TEST REPORT

FCC ID: 2AWLP-LPD10-11 Product: LUME PAD Model No.: LPD-10W Additional Model No.: LPD-11W Trade Mark: N/A Report No.: TCT200527E002 Issued Date: Jun. 15, 2020

Issued for:

Leia, Inc

2440 Sand Hill Road, STE 100, Menlo Park, California 94025, United States

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	Test Certificatio	n				
2.	Test Certificatio	nmary	<u>(</u> (G))			4
3.			••••••			
4.	General Informa					
	4.1. Test environm	ent and mode	\bigcirc			7
5.	Facilities and A					
			\sim			
	5.2. Location			••••••		8
	5.3. Measurement	Uncertainty	(() ()			8
6.	Test Results an					
	6.1. Antenna requi	rement				9
	6.2. Conducted En	nission	<u> </u>		••••••	
	6.3. Conducted Ou	tput Power	••••••	••••••	•••••	14
	6.4. 20dB Occupy					
	6.5. Carrier Freque	encies Separation	n	•••••		16
	6.7. Dwell Time					
	6.8. Pseudorandor	n Frequency Hop	oping Sequence		•••••	
			ement			
	6.10.Conducted Sp	ourious Emissior	n Measurement	••••••		22
	6.11.Radiated Spu	rious Emission N	leasurement			23
Α	ppendix A: Test	Result of Conc	lucted Test			
А	ppendix B: Photo	ographs of Tes	st Setup			
Α	ppendix C: Photo	ographs of EU [.]	т			

1. Test Certification

Product:	LUME PAD
Model No.:	LPD-10W
Additional Model No.:	LPD-11W
Trade Mark:	N/A (C) (C)
Applicant:	Leia, Inc
Address:	2440 Sand Hill Road, STE 100, Menlo Park, California 94025, United States
Manufacturer:	Leia, Inc
Address:	2440 Sand Hill Road, STE 100, Menlo Park, California 94025, United States
Date of Test:	May 28, 2020 – Jun. 12, 2020
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested B		Date:	Jun. 12, 2020	
Reviewed B	T NGCE X	Date:	Jun. 15, 2020	
Approved B	y: Tomsin	Date:	Jun. 15, 2020	
			Page	3 of 89

2. Test Result Summary

Requirement	CFR 47 Section		Result		
Antenna Requirement	§15.203/§15.247 (c)	K)	PASS	N.	
AC Power Line Conducted Emission	§15.207		PASS		
Conducted Peak Output Power	§15.247 (b)(1)		PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)		PASS		
Carrier Frequencies Separation	§15.247 (a)(1)		PASS		
Hopping Channel Number	§15.247 (a)(1)		PASS		
Dwell Time	§15.247 (a)(1)		PASS		
Radiated Emission	§15.205/§15.209		PASS		
Band Edge	§15.247(d)		PASS		

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

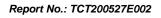
3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 89

3. EUT Description

Product:	LUME PAD					
Model No.:	LPD-10W					
Additional Model No.:	LPD-11W					
Trade Mark:	N/A					
Bluetooth Version:	V5.0 (This report is for BDR+EDR)					
Operation Frequency:	2402MHz~2480MHz					
Transfer Rate:	1/2/3 Mbits/s					
Number of Channel:	79					
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK					
Modulation Technology:	FHSS					
Antenna Type:	Internal Antenna					
Antenna Gain:	1.96dBi					
Power Supply:	Rechargeable Li-ion Battery DC 3.85V					
AC adapter:	Adapter Information: Model: A138A-120150U-US4 Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 5V, 3A/DC 9V, 2A/DC 12V, 1.5A					
Remark:	All models above are identical in interior structure, electrical circuits and components, and just LPD-10W with rear camera, LPD-11W without rear camera.					


Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK, 8DPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
21	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

modulation mode.

Page 6 of 89

4. General Information

4.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	25.0 °C	25.0 °C					
Humidity:	55 % RH	55 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	1	1

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab.

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 1.96dBi.

Page 9 of 89

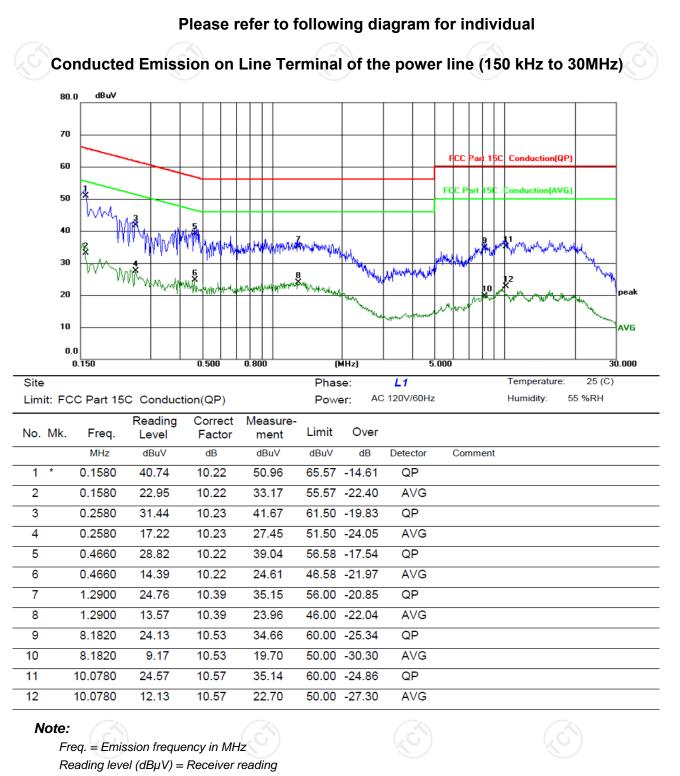
6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	\mathbf{C}	$\langle c \rangle$				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV)						
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46* 🔌				
	0.5-5	56	46				
	5-30	60	50				
	Reference	<u>.G`)</u>	(201)				
Test Setup:	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test	EMI Receiver					
	LISN: Line Impedence Stabilization Ne Test table height=0.8m	etwork	~				
Test Mode:			0				
Test Mode: Test Procedure:	 Test table height=0.8m Refer to item 4.1 1. The E.U.T is connerimpedance stabilized provides a 500hm/8 measuring equipment 2. The peripheral deviced power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm terr diagram of the line are checken nce. In order to fi e positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all of according to				
Test Mode: Test Procedure: Test Result:	 Test table height=0.8m Refer to item 4.1 1. The E.U.T is connerimpedance stabilizing provides a 500hm/5 measuring equipment 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm terr diagram of the line are checken nce. In order to fi e positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the mains a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all o according to				

Page 10 of 89

Report No.: TCT200527E002


6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Test Receiver	R&S	ESPI	101402	Jul. 29, 2020					
LISN	LISN Schwarzbeck		8126453	Sep. 11, 2020					
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

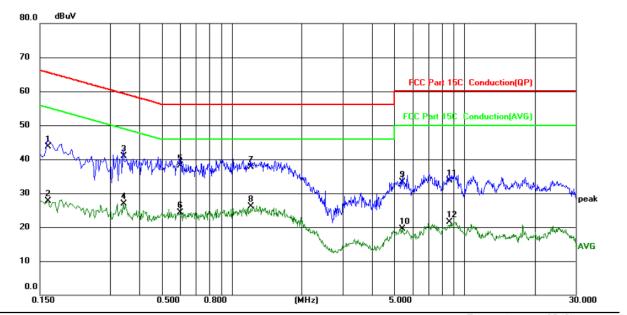
Page 11 of 89

6.2.3. Test data

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit (dB μ V) = Limit stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Report No.: TCT200527E002

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site					Phas	se:	N		Temperature	: 25 (C)
Limit: FC	C Part 15	C Conduct	ion(QP)	Power: AC 120V/60H		120V/60Hz	Humidity:		55 %RH	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1	0.1620	33.66	10.12	43.78	65.36	-21.58	QP			
2	0.1620	17.53	10.12	27.65	55.36	-27.71	AVG			
3	0.3420	30.68	10.13	40.81	59.15	-18.34	QP			
4	0.3420	16.81	10.13	26.94	49.15	-22.21	AVG			
5 *	0.5980	28.03	10.13	38.16	56.00	-17.84	QP			
6	0.5980	14.16	10.13	24.29	46.00	-21.71	AVG			
7	1.2059	27.60	10.12	37.72	56.00	-18.28	QP			
8	1.2059	16.02	10.12	26.14	46.00	-19.86	AVG			
9	5.4140	23.26	10.13	33.39	60.00	-26.61	QP			
10	5.4140	9.35	10.13	19.48	50.00	-30.52	AVG			
11	8.6180	23.63	10.14	33.77	60.00	-26.23	QP			
12	8.6180	11.29	10.14	21.43	50.00	-28.57	AVG			

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	K			
Test Method:	KDB 558074 D01 v05r02				
Limit:	Section 15.247 (b) The maximum peak of power of the intentional radiator shall nor following: (1) For frequency hopping sys in the 2400-2483.5 MHz band employing non-overlapping hopping channels, and hopping systems in the 5725-5850 MHz For all other frequency hopping systems 2400-2483.5 MHz band 0.125 watts.	t exceed the tems operating at least 75 all frequency band: 1 watt.			
Test Setup:					
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Image: Content of the second	K			
Test Procedure:	Use the following spectrum analyzer sett Span = approximately 5 times the 20 centered on a hopping channel RBW > the 20 dB bandwidth of the emis measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set th peak of the emission.	o dB bandwidth			
Test Result:	PASS	- <u>k</u> 6)			

6.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	N/A				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				

Note: DH1 DH3 DH5 all have been tested, only worst case DH1 is reported.

6.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Method: KDB 558074 D01 v05r02 Frequency hopping systems shall have hopping channe carrier frequencies separated by a minimum of 25 kHz the 20 dB bandwidth of the hopping channel, whicheve is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separate by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater thar 125 mW. Test Setup: Image: Comparison of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater thar 125 mW. Test Mode: Image: Comparison of the 20 dB bandwidth of the hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30 of the channel spacing, adjust as necessary to bee identify the center of each individual channel; VBW>RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Test Result: PASS	Test Requirement:	FCC Part15 C Section 15	5.247 (a)(1)	k
Limit: carrier frequencies separated by a minimum of 25 kHz Limit: 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separate by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater thar 125 mW. Test Setup:	Test Method:	KDB 558074 D01 v05r02		
Test Setup: EUT Test Mode: Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30 of the channel spacing, adjust as necessary to besidentify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.	Limit:	carrier frequencies separ the 20 dB bandwidth of th is greater. Alternatively, fr operating in the 2400-248 hopping channel carrier f by 25 kHz or two-thirds of hopping channel, whicher systems operate with an	ated by a minimum of the hopping channel, w requency hopping syst 33.5 MHz band may h requencies that are set f the 20 dB bandwidth ver is greater, provide	25 kHz or whichever tems ave eparated of the d the
Test Mode: Hopping mode 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30 of the channel spacing, adjust as necessary to besidentify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.	Test Setup:		EUT	
 spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30 of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 	Test Mode:			6
Test Result: PASS Image: Comparison of the second of th	Test Procedure:	 spectrum analyzer by path loss was compermeasurement. 2. Set to the maximum pEUT transmit continue 3. Enable the EUT hopp 4. Use the following spectrum adjacent channels; Respont = wide enough tadjacent channels; Responter of the channel spacing identify the center of the VBW≥RBW; Sweep = Detector function = peter 5. Use the marker-delta separation between the space of the second se	RF cable and attenua nsated to the results for oower setting and enal busly. ing function. ctrum analyzer setting to capture the peaks of 3W is set to approxima g, adjust as necessary each individual channe auto; eak; Trace = max hold function to determine ne peaks of the adjace	ator. The or each ole the s: of two ately 30% to best el; the
	Test Result:			No.
Page 16 o			,	Page 16 of 8

6.5.2. Test Instruments

Spectrum Analyzer Agilent N9020A MY49100619 Sep. 11, 20 4 Ch. Simultaneous Sampling 14 Bits 2 MS/s Agilent U2531A N/A Sep. 08, 20 Combiner Box Ascentest AT890-RFB N/A Sep. 08, 20 Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (S). Image: Comparison of the calibration of the cal	on Due	Calibratio	rial Number	Seria	Model No.	facturer	Manufa	Name	
Simultaneous Sampling 14 Bits 2 MS/sAgilentU2531AN/ASep. 08, 20Combiner BoxAscentestAT890-RFBN/ASep. 08, 20Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to	2020	Sep. 11, 2	49100619	MY4	N9020A	gilent	Agil		
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to	2020	Sep. 08, 2	N/A		U2531A	gilent	Agil	ultaneous oling 14 Bits	Sim Samp
	2020	Sep. 08, 2	N/A		AT890-RFB	entest	Ascei	nbiner Box	Con
	, to	are traceable a	d the calibrations	onths and	nstruments is 12 mo				
Page 17	e 17 of 89	Page							

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Setup:					
	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Test Result:	PASS				

6.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	ő N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 18 of 89

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 19 of 89

CT通测检测 TESTING CENTRE TECHNOLOGY Report No.: TCT200527E002 6.8. Pseudorandom Frequency Hopping Sequence FCC Part15 C Section 15.247 (a)(1) requirement: Test Requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. EUT Pseudorandom Frequency Hopping Sequence The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals. Page 20 of 89

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fal in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

6.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	6 N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 21 of 89

6.10. Conducted Spurious Emission Measurement

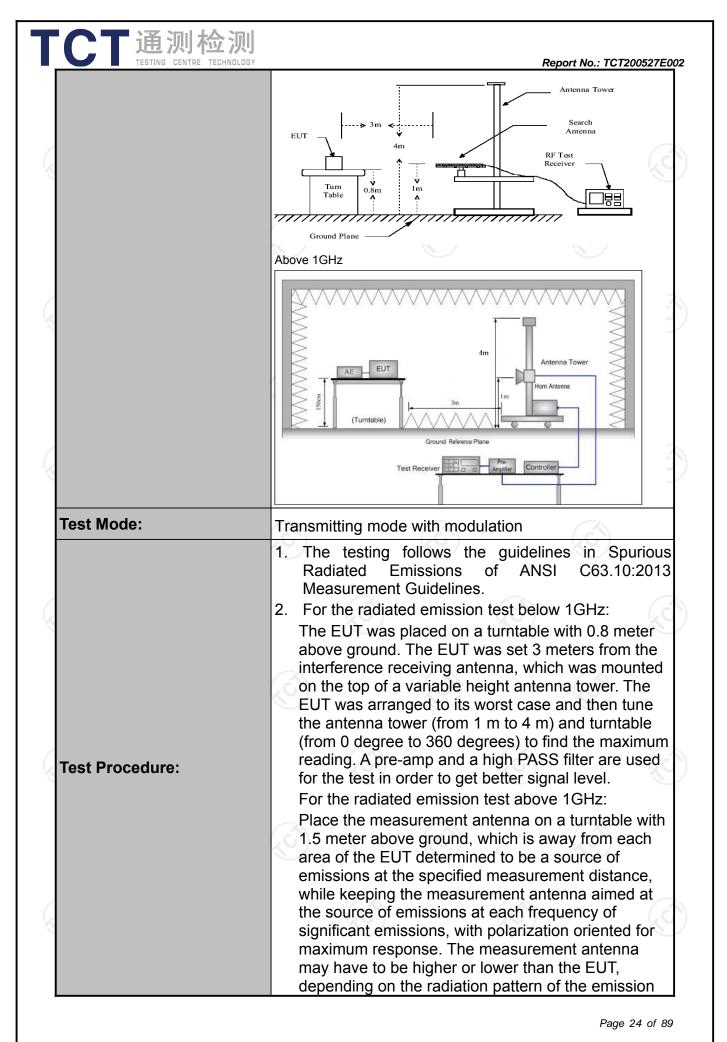
6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
Test Result:	PASS					

6.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	S N/A	Sep. 08, 2020
Combiner Box	Ascentest	AT890-RFB	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

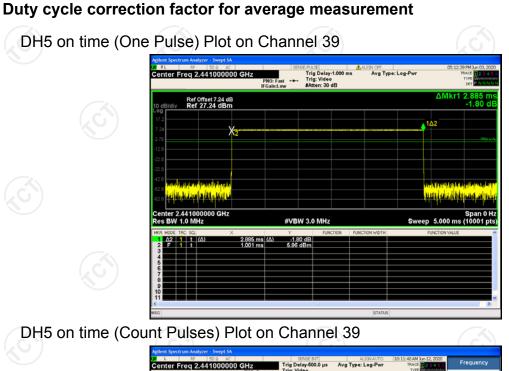

Page 22 of 89

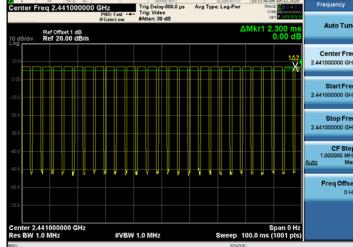
6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10	0:2013				9		
Frequency Range:	9 kHz to 25 (GHz	7.			×.		
Measurement Distance:	3 m	K	<u>6)</u>					
Antenna Polarization:	Horizontal & Vertical							
	Frequency	Detector	RBW	VBW		Remark		
	9kHz- 150kHz	Quasi-peak		1kHz		i-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak		30kHz		i-peak Value		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz		i-peak Value		
	Above 1GHz	Peak	1MHz	3MHz		eak Value		
		Peak	1MHz	10Hz	Ave	erage Value		
	Frequer	ncy	Field Str (microvolts			asurement nce (meters)		
	0.009-0.4	490	2400/F(300		
	0.490-1.7	705	24000/F			30		
	1.705-3		30			30		
	30-88		100			3		
	88-210	7	150			3		
Limit:	216-96 Above 9		<u>200</u> 500		LKC	3		
	Frequency Above 1GH:	(micro	eld Strength rovolts/meter) Measur Dista (mete 500 3 5000 3		ice	Detector Average Peak		
Test setup:		ssions below stance = 3m Turn table			Comput			
Hotline: 400-6611-140 Tel: 86	<u>)</u> -755-27673339	Fax: 86-75				Page 23 of 8		

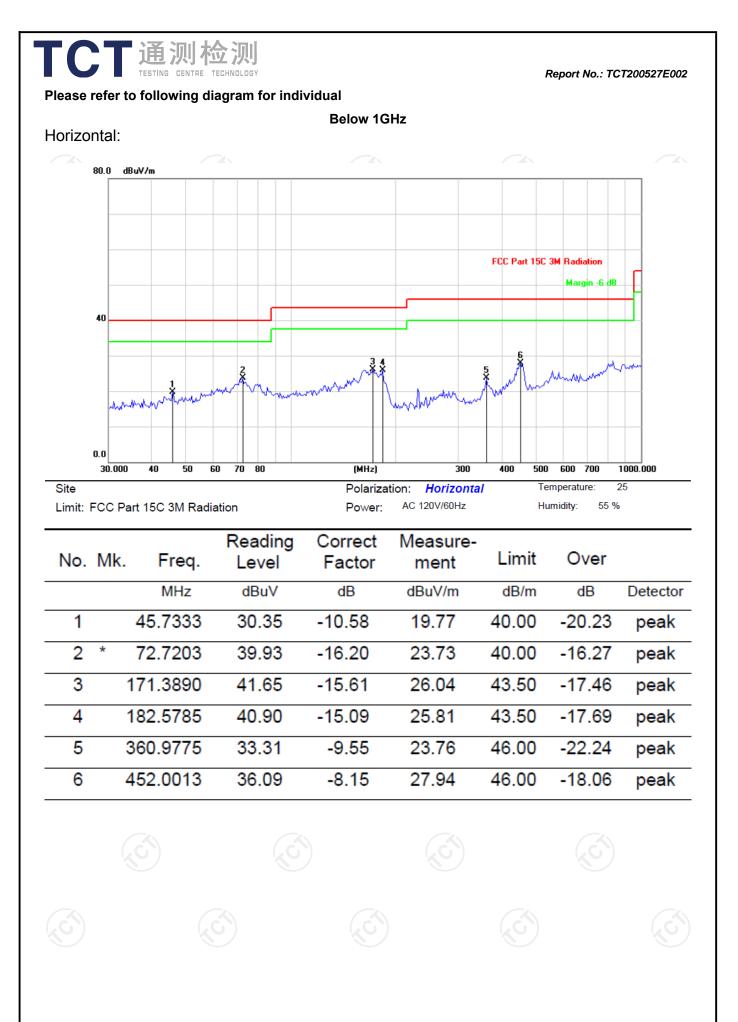
	rece mea max ante restr abov 3. Set EU ⁻ 4. Use (1) (2)	= max hol) For average correction 15.35(c). D	aximum signatenna ele emissions. on for max ange of he nd or refere kimum pov ontinuousl ng spectru wide enou eing meas 120 kHz fo c; VBW≥R auto; Dete d for peak ge measur factor me outy cycle =	emission s gnal. The evation sha The meas timum emi ights of fro ence grou ver setting y. m analyze ugh to fully sured; or f < 1 GH BW; ctor function rement: us thod per = On time/	final all be that surement issions sha om 1 m to nd plane. g and enal er settings: capture th lz, RBW=1 on = peak; se duty cyc	which all be 4 m ble th he MHz Trace de
	Ś	Where N1 length of t Average E Level + 20 Corrected I	l is numbe type 1 puls Emission L D*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) antenna Fa	pulses, L´ ak Emissio actor + Cal	1 is on ble
Fest results:	PASS	Where N1 length of t Average E Level + 20	l is numbe type 1 puls Emission L D*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) antenna Fa	pulses, L´ ak Emissio actor + Cal	1 is on ble
Test results:	PASS	Where N1 length of t Average E Level + 20 Corrected I	l is numbe type 1 puls Emission L D*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) antenna Fa	pulses, L´ ak Emissio actor + Cal	1 is on ble
Test results:	PASS	Where N1 length of t Average E Level + 20 Corrected I	l is numbe type 1 puls Emission L D*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) antenna Fa	pulses, L´ ak Emissio actor + Cal	1 is on ble
Fest results:	PASS	Where N1 length of t Average E Level + 20 Corrected I	l is numbe type 1 puls Emission L D*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) antenna Fa	pulses, L´ ak Emissio actor + Cal	1 is on ble

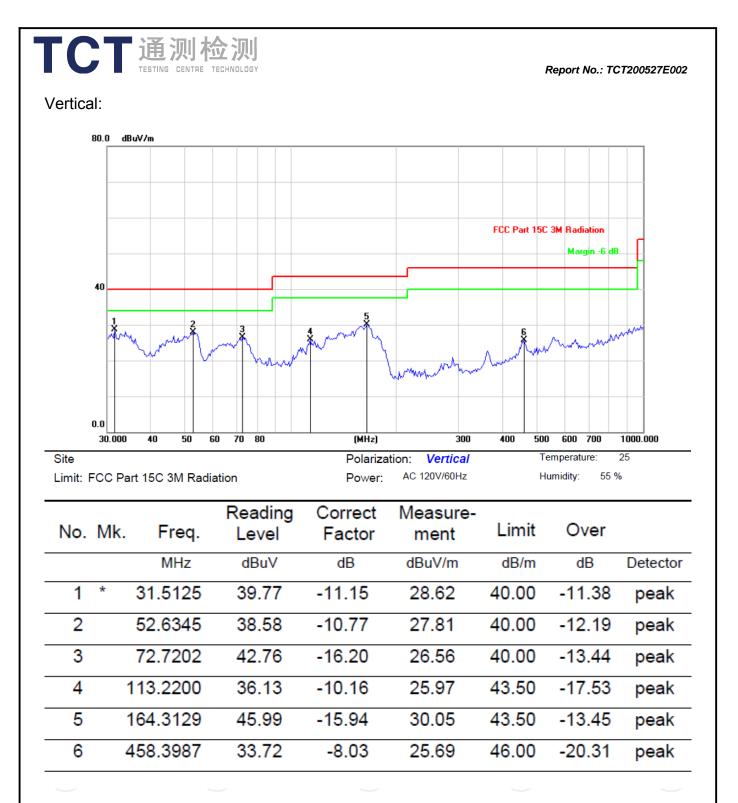

6.11.2. Test Instruments


Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020						
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020						
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020						
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020						
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 27, 2020						
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020						
Horn Antenna	Antenna A-INFO		J211020657	Sep. 06, 2020						
Antenna Mast	Keleto	RE-AM	N/A	N/A						
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020						
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.11.3. Test Data




Note:

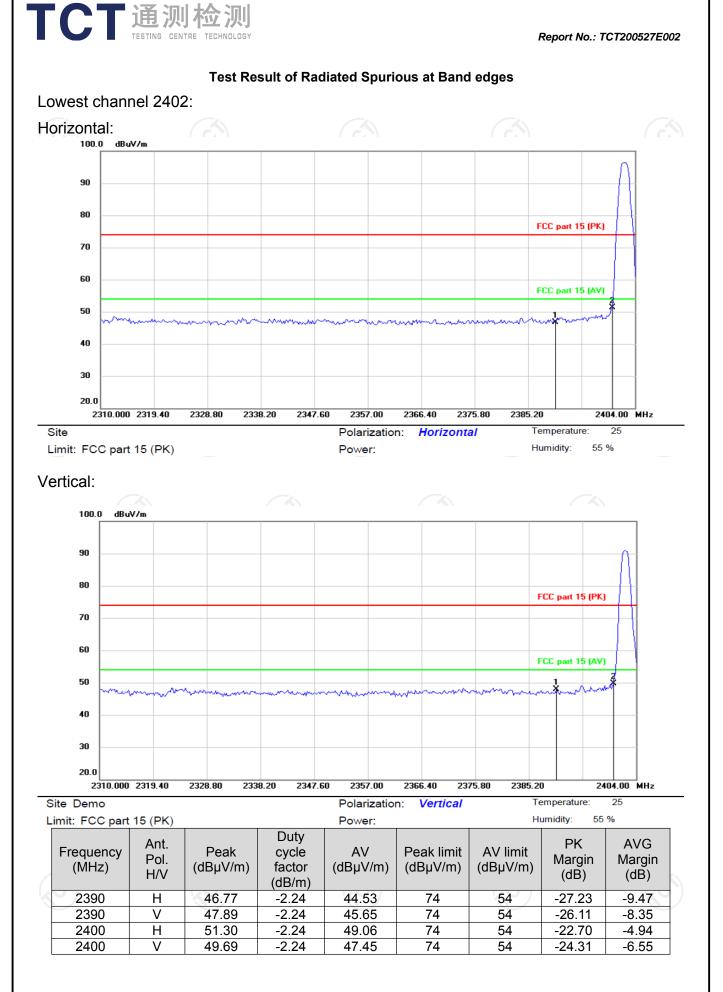
- 1. Worst case Duty cycle = on time/100 milliseconds = (2.885*26+2.300)/100= 0.7731
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -2.24dB
- 3. DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-2.24dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Report No.: TCT200527E002

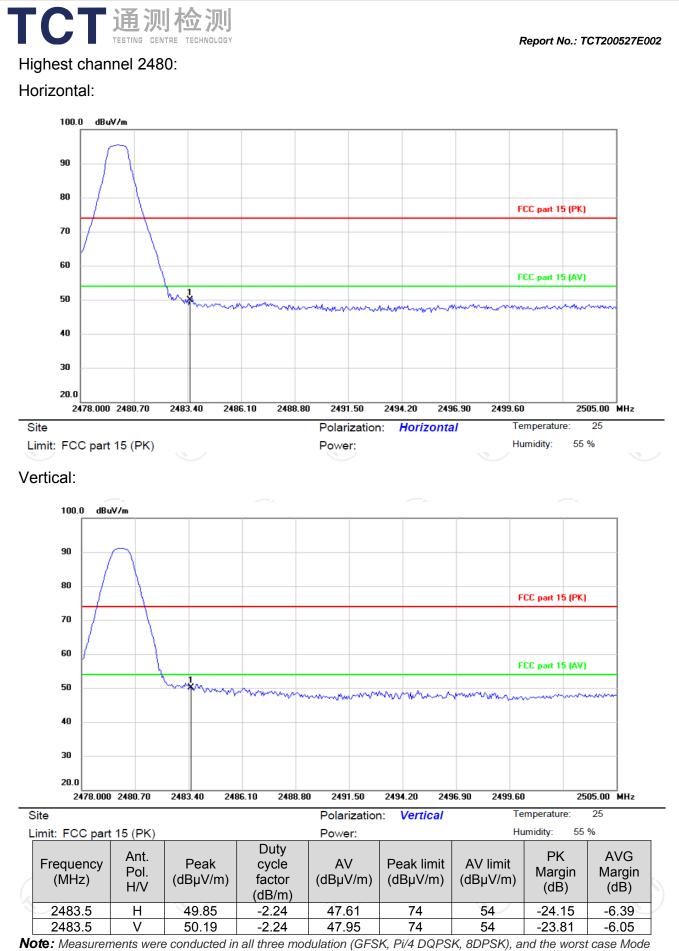
Page 28 of 89

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

- Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Highest channel and GFSK) was submitted only.
 Freq. = Emission frequency in MHz
- Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier


 $Limit (dB\mu V/m) = Limit stated in standard$

Over $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$


Any value more than 10dB below limit have not been specifically reported

* is meaning the worst frequency has been tested in the test frequency range.

Page 29 of 89

Page 30 of 89

(GFSK) was submitted only.

Above 1GHz

Modulation Type: GFSK										
Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4804	Н	45.68		0.66	46.34		74	54	-7.66	
7206	Н	36.24		9.50	45.74		74	54	-8.26	
	Н					~~-		75		
(<u>, ()</u>		J.J		()	.G`)		(\mathcal{O})		
4804	V	46.15		0.66	46.81		74	54	-7.19	
7206	V	37.02		9.50	46.52		74	54	-7.48	
	V									
					2					

Middle cha	nnel: 2441	MHz) (C				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4882	H	45.92		0.99	46.91		74	54	-7.09
7323	KOĤ)	36.34	-1,0	9.87	46.21	<u>(01)</u>	74	54	-7.79
	Ĥ					<u> </u>			
4882	V	44.89		0.99	45.88		74	54	-8.12
7323	V	35.42		9.87	45.29		74	54	-8.71
/	V			X	7)				

High channel: 2480 MHz

encv	Ant Pol	Peak			Emissic	on Level	Peak limit	AV limit	Margin
			reading		Peak	AV			(dB)
		(dBhA)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(00,00,000)	(00,00,00)	(42)
0	H	46.61		1.33	47.94		74	54	-6.06
-0	Н	37.52		10.22	47.74		74	54	-6.26
	Н	_							
		(G)		(.0			(G)		(.č
0	V	47.75		1.33 🔍	49.08		74	54	-4.92
-0	V	38.01		10.22	48.23		74	54	-5.77
	V								
	ency z) 0 0 0	Ant. Pol. H/V 0 H 0 H H 0 H 0 V 0 V	Ant. Pol. Peak reading (dBμV) 0 H 46.61 0 H 37.52 H 0 V 47.75 0 V 38.01	Ant. Pol. L/V Peak reading (dBμV) AV reading (dBμV) 0 H 46.61 0 H 37.52 H 0 V 47.75 0 V 38.01	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ant. Pol. Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emissic Peak (dBµV/m) 0 H 46.61 1.33 47.94 0 H 37.52 10.22 47.74 H 1.33 49.08 0 V 47.75 1.32 49.08 0 V 38.01 10.22 48.23	Pency z) Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) 0 H 46.61 1.33 47.94 0 H 37.52 10.22 47.74 H 1.33 49.08 0 V 47.75 1.33 49.08 0 V 38.01 10.22 48.23	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

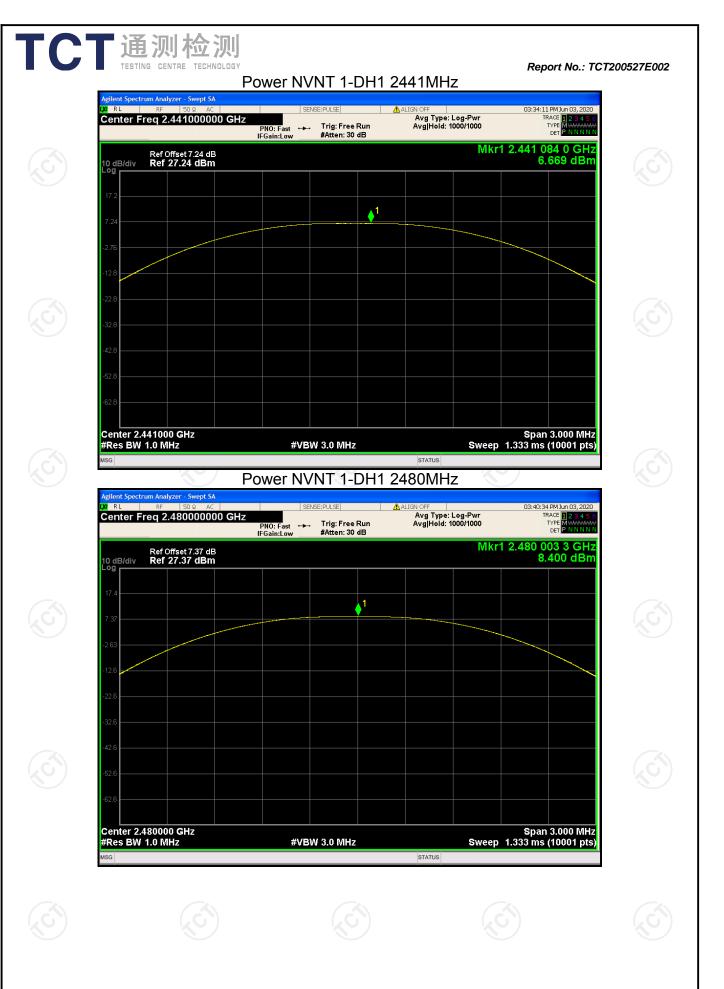
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

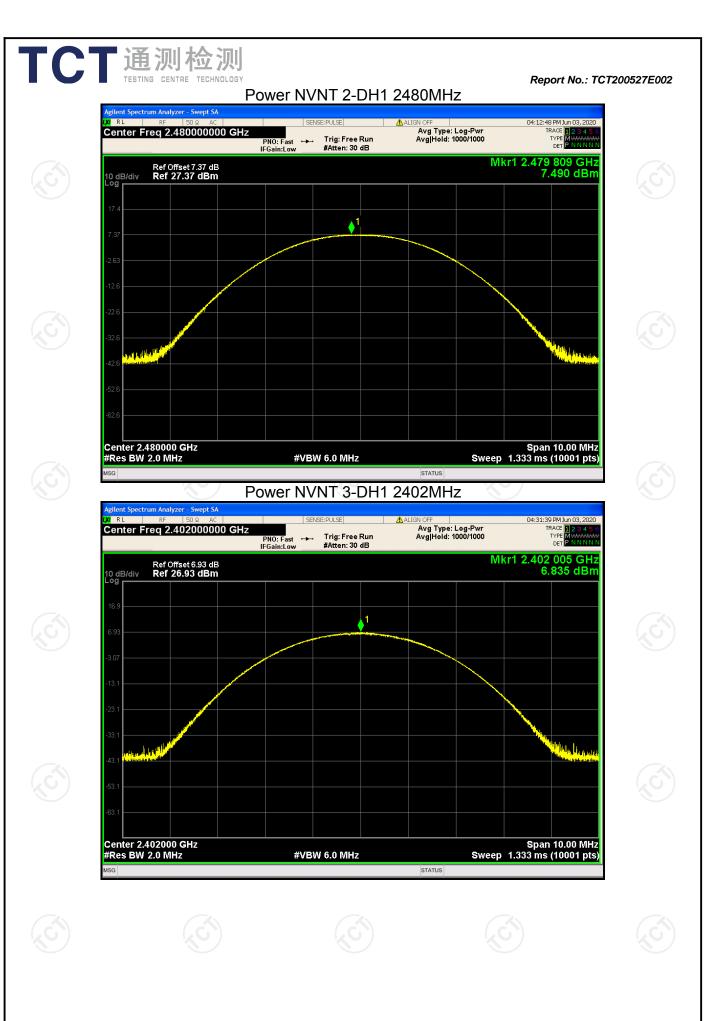
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

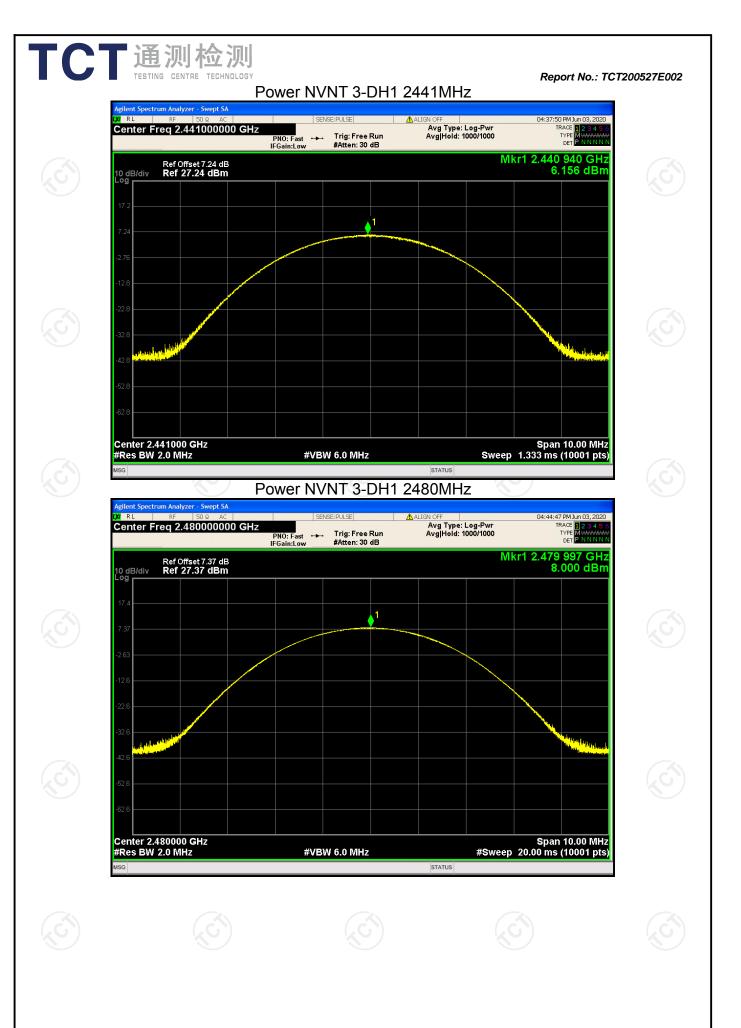
7. All the restriction bands are compliance with the limit of 15.209.


Appendix A: Test Result of Conducted Test

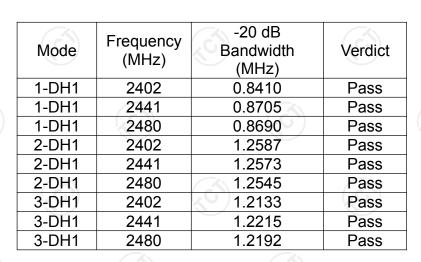
Maximum Conducted Output Power

Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
1-DH1	2402	7.112	30	Pass
1-DH1	2441	6.669	30	Pass
1-DH1	2480	8.400	30	Pass
2-DH1	2402	6.441	21	Pass
2-DH1	2441	5.676	21	Pass
2-DH1	2480	7.490	21	Pass
3-DH1	2402	6.835	21	Pass
3-DH1	2441	6.156	21	Pass
3-DH1	2480	8.000	21	Pass

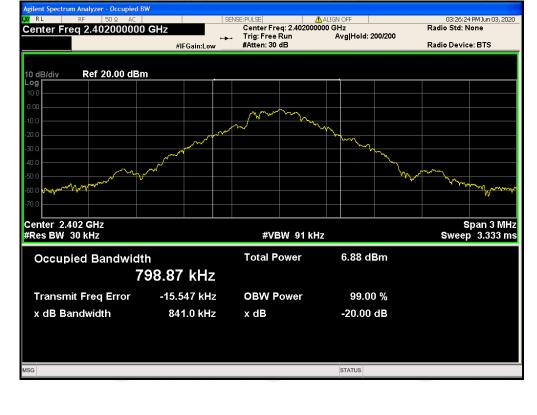

Power NVNT 1-DH1 2402MHz



Page 35 of 89

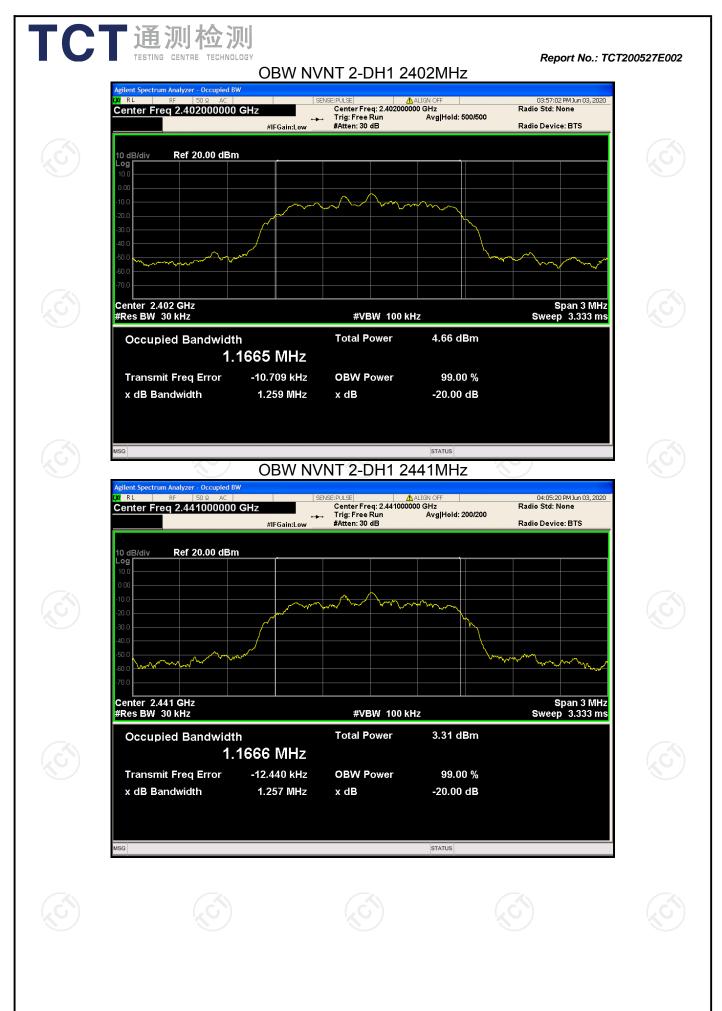


Page 36 of 89

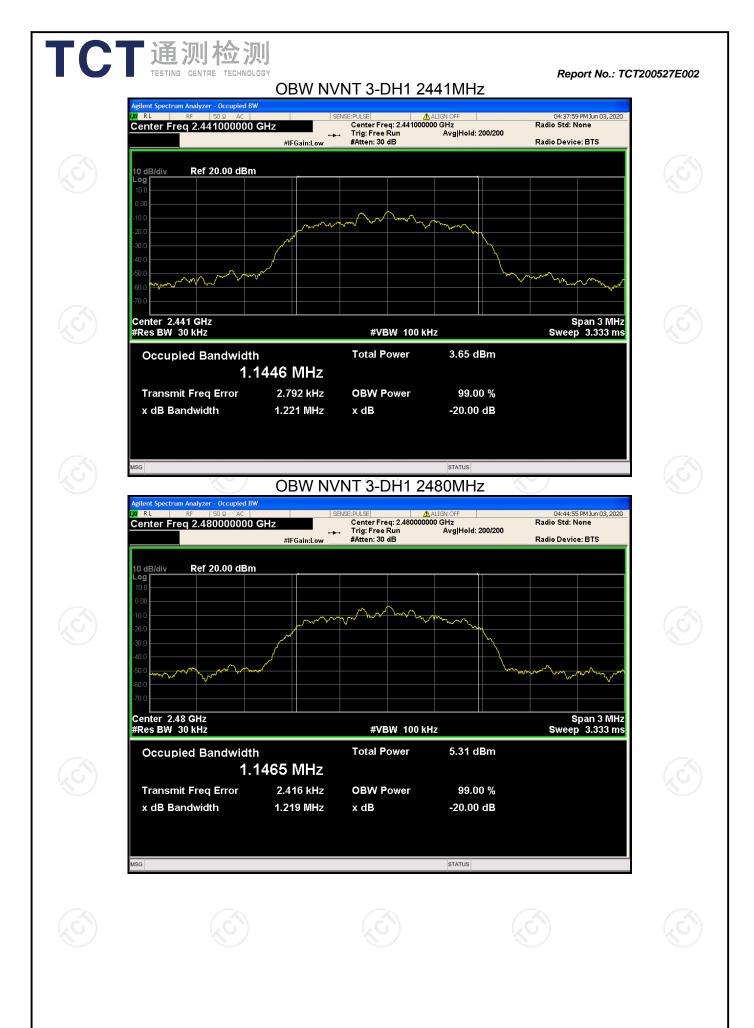

Page 37 of 89

Report No.: TCT200527E002

Occupied Channel Bandwidth


OBW NVNT 1-DH1 2402MHz

Page 38 of 89

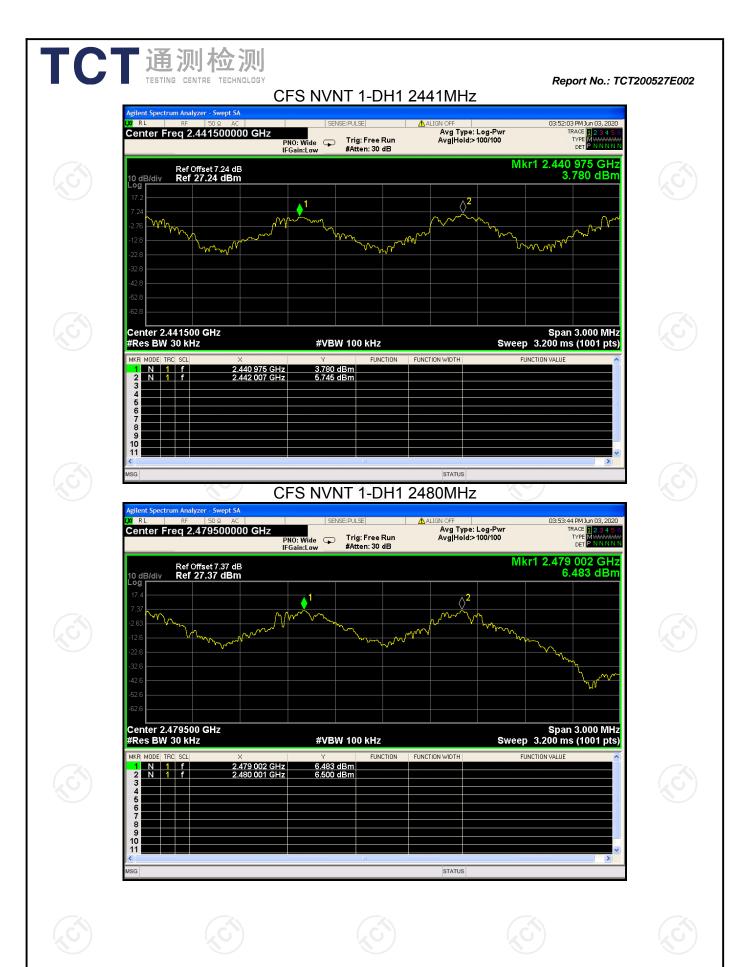

Page 39 of 89

Page 40 of 89

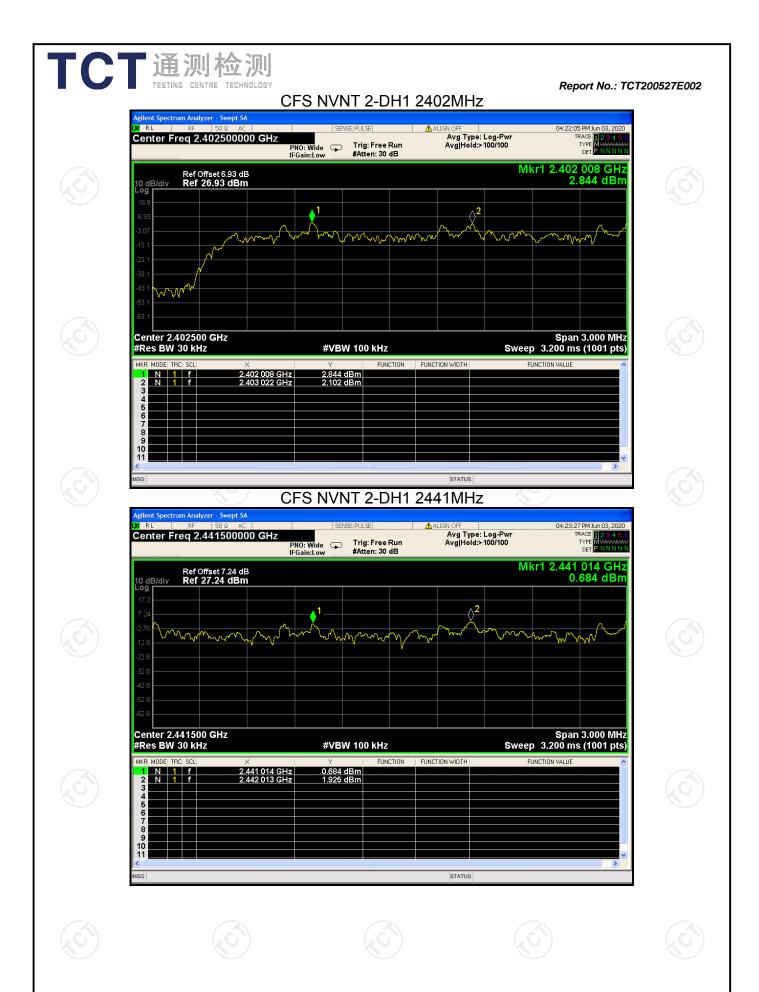
Page 41 of 89

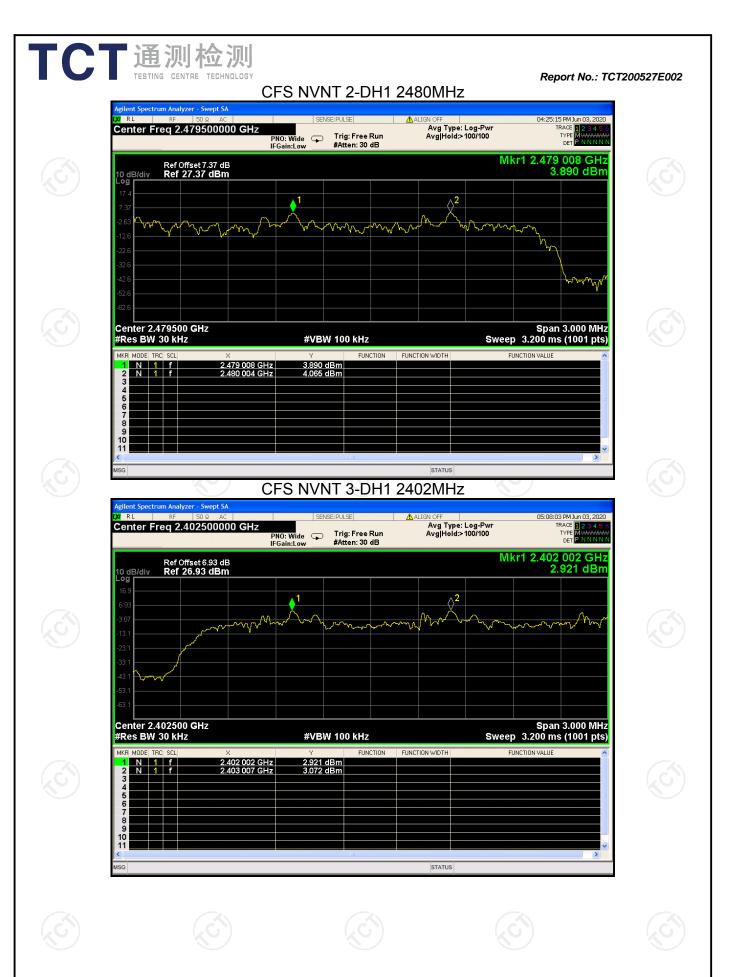
Page 42 of 89

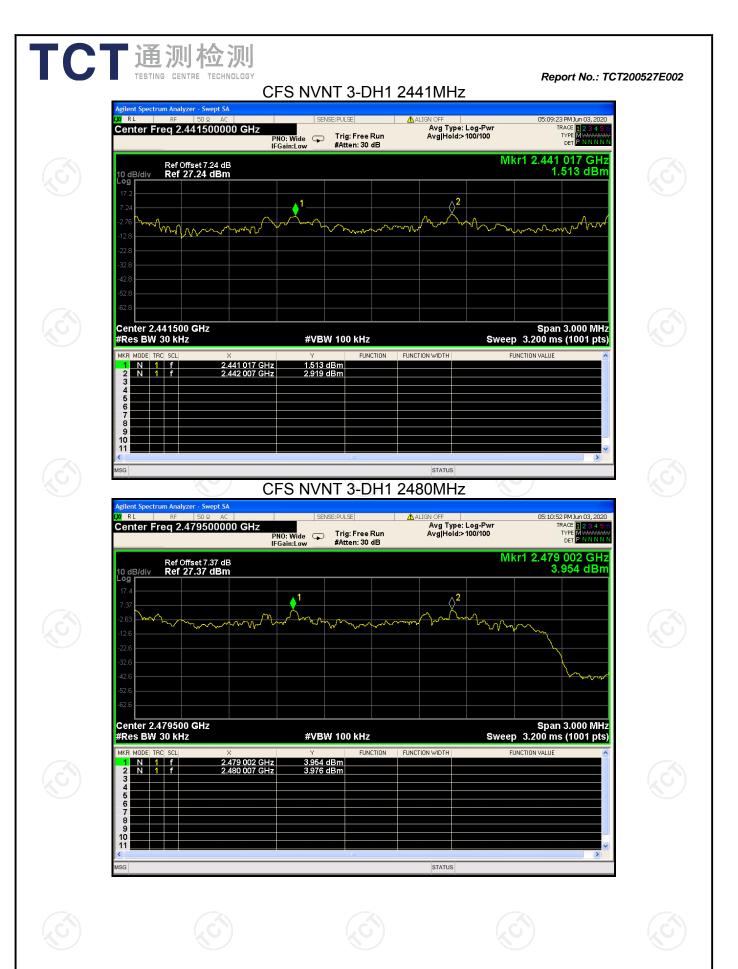
Report No.: TCT200527E002



Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict	
	(MHz)	(MHz)	(MHz)	(MHz)	verdict	
1-DH1	2402.011	2402.998	0.987	0.869	Pass	
1-DH1	2440.975	2442.007	1.032	0.869	Pass	
1-DH1	2479.002	2480.001	0.999	0.869	Pass	
2-DH1	2402.008	2403.022	1.014	0.836	Pass	
2-DH1	2441.014	2442.013	0.999	0.836	Pass	
2-DH1	2479.008	2480.004	0.996	0.836	Pass	
3-DH1	2402.002	2403.007	1.005	0.813	Pass	
3-DH1	2441.017	2442.007	0.990	0.813	Pass	
3-DH1	2479.002	2480.007	1.005	0.813	Pass	


Carrier Frequencies Separation




Page 44 of 89

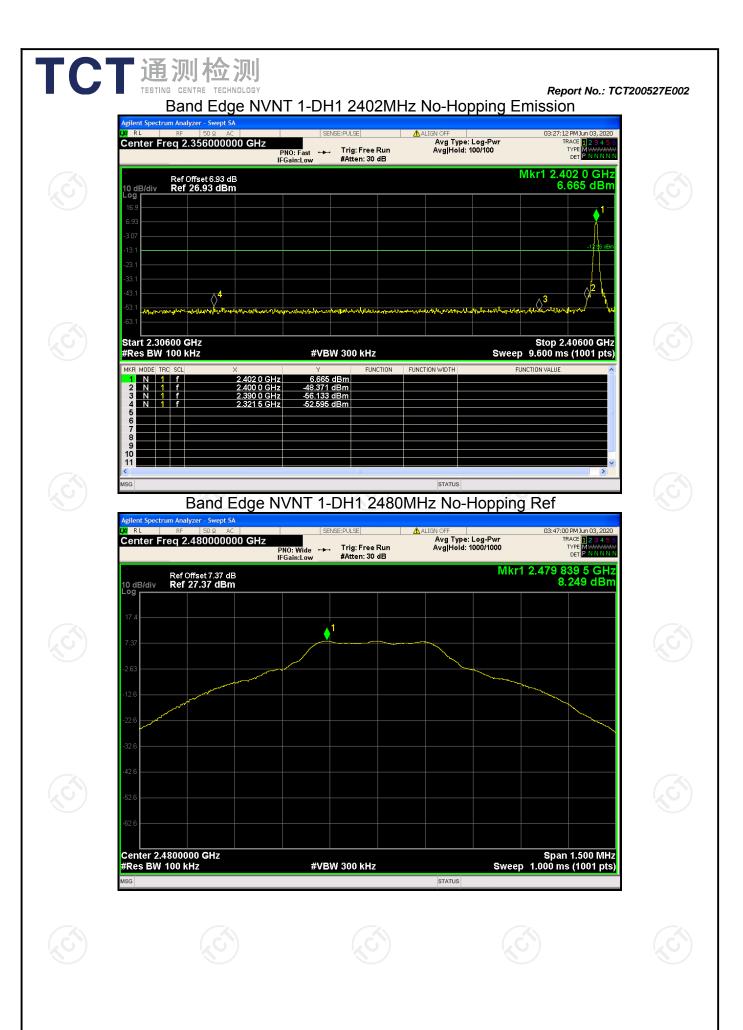
Page 45 of 89

Page 46 of 89

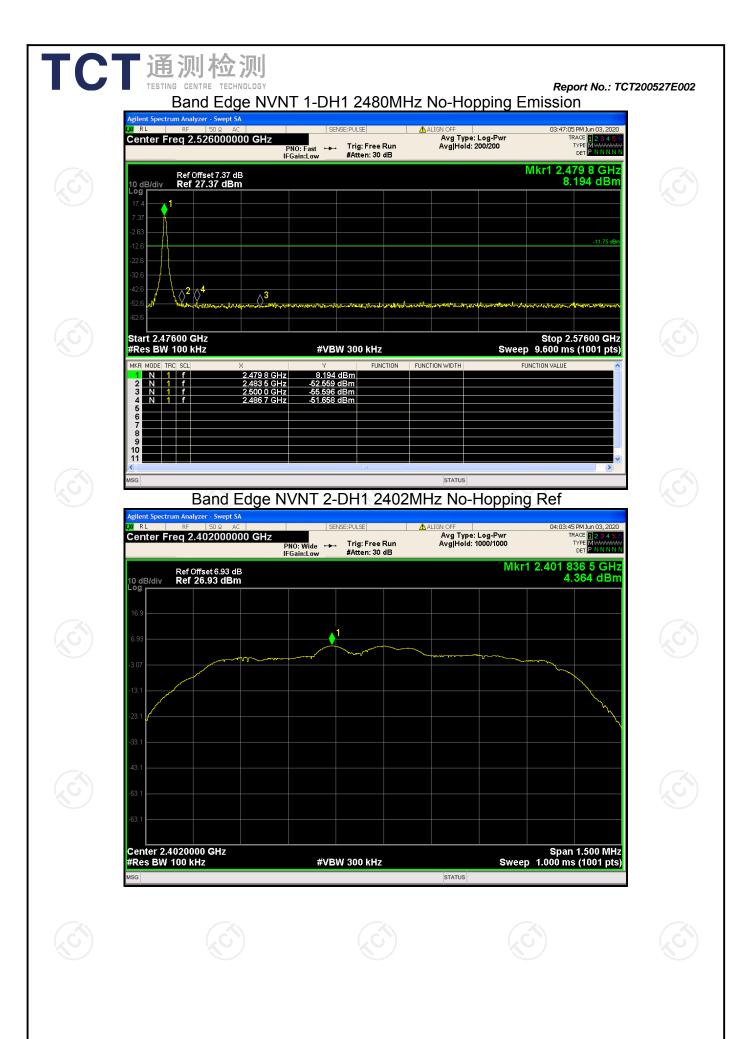
Page 47 of 89

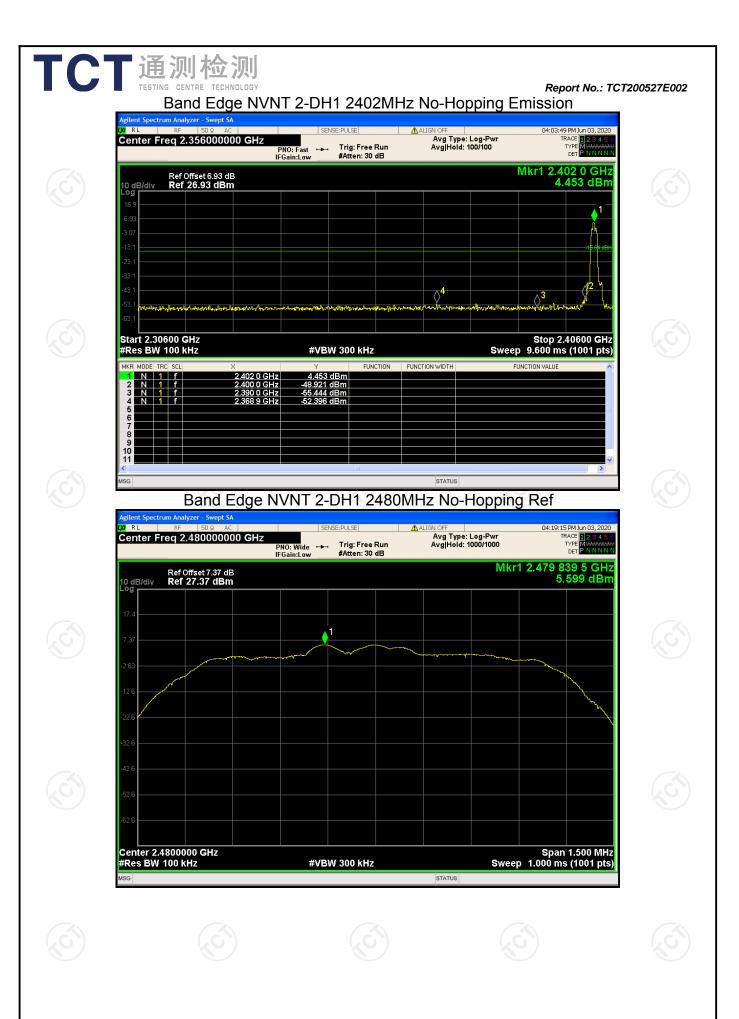
Report No.: TCT200527E002

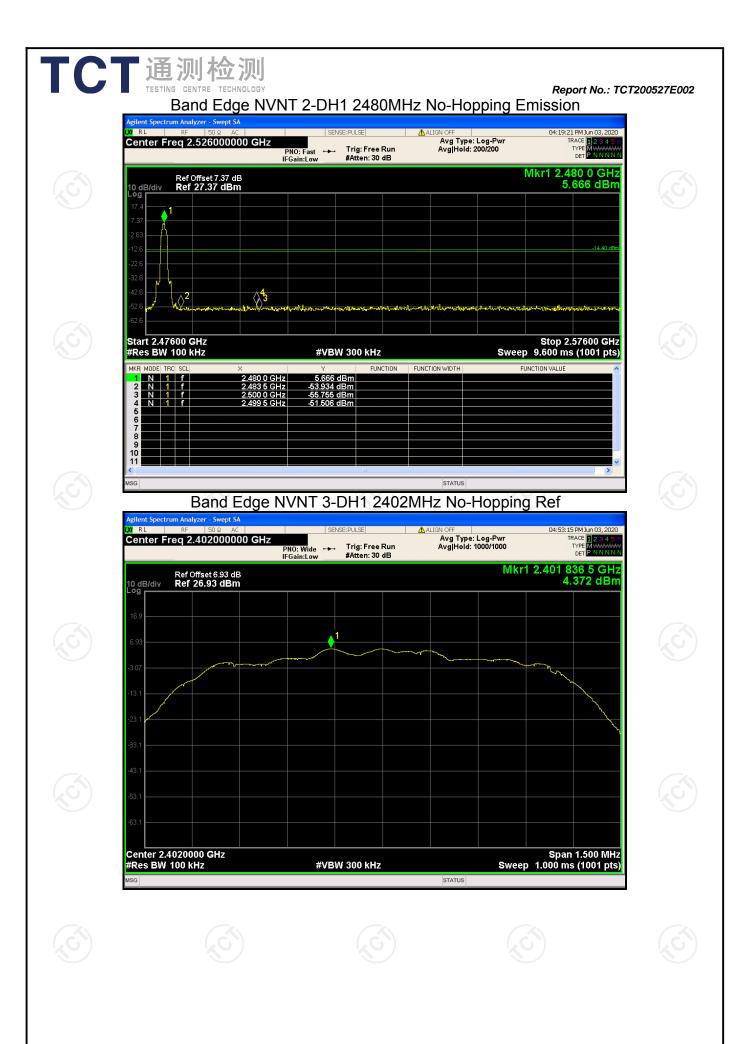
Band Edge


TCT通测检测 TECT通测检测

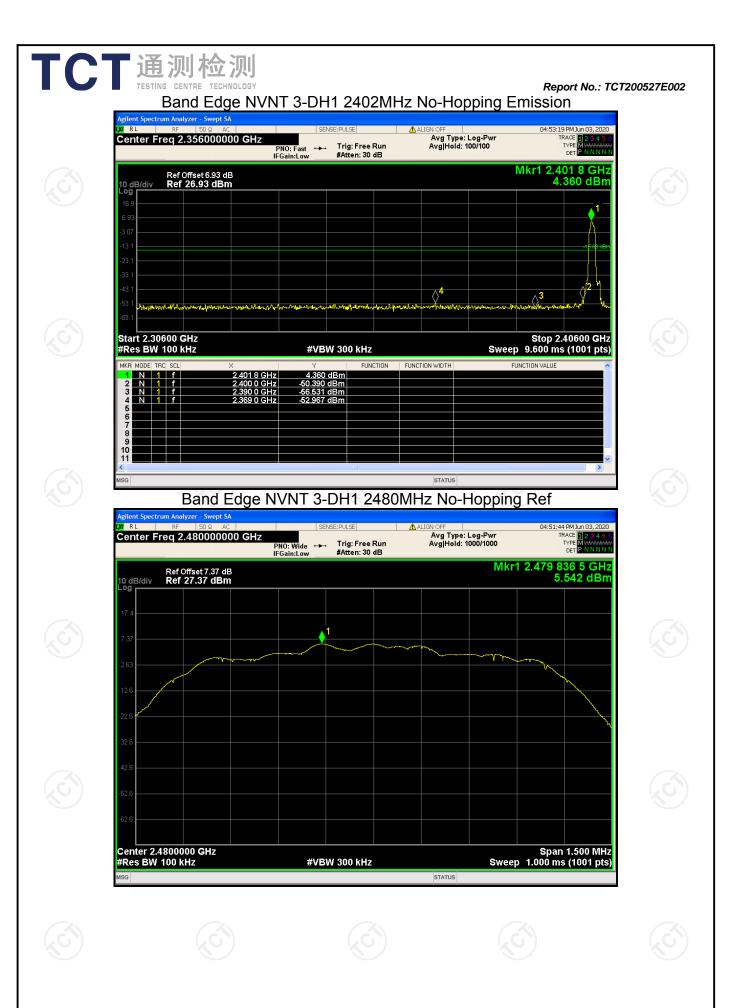
Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
1-DH1	2402	No-Hopping	-59.63	-20	Pass
1-DH1	2480	No-Hopping	-59.90	-20	Pass
2-DH1	2402	No-Hopping	-56.75	-20	Pass
2-DH1	2480	No-Hopping	-57.10	-20	Pass
3-DH1	2402	No-Hopping	-57.33	-20	Pass
3-DH1	2480	No-Hopping	-57.56	-20	Pass

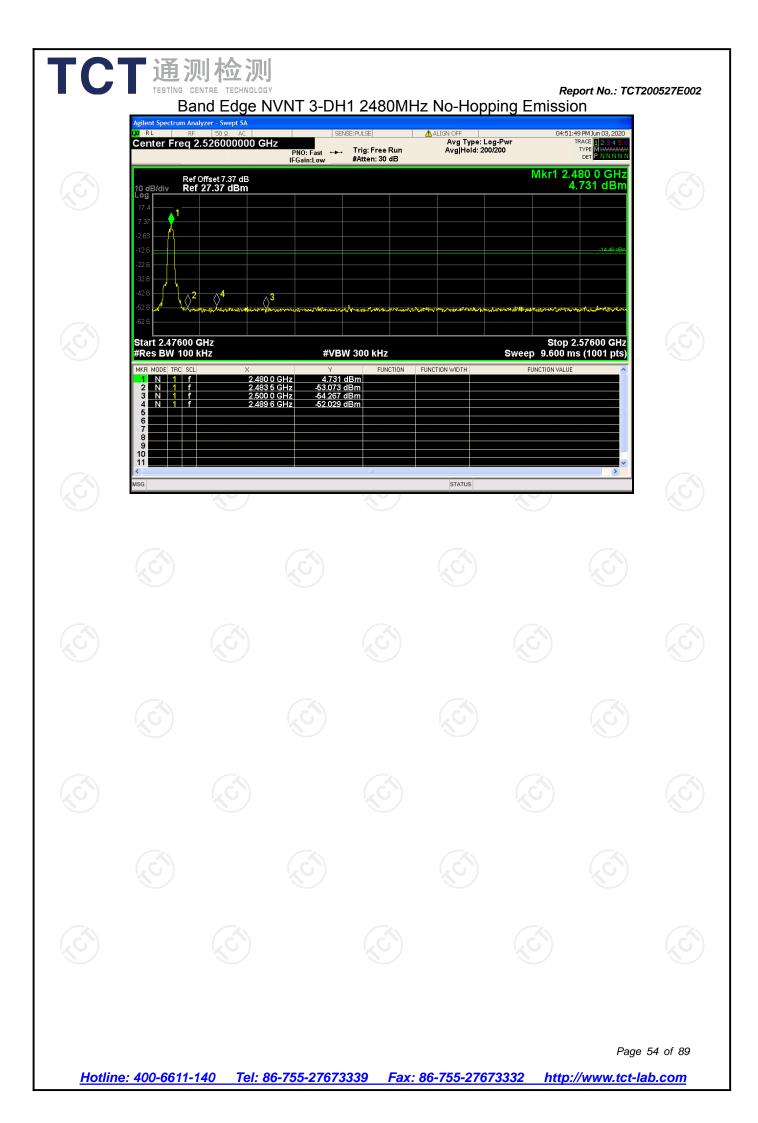

Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref


Page 48 of 89



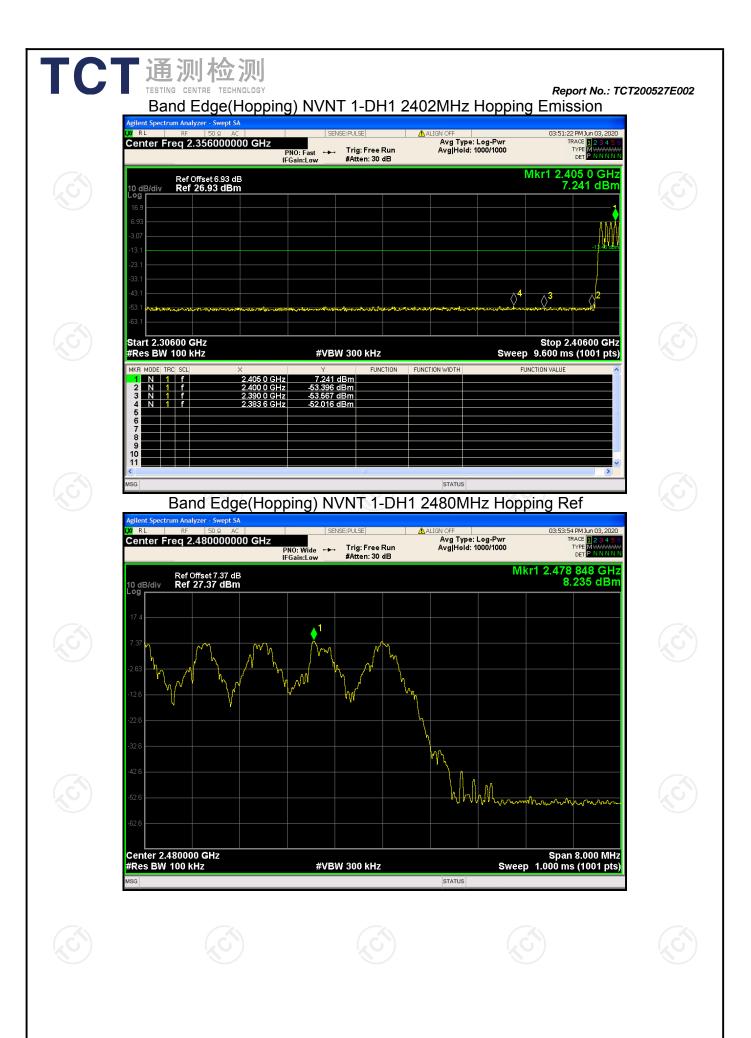
Page 49 of 89



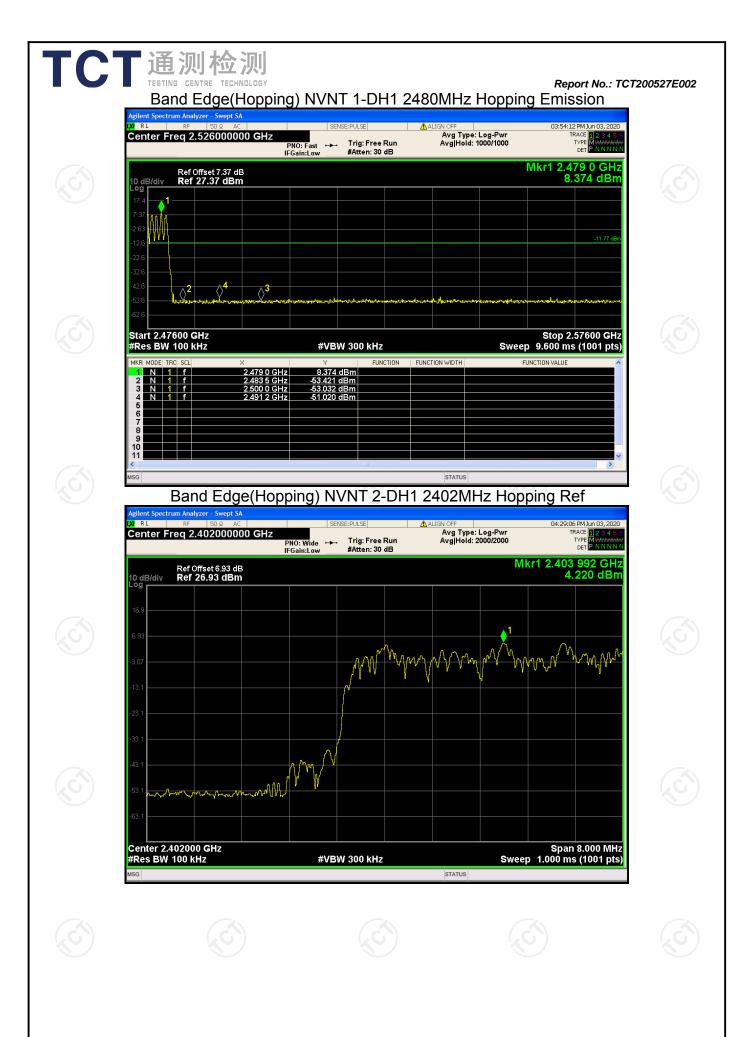

Page 50 of 89

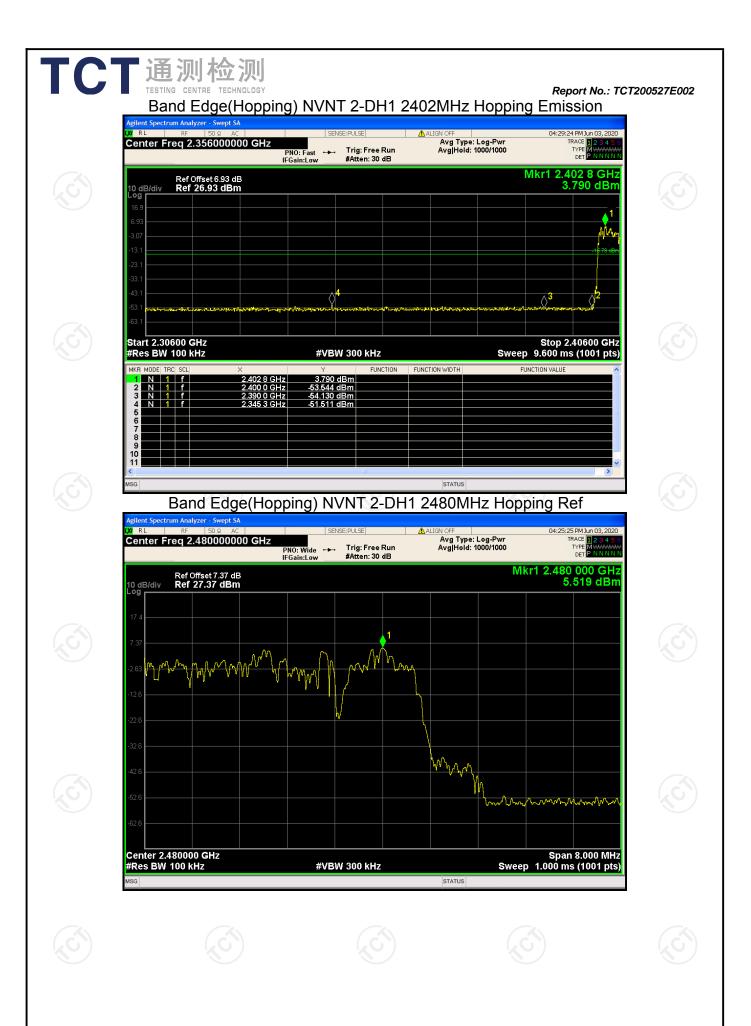
Page 52 of 89

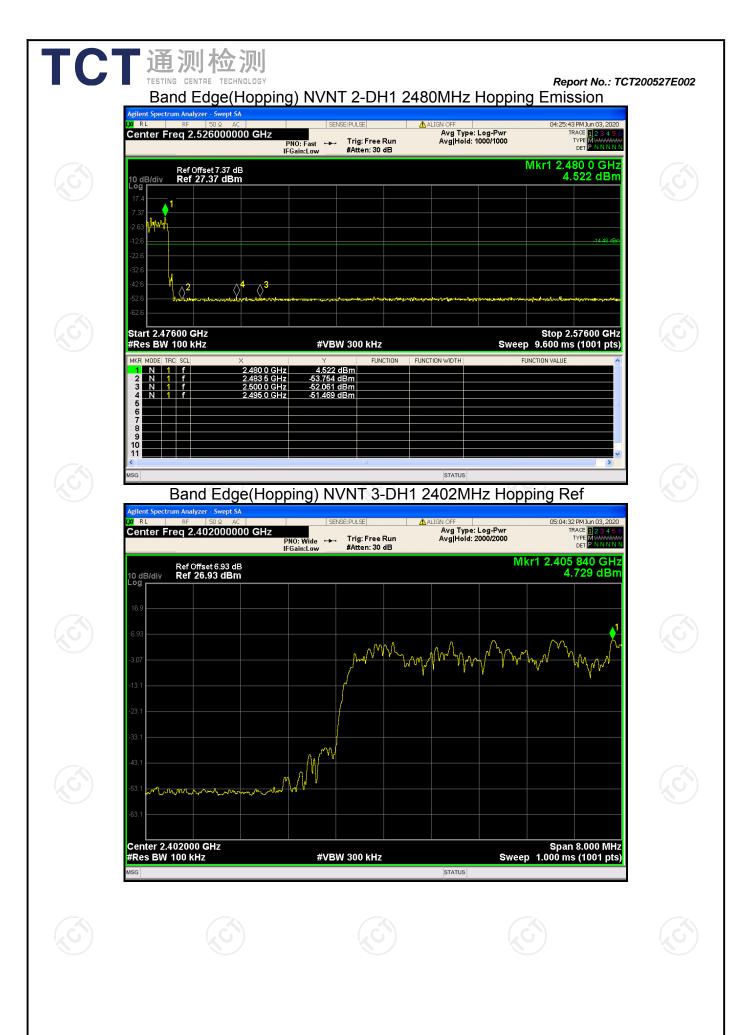
Report No.: TCT200527E002


Band Edge(Hopping)

Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
1-DH1	2402	Hopping	-58.55	-20	Pass
1-DH1	2480	Hopping	-59.25	-20	Pass
2-DH1	2402	Hopping	-55.73	-20	Pass
2-DH1	2480	Hopping	-56.98	-20	Pass
3-DH1	2402	Hopping	-56.63	-20	Pass
3-DH1	2480	Hopping	-56.81	-20	Pass


Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref


Page 55 of 89


Page 56 of 89


Page 57 of 89

Page 58 of 89

Page 59 of 89

Page 60 of 89