

Report Seal

TEST REPORT

Product : Hachi Infinite K1

Trade mark : N/A

Model/Type reference : HP23ATQC

Serial Number : N/A

Report Number : EED32N80153702 FCC ID : 2AWMI-HP23ATQC

Date of Issue : Nov. 11, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Beijing Puppy Robotics Co., Ltd. Room 710, 63 E 3rd Ring Rd Middle, Chaoyang, Beijing, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

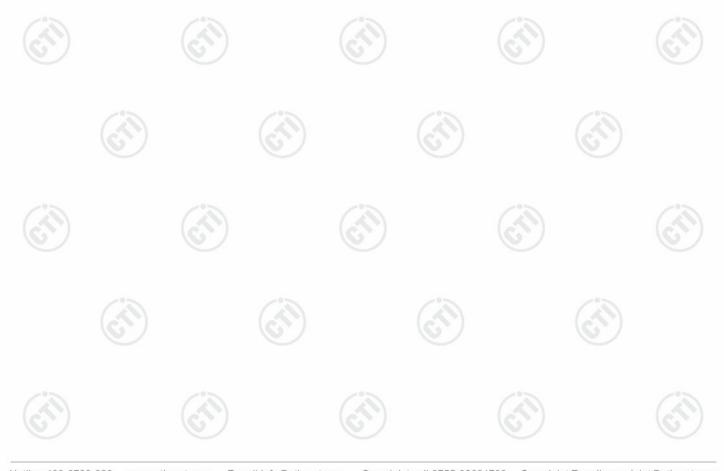
Compiled by:	Ware Xin	Reviewed by:	Lavon Ma	
WIERNATION	Ware xin		Aaron Ma	
Approved by:	David Wang	Date:	Nov. 11, 2021	
E (CTI) E	David Wang		(4)	
E S			Charle Na (04420	40004

Check No.:9113240321

2 Version

Version No.	Date	16	Description	7
00	Nov. 11, 2021		Original	
	· S			/°N
- ((65)	(27)	(0,1)

Report No. : EED32N80153702 Page 3 of 56


3 Test Summary

163t Guillillary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

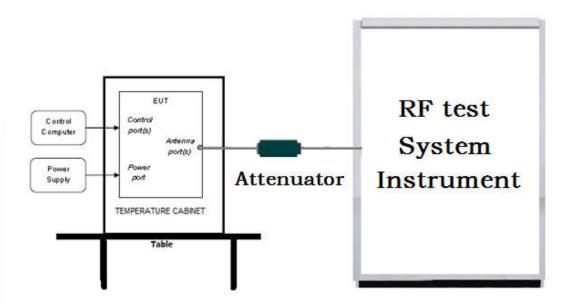
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No.: EED32N80153702 Page 4 of 56

4 Content

1 COVER PAGE	1
2 VERSION	
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	53
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	50



Report No.: EED32N80153702 Page 5 of 56

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

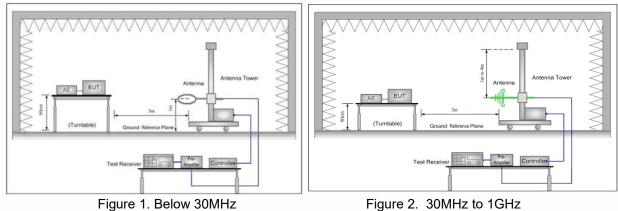


Figure 1. Below 30MHz

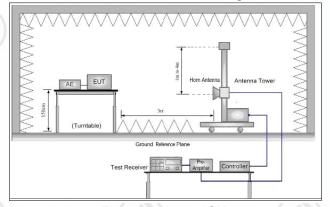
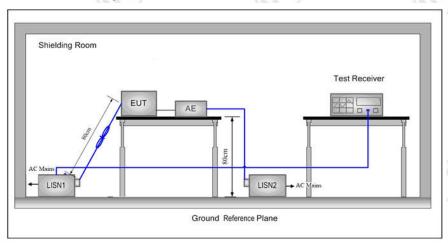



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010mbar	


5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel	\cdot\(\frac{1}{2}\)	
Test Mode	IX/KX	Low(L)	Middle(M)	High(H)	
0501	0.4001411 0.4001411	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

6 General Information

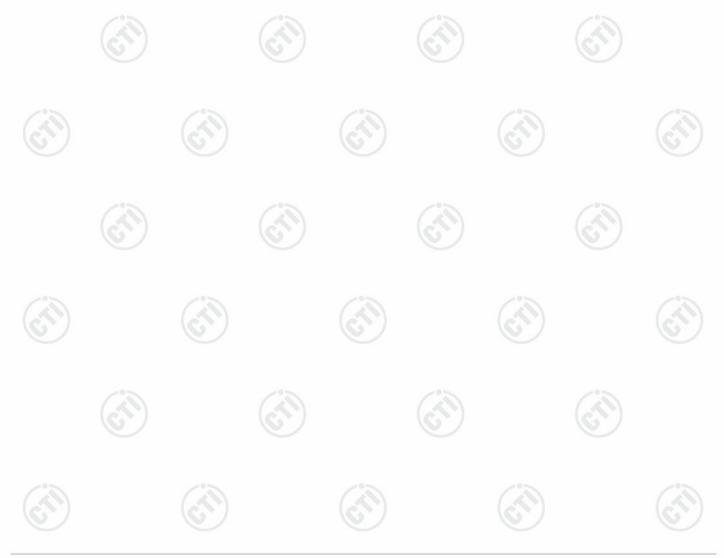
6.1 Client Information

Applicant:	Beijing Puppy Robotics Co., Ltd.
Address of Applicant:	Room 710, 63 E 3rd Ring Rd Middle, Chaoyang, Beijing, China
Manufacturer:	Beijing Puppy Robotics Co., Ltd.
Address of Manufacturer:	Room 710, 63 E 3rd Ring Rd Middle, Chaoyang, Beijing, China
Factory:	Zhangzhou Wanlida Technology Co., Ltd.
Address of Factory:	Wanlida Industrial Zone, Jingcheng Town, Nanjing, Zhangzhou, Fujian, China

6.2 General Description of EUT

1 00 01	1 20 7 1	60. VI	
Hachi Infinite I	< 1		
HP23ATQC			
N/A			
BT5.0 Dual mo	ode 2402MHz to 2480MHz		(4)
AC Adapter	Model:TPA-131A120300CW01 Input:100-240V~ 50/60Hz 1.2A Output:12.0V3.0A		
May 05, 2021			
May 05, 2021 to Nov. 04, 2021			
	HP23ATQC N/A BT5.0 Dual me AC Adapter May 05, 2021	N/A BT5.0 Dual mode 2402MHz to 2480MHz AC Adapter Model:TPA-131A120300CW01 Input:100-240V~ 50/60Hz 1.2A Output:12.0V3.0A May 05, 2021	HP23ATQC N/A BT5.0 Dual mode 2402MHz to 2480MHz AC Adapter Model:TPA-131A120300CW01 Input:100-240V~ 50/60Hz 1.2A Output:12.0V3.0A May 05, 2021

6.3 Product Specification subjective to this standard


Operation Frequency:	2402MHz~2480MHz			-0-
Bluetooth Version:	BLE			
Modulation Type:	GFSK			6
Number of Channel:	40			
Test Power Grade:	Default			
Test Software of EUT:	QRCT			
Antenna Type and Gain:	Type: FPC antenna Gain:3.4 dBi	(C.)	(C.)	
Test Voltage:	AC120V/60Hz			

Report No.: EED32N80153702 Page 8 of 56

Operation F	requency eac	h of channe	1	(3)	\		1
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No. : EED32N80153702 Page 9 of 56

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

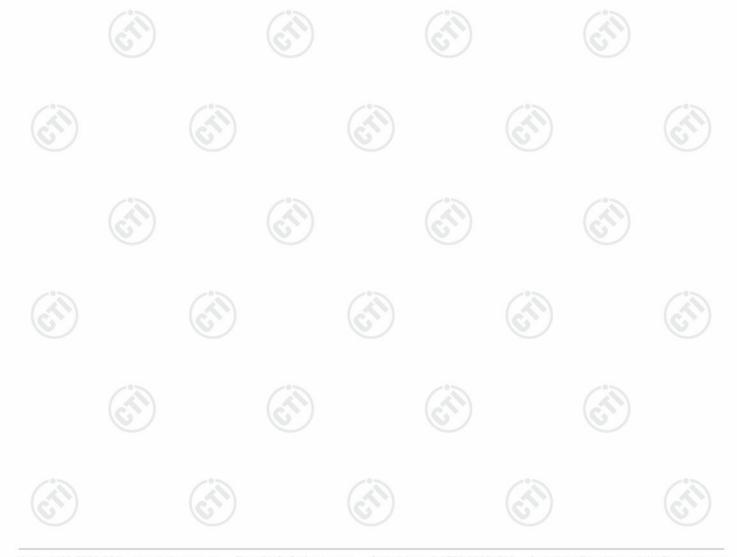
6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
	Dedicted Churique emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

	RF test system									
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Spectrum Analyzer	Keysight	N9010A	MY54510339	08-28-2020 08-26-2021	08-27-2021 08-25-2022					
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021					
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-25-2020 06-23-2021	06-24-2021 06-22-2022					
High-pass filter	High-pass filter Sinoscite									
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		(F)	(3)					
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021					
PC-1	Lenovo	R4960d								
BT&WI-FI Automatic control	R&S	OSP120	101374	12-28-2020	12-27-2021					
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021					
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3								

1.00	4 1	16.4		16.4	7.00					
Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022					
Temperature/ Humidity Indicator	Defu	TH128			(i)					
LISN	R&S	ENV216	100098	03-04-2021	03-03-2024					
Barometer	changchun	DYM3	1188							



Report No.: EED32N80153702 Page 11 of 56

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-18-2020 05-16-2021	05-17-2021 05-15-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100938- 003	10-16-2020 10-15-2021	10-15-2021 10-14-2022
Multi device Controller	maturo	NCD/070/107 11112	(8)		(C.)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	/ - '	
Cable line	Fulai(3M)	SF106	5216/6A	(20)	
Cable line	Fulai(3M)	SF106	5217/6A	(0)	

Page 12 of 56 Report No.: EED32N80153702

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-06-2018 07-04-2021	07-05-2021 07-03-2024
Preamplifier	EMCI	EMC184055SE	980596	05-22-2020 05-20-2021	05-21-2021 05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	(E.L.)	01-09-2021	01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u> </u>	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	(0)	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		<u>-</u>
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		(c1)
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(-	

8 Radio Technical Requirements Specification

Reference documents for testing:

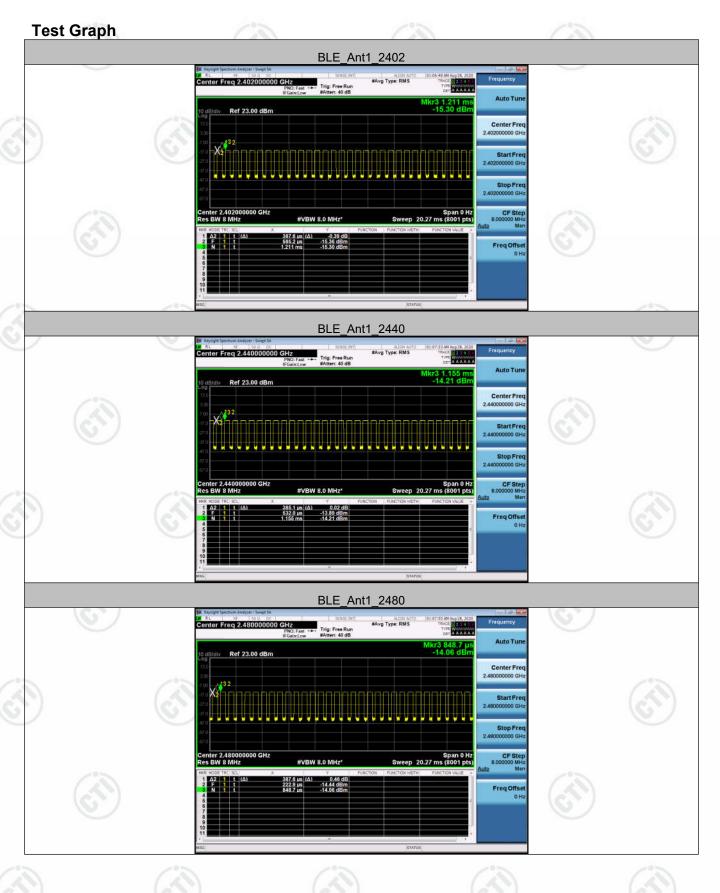
1	No.	Identity	Document Title
-	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	2 200 1			
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32N80153702 Page 14 of 56

Duty Cycle


Result Table

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Limit	Verdict
	Ant1	LCH	0.972	1.211	61.94		PASS
BLE	Ant1	мсн	0.917	1.155	61.79		PASS
	Ant1	HCH	0.611	0.845	61.94		PASS

Report No.: EED32N80153702 Page 16 of 56

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

۳,		347.4	127.77	167.7	
	Limit		Shall be at least 500kHz		2

Occupied Bandwidth(99%): For reporting purposes only.

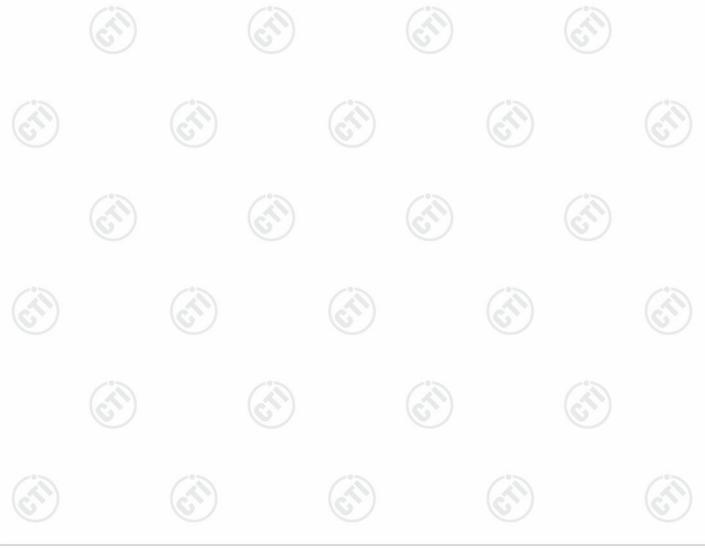
Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Report No.: EED32N80153702 Page 17 of 56


Test Result

6 dB Bandwidth

0 un -u		•					
TestMod e	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdic t
		2402	0.656	2401.692	2402.348	0.5	PASS
BLE_1M	Ant1	2440	0.668	2439.688	2440.356	0.5	PASS
		2480	0.672	2479.680	2480.352	0.5	PASS

Occupied Bandwidth(99%)

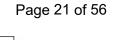
TestMod e	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdic t
		2402	1.0698	2401.491	2402.561		PASS
BLE_1M	Ant1	2440	1.0641	2439.489	2440.553		PASS
		2480	1.0713	2479.488	2480.560		PASS

Page 18 of 56 Report No.: EED32N80153702

Test Graphs

BLE 1M Ant1 2440

Page 19 of 56



Report No.: EED32N80153702 Page 22 of 56

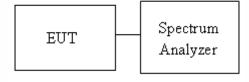
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

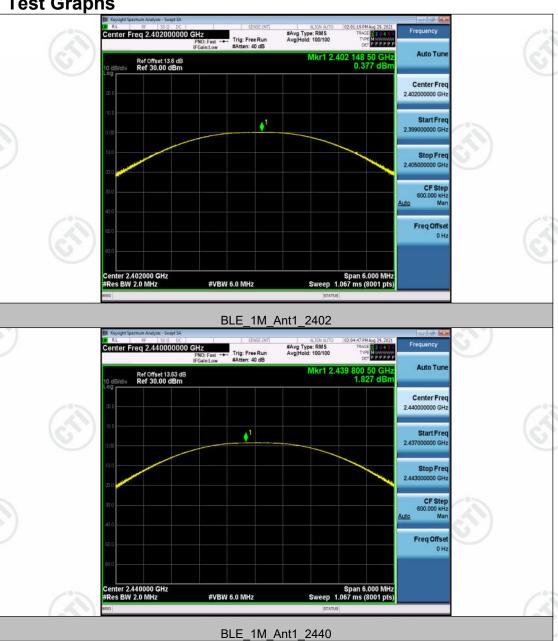

	(0)		6
Limit		☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
		Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

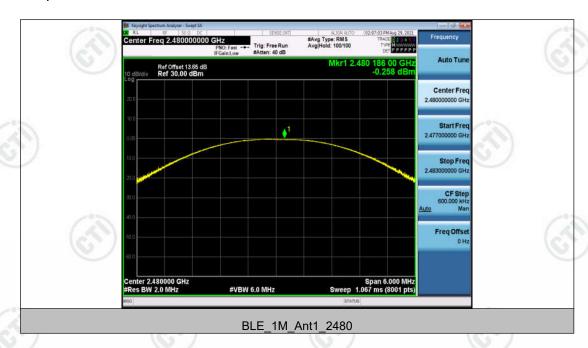


Report No.: EED32N80153702 Page 23 of 56

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	0.38	PASS
BLE	MCH	1.83	PASS
BLE	НСН	-0.26	PASS

Test Graphs



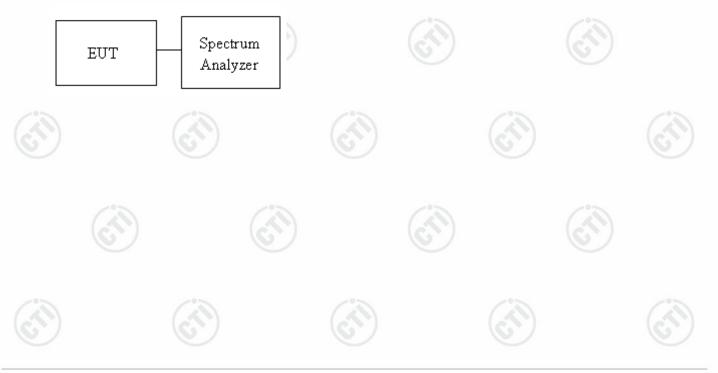
Report No.: EED32N80153702 Page 25 of 56

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

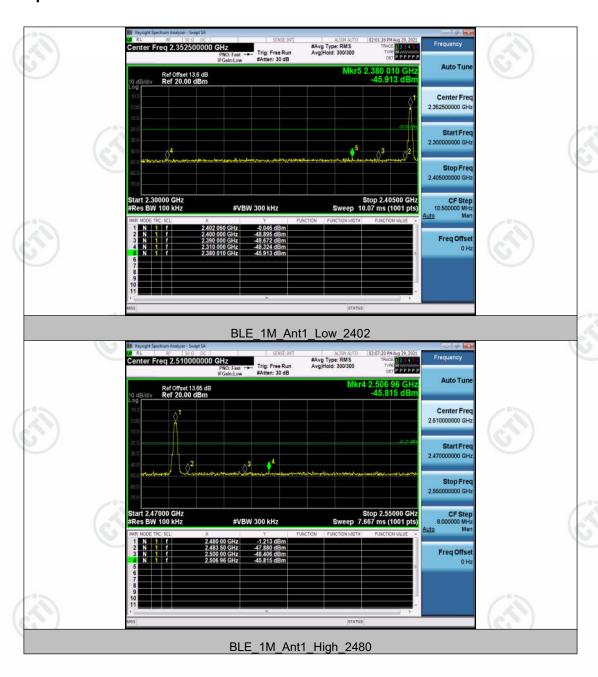

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Report No.: EED32N80153702 Page 26 of 56

Result Table

TestMod e	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdic t
DIE 4M	A m+1	Low	2402	-0.05	-45.91	<=-20.05	PASS
BLE_1M	Ant1	High	2480	-1.21	-45.82	<=-21.21	PASS

Test Graphs

Report No.: EED32N80153702 Page 27 of 56

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

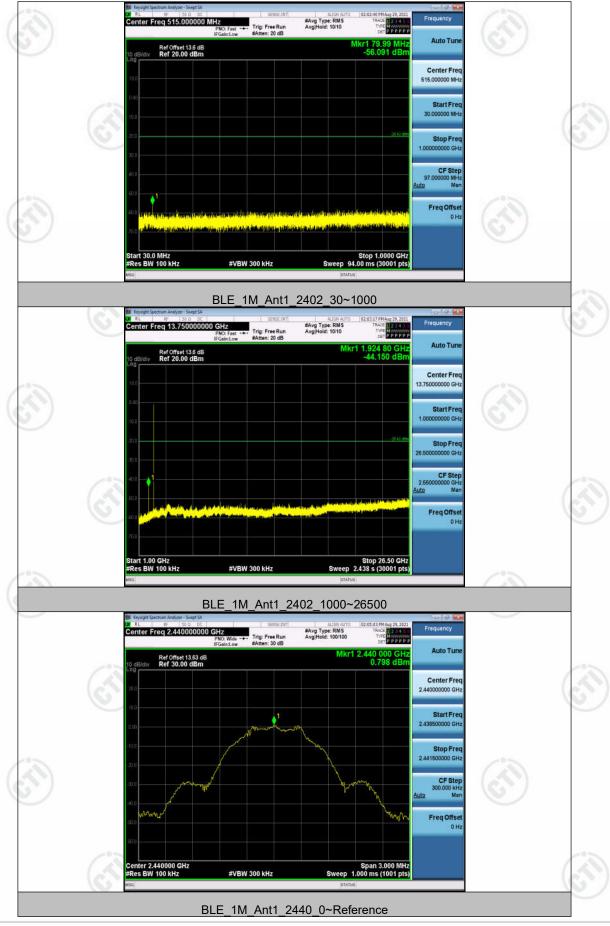
Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

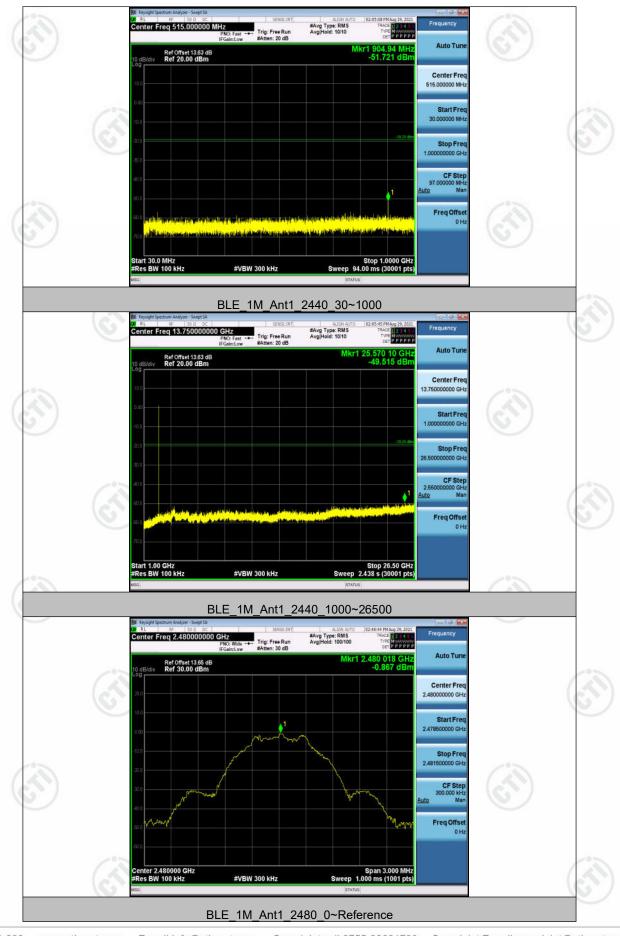
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

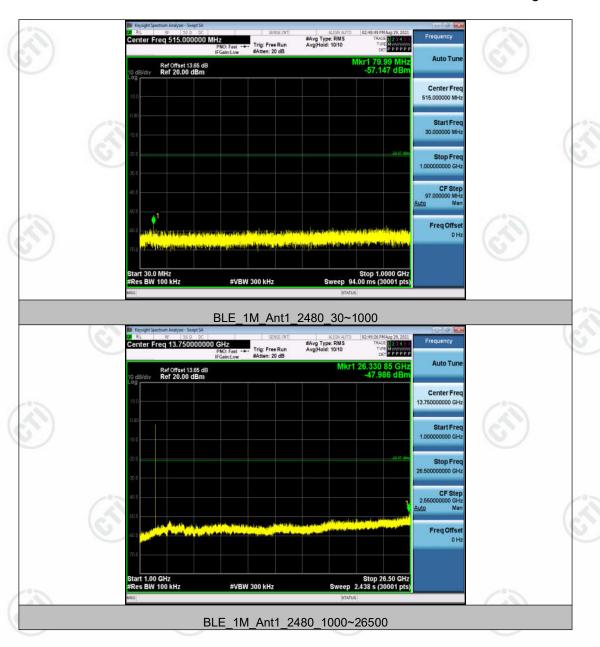
Test Setup

Result Table


					7 7 70 10 1		
TestMod e	Antenna	Channel	FreqRange [MHz]	RefLevel	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	2402	Reference	-0.42	-0.42		PASS
			30~1000	(=)	-56.091	<=-20.419	PASS
			1000~265 00	(0,	-44.15	<=-20.419	PASS
		2440	Reference	0.80	0.80		PASS
			30~1000		-51.721	<=-19.202	PASS
			1000~265 00		-49.515	<=-19.202	PASS
		2480	Reference	-0.87	-0.87		PASS
			30~1000		-57.147	<=-20.867	PASS
			1000~265		-47.986	<=-20.867	PASS

Test Graphs




Report No.: EED32N80153702 Page 30 of 56

Report No.: EED32N80153702 Page 32 of 56

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

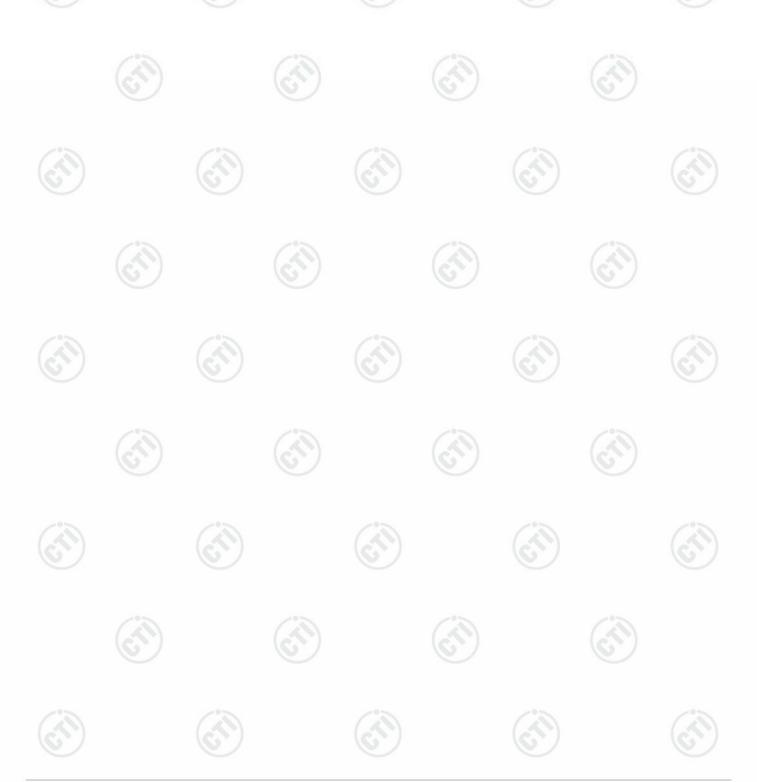
Limit	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)] 	
	☐ Point-to-point operation :	

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

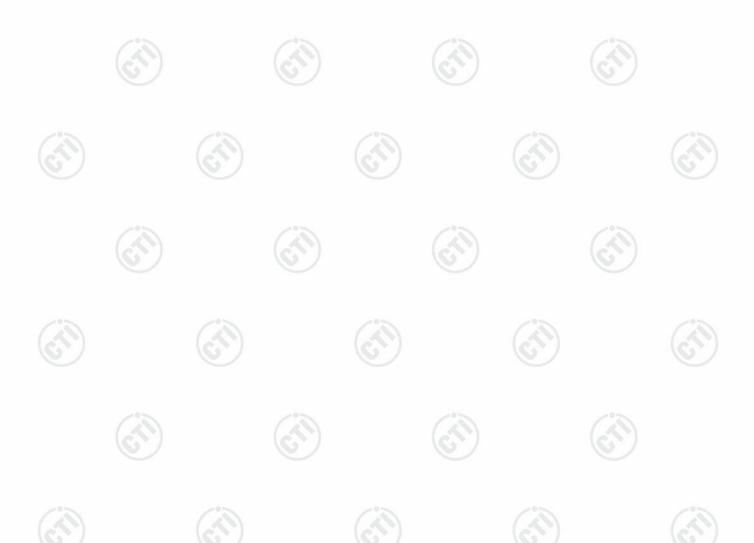
Test Setup



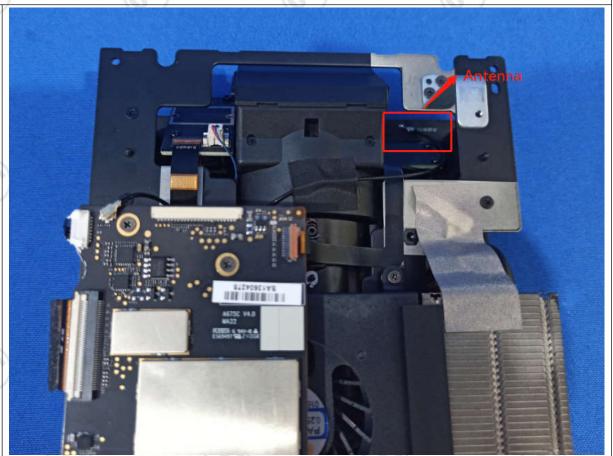
Result Table

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-10.52	<=8	PASS
		2440	-8.88	<=8	PASS
		2480	-11.08	<=8	PASS

Page 34 of 56



Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

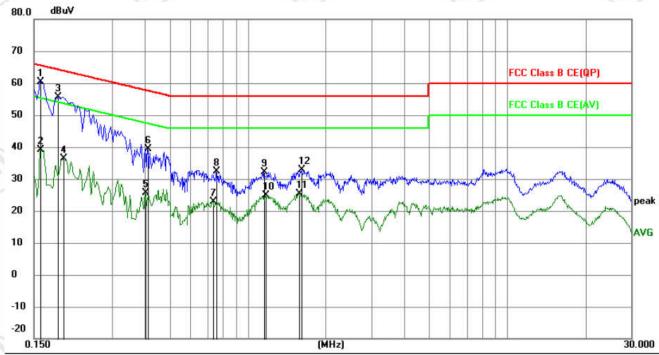
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main FPC and no consideration of replacement. The best case gain of the antenna is 3.4 dBi.

Test Procedure:	1)The mains 2) The EUT v Stabilizati power cal which was	was connected to on Network) which bles of all other un is bonded to the gr was being measured ower cables to a s	30MHz ce voltage test was co AC power source thro h provides a 50Ω/50μ hits of the EUT were ound reference plane d. A multiple socket o ingle LISN provided the	ough a LISN 1 (Lin	e Impedance of the cond LISN 2 as the LISN ed to connect
	3)The tableto	p EUT was place	ed upon a non-metalli or-standing arrangem plane,		
	EUT shall reference 1 was pla ground replane. The All other unline to LISN 2. 5) In order to	be 0.4 m from the plane was bonde aced 0.8 m from the eference plane for is distance was because of the EUT at find the maximum	h a vertical ground refer e vertical ground refer d to the horizontal gro he boundary of the u r LISNs mounted or etween the closest po nd associated equipm n emission, the relative nust be changed as	ence plane. The volund reference planit under test and top of the grouints of the LISN 1 tent was at least 0 e positions of equi	ertical groun ne. The LIS bonded to nd reference and the EU ⁻ .8 m from th pment and a
Limit:	conducted	d measurement.	(6.)	(6.)	
	Frequency	/ range (MHz) ⊢	Limit (d	BμV)	
	Trequency	range (Minz)	Quasi-peak	Average	/°>
	0.	15-0.5	66 to 56*	56 to 46*	
).5-5	56	46	
		5-30	60	50	
	* The limit de	ecreases linearly v	vith the logarithm of t	he frequency in th	ne range 0.1
	MHz to 0.		cable at the transition	frequency	


Report No.: EED32N80153702 Page 38 of 56

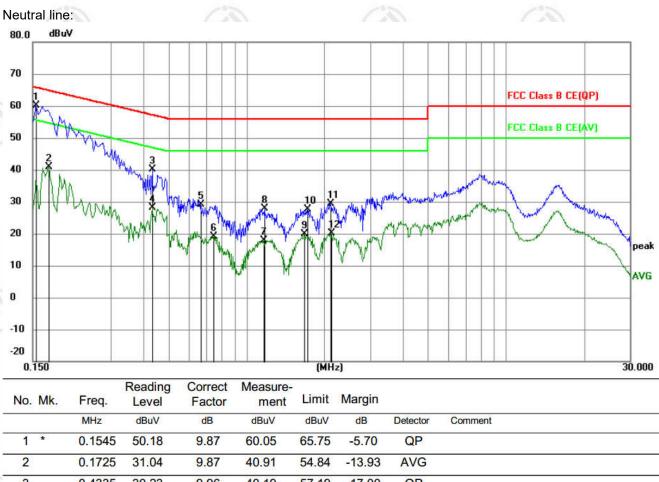
Product Artificial Intelligence Model/Type reference HP23ATQC Terminal

Computer

Temperature : 25℃ **Humidity** 52%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1590	50.51	9.87	60.38	65.52	-5.14	QP	
2		0.1590	29.26	9.87	39.13	55.52	-16.39	AVG	
3		0.1860	45.76	9.87	55.63	64.21	-8.58	QP	
4		0.1949	26.59	9.87	36.46	53.83	-17.37	AVG	
5		0.4020	15.56	9.97	25.53	47.81	-22.28	AVG	
6		0.4110	29.45	9.97	39.42	57.63	-18.21	QP	
7		0.7350	13.05	9.87	22.92	46.00	-23.08	AVG	
8		0.7575	22.61	9.86	32.47	56.00	-23.53	QP	
9		1.1580	22.34	9.82	32.16	56.00	-23.84	QP	
10		1.1715	15.03	9.82	24.85	46.00	-21.15	AVG	
11		1.5809	15.51	9.81	25.32	46.00	-20.68	AVG	
12		1.6125	23.03	9.81	32.84	56.00	-23.16	QP	



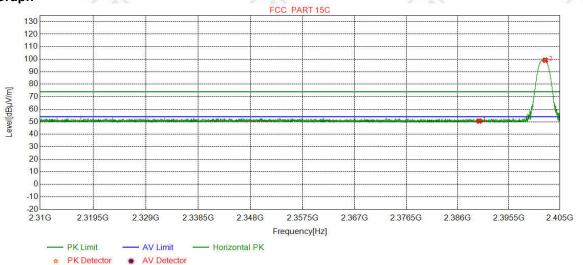
INO. IVIK.	rieq.	Level	Factor	ment	Little	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1545	50.18	9.87	60.05	65.75	-5.70	QP	
2	0.1725	31.04	9.87	40.91	54.84	-13.93	AVG	
3	0.4335	30.23	9.96	40.19	57.19	-17.00	QP	
4	0.4335	18.15	9.96	28.11	47.19	-19.08	AVG	
5	0.6675	19.24	9.94	29.18	56.00	-26.82	QP	
6	0.7440	9.37	9.87	19.24	46.00	-26.76	AVG	
7	1.1625	8.18	9.82	18.00	46.00	-28.00	AVG	
8	1.1760	17.94	9.82	27.76	56.00	-28.24	QP	
9	1.6665	10.02	9.80	19.82	46.00	-26.18	AVG	
10	1.7160	17.90	9.80	27.70	56.00	-28.30	QP	
11	2.1030	19.58	9.79	29.37	56.00	-26.63	QP	
12	2.1210	10.26	9.79	20.05	46.00	-25.95	AVG	

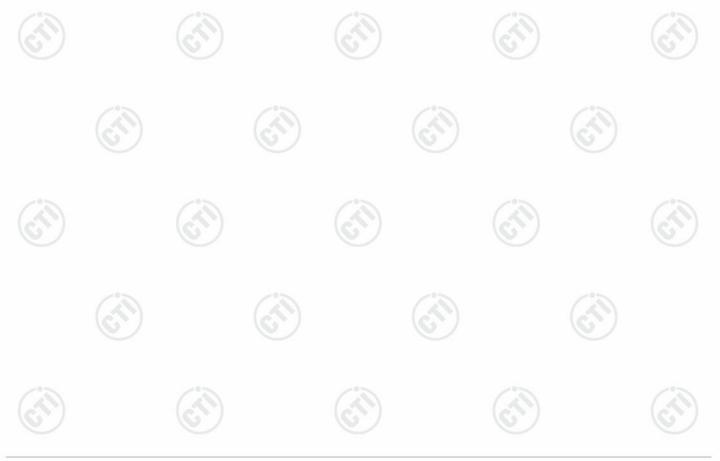
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

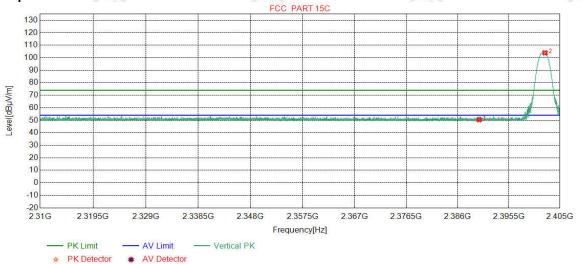
(110001000)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	<
	AL 40U-	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced Test method Refer as KE	B 558074 D01 v04			an ale ava the a	
	 a. The EUT was placed at a 3 meter semi-an determine the position b. The EUT was set 3 means are was mounted on the control of the antenna height is determine the maximal polarizations of the antenna was tuned was turned from 0 determined 	echoic camber. The nof the highest race neters away from the top of a variable-hes varied from one rum value of the fiest name are set to not not not not not not not not not	e table wadiation. he interfereight anter meter to foold strength make the m was arran 1 meter to ees to find	ence-receinna tower. our meters n. Both hor neasurement ged to its v 4 meters a the maxin	Wing antennation above the gradient and vent. Worst case along the rotate and the rotate and the reading.	to a, which round to vertical nd then able
	e. The test-receiver sys Bandwidth with Maxii f. Place a marker at the frequency to show co bands. Save the spe- for lowest and highes	tem was set to Peamum Hold Mode. e end of the restrict ompliance. Also me otrum analyzer plot	ted band c easure any	losest to the	ne transmit s in the restri	cted
	e. The test-receiver sys Bandwidth with Maxis f. Place a marker at the frequency to show co bands. Save the spec for lowest and highes Above 1GHz test proce g. Different between ab to fully Anechoic Cha 18GHz the distance in the interest of the EUT in the interest of the same to fully a feet of the EUT in the interest of the EUT in the interest of the same transmitting mode, as the EUT in the interest of the same transmitting mode, as the same transmitting mod	tem was set to Pea mum Hold Mode. e end of the restrict empliance. Also me ctrum analyzer plot it channel dure as below: ove is the test site, mber change form is 1 meter and table lowest channel, the rements are performed found the X axi	ted band ceasure any t. Repeat for table 0.8 e is 1.5 med med in X, is positioni	closest to the commission each posterior each posterior each posterior each posterior each posterior each each each each each each each each	ne transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	cted dulatior namber ove r
Limit:	e. The test-receiver sys Bandwidth with Maxii f. Place a marker at the frequency to show co bands. Save the spec for lowest and highes Above 1GHz test proce g. Different between ab to fully Anechoic Cha 18GHz the distance i h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proces	tem was set to Peamum Hold Mode. e end of the restrict ompliance. Also metrum analyzer plot the channel dure as below: ove is the test site, mber change form a 1 meter and table lowest channel, the ments are performed found the X axidures until all frequents.	ted band ceasure any t. Repeat for table 0.8 e is 1.5 met ne Highest med in X, is positioni encies me	closest to the community emissions for each posterior of the community end of the community and the community end of the community end	ne transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	cted dulatior namber ove
imit:	e. The test-receiver sys Bandwidth with Maxis f. Place a marker at the frequency to show co bands. Save the spec for lowest and highes Above 1GHz test proce g. Different between ab to fully Anechoic Cha 18GHz the distance i h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proced	tem was set to Peamum Hold Mode. e end of the restrict ompliance. Also meetrum analyzer plot the channel dure as below: ove is the test site, mber change forms 1 meter and table lowest channel, the tements are performed found the X axidures until all frequents (dBµV/r	ted band of easure any t. Repeat f table 0.8 e is 1.5 met ne Highest med in X, is positioni encies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which is	ne transmit s in the restri ower and mo Anechoic Cr .5 meter(Ab cositioning fo t is worse ca as complete.	cted dulation namber ove
_imit:	e. The test-receiver sys Bandwidth with Maxii f. Place a marker at the frequency to show co bands. Save the spec for lowest and highes Above 1GHz test proce g. Different between ab to fully Anechoic Cha 18GHz the distance i h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proces	tem was set to Peanum Hold Mode. e end of the restrict ompliance. Also metrum analyzer plot to channel dure as below: ove is the test site, mber change form as 1 meter and table lowest channel, the tements are performed found the X axidures until all frequired. Limit (dBµV/r 40.0	ted band ceasure any t. Repeat for table 0.8 e is 1.5 met med in X, is positionidencies med m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch.5 meter(Abecositioning for tis worse case complete.	cted dulation namber ove
_imit:	e. The test-receiver sys Bandwidth with Maxif. Place a marker at the frequency to show co bands. Save the specifor lowest and highest Above 1GHz test proces. Above 1GHz test proces. Different between above 18GHz the distance in the interest of the inter	tem was set to Peanum Hold Mode. e end of the restrict ompliance. Also meetrum analyzer plot to channel dure as below: ove is the test site, mber change form a 1 meter and table lowest channel, the rements are performed found the X axis dures until all frequence. Limit (dBµV/r 40.0 43.5	ted band of easure any t. Repeat f table 0.8 e is 1.5 met ne Highest med in X, is positioni encies me m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	Anechoic Cr. 5 meter(Abecositioning for tis worse cases complete.	cted dulation namber ove
_imit:	e. The test-receiver sys Bandwidth with Maxif. Place a marker at the frequency to show co bands. Save the specifor lowest and highest Above 1GHz test proced. G. Different between above 18GHz the distance in the fully Anechoic Character 18GHz the EUT in the interest in the EUT in the interest in the EUT in the interest in the radiation measure. Transmitting mode, and in the interest in the interest in the interest in the EUT in the interest in the E	tem was set to Pearnum Hold Mode. e end of the restrict ompliance. Also me ctrum analyzer plot of channel dure as below: ove is the test site, mber change form s 1 meter and table lowest channel, the ments are performed found the X axis dures until all frequents (dBµV/r 40.0 43.5 46.0	ted band of easure any t. Repeat f table 0.8 e is 1.5 met ne Highest med in X, is positioni encies me m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	cted dulation namber ove
Limit:	e. The test-receiver sys Bandwidth with Maxif f. Place a marker at the frequency to show co bands. Save the spector lowest and highest Above 1GHz test procests. Different between about to fully Anechoic Chands 18GHz the distance in h. Test the EUT in the in the radiation measur Transmitting mode, and j. Repeat above procests. Repeat above procests. Samuel S	tem was set to Peanum Hold Mode. e end of the restrict empliance. Also me ctrum analyzer plot the channel dure as below: ove is the test site, mber change forms 1 meter and table lowest channel, the ments are performed found the X axidures until all frequestable Limit (dBµV/r 40.0 43.5 46.0 54.0	ted band of easure any t. Repeat f table 0.8 e is 1.5 met ne Highest med in X, is positioni encies me m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Cr.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value eak Value eak Value	cted dulation namber ove
Limit:	e. The test-receiver sys Bandwidth with Maxif. Place a marker at the frequency to show co bands. Save the specifor lowest and highest Above 1GHz test proced. G. Different between above 18GHz the distance in the fully Anechoic Character 18GHz the EUT in the interest in the EUT in the interest in the EUT in the interest in the radiation measure. Transmitting mode, and in the interest in the interest in the interest in the EUT in the interest in the E	tem was set to Pearnum Hold Mode. e end of the restrict ompliance. Also me ctrum analyzer plot of channel dure as below: ove is the test site, mber change form s 1 meter and table lowest channel, the ments are performed found the X axis dures until all frequents (dBµV/r 40.0 43.5 46.0	ted band ceasure any t. Repeat for table 0.8 the is 1.5 medine Highest med in X, is positioning encies medine medines	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	cted dulation namber ove

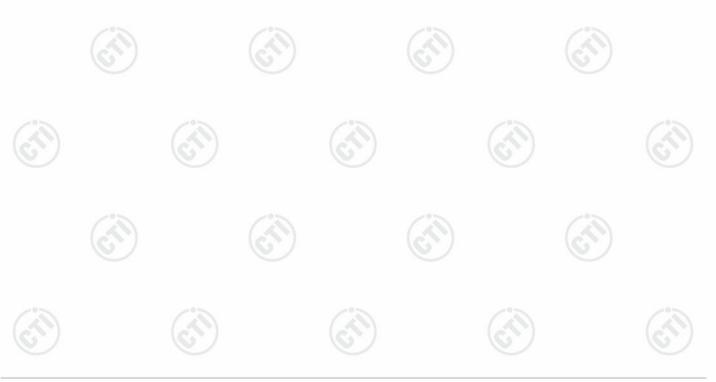




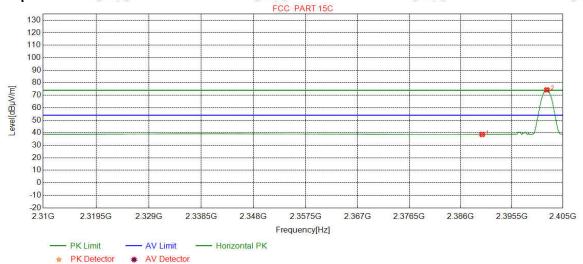
Test plot as follows:

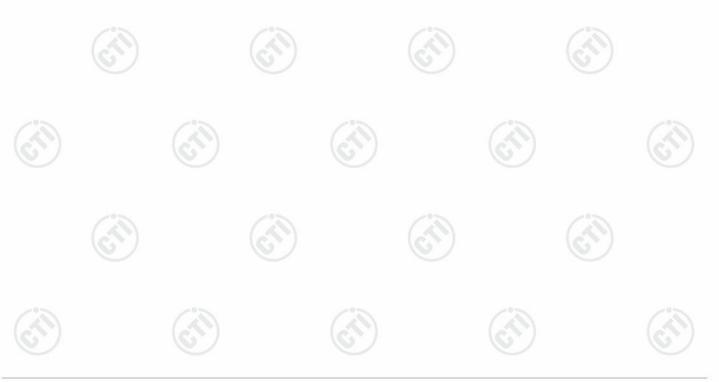
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


1	2390.0000	32.25	13.37	-43.12	48.07	50.57	74.00	23.43	Pass	Horizontal
2	2402.2828	32.26	13.31	-43.12	96.75	99.20	74.00	-25.20	Pass	Horizontal

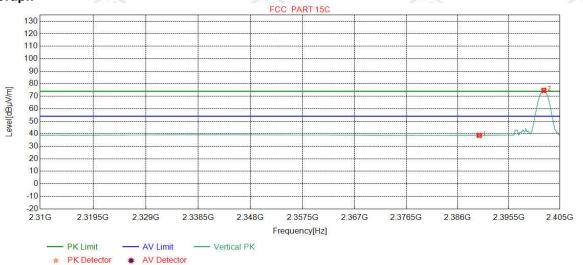


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK	·	

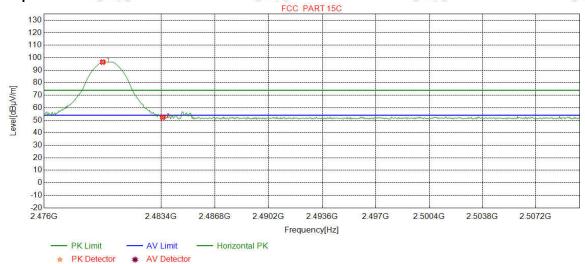

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.93	50.43	74.00	23.57	Pass	Vertical
2	2402.2321	32.26	13.31	-43.12	101.40	103.85	74.00	-29.85	Pass	Vertical

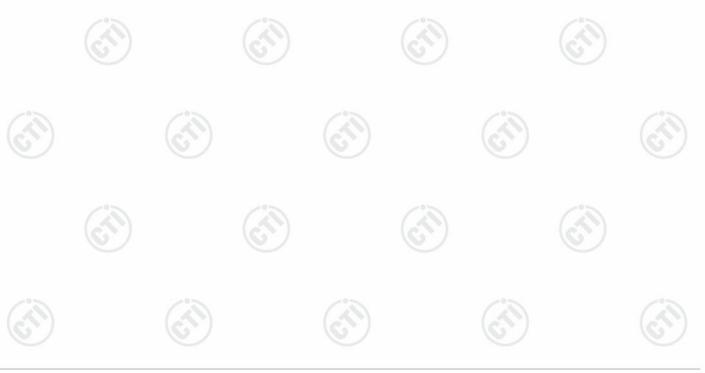


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

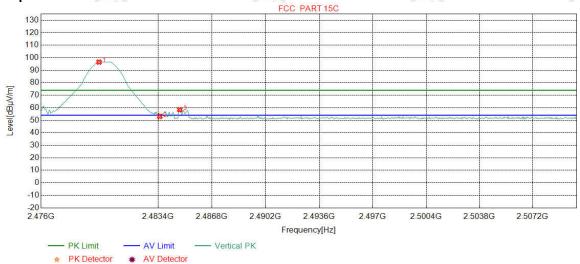

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.18	38.68	54.00	15.32	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	71.82	74.27	54.00	-20.27	Pass	Horizontal

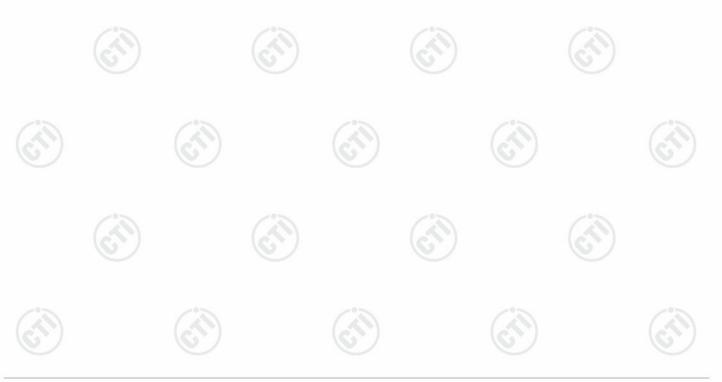
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.23	38.73	54.00	15.27	Pass	Vertical
2	2401.9978	32.26	13.31	-43.12	72.28	74.73	54.00	-20.73	Pass	Vertical

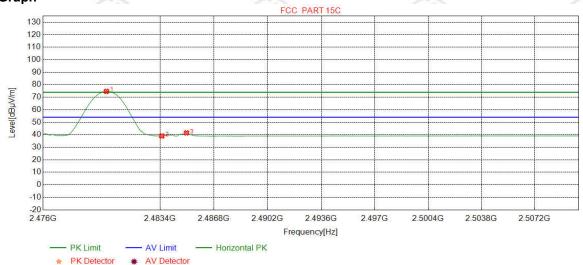


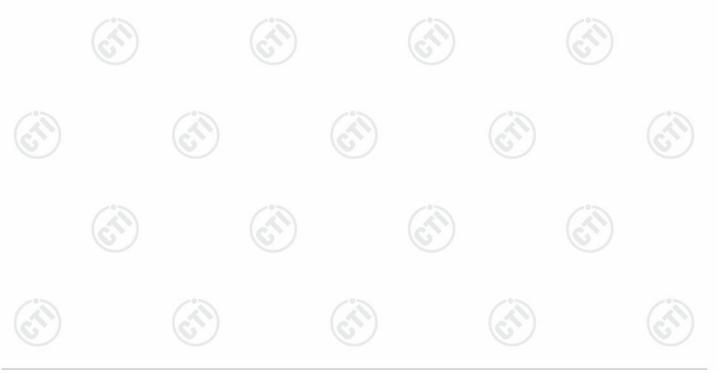
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	93.83	96.49	74.00	-22.49	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.74	52.39	74.00	21.61	Pass	Horizontal

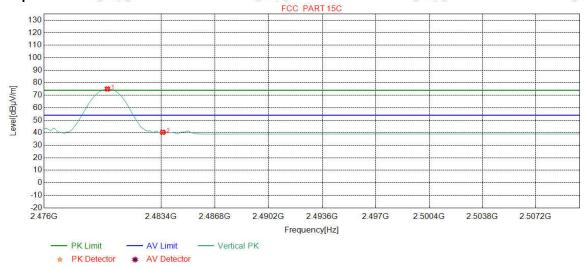


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK	·	·

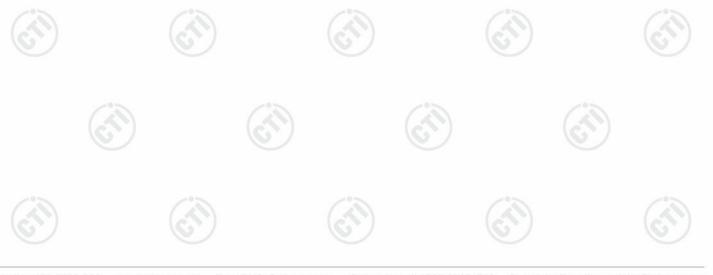

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
	1	2479.6596	32.37	13.39	-43.10	93.83	96.49	74.00	-22.49	Pass	Vertical	
	2	2483.5000	32.38	13.38	-43.11	50.44	53.09	74.00	20.91	Pass	Vertical	
1	3	2484.7660	32.38	13.37	-43.10	55.80	58.45	74.00	15.55	Pass	Vertical	



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV	·	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	72.03	74.69	54.00	-20.69	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.38	39.03	54.00	14.97	Pass	Horizontal
3	2485.0638	32.38	13.37	-43.11	38.85	41.49	54.00	12.51	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2480.0000	32.37	13.39	-43.10	72.36	75.02	54.00	-21.02	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-43.11	37.75	40.40	54.00	13.60	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(3)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(0,1)	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

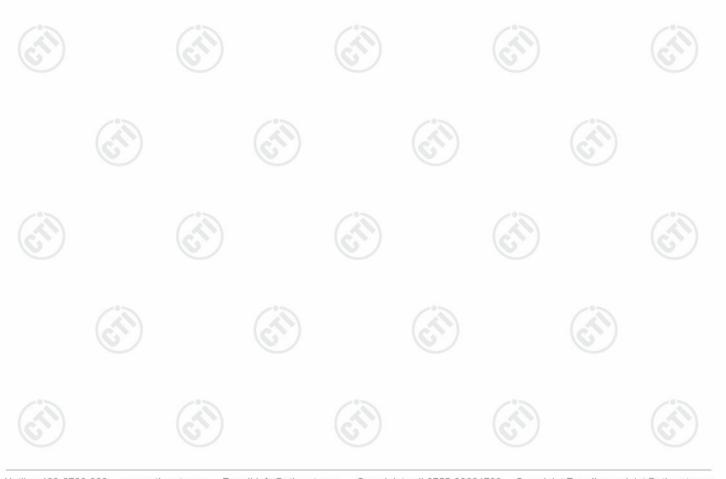
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
1	0.009MHz-0.490MHz	2400/F(kHz)	-		300
١	0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No.: EED32N80153702 Page 50 of 56

Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2441MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode	Mode:			SK Trans	smitting		1.6	Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	105.8616	10.94	1.21	-32.00	46.82	26.97	43.50	16.53	Pass	Н	PK
2	252.2492	12.24	1.89	-31.89	59.05	41.29	46.00	4.71	Pass	Н	PK
3	345.1845	14.19	2.22	-31.85	57.36	41.92	46.00	4.08	Pass	Н	PK
4	532.0252	17.64	2.77	-31.92	49.00	37.49	46.00	8.51	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	44.19	34.62	46.00	11.38	Pass	Н	PK
6	839.8370	21.38	3.50	-31.89	43.76	36.75	46.00	9.25	Pass	Н	PK
7	58.2298	11.88	0.88	-31.85	37.86	18.77	40.00	21.23	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	43.23	20.22	43.50	23.28	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	47.27	28.17	43.50	15.33	Pass	V	PK
10	347.9978	14.26	2.22	-31.86	57.48	42.10	46.00	3.90	Pass	V	PK
11	532.0252	17.64	2.77	-31.92	41.52	30.01	46.00	15.99	Pass	V	PK
12	840.0310	21.38	3.50	-31.89	43.52	36.51	46.00	9.49	Pass	V	PK

Report No.: EED32N80153702

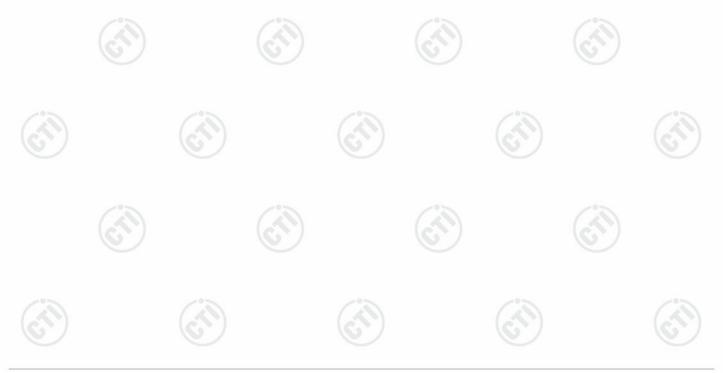
Transmitter Emission above 1GHz

Mode:			BLE GFSK Transm	Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1074.4074	0.88	44.92	45.80	74.00	28.20	Pass	Н	PK
2	2065.9066	4.77	42.44	47.21	74.00	26.79	Pass	Н	PK
3	3555.0370	-20.21	58.64	38.43	74.00	35.57	Pass	Н	PK
4	5013.1342	-15.80	57.09	41.29	74.00	32.71	Pass	Н	PK
5	9608.4406	-7.37	55.35	47.98	74.00	26.02	Pass	Н	PK
6	14499.7667	-0.21	50.11	49.90	74.00	24.10	Pass	Н	PK
7	1327.6328	1.15	46.31	47.46	74.00	26.54	Pass	V	PK
8	2042.9043	4.69	42.16	46.85	74.00	27.15	Pass	V	PK
9	3559.0373	-20.23	61.22	40.99	74.00	33.01	Pass	V	PK
10	6000.2000	-12.96	62.37	49.41	74.00	24.59	Pass	V	PK
11	9608.4406	-7.37	54.46	47.09	74.00	26.91	Pass	V	PK
12	11999.6000	-5.25	54.24	48.99	74.00	25.01	Pass	V	PK

Mode:			BLE GFSK Transmitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1052.8053	0.90	44.28	45.18	74.00	28.82	Pass	Н	PK
2	1956.0956	4.32	41.76	46.08	74.00	27.92	Pass	Н	PK
3	3428.0285	-20.15	58.23	38.08	74.00	35.92	Pass	Н	PK
4	6000.2000	-12.96	57.08	44.12	74.00	29.88	Pass	Н	PK
5	9759.4506	-7.51	55.27	47.76	74.00	26.24	Pass	Н	PK
6	13777.7185	-1.66	50.79	49.13	74.00	24.87	Pass	Н	PK
7	1281.8282	1.01	44.28	45.29	74.00	28.71	Pass	V	PK
8	2071.3071	4.79	42.05	46.84	74.00	27.16	Pass	V	PK
9	3567.0378	-20.25	60.01	39.76	74.00	34.24	Pass	V	PK
10	5329.1553	-14.73	59.56	44.83	74.00	29.17	Pass	V	PK
11	9760.4507	-7.51	54.49	46.98	74.00	27.02	Pass	V	PK
12	13739.7160	-1.71	50.94	49.23	74.00	24.77	Pass	V	PK

Page 52 of 56

Report No.: EED32N80153702


Mode:			BLE GFSK Transmitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1240.8241	0.91	44.59	45.50	74.00	28.50	Pass	Н	PK
2	2073.7074	4.79	42.92	47.71	74.00	26.29	Pass	Н	PK
3	3529.0353	-20.12	59.21	39.09	74.00	34.91	Pass	Н	PK
4	5017.1345	-15.80	57.43	41.63	74.00	32.37	Pass	Н	PK
5	9920.4614	-7.10	57.01	49.91	74.00	24.09	Pass	Н	PK
6	14389.7593	1.05	48.41	49.46	74.00	24.54	Pass	Н	PK
7	1329.6330	1.16	45.96	47.12	74.00	26.88	Pass	V	PK
8	2002.3002	4.56	42.62	47.18	74.00	26.82	Pass	V	PK
9	3323.0215	-19.89	60.35	40.46	74.00	33.54	Pass	V	PK
10	5313.1542	-14.77	64.10	49.33	74.00	24.67	Pass	V	PK
11	9919.4613	-7.10	55.39	48.29	74.00	25.71	Pass	V	PK
12	13923.7282	-1.83	51.77	49.94	74.00	24.06	Pass	V	PK

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

