

FCC PART 15F TEST REPORT

For

IntraNav GmbH

Frankfurter Str. 27, 65760 Eschborn, Germany

FCC ID: 2AWK8IN5000

Report Type: **Product Type:** Original Report INTRANAV NODE Report Number: RSZ200622006-00A **Report Date:** 2020-09-01 Jimm/ Xiao Jimmy Xiao **Reviewed By:** RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\(\Delta \)".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
\$1.1310, \$2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
REFERENCE METHOD.	
RESULT	
§15.517(a) - GENERAL REQUIREMENT	
APPLICABLE STANDARD	11
FCC §15.203, §15.517(a) (3) - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	15
TEST RESULTS SUMMARY	
TEST DATA	
§15.503 (a), §15.503 (d), §15.517(b) –UWB OPEARTION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC \$15.209, \$15.517(c), \$15.517 (d)- SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
Test Data	25

§15.517(e) - PEAK EMISSION IN A 50 MHZ BANDWIDTH	34
APPLICABLE STANDARD	34
TEST PROCEDURE	
Test Data	

FCC Part 15F Page 3 of 35

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	INTRANAV NODE
Tested Model	IN5000 (Art.No. 10111013 no WiFi)
Frequency Range	6145.1-6767.1MHz
Antenna Specification	3.7dBi
Voltage Range	$48V_{DC}$ from POE, 9-36 V_{DC} from DC port, $5.0V_{DC}$ from USB Type-C port
Date of Test	2020-06-22 to 2020-06-24
Sample serial number	RSZ200622006-RF-S1(Assigned by BACL, Shenzhen)
Received date	2020-06-22
Sample/EUT Status	Good condition

Report No.: RSZ200622006-00A

Objective

This report is prepared on behalf of IntraNav GmbH in accordance with Part 2-Subpart J, Part 15-Subparts A and F of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart F, and section 15.203, 15.205, 15.207, 15.209 and 15.517 rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15F Page 4 of 35

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1 ℃
Humidity		±6%
Supply voltages		±0.4%

Report No.: RSZ200622006-00A

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15F Page 5 of 35

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing by manufacturer.

Equipment Modifications

No modification was made to the EUT tested.

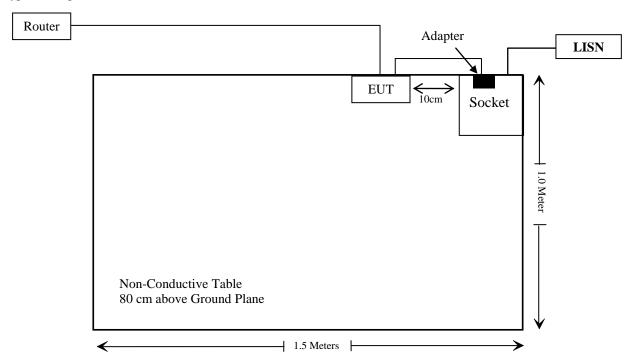
EUT Exercise Software

No exercise software was used.

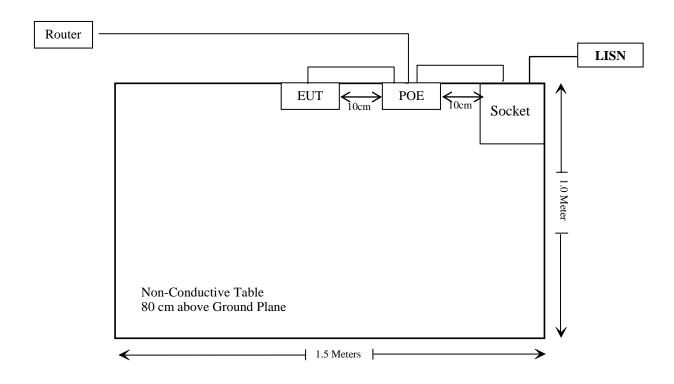
Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
iKu	Adapter	Y3	Y3201905001
BLU	Adapter	US-AH-1004	US-AH-1004
TP-Link	Router	TL-WR845N	1148388007860
Panasonic	Storage battery	P1224ST	P1224ST
FRECOM	Adapter	F18W8	F18W8
GOSPELL	POE	G0720-480-050	200200015

Report No.: RSZ200622006-00A


External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shield Detachable USB cable	1.0	EUT	Adapter
Un-shield Detachable RJ45 cable	10	EUT/POE	Router
Un-shield Detachable RJ45 cable	1.0	POE	EUT
Un-shield Detachable DC cable	1.2	EUT	Adapter


FCC Part 15F Page 6 of 35

Block Diagram of Test Setup

Type-C/DC port:

Powered by POE:

FCC Part 15F Page 7 of 35

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1091	Maximum Permissible Exposure(MPE)	Compliance
§15.517 (a)	General Requirement	Compliance
§15.203, §15.517(a) (3)	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.503 (a)(d), §15.517(b)	UWB Operation bandwidth	Compliance*
§15.209, §15.517(c)(d)	Radiated Emissions	Compliance*
§15.517(e)	Peak Emission in a 50 MHz bandwidth	Compliance*

Report No.: RSZ200622006-00A

Note*: the EUT have three different power supply, pre-scan with them, the worst case was powered by the POE.

FCC Part 15F Page 8 of 35

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Condu	cted Emissions	Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2019/7/9	2020/7/8
Rohde & Schwarz	LISN	ENV216	101613	2020/1/22	2021/1/21
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2019/11/29	2020/11/28
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2019/11/29	2020/11/28
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
	Radia	ated Emission T	est		
R&S	EMI Test Receiver	ESR3	102455	2019/7/9	2020/7/8
Sonoma instrument	Pre-amplifier	310 N	186238	2020/4/20	2021/4/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21
Unknown	Cable	Chamber Cable 1	F-03-EM236	2019/11/29	2020/11/28
Unknown	Cable	Chamber Cable 4	EC-007	2019/11/29	2020/11/28
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019/7/22	2020/7/21
COM-POWER	Pre-amplifier	PA-122	181919	2019/11/29	2020/11/28
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2019/11/29	2020/11/28
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2019/11/29	2020/11/28
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2019/11/29	2020/11/28
Ducommun technologies	RF Cable	RG-214	1	2019-11-12	2020/11/12
Ducommun technologies	RF Cable	RG-214	2	2019-11-12	2020/11/12
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2019/10/13	2022/10/12

Report No.: RSZ200622006-00A

FCC Part 15F Page 9 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

§1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

According to Part 1.1310(e), the maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, S as per the respective limits in the below table, at a distance, d, of 20 cm from the EUT.

Limits for General Population/Uncontrolled Exposure

Report No.: RSZ200622006-00A

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (Minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

Reference method

KDB 447498 D01 General RF Exposure Guidance v06

OET Bulletin 65, Edition 97-01 Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Tune Up EIRP		Evaluation	Power	MPE Limit
(MHz)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
6489.6	0	1	20	0.0002	1

Note: the tune up EIRP was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

FCC Part 15F Page 10 of 35

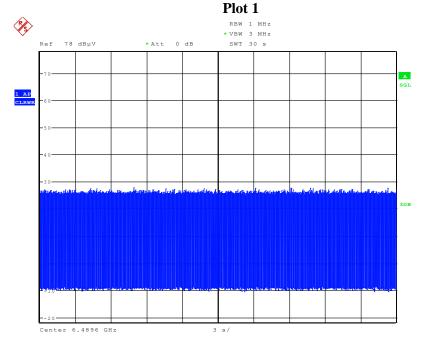
^{* =} Plane-wave equivalent power density

§15.517(a) - GENERAL REQUIREMENT

Applicable Standard

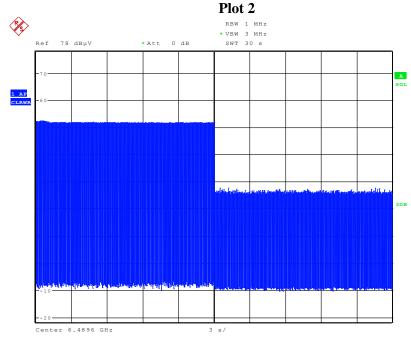
- (a) Operation under the provisions of this section is limited to UWB transmitters employed solely for indoor operation.
- (1) Indoor UWB devices, by the nature of their design, must be capable of operation only indoors. The necessity to operate with a fixed indoor infrastructure, e.g., a transmitter that must be connected to the AC power lines, may be considered sufficient to demonstrate this.

Report No.: RSZ200622006-00A


- (2) The emissions from equipment operated under this section shall not be intentionally directed outside of the building in which the equipment is located, such as through a window or a doorway, to perform an outside function, such as the detection of persons about to enter a building.
- (3) The use of outdoor mounted antennas, e.g., antennas mounted on the outside of a building or on a telephone pole, or any other outdoors infrastructure is prohibited.
- (4) Field disturbance sensors installed inside of metal or underground storage tanks are considered to operate indoors provided the emissions are directed towards the ground.
- (5) A communications system shall transmit only when the intentional radiator is sending information to an associated receiver.

Compliance, please see the below information:

- (1) The EUT was used only indoors, it was powered by the PoE or USB-C port from the adapter which connects indirectly to the AC power line, please refer to the details in the user manual.
- (2) The EUT was never used outdoors, as moisture or water can cause a short circuit. It was showed in the user manual.
- (3) The EUT has an internal PCB antenna, please refer to the EUT photos.
- (4) The EUT is not a field disturbance sensor.
- (5) A communications system shall transmit only when the intentional radiator is sending information to an associated receiver. Please refer to the below plot 1 and plot 2. According to the test plots, the EUT can meet the requirement of the communications system.


FCC Part 15F Page 11 of 35

First step: the EUT is switched on, the associated receiver is switched off

Date: 14.AUG.2020 20:03:08

Second step: the EUT is switched on, the associated receiver is switched on, after 15s the associated receiver is switched off

Date: 14.AUG.2020 20:03:57

FCC Part 15F Page 12 of 35

FCC §15.203, §15.517(a) (3) - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

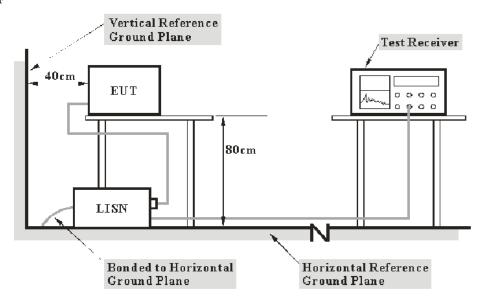
Report No.: RSZ200622006-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.
- (3) The use of outdoor mounted antennas, e.g., antennas mounted on the outside of a building or on a telephone pole, or any other outdoors infrastructure is prohibited.

Antenna Connector Construction

The EUT has internal PCB antenna arrangement, which was permanently attached and the antenna gain is 3.7dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC Part 15F Page 13 of 35

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Report No.: RSZ200622006-00A

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15F Page 14 of 35

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Report No.: RSZ200622006-00A

Margin = Limit – Corrected Amplitude

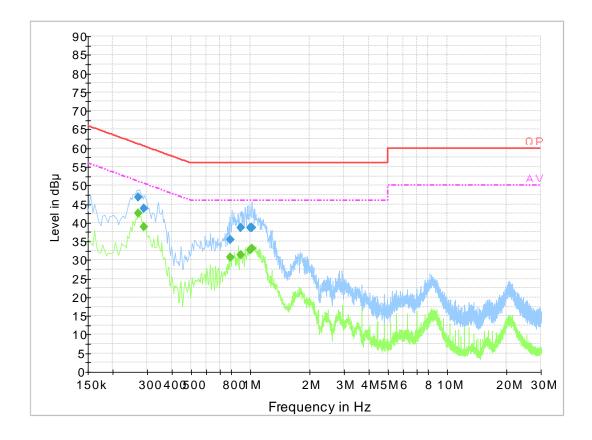
Test Results Summary

According to the EUT complied with the FCC Part 15.207,

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	65
ATM Pressure:	101.0 kPa

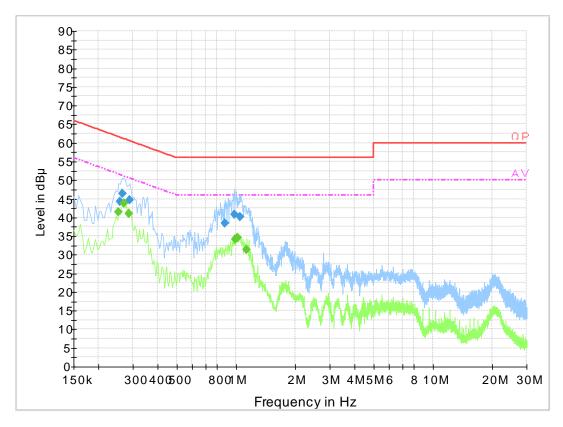

The testing was performed by Haiguo Li on 2020-06-24

EUT operation mode: Transmitting

FCC Part 15F Page 15 of 35

Powered by adapter (DC port):

AC 120V/60 Hz, Line

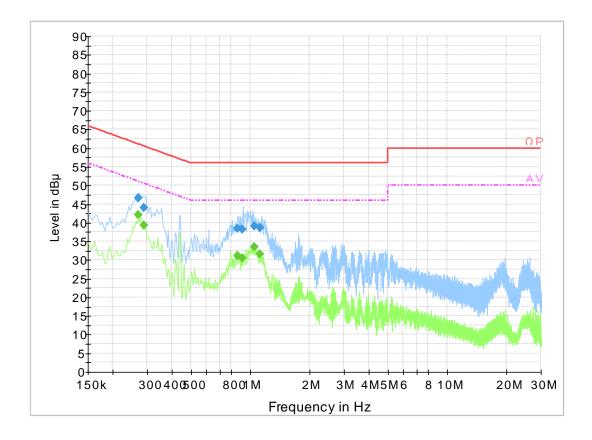


Report No.: RSZ200622006-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.269500	46.9	19.8	61.1	14.3	QP
0.289500	43.7	19.7	60.5	16.8	QP
0.793910	35.5	19.8	56.0	20.5	QP
0.892470	38.6	19.8	56.0	17.4	QP
1.007030	38.8	19.9	56.0	17.2	QP
1.018730	38.7	19.9	56.0	17.3	QP
0.269500	42.6	19.8	51.1	8.5	Ave.
0.289500	38.9	19.7	50.5	11.7	Ave.
0.793910	30.7	19.8	46.0	15.3	Ave.
0.892470	31.4	19.8	46.0	14.6	Ave.
1.007030	32.7	19.9	46.0	13.3	Ave.
1.018730	33.1	19.9	46.0	12.9	Ave.

FCC Part 15F Page 16 of 35

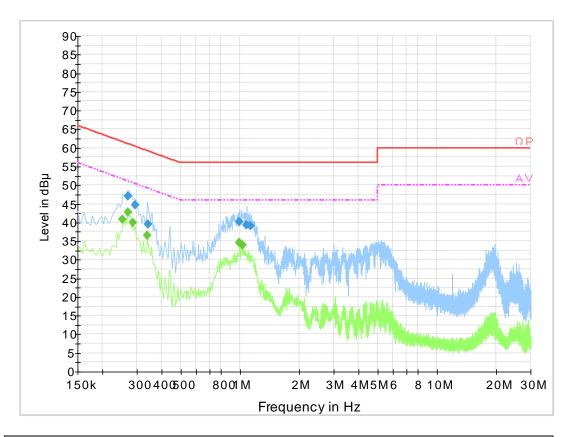
AC 120V/60 Hz, Neutral



Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)	
0.257500	44.3	19.8	61.5	17.2	QP	
0.265500	46.4	19.7	61.3	14.9	QP	
0.289500	44.6	19.7	60.5	15.9	QP	
0.880770	38.5	19.7	56.0	17.5	QP	
0.987270	40.9	19.8	56.0	15.1	QP	
1.050250	40.1	19.8	56.0	15.9	QP	
0.254000	41.5	19.8	51.6	10.1	Ave.	
0.270000	43.8	19.7	51.1	7.3	Ave.	
0.286000	41.0	19.7	50.6	9.6	Ave.	
0.998000	34.1	19.8	46.0	11.9	Ave.	
1.022000	34.6	19.8	46.0	11.4	Ave.	
1.138000	31.4	19.8	46.0	14.6	Ave.	

FCC Part 15F Page 17 of 35

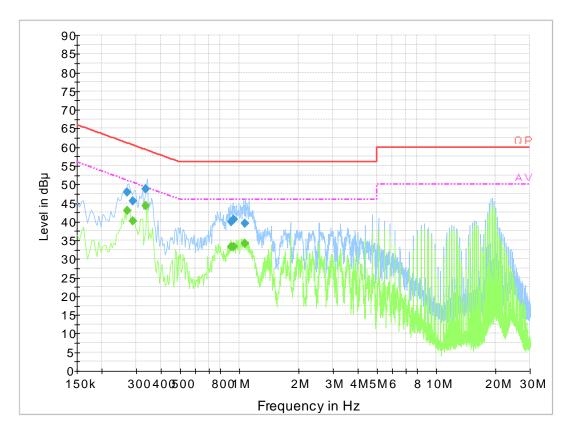
Powered by adapter (Type-C port):


AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB) Limit (dBμV)		Margin (dB)	Detector (PK/Ave./QP)	
0.269500	46.7	19.8	61.1	14.5	QP	
0.289500	44.0	19.7	60.5	16.6	QP	
0.861070	38.4	19.8	56.0	17.6	QP	
0.916230	38.3	19.8	56.0	17.7	QP	
1.049510	39.1	19.9	56.0	16.9	QP	
1.124870	38.6	19.8	56.0	17.4	QP	
0.269500	42.2	19.8	51.1	9.0	Ave.	
0.289500	39.2	19.7	50.5	11.3	Ave.	
0.861070	31.1	19.8	46.0	14.9	Ave.	
0.916230	30.4	19.8	46.0	15.6	Ave.	
1.049510	33.5	19.9	46.0	12.5	Ave.	
1.124870	31.5	19.8	46.0	14.5	Ave.	

FCC Part 15F Page 18 of 35

AC 120V/60 Hz, Neutral

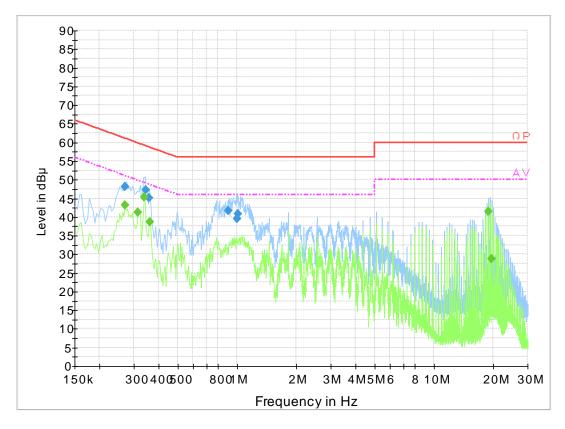


Frequency (MHz)	Corrected Amplitude (dBµV)	limit		Margin (dB)	Detector (PK/Ave./QP)	
0.269500	47.0	19.7	61.1	14.2	QP	
0.293500	44.7	19.7	60.4	15.7	QP	
0.340930	39.6	19.8	59.2	19.6	QP	
0.995030	40.2	19.8	56.0	15.8	QP	
1.085710	39.4	19.8	56.0	16.6	QP	
1.136870	39.0	19.8	56.0	17.0	QP	
0.254000	40.8	19.8	51.6	10.9	Ave.	
0.270000	42.7	19.7	51.1	8.4	Ave.	
0.286000	40.0	19.7	50.6	10.6	Ave.	
0.338000	36.6	19.8	49.3	12.7	Ave.	
0.998000	34.6	19.8	46.0	11.4	Ave.	
1.034000	33.9	19.8	46.0	12.1	Ave.	

FCC Part 15F Page 19 of 35

Powered by the POE:

AC 120V/60 Hz, Line



Report No.: RSZ200622006-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.269500	47.9	19.8	61.1	13.3	QP
0.289500	45.4	19.7	60.5	15.1	QP
0.336870	48.8	19.8	59.3	10.5	QP
0.912470	40.0	19.8	56.0	16.0	QP
0.940050	40.6	19.8	56.0	15.4	QP
1.069890	39.5	19.9	56.0	16.5	QP
0.269500	43.0	19.8	51.1	8.1	Ave.
0.289500	40.2	19.7	50.5	10.4	Ave.
0.336870	44.3	19.8	49.3	5.0	Ave.
0.912470	33.3	19.8	46.0	12.7	Ave.
0.940050	33.3	19.8	46.0	12.7	Ave.
1.069890	34.1	19.9	46.0	11.9	Ave.

FCC Part 15F Page 20 of 35

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.269500	48.1	19.7	61.1	13.0	QP
0.344870	47.3	19.8	59.1	11.8	QP
0.356630	45.2	19.9	58.8	13.6	QP
0.908470	41.6	19.7	56.0	14.4	QP
1.003150	39.5	19.8	56.0	16.5	QP
1.014790	40.9	19.8	56.0	15.1	QP
0.270000	43.2	19.7	51.1	7.9	Ave.
0.314000	41.3	19.7	49.9	8.6	Ave.
0.338000	45.4	19.8	49.3	3.8	Ave.
0.362000	38.7	19.9	48.7	10.0	Ave.
18.934000	41.5	20.3	50.0	8.5	Ave.
19.666000	28.7	20.4	50.0	21.3	Ave.

Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15F Page 21 of 35

§15.503 (a), §15.503 (d), §15.517(b) – UWB OPEARTION BANDWIDTH

Applicable Standard

15.503(a): UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated fH and the lower boundary is designated fL. The frequency at which the highest radiated emission occurs is designated fM.

Report No.: RSZ200622006-00A

15.503(d): Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

15.517(b) The UWB bandwidth of a UWB system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

Test Procedure

Refer to the C63.10 -2013 Section 10.1

Test Data

Environmental Conditions

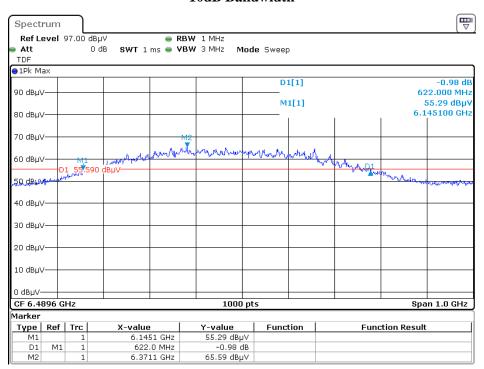
Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Alan He on 2020-06-23.

Test Result: Pass.

EUT operation mode: Transmitting

Test distance is 3m.


Please refer to the following table and plots.

FCC Part 15F Page 22 of 35

	Result	Limit (MHz)	
f _M (MHz)	The highest emission frequency	6371.1	/
$f_L(MHz)$	10dB below the highest emission	6145.1	>3100
f _H (MHz)	10dB above the highest emission	6767.1	<10600
$f_{C}(MHz)$	$(f_H + f_L)/2$	6456.1	/
10dB bandwidth(MHz)	f_{H} - f_{L}	622.0	≥500
Fractional bandwidth	$2(f_H - f_L)/(f_H + f_L)$	0.099	/

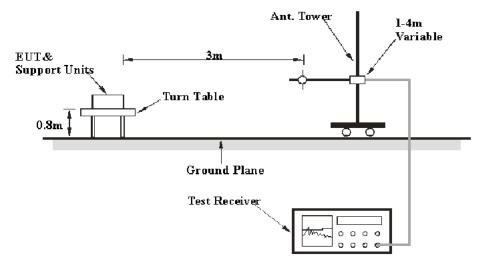
Note: $f_H = f_L + 10dB$ bandwidth

10dB Bandwidth

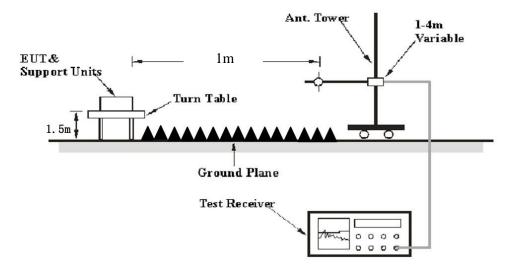
Date: 23.JUN.2020 18:47:42

FCC Part 15F Page 23 of 35

Report No.: RSZ200622006-00A


FCC §15.209, §15.517(c), §15.517 (d)- SPURIOUS EMISSIONS

Applicable Standard


FCC §15.209; §15.517(c), §15.517(d);

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.517 limits.

FCC Part 15F Page 24 of 35

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	Average
	10kHz	30kHz	/	Average*

Report No.: RSZ200622006-00A

Note: * For the radiated spurious emission in the GPS band.

Test Procedure

Refer to the C63.10 -2013 Section 10.2 & 10.3

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

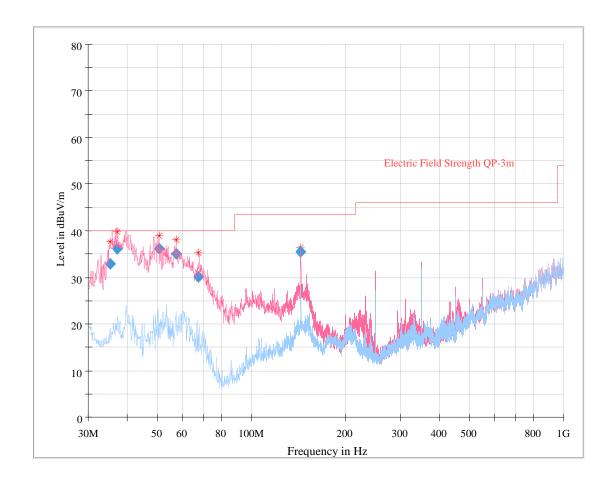
Margin = Limit – Corrected Amplitude

Test Results Summary

According to the EUT complied with the FCC Title 47, Part 15, Subpart F, section 15.205, 15.209 and 15.517.

Test Data

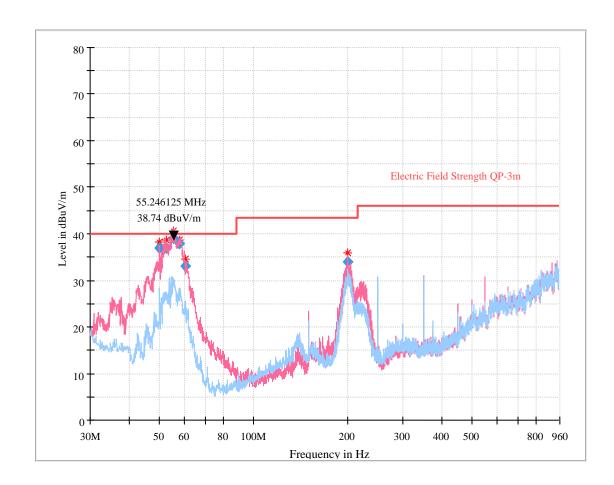
Environmental Conditions


Temperature:	23 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Charlie Cha on 2020-06-24 for below 1G and Leo Huang on 2020-06-23 for above 1G.

EUT operation mode: Transmitting

FCC Part 15F Page 25 of 35


Powered by adapter (DC port): 30 MHz~1 GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
35.204625	32.85	102.0	V	137.0	-10.6	40.00	7.15
37.289625	36.19	103.0	V	177.0	-12.0	40.00	3.81
50.547625	36.03	103.0	V	158.0	-19.7	40.00	3.97
57.401625	35.09	110.0	V	172.0	-20.0	40.00	4.91
67.489750	30.06	111.0	V	122.0	-20.5	40.00	9.94
144.006125	35.55	101.0	V	129.0	-14.2	43.50	7.95

FCC Part 15F Page 26 of 35

Power by the POE: 30 MHz~1 GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBμV/m)	Margin (dB)
49.992875	36.98	103.0	V	24.0	-19.6	40.00	3.02
52.742500	36.91	111.0	V	13.0	-19.8	40.00	3.09
55.246125	38.74	102.0	V	353.0	-19.9	40.00	1.26
57.774125	37.21	104.0	V	10.0	-20.0	40.00	2.79
60.351250	35.01	102.0	V	0.0	-20.2	40.00	4.99
199.976375	33.89	104.0	V	108.0	-13.8	43.50	9.61

FCC Part 15F Page 27 of 35

Powered by adapter (Type-C port): 30 MHz~1 GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
50.012000	26.42	113.0	V	120.0	-19.6	40.00	13.58
55.470750	15.18	102.0	V	132.0	-19.9	40.00	24.82
129.270625	16.19	103.0	V	138.0	-13.6	43.50	27.31
150.011250	24.74	102.0	V	0.0	-14.2	43.50	18.76
200.036250	18.69	104.0	V	0.0	-13.8	43.50	24.81
930.963250	26.10	103.0	V	196.0	4.7	46.00	19.90

Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

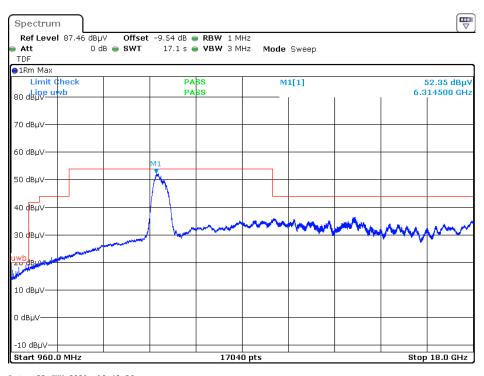
Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

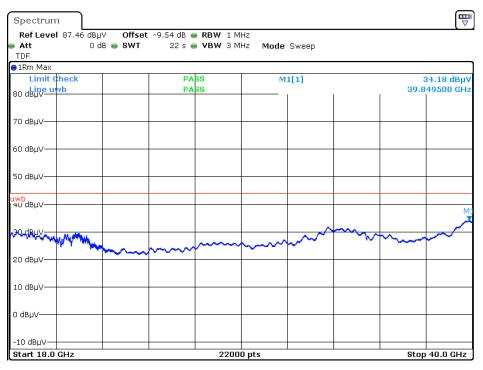
FCC Part 15F Page 28 of 35

Spurious radiated emission above 960MHz in non GPS band:

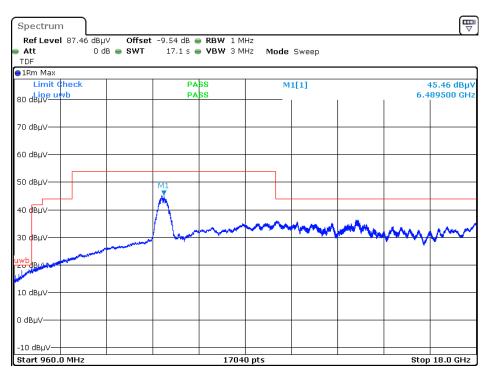

1. The test distance is 1m, so the correct factor from 3m to 1m is $20\log(3/1)=9.54$ dB which was added into the offset on the spectrum analyzer.

Report No.: RSZ200622006-00A

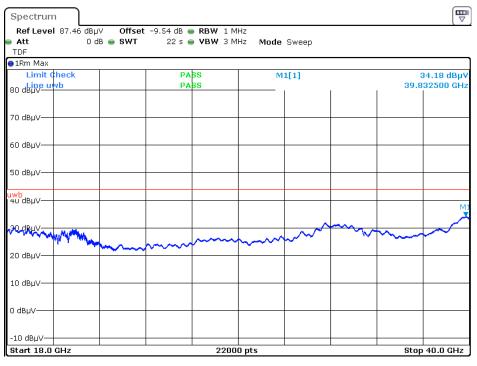
- 2. $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.
- 3. The antenna factor, cable loss and preamplifier gain have been entered into the analyzer as the transducer factor.


Frequency	Corrected Amplitude (dBµV/m)		Turntable	Rx Antenna		Part 15.517		
(MHz)			Detector	Degree	Height (m)	Polar (H / V)	EIRP Limit (dBm)	Margin (dB)
6314.5	52.35	-42.85	RMS	115	2.4	Н	-41.3	1.55
39849.5	34.18	-61.02	RMS	355	1.4	Н	-51.3	9.72
6489.5	45.46	-49.74	RMS	27	1.1	V	-41.3	8.44
39832.5	34.18	-61.02	RMS	236	1.6	V	-51.3	9.72

Horizontal


Date: 23.JUN.2020 19:43:36

FCC Part 15F Page 29 of 35

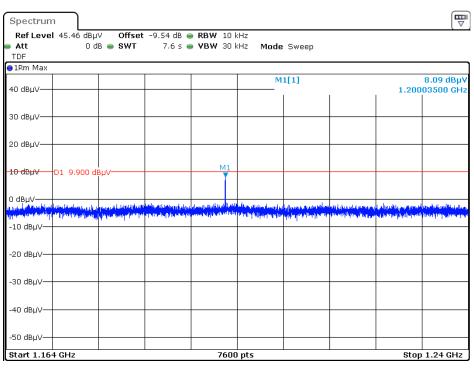

Date: 23.JUN.2020 20:32:19

Vertical

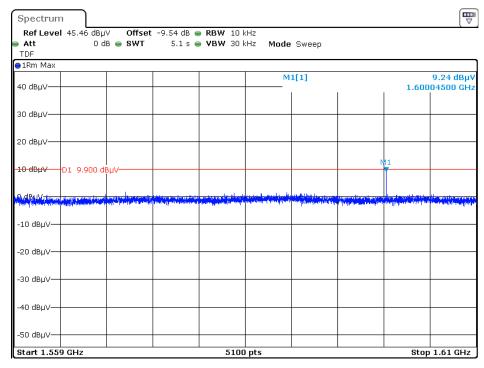
Date: 23.JUN.2020 19:56:03

FCC Part 15F Page 30 of 35

Date: 23.JUN.2020 20:45:54

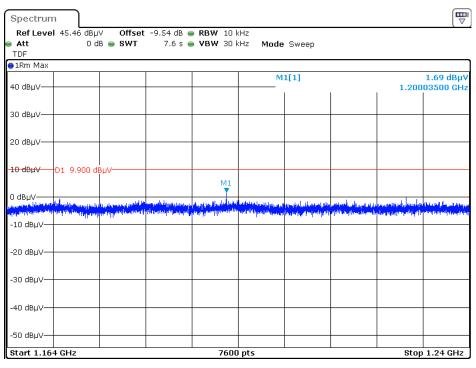

Spurious radiated emission in GPS band:

- 1. The test distance is 3m.
- 2. $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.
- 3. The antenna factor, cable loss and preamplifier gain have been entered into the analyzer as the transducer factor.


Frequency	Corrected	tude EIRP	Detector	Turntable	Rx Antenna		Part 15.517	
(MHz)	Amplitude (dBµV/m)			Degree	Height (m)	Polar (H / V)	EIRP Limit (dBm)	Margin (dB)
1200.04	8.09	-87.11	RMS	10	2.2	Н	-85.3	1.81
1600.05	9.24	-85.96	RMS	251	1.5	Н	-85.3	0.66
1200.04	1.69	-93.51	RMS	106	1.4	V	-85.3	8.21
1600.05	7.42	-87.78	RMS	318	1.8	V	-85.3	2.48

FCC Part 15F Page 31 of 35

Horizontal


Date: 23.JUN.2020 19:15:35


Date: 23.JUN.2020 19:29:44

FCC Part 15F Page 32 of 35

Vertical

Date: 23.JUN.2020 19:11:22

Date: 23.JUN.2020 19:24:41

FCC Part 15F Page 33 of 35

§15.517(e) - PEAK EMISSION IN A 50 MHZ BANDWIDTH

Applicable Standard

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

Report No.: RSZ200622006-00A

Test Procedure

Refer to the C63.10 -2013 Section 10.3.5.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Leo Huang on 2020-06-22.

EUT operation mode: Transmitting

Frequency	Reading level	EIRP	EIRP	Limit
(MHz)	$(dB\mu V/m)$	(dBm/MHz)	(dBm/50MHz)	dBm/50MHz
6371.1	60.49	-34.71	-0.71	0


Note: the correct factor of RBW 1MHz to 50MHz is $20 \log (50MHz/1 \text{ MHz}) = 34$

 $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

The test distance is 3m.

The antenna factor, cable loss and preamplifier gain have been entered into the analyzer as the transducer factor.

FCC Part 15F Page 34 of 35

Date: 22.JUN.2020 19:07:24

***** END OF REPORT ****

FCC Part 15F Page 35 of 35