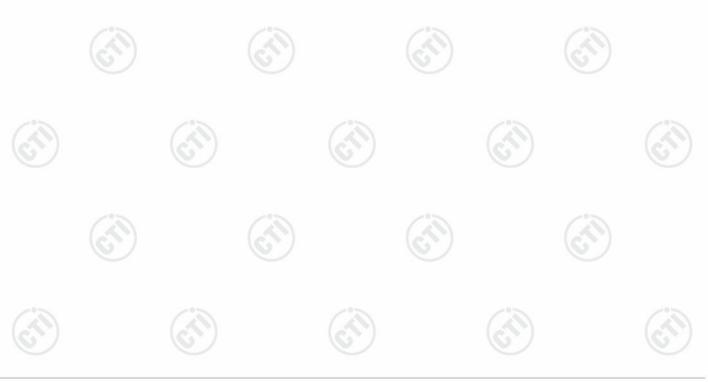
PASS

Horizontal

PΚ



33.05



Page 95	of 105	
---------	--------	--

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	(0,)		(0)

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	31.8432	-19.72	50.10	30.38	40.00	9.62	PASS	Vertical	PK
2	75.4976	-21.77	49.93	28.16	40.00	11.84	PASS	Vertical	PK
3	159.9930	-21.15	43.65	22.50	43.50	21.00	PASS	Vertical	PK
4	263.9874	-16.27	46.94	30.67	46.00	15.33	PASS	Vertical	PK
5	426.5757	-12.36	42.92	30.56	46.00	15.44	PASS	Vertical	PK
6	885.9166	-5.13	33.58	28.45	46.00	17.55	PASS	Vertical	PK

Report No.: EED32N80153703 Page 96 of 105

Transmitter Emission above 1GHz

М	ode:	8	02.11 b Trar	nsmitting		Channel:		2412		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(1	1033.2033	0.92	45.43	46.35	74.00	27.65	PASS	Horizonta	PK
8	2	1982.6983	4.46	41.13	45.59	74.00	28.41	PASS	Horizonta	PK
	3	4824.1216	-16.22	62.03	45.81	74.00	28.19	PASS	Horizonta	PK
	4	7428.2952	-11.39	54.50	43.11	74.00	30.89	PASS	Horizonta	PK
	5	9647.4432	-7.52	56.08	48.56	74.00	25.44	PASS	Horizonta	PK
	6	13673.7116	-1.73	50.00	48.27	74.00	25.73	PASS	Horizonta	PK
	7	1328.8329	1.16	45.72	46.88	74.00	27.12	PASS	Vertical	PK
	8	1992.4993	4.51	43.46	47.97	74.00	26.03	PASS	Vertical	PK
	9	3329.0219	-19.92	60.84	40.92	74.00	33.08	PASS	Vertical	PK
	10	5312.1541	-14.78	62.13	47.35	74.00	26.65	PASS	Vertical	PK
9	11	9647.4432	-7.52	53.41	45.89	74.00	28.11	PASS	Vertical	PK
	12	11999.6000	-5.25	54.20	48.95	74.00	25.05	PASS	Vertical	PK

Mode:	80	2.11 b Trar	nsmitting		Channel:		2437		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1080.6081	0.87	43.58	44.45	74.00	29.55	PASS	Horizonta	PK
2	1992.8993	4.51	42.35	46.86	74.00	27.14	PASS	Horizonta	PK
3	4265.0843	-17.51	56.35	38.84	74.00	35.16	PASS	Horizonta	PK
4	7313.2876	-11.67	55.87	44.20	74.00	29.80	PASS	Horizonta	PK
5	9748.4499	-7.55	54.84	47.29	74.00	26.71	PASS	Horizonta	PK
6	12599.6400	-4.11	52.19	48.08	74.00	25.92	PASS	Horizonta	PK
7	1250.2250	0.93	43.17	44.10	74.00	29.90	PASS	Vertical	PK
8	1997.6998	4.54	42.35	46.89	74.00	27.11	PASS	Vertical	PK
9	3322.0215	-19.89	61.68	41.79	74.00	32.21	PASS	Vertical	PK
10	5310.1540	-14.78	62.64	47.86	74.00	26.14	PASS	Vertical	PK
11	9747.4498	-7.55	54.51	46.96	74.00	27.04	PASS	Vertical	PK
12	14385.7591	0.98	48.78	49.76	74.00	24.24	PASS	Vertical	PK

5
١

				20%					_0~	
	Mode:		802.11 b Trar	nsmitting		Channel:		2462		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1080.2080	0.87	45.08	45.95	74.00	28.05	PASS	Horizonta	PK
	2	2028.5029	9 4.64	41.07	45.71	74.00	28.29	PASS	Horizonta	PK
	3	3328.0219	9 -19.91	57.84	37.93	74.00	36.07	PASS	Horizonta	PK
Ī	4	5652.1768	3 -14.09	54.35	40.26	74.00	33.74	PASS	Horizonta	PK
Ī	5	7807.3205	5 -11.35	53.51	42.16	74.00	31.84	PASS	Horizonta	PK
Ī	6	12506.633	8 -4.78	52.86	48.08	74.00	25.92	PASS	Horizonta	PK
	7	1074.0074	4 0.88	43.18	44.06	74.00	29.94	PASS	Vertical	PK
Ī	8	1997.0997	7 4.53	42.00	46.53	74.00	27.47	PASS	Vertical	PK
Ī	9	3329.0219	9 -19.92	62.23	42.31	74.00	31.69	PASS	Vertical	PK
Ī	10	5328.1552	2 -14.73	65.13	50.40	74.00	23.60	PASS	Vertical	PK
	11	8716.381	1 -10.03	54.93	44.90	74.00	29.10	PASS	Vertical	PK
	12	11959.597	3 -5.48	53.87	48.39	74.00	25.61	PASS	Vertical	PK
-				•		•				

Мс	ode:		802.11 g Trar	nsmitting		Channel:		2412		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1062.806	3 0.89	43.70	44.59	74.00	29.41	PASS	Horizonta	PK
	2	1746.674	7 3.10	41.76	44.86	74.00	29.14	PASS	Horizonta	PK
	3	3762.050	8 -19.50	58.60	39.10	74.00	34.90	PASS	Horizonta	PK
(4	4823.121	5 -16.22	57.34	41.12	74.00	32.88	PASS	Horizonta	PK
	5	7819.321	3 -11.29	54.12	42.83	74.00	31.17	PASS	Horizonta	PK
	6	12490.632	-4.82	54.81	49.99	74.00	24.01	PASS	Horizonta	PK
	7	1063.606	4 0.89	45.82	46.71	74.00	27.29	PASS	Vertical	PK
	8	1705.870	6 2.96	41.30	44.26	74.00	29.74	PASS	Vertical	PK
	9	3986.065	7 -18.92	60.37	41.45	74.00	32.55	PASS	Vertical	PK
	10	6000.200	0 -12.96	62.88	49.92	74.00	24.08	PASS	Vertical	PK
	11	9312.420	8 -7.95	52.67	44.72	74.00	29.28	PASS	Vertical	PK
	12	12000.600	00 -5.25	55.00	49.75	74.00	24.25	PASS	Vertical	PK

Page 98 of 105

_				100						
	Mode:	8	02.11 g Trar	nsmitting		Channel:		2437		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1064.8065	0.89	44.85	45.74	74.00	28.26	PASS	Horizonta	PK
(2	1905.0905	4.06	40.49	44.55	74.00	29.45	PASS	Horizonta	PK
	3	3990.0660	-18.91	60.17	41.26	74.00	32.74	PASS	Horizonta	PK
	4	5976.1984	-13.11	56.83	43.72	74.00	30.28	PASS	Horizonta	PK
	5	8943.3962	-8.89	53.46	44.57	74.00	29.43	PASS	Horizonta	PK
	6	14396.7598	1.17	48.06	49.23	74.00	24.77	PASS	Horizonta	PK
	7	1278.4278	1.00	42.56	43.56	74.00	30.44	PASS	Vertical	PK
	8	1998.0998	4.54	43.16	47.70	74.00	26.30	PASS	Vertical	PK
	9	3332.0221	-19.93	62.17	42.24	74.00	31.76	PASS	Vertical	PK
	10	6000.2000	-12.96	61.65	48.69	74.00	25.31	PASS	Vertical	PK
0	11	7342.2895	-11.61	59.61	48.00	74.00	26.00	PASS	Vertical	PK
1	12	11999.6000	-5.25	54.55	49.30	74.00	24.70	PASS	Vertical	PK

Mode:		802.11 g Trar	smitting		Channel:		2462		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1084.0084	1 0.87	44.08	44.95	74.00	29.05	PASS	Horizonta	PK
2	1776.0776	3.20	41.62	44.82	74.00	29.18	PASS	Horizonta	PK
3	4839.1226	-16.22	56.01	39.79	74.00	34.21	PASS	Horizonta	PK
4	7135.2757	7 -11.67	53.93	42.26	74.00	31.74	PASS	Horizonta	PK
5	9848.4566	6 -7.23	53.23	46.00	74.00	28.00	PASS	Horizonta	PK
6	14400.760	1 1.21	49.08	50.29	74.00	23.71	PASS	Horizonta	PK
7	1333.2333	3 1.17	46.36	47.53	74.00	26.47	PASS	Vertical	PK
8	1991.8992	2 4.51	42.23	46.74	74.00	27.26	PASS	Vertical	PK
9	3827.055	1 -19.20	60.01	40.81	74.00	33.19	PASS	Vertical	PK
10	6000.2000	-12.96	62.74	49.78	74.00	24.22	PASS	Vertical	PK
11	9847.4565	5 -7.23	55.16	47.93	74.00	26.07	PASS	Vertical	PK
12	12000.600	0 -5.25	54.83	49.58	74.00	24.42	PASS	Vertical	PK

Page	99	Ωf	105	

_										
	Mode:		802.11 n(HT	20) Transm	itting	Channel:		2412		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1073.007	73 0.88	43.83	44.71	74.00	29.29	PASS	Horizonta	PK
(2	1578.057	78 2.11	41.77	43.88	74.00	30.12	PASS	Horizonta	PK
	3	4513.100	9 -16.92	57.12	40.20	74.00	33.80	PASS	Horizonta	PK
Ī	4	6702.246	68 -12.48	54.64	42.16	74.00	31.84	PASS	Horizonta	PK
	5	10327.48	85 -6.41	52.33	45.92	74.00	28.08	PASS	Horizonta	PK
	6	14473.76	49 0.17	48.71	48.88	74.00	25.12	PASS	Horizonta	PK
	7	1074.807	75 0.88	43.93	44.81	74.00	29.19	PASS	Vertical	PK
	8	1331.233	1.16	46.00	47.16	74.00	26.84	PASS	Vertical	PK
	9	3994.066	3 -18.90	59.75	40.85	74.00	33.15	PASS	Vertical	PK
	10	5313.154	12 -14.77	62.30	47.53	74.00	26.47	PASS	Vertical	PK
0	11	6000.200	00 -12.96	61.82	48.86	74.00	25.14	PASS	Vertical	PK
	12	12000.60	00 -5.25	54.43	49.18	74.00	24.82	PASS	Vertical	PK

Mode:		802.11 n(HT2	20) Transmi	tting	Channel:		2437			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1033.203	3 0.92	44.95	45.87	74.00	28.13	PASS	Horizonta	PK	
2	1692.869	3 2.89	41.18	44.07	74.00	29.93	PASS	Horizonta	PK	
3	4032.068	8 -18.67	57.85	39.18	74.00	34.82	PASS	Horizonta	PK	
4	5764.184	3 -13.70	55.96	42.26	74.00	31.74	PASS	Horizonta	PK	
5	7416.294	4 -11.44	54.16	42.72	74.00	31.28	PASS	Horizonta	PK	
6	11345.550	64 -6.40	53.43	47.03	74.00	26.97	PASS	Horizonta	PK	
7	1330.633	1.16	43.44	44.60	74.00	29.40	PASS	Vertical	PK	
8	3323.021	5 -19.89	63.35	43.46	74.00	30.54	PASS	Vertical	PK	
9	5333.155	5 -14.72	62.46	47.74	74.00	26.26	PASS	Vertical	PK	
10	6657.243	8 -12.63	58.69	46.06	74.00	27.94	PASS	Vertical	PK	
11	8794.386	3 -9.50	53.59	44.09	74.00	29.91	PASS	Vertical	PK	
12	11999.60	00 -5.25	53.81	48.56	74.00	25.44	PASS	Vertical	PK	

Page	100	of 1	105

				100						
M	Mode:		802.11 n(HT2	20) Transmi	tting	Channel:		2462		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1063.806	4 0.89	44.10	44.99	74.00	29.01	PASS	Horizonta	PK
9	2	1766.276	6 3.17	41.23	44.40	74.00	29.60	PASS	Horizonta	PK
	3	3762.050	8 -19.50	58.24	38.74	74.00	35.26	PASS	Horizonta	PK
	4	5308.153	9 -14.79	58.41	43.62	74.00	30.38	PASS	Horizonta	PK
	5	7381.292	1 -11.54	54.71	43.17	74.00	30.83	PASS	Horizonta	PK
	6	9847.456	5 -7.23	53.78	46.55	74.00	27.45	PASS	Horizonta	PK
	7	1052.605	3 0.90	44.73	45.63	74.00	28.37	PASS	Vertical	PK
	8	1664.666	5 2.71	41.94	44.65	74.00	29.35	PASS	Vertical	PK
	9	3324.021	6 -19.90	62.61	42.71	74.00	31.29	PASS	Vertical	PK
	10	5337.155	8 -14.71	55.88	41.17	74.00	32.83	PASS	Vertical	PK
0	11	6659.244	0 -12.62	58.17	45.55	74.00	28.45	PASS	Vertical	PK
	12	12000.600	00 -5.25	54.47	49.22	74.00	24.78	PASS	Vertical	PK

Mode:		302.11 n(HT4	0) Transmi	tting	Channel:		2422			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1032.0032	0.92	45.97	46.89	74.00	27.11	PASS	Horizonta	PK	
2	2134.9135	4.50	41.44	45.94	74.00	28.06	PASS	Horizonta	PK	
3	3793.0529	-19.29	57.40	38.11	74.00	35.89	PASS	Horizonta	PK	
4	6000.2000	-12.96	55.12	42.16	74.00	31.84	PASS	Horizonta	PK	
5	9221.4148	-7.89	53.05	45.16	74.00	28.84	PASS	Horizonta	PK	
6	13427.6952	2 -2.79	51.53	48.74	74.00	25.26	PASS	Horizonta	PK	
7	1328.2328	1.15	45.80	46.95	74.00	27.05	PASS	Vertical	PK	
8	1998.2998	4.54	43.61	48.15	74.00	25.85	PASS	Vertical	PK	
9	3860.0573	-19.16	59.37	40.21	74.00	33.79	PASS	Vertical	PK	
10	5319.1546	-14.76	63.58	48.82	74.00	25.18	PASS	Vertical	PK	
11	9290.4194	-7.94	52.69	44.75	74.00	29.25	PASS	Vertical	PK	
12	11999.6000	-5.25	55.04	49.79	74.00	24.21	PASS	Vertical	PK	

Report No. : EED32N80153703 Page 101 of 105

			100		1 10				
Mode:		302.11 n(HT4	0) Transmi	tting	Channel:		2437		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1043.6044	0.91	44.94	45.85	74.00	28.15	PASS	Horizonta	PK
2	1616.0616	3 2.39	41.45	43.84	74.00	30.16	PASS	Horizonta	PK
3	3990.0660	-18.91	58.08	39.17	74.00	34.83	PASS	Horizonta	PK
4	6646.2431	-12.67	56.40	43.73	74.00	30.27	PASS	Horizonta	PK
5	9236.4158	-7.91	52.38	44.47	74.00	29.53	PASS	Horizonta	PK
6	13852.723	5 -1.81	51.63	49.82	74.00	24.18	PASS	Horizonta	PK
7	1328.0328	1.15	43.97	45.12	74.00	28.88	PASS	Vertical	PK
8	1661.2661	2.69	42.88	45.57	74.00	28.43	PASS	Vertical	PK
9	3811.0541	-19.22	59.47	40.25	74.00	33.75	PASS	Vertical	PK
10	5325.1550	-14.74	63.90	49.16	74.00	24.84	PASS	Vertical	PK
11	8399.3600	-11.00	53.59	42.59	74.00	31.41	PASS	Vertical	PK
12	12599.640	0 -4.11	53.12	49.01	74.00	24.99	PASS	Vertical	PK

Mode:		802.11 n(HT4	0) Transmi	tting	Channel:		2437			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1072.807	3 0.88	43.46	44.34	74.00	29.66	PASS	Horizonta	PK	
2	1987.098	7 4.48	41.17	45.65	74.00	28.35	PASS	Horizonta	PK	
3	3776.051	7 -19.40	57.74	38.34	74.00	35.66	PASS	Horizonta	PK	
4	5806.187	1 -13.57	54.70	41.13	74.00	32.87	PASS	Horizonta	PK	
5	8059.337	3 -11.03	53.18	42.15	74.00	31.85	PASS	Horizonta	PK	
6	12409.627	'3 -4.70	52.42	47.72	74.00	26.28	PASS	Horizonta	PK	
7	1064.606	5 0.89	49.22	50.11	74.00	23.89	PASS	Vertical	PK	
8	1995.699	6 4.53	43.40	47.93	74.00	26.07	PASS	Vertical	PK	
9	3333.022	2 -19.93	60.84	40.91	74.00	33.09	PASS	Vertical	PK	
10	6000.200	0 -12.96	62.03	49.07	74.00	24.93	PASS	Vertical	PK	
11	10380.492	.0 -6.32	51.72	45.40	74.00	28.60	PASS	Vertical	PK	
12	14425.761	7 0.85	48.55	49.40	74.00	24.60	PASS	Vertical	PK	

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.