FCC SAR Test Report

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 2 of 94

Contents

1. Statement of Compliance 6
2. General Information 7
2.1 Client Information 7
2.2 Description of Equipment Under Test (EUT) 7
2.3 Device Category and SAR Limits 9
2.4 Applied Standard 9
2.5 Environment of Test Site 9
2.6 Test Configuration 9
2.7 Description of Test Facility 10
3. Specific Absorption Rate (SAR) 11
3.1 Introduction 11
3.2 SAR Definition 11
4. SAR Measurement System 12
4.1 E-Field Probe 13
4.2 Data Acquisition Electronics (DAE) 13
4.3 Robot. 14
4.4 Measurement Server 15
4.5 Phantom 15
4.6 Device Holder 17
4.7 Data Storage and Evaluation 18
5. Test Equipment List 20
6. Tissue Simulating Liquids 21
7. System Verification Procedures 23
8. EUT Testing Position 25
8.1 Body Worn Position 25
9. Measurement Procedures 26
9.1 Spatial Peak SAR Evaluation 26
9.2 Power Reference Measurement 27
9.3 Area Scan Procedures 27
9.4 Zoom Scan Procedures 28
9.5 Volume Scan Procedures 29
9.6 Power Drift Monitoring 29
10. Conducted Power 30
11. Antenna Location 37
12. SAR Test Results Summary 38
13. Simultaneous Transmission Analysis 41
Simultaneous TX SAR Considerations 41
14. Measurement Uncertainty 43

Anbotek

Report No.: $18220 W C 30262301$ FCC ID: 2AWJK-WMT-C26
Appendix A. EUT Photos and Test Setup Photos 45
Appendix B. Plots of SAR System Check 46
Appendix C. Plots of SAR Test Data 49
Appendix D. DASY System Calibration Certificate 55

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 4 of 94

TEST REPORT

Applicant	$:$ Grastron Technology CO., LTD
Manufacturer	$:$ Grastron Technology CO., LTD
Product Name	$:$ Wireless Presentation System
	WMT-C26, DG-C20, DG-C21, DG-C22, DG-C23, DG-C24, DG-C25, DG-C26,
Model No.	DG-C27, DG-C28, DG-C29, WMT-C20, WMT-C21, WMT-C22, WMT-C23,
Trade Mark	WMT-C24, WMT-C25, WMT-C27, WMT-C28, WMT-C29
Rating (s)	NRA
	$:$ Input: $5 \mathrm{~V}=0.7 \mathrm{C}$

Test Standards) : IEC/IEEE 62209-1528:2020; FCC 47 CFR Part 2.1093; ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227; KDB 616217

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC/IEEE 62209-1528:2020, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 and Reference KDB 447498, KDB 248227, KDB 616217 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt

Date of Test

Approved \& Authorized Signer

Dec. 18, 2023
Dec.18-20, 2023
(Ella Liang)
Forward pan
(Edward Pan)

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 5 of 94

Version

Version No.	Date	Description
R00	Jan. 26, 2024	Original

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 6 of 94

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.
<Highest SAR Summary>

Frequency Band	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit $(\mathbf{W} / \mathrm{Kg})$
	Body-worn(0mm)	
WIFI 2.4G ANT 1	0.626	
WIFI 2.4G ANT 2	0.706	
WIFI 5.2G ANT 1	0.732	1.6
WIFI 5.2G ANT 2	0.683	
WIFI 5.8G ANT 1	$\mathbf{0 . 7 6 1}$	
WIFI 5.8G ANT 2	0.685	
Simultaneous	$\mathbf{1 . 4 4 6}$	
Test Result		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in KDB 447498 D01 v06, 2015 and ANSI/IEEE C95.1:2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 7 of 94

2. General Information

2.1Client Information

Applicant	$:$	Grastron Technology CO., LTD
Address	$:$401 Building\#B Dingxin Science and Technology Park,Honglangbei \#2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China	
Manufacturer	$:$	Grastron Technology CO., LTD
Address	$:$401 Building\#B Dingxin Science and Technology Park,Honglangbei \#2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China	
Factory	$:$	Grastron Technology CO., LTD
Address	$:$401 Building\#B Dingxin Science and Technology Park,Honglangbei \#2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China	

2.2Description of Equipment Under Test (EUT)

Product Name	Wireless Presentation System WMT-C26, DG-C20, DG-C21, DG-C22, DG-C23, DG-C24, DG-C25, DG-C26, DG-C27, DG-C28, DG-C29, WMT-C20, WMT-C21, WMT-C22, WMT-C23, WMT-C24, WMT-C25, WMT-C27, WMT-C28, WMT-C29 (Note: All samples are the same except the model number and appearance color, so we prepare "WMT-C26" for test only.)	
Model No.		
Trade Mark	N/A	
Test Power Supply	DC 5V via PC	
Test Sample No.	1-2-2(Engineering S	
	Operation Frequency:	WiFi 2.4G: 2412~2462MHz for 802.11b/g/n20/ax20 2422~2452MHz for 802.11n40/ax40 WiFi 5.2G: 5180~5240MHz WiFi 5.8G: $5745 \sim 5825 \mathrm{MHz}$
Product Description	Number of Channel:	WiFi 2.4G: 11 Channels for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20 / \mathrm{ax} 20$ 7 channels for 802.11n40/ax40 WiFi 5.2G: 4 Channels for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20 / \mathrm{ax} 20$ 2 Channels for 802.11n40/ac40/ax40

Anbotek

Product Safety

Report No.: $18220 W C 30262301$
FCC ID: 2AWJK-WMT-C26
Page 8 of 94

		1 Channel for 802.11ac80/ax80 WiFi 5.8G: 5 Channels for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20 / \mathrm{ax} 20$ 2 Channels for 802.11n40/ac40/ax40 1 Channel for 802.11ac80/ax80
	Modulation Type:	WiFi 2.4G: CCK, DQPSK, DBPSK for DSSS; 64QAM, 16QAM, QPSK, BPSK for OFDM WiFi 5G: OFDM with BPSK, QPSK, 16QAM, 64QAM, 256QAM
	Antenna Type:	ANT1: ceramic antenna ANT2: ceramic antenna
	Antenna Gain(Peak):	ANT1: 2.27 dBi for 2.4 GHz (Provided by customer) 5.18 dBi for 5.1 GHz (Provided by customer) 4.09 dBi for 5.8 GHz (Provided by customer) ANT2: 2.27 dBi for 2.4 GHz (Provided by customer) 5.18 dBi for 5.1 GHz (Provided by customer) 4.09 dBi for 5.8 GHz (Provided by customer)

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Anbotek

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 9 of 94

2.3Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is $1.6 \mathrm{~W} / \mathrm{kg}$ as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

IEC/IEEE 62209-1528:2020
ANSIIIEEE C95.1:2005
FCC 47 CFR Part 2.1093
Reference FCC KDB 447498; KDB 248227; KDB 616217

2.5Environment of Test Site

Items	Required	Actual
Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	$18-25$	$22 \sim 23$
Humidity (\%RH)	$30-70$	$55 \sim 65$

2.6Test Configuration

For WIFI and Bluetooth SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 10 of 94

2.7Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.
1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. 518102

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 11 of 94

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ).The equation description is as below:

$$
\operatorname{SAR}=\frac{d}{d t}\left(\frac{d W}{d m}\right)=\frac{d}{d t}\left(\frac{d W}{\rho d v}\right)
$$

SAR is expressed in units of Watts per kilogram (W/kg)
SAR measurement can be either related to the temperature elevation in tissue by

$$
\operatorname{SAR}=\mathrm{C}\left(\frac{\delta T}{\delta t}\right)
$$

Where: C is the specific head capacity, $\delta \mathrm{T}$ is the temperature rise and סtisthe exposure duration, or related to the electrical field in the tissue by

$$
\mathbf{S A R}=\frac{\sigma|\mathbf{E}|^{2}}{\rho}
$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 12 of 94

4. SAR Measurement System

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:
$>$ A standard high precision 6-axis robot with controller, a teach pendant and software
\rightarrow A data acquisition electronic (DAE) attached to the robot arm extension
$>$ A dosimetric probe equipped with an optical surface detector system
$>$ The electro-optical converter (EOC) performs the conversion between optical and electrical signals
$>$ A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
$>$ A probe alignment unit which improves the accuracy of the probe positioning
> A computer operating Windows XP
> DASY software
$>\quad$ Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
> The SAM twin phantom
> A device holder
> Tissue simulating liquid
$>$ Dipole for evaluating the proper functioning of the system

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 13 of 94
components are described in details in the following sub-sections.

4.1E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG).The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.
> E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz ; Linearity: $\pm 0.2 \mathrm{~dB}$
Directivity	$\pm 0.3 \mathrm{~dB}$ in HSL (rotation around probe axis) $\pm 0.5 \mathrm{~dB}$ in tissue material (rotation normal to probe axis)
Dynamic Range	$10 \mu \mathrm{~W} / \mathrm{g}$ to $100 \mathrm{~mW} / \mathrm{g}$; Linearity: ± 0.2 dB (noise: typically $<1 \mu \mathrm{~W} / \mathrm{g})$
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10 \%$. The spherical isotropy shall be evaluated and within $\pm 0.25 \mathrm{~dB}$. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 14 of 94
The input impedance of the DAE is 200 MOhm ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB .

Photo of DAE

4.3Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:
$>$ High precision (repeatability $\pm 0.035 \mathrm{~mm}$)
$>$ High reliability (industrial design)
$>$ Jerk-free straight movements
$>$ Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Anbotek

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 15 of 94

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz , Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5Phantom

<SAM Twin Phantom>

Shell Thickness	$2 \pm 0.2 \mathrm{~mm} ;$ Center ear point: $6 \pm 0.2 \mathrm{~mm}$
Filling Volume	Approx. 25 liters
Dimensions	Length: 1000 mm ; Width: $500 \mathrm{~mm} ;$ Height: adjustable feet
Measurement Areas	Left Hand, Right Hand, Flat Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 16 of 94
<ELI4 Phantom>

| Shell Thickness | $2 \pm 0.2 \mathrm{~mm}$ (sagging: $<1 \%$) |
| :--- | :--- | :--- |
| Filling Volume | Approx. 30 liters |

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz . ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 17 of 94

4.6Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of $\pm 0.5 \mathrm{~mm}$ would produce a SAR uncertainty of $\pm 20 \%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 18 of 94

4.7 Data Storage and Evaluation

> Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., $[\mathrm{V} / \mathrm{m}],[\mathrm{A} / \mathrm{m}],[\mathrm{mW} / \mathrm{g}])$. Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.
> Data Evaluation
The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 19 of 94 compensate for peak power.

The formula for each channel can be given as:

$$
V_{i}=U_{i}+U_{i}^{2} \cdot \frac{c f}{d c p_{i}}
$$

with $\quad \mathrm{V}_{\mathrm{i}}=$ compensated signal of channel $\mathrm{i},(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
$U_{i}=$ input signal of channel $i,(i=x, y, z)$
cf = crest factor of exciting field (DASY parameter)
$\mathrm{dcp} \mathrm{p}_{\mathrm{i}}=$ diode compression point (DASY parameter)
From the compensated input signals, the primary field data for each channel can be evaluated:
E-field Probes: $\mathbf{E}_{\mathbf{i}}=\sqrt{\frac{\mathbf{V}_{\mathbf{i}}}{\text { Norm }_{\mathrm{i}} \text { ConvF }}}$
H-field Probes: $\mathbf{H}_{\mathbf{i}}=\sqrt{\mathbf{V}_{\mathbf{i}}} \cdot \frac{a_{i 0}+a_{i 1} f+\mathrm{a}_{i 2} f^{2}}{f}$
with $\mathrm{V}_{\mathrm{i}}=$ compensated signal of channel $\mathrm{i},(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
Norm $\mathrm{m}_{\mathrm{i}}=$ sensor sensitivity of channel $\mathrm{i},(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}), \mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}$ for E -field Probes
ConvF= sensitivity enhancement in solution
$\mathrm{a}_{\mathrm{ij}}=$ sensor sensitivity factors for H -field probes
$\mathrm{f}=$ carrier frequency [GHz]
$\mathrm{E}_{\mathrm{i}}=$ electric field strength of channel i in V / m
$\mathrm{H}_{\mathrm{i}}=$ magnetic field strength of channel i in A / m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$
E_{t o t}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}
$$

The primary field data are used to calculate the derived field units.

$$
\mathbf{S A R}=E_{\text {tot }}^{2} \cdot \frac{\sigma}{\rho \cdot \mathbf{1 0 0 0}}
$$

with \quad SAR $=$ local specific absorption rate in mW / g
$\mathrm{E}_{\text {tot }}=$ total field strength in V / m
$\sigma=$ conductivity in [mho/m] or [Siemens $/ \mathrm{m}$]
$\rho=$ equivalent tissue density in $\mathrm{g} / \mathrm{cm}^{3}$
Note that the density is set to 1 , to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 20 of 94

5. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2021	Oct. 01, 2024
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2023	Sept.05,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2023	May 05,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2023	Oct.25, 2024
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2023	Oct.25, 2024
Agilent	Spectrum Analyzer	N9020A	MY51170037	Oct.12, 2023	Oct.11, 2024
Agilent	Signal Generation	N5182A	MY47420647	Feb.23, 2023	Feb.22, 2024
Worken	- Directional Coupler	0110A056010-10	COM5BNW1A2	Oct.26, 2023	Oct.25, 2024

Note:

1. The calibration certificate of DASY can be referred to appendix C of this report.
2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to $1 W$ input power according to the ratio of 1 W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 21 of 94

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm , which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm , which is shown as followed:

Photo of Liquid Height for Body SAR
The following table gives the recipes for tissue simulating liquid.

Frequency (MHz)	Water (\%)	Sugar (\%)	Cellulose (\%)	Salt (\%)	Preventol (\%)	DGBE (\%)	Conductivity (σ)	Permittivity (ε)
For Body								
2450	68.6	0	0	0	31.4	0	1.95	52.7
5200	78.6	0	10.7	0	10.7	0	5.27	49.0
5800	78.5	0	10.8	0	10.7	0	6.00	48.2

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 22 of 94

The following table shows the measuring results for simulating liquid.

Tissue Type	Measured Frequenc y	Target Tissue		Measured Tissue				Liquid (MHz)	$\boldsymbol{\varepsilon}_{\mathrm{r}}$

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 23 of 94

7. System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

> System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Product Safety

Report No.: 18220 WC30262301
FCC ID: 2AWJK-WMT-C26
Page 24 of 94 System Setup for System Evaluation

Photo of Dipole Setup
Validation Results
Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1 W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

$\begin{gathered} \text { Frequenc } \\ y \\ (\mathrm{MHz}) \end{gathered}$	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviatio n (\%)	Test Date
2450	Body	250	51.8	12.69	50.76	-2.01	12/18/2023
5200	Body	100	77.8	7.63	76.30	-1.93	12/19/2023
5800	Body	100	78.3	7.95	79.50	1.53	12/20/2023

Target and Measurement SAR after Normalized

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 25 of 94

8. EUT Testing Position

8.1 Body Worn Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, bodyworn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is $<1.2 \mathrm{~W} / \mathrm{kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body Worn Position

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 26 of 94

9. Measurement Procedures

The measurement procedures are as follows:
(a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous $T x$) in the middle channel.
(b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
(c) Measure output power through RF cable and power meter.
(d) Place the EUT in the positions as setup photos demonstrates.
(e) Set scan area, grid size and other setting on the DASY software.
(f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
(g) Identify the exposure position and device configuration resulting the highest SAR
(h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
(a) Power reference measurement
(b) Area scan
(c) Zoom scan
(d) Power drift measurement

9.1Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1 g and 10 g , as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
(a) Extraction of the measured data (grid and values) from the Zoom Scan
(b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
(c) Generation of a high-resolution mesh within the measured volume
(d) Interpolation of all measured values form the measurement grid to the high-resolution grid
(e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 27 of 94 sensor to surface
(f) Calculation of the averaged SAR within masses of 1 g and 10 g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dBO is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.
Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz .

	$\leq 3 \mathrm{GHz}$	$>3 \mathrm{GHz}$		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \mathrm{~mm}$	$1 / 2 \cdot \delta \cdot \ln (2) \pm 0.5 \mathrm{~mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
Maximum area scan spatial resolution: $\Delta \mathrm{x}_{\text {Area }}, \Delta \mathrm{y}_{\text {Area }}$			\quad	$\leq 2 \mathrm{GHz}: \leq 15 \mathrm{~mm}$
:---				
$2-3 \mathrm{GHz}: \leq 12 \mathrm{~mm}$	\quad	$3-4 \mathrm{GHz}: \leq 12 \mathrm{~mm}$		
:---				
When the x or y dimension of the test device, in the				
measurement plane orientation, is smaller than the above,				
the measurement resolution must be \leq the corresponding				
x or y dimension of the test device with at least one				
measurement point on the test device.				

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 28 of 94

9.4Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.
Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
*When zoom scan is required and the reported SAR from the area scan based $1-g$ SAR estimation procedures of KDB 447498 is $\leq 1.4 \mathrm{~W} / \mathrm{kg}, \leq 8 \mathrm{~mm}, \leq 7 \mathrm{~mm}$ and $\leq 5 \mathrm{~mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to $3 \mathrm{GHz}, 3 \mathrm{GHz}$ to 4 GHz and 4 GHz to 6 GHz .

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 29 of 94

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1 g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Anbotek

Product Safety

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 30 of 94

10. Conducted Power

<WIFI 2.4GHz Conducted Power>

ANT 1:

Mode	Channel	$\begin{gathered} \text { Frequen } \\ \text { cy } \\ (\mathrm{MHz}) \end{gathered}$	Average Power(dBm)	Tune-Up Limit(dBm)	Test Rate Data
802.11 b	1	2412	13.08	13.50	1 Mbps
	6	2437	13.12	13.50	1 Mbps
	11	2462	13.44	13.50	1 Mbps
802.11 g	1	2412	13.26	- 13.50	6 Mbps
	6	2437	13.03	13.50	6 Mbps
	11	2462	13.15	13.50	6 Mbps
802.11 n20	1	2412	13.28	13.50	MCS0
	6	2437	13.03	13.50	MCS0
	11	2462	13.21	13.50	MCSO
802.11 n40	3	2422	13.51	14.00	MCSO
	6	2437	13.57	14.00	MCS0
	9	2452	13.63	14.00	MCS0
802.11 ax20	1	2412	13.28	13.50	MCS0
	6	2437	13.04	13.50	MCSO
	11	2462	13.23	13.50	MCSO
802.11 ax40	3	2422	14.36	14.50	MCS0
	6	2437	13.86	14.50	MCSO
	9	2452	13.81	14.50	MCS0

ANT 2:

Mode	Channel	Frequen cy (MHz)	Average Power(dBm)	Tune-Up Limit(dBm)	Test Rate Data
802.11 b	1	2412	14.03	14.50	1 Mbps
	6	2437	14.25	14.50	1 Mbps
	11	2462	14.43	14.50	1 Mbps
802.11 g	1	2412	14.13	15.00	6 Mbps
	6	2437	14.31	15.00	6 Mbps
	11	2462	14.76	15.00	6 Mbps
802.11 n20	1	2412	14.11	(215.00	MCSO

Anbotek

Product Safety

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 31 of 94

	6	2437	14.23	15.00	MCS0
	11	2462	14.67	15.00	MCS0
802.11 n40	3	2422	14.56	15.00	MCS0
	6	2437	14.62	15.00	MCS0
	9	2452	14.95	15.00	MCS0
802.11 ax20	1	2412	14.11	15.00	MCS0
	6	2437	14.39	15.00	MCS0
	11	2462	14.70	15.00	MCS0
802.11 ax40	3	2422	14.54	15.50	MCS0
	6	2437	14.78	15.50	MCS0
	9	2452	15.08	15.50	MCS0

MIMO:

Test Mode	Channel	Freque ncy (MHz)	Conducted Average Output Power(dBm)			Maximum TuneUp(dBm)	Test Rate Data
			Antenna 1	Antenna 2	Total		
802.11 n20	1	2412	13.28	14.11	16.73	17.50	MCSO
	6	2437	13.03	14.23	16.68	17.50	MCSO
	11	2462	13.21	14.67	17.01	17.50	MCSO
802.11 n 40	3	2422	13.51	14.56	17.08	17.50	MCSO
	6	2437	13.57	14.62	17.14	17.50	MCSO
	9	2452	13.63	14.95	17.35	17.50	MCS0
$\begin{gathered} 802.11 \\ \mathrm{ax} 20 \end{gathered}$	1	2412	13.28	14.11	16.73	17.50	MCSO
	6	2437	13.04	14.39	16.78	17.50	MCS0
	11	2462	13.23	14.70	17.04	17.50	MCSO
$\begin{gathered} 802.11 \\ a \times 40 \end{gathered}$	3	2422	14.36	14.54	17.46	17.50	MCSO
	6	2437	13.86	14.78	17.35	17.50	MCS0
	9	2452	13.81	15.08	17.50	17.50	MCS0

Note:

1. Per KDB 447498 D01 v06, the test distance less than 5 mm
2. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
3. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$.
4. According to chapter 12 of this report, the max report SAR of ANT 1802.11 b mode is $0.626 \mathrm{~W} / \mathrm{Kg}$, and $0.626 \mathrm{~W} / \mathrm{Kg} \times(27.29 / 22.08)=0.774 \mathrm{~W} / \mathrm{Kg}$, ANT 2802.11 b mode is $0.706 \mathrm{~W} / \mathrm{Kg}$, and $0.706 \mathrm{~W} / \mathrm{Kg}$

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 32 of 94 $x(32.21 / 27.73)=0.820 \mathrm{~W} / \mathrm{Kg}$, which are smaller than $1.2 \mathrm{~W} / \mathrm{Kg}$, so SAR evaluation of 802.11ax mode is not required, the same method evaluate for 802.11 g and 802.11 n mode.
<WIFI 5GHz Conducted Power>
Band 1
ANT 1:

TestMode	Channel	Average Power[dBm]	$\begin{aligned} & \text { Tune-Up } \\ & \text { Limit(dBm) } \end{aligned}$	Test Rate Data
802.11a	5180	14.23	14.50	6M
	5200	13.65	14.50	6M
	5240	12.86	14.50	6M
802.11 n20	5180	14.16	14.50	MCSO
	5200	13.65	14.50	MCSO
	5240	12.79	14.50	MCSO
802.11n40	5190	14.47	14.50	MCSO
	5230	13.31	14.50	MCSO
802.11ac20	5180	14.15	14.50	MCSO
	5200	13.61	14.50	MCSO
	5240	12.83	14.50	MCSO
802.11ac40	5190	14.31	14.50	MCSO
	5230	13.44	14.50	MCSO
802.11ac80	5210	15.00	15.00	MCSO
802.11ax20	5180	15.41	15.50	MCSO
	5200	14.86	15.50	MCSO
	5240	14.03	15.50	MCSO
802.11ax40	5190	14.46	14.50	MCSO
	5230	13.42	14.50	MCSO
802.11ax80	5210	15.04	15.50	MCSO

ANT 2:

TestMode	Channel	Average Power[dBm]	Tune-Up Limit(dBm)	Test Rate Data
802.11a	5180	$\mathbf{1 4 . 8 0}$	15.00	6 M
	5200	13.32	15.00	6 M
	5240	12.30	15.00	6 M
$\mathbf{8 0 2 . 1 1 n 2 0}$	5180	13.47	13.50	MCS0
	5200	13.04	13.50	MCS0
	5240	11.92	13.50	MCS0

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 33 of 94

802.11n40	5190	14.03	14.50	MCS0
	5230	12.97	14.50	MCS0
802.11ac20	5180	13.69	14.00	MCS0
	5200	12.98	14.00	MCS0
	5240	12.06	14.00	MCS0
802.11ac40	5190	13.96	14.00	MCS0
	5230	12.65	14.00	MCS0
802.11ac80	5210	14.40	14.50	MCS0
	5180	14.79	15.00	MCS0
	5200	14.13	15.00	MCS0
802.11ax40	5240	13.21	15.00	MCS0
	5190	13.90	14.00	MCS0

MIMO:

Test Mode	Frequency (MHz)	Conducted Average Output Power(dBm)			Maximum TuneUp(dBm)	Test Rate Data
		Antenna 1	Antenna 2	Total		
802.11n20	5180	14.16	13.47	16.84	17.00	MCSO
	5200	13.65	13.04	16.37	17.00	MCSO
	5240	12.79	11.92	15.39	17.00	MCSO
802.11n40	5190	14.47	14.03	17.27	17.50	MCSO
	5230	13.31	12.97	16.15	17.50	MCSO
802.11ac20	5180	14.15	13.69	16.94	17.00	MCSO
	5200	13.61	12.98	16.32	17.00	MCSO
	5240	12.83	12.06	15.47	17.00	MCSO
802.11ac40	5190	14.31	13.96	17.15	17.50	MCSO
	5230	13.44	12.65	16.07	17.50	MCSO
802.11ac80	5210	15.00	14.40	17.72	18.00	MCSO
802.11ax20	5180	15.41	14.79	18.12	18.50	MCSO
	5200	14.86	14.13	17.52	18.50	MCSO
	5240	14.03	13.21	16.65	18.50	MCSO
802.11ax40	5190	14.46	13.90	17.20	17.50	MCSO
	5230	13.42	12.74	16.10	17.50	MCSO
802.11ax80	5210	15.04	14.27	17.68	18.00	MCSO

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 34 of 94 Band 4
ANT 1:

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 35 of 94
ANT 2:

Anbotek

Product Safety

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 36 of 94 MIMO:

Note:

1. Per KDB 447498 D02 v02r01, the test distance less than 5 mm
2. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
3. Per KDB 248227 D01, In the 5 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 5 GHz OFDM conditions:
1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$.

Anbotek

11. Antenna Location

Top Side

Distance of The Antenna to the EUT surface and edge

Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side
WiFi ANT1	$<25 \mathrm{~mm}$	$<25 \mathrm{~mm}$	$<25 \mathrm{~mm}$	$>25 \mathrm{~mm}$	$>25 \mathrm{~mm}$	$<25 \mathrm{~mm}$
WiFi ANT2	$<25 \mathrm{~mm}$	$<25 \mathrm{~mm}$	$>25 \mathrm{~mm}$	$>25 \mathrm{~mm}$	$>25 \mathrm{~mm}$	$<25 \mathrm{~mm}$

Anbotek

Product Safety

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 38 of 94

12. SAR Test Results Summary

General Note:

1. Per KDB 447498 D01 v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power $(\mathrm{mW}) /$ EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported $\operatorname{SAR}(W / k g)=$ Measured $\operatorname{SAR}(W / k g)^{\star}$ Scaling Factor
2. Per KDB 447498 D01 v06, for each exposure position, if the highest output channel reported SAR $\leq 0.8 \mathrm{~W} / \mathrm{kg}$, other channels SAR testing are not necessary

<WIFI 2.4GHz>

ANT1:

Plot No.	Band	Mode	Test Position	$\begin{aligned} & \text { Gap } \\ & (\mathrm{mm}) \end{aligned}$	Ch.	$\begin{gathered} \text { Freq. } \\ (\mathrm{MHz} \\) \end{gathered}$	Averag e Power (dBm)	Tune- Up Limit (dBm)	Scalin g Factor	Powe r Drift (dB)	Measure d SAR $_{1 g}$ (W/kg)	$\begin{gathered} \text { Reporte } \\ d \\ \text { SAR }_{1 g} \\ (\mathrm{~W} / \mathrm{kg}) \\ \hline \end{gathered}$
	WIFI 2.4GHz	802.11b	Left	0	11	2462	13.44	13.50	1.014	N/A	N/A	N/A
\#1	WIFI 2.4GHz	802.11b	Right	0	11	2462	13.44	13.50	1.014	0.05	0.617	0.626
	WIFI 2.4 GHz	802.11b	Top	0	11	2462	13.44	13.50	1.014	0.02	0.357	0.362
	WIFI 2.4GHz	802.11b	Bottom	0	11	2462	13.44	13.50	1.014	N/A	N/A	N/A
	WIFI 2.4GHz	802.11b	Front	0	11	2462	13.44	13.50	1.014	0.08	0.528	0.535
	WIFI 2.4 GHz	802.11b	Back	0	11	2462	13.44	13.50	1.014	0.14	0.539	0.546

ANT2:

Plot No.	Band	Mode	Test Position	$\begin{aligned} & \text { Gap } \\ & (\mathrm{mm}) \end{aligned}$	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune- Up Limit (dBm)	$\left\lvert\, \begin{gathered} \text { Scalin } \\ \mathrm{g} \\ \text { Factor } \end{gathered}\right.$	Powe r Drift (dB)	$\begin{aligned} & \text { Measure } \\ & \quad d \\ & \text { SAR }_{1 g} \\ & \left(W_{1 g g}\right) \end{aligned}$	$\begin{gathered} \text { Reporte } \\ d \\ \text { SAR }_{1 g} \\ (W / k g) \\ \hline \end{gathered}$
	WIFI 2.4GHz	802.11b	Left	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
\#2	WIFI 2.4GHz	802.11b	Right	0	11	2462	14.43	14.50	1.016	0.07	0.695	0.706
	WIFI 2.4GHz	802.11b	Top	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
	WIFI 2.4GHz	802.11b	Bottom	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
	WIFI 2.4 GHz	802.11b	Front	0	11	2462	14.43	14.50	1.016	0.12	0.581	0.590
	WIFI 2.4GHz	802.11b	Back	0	11	2462	14.43	14.50	1.016	0.11	0.596	0.606

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 39 of 94
<WIFI 5GHz>

Band 1

ANT1:

Plot No.	Band	Mode	Test Position	$\begin{gathered} \text { Gap } \\ (\mathrm{mm}) \end{gathered}$	Ch.	Freq. (MHz)	Averag e Power (dBm)	$\begin{aligned} & \text { Tune- } \\ & \text { Up } \\ & \text { Limit } \\ & \text { (dBm) } \end{aligned}$	$\begin{aligned} & \text { Scalin } \\ & \mathbf{g} \\ & \text { Factor } \end{aligned}$	Powe r Drift (dB)	$\begin{gathered} \text { Measure } \\ d \\ S A R_{1 g} \\ (W / k g) \end{gathered}$	$\begin{gathered} \text { Reporte } \\ d \\ S_{1 g} \\ \left(\mathrm{WR}_{1 g}\right) \\ \hline \end{gathered}$
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{ax} 20 \\ \hline \end{gathered}$	Left	0	36	5180	15.41	15.50	1.021	N/A	N/A	N/A
\#3	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{ax} 20 \end{gathered}$	Right	0	36	5180	15.41	15.50	1.021	0.04	0.717	0.732
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{a} 20 \\ \hline \end{gathered}$	Top	0	36	5180	15.41	15.50	1.021	0.02	0.336	0.365
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{ax} 20 \\ \hline \end{gathered}$	Bottom	0	36	5180	15.41	15.50	1.021	N/A	N/A	N/A
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{a} 20 \\ \hline \end{gathered}$	Front	0	36	5180	15.41	15.50	1.021	0.05	0.601	0.614
	WIFI 5.2 GHz	$\begin{gathered} 802.11 \\ \mathrm{ax} 20 \end{gathered}$	Back	0	36	5180	15.41	15.50	1.021	0.11	0.615	0.628

ANT2:

Plot No.	Band	Mode	Test Position	$\begin{gathered} \text { Gap } \\ (\mathrm{mm}) \end{gathered}$	Ch.	Freq. (MHz)	Averag e Power (dBm)	$\begin{aligned} & \text { Tune- } \\ & \text { Up } \\ & \text { Limit } \\ & \text { (dBm) } \end{aligned}$	$\begin{aligned} & \text { Scalin } \\ & \mathbf{g} \\ & \text { Factor } \end{aligned}$	$\begin{gathered} \text { Powe } \\ \text { r } \\ \text { Drift } \\ \text { (dB) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Measure } \\ d \\ \text { SAR }_{1 g} \\ \left(W_{k g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Reporte } \\ d \\ \text { SAR }_{1 \mathrm{~g}} \\ \left(\mathrm{~W}_{\mathrm{lkg}}\right) \\ \hline \end{gathered}$
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ a \end{gathered}$	Left	0	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
\#4	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ a \\ \hline \end{gathered}$	Right	0	36	5180	14.80	15.00	1.047	0.06	0.652	0.683
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{a} \\ \hline \end{gathered}$	Top	0	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ \mathrm{a} \\ \hline \end{gathered}$	Bottom	0	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ a \\ \hline \end{gathered}$	Front	0	36	5180	14.80	15.00	1.047	0.07	0.508	0.532
	WIFI 5.2GHz	$\begin{gathered} 802.11 \\ a \end{gathered}$	Back	0	36	5180	14.80	15.00	1.047	0.08	0.524	0.549

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 40 of 94

Band 4

ANT1:

$\begin{aligned} & \text { Plot } \\ & \text { No. } \end{aligned}$	Band	Mode	Test Position	$\begin{gathered} \text { Gap } \\ (\mathrm{mm}) \end{gathered}$	Ch.	Freq. (MHz)	Averag e Power (dBm)	TuneUp Limit (dBm)		Powe r Drift (dB)	$\begin{gathered} \text { Measure } \\ d \\ S A R_{1 g} \\ (W / k g) \\ \hline \end{gathered}$	$\begin{gathered} \text { Reporte } \\ \text { d } \\ \text { SAR }_{1 g} \\ (W / k g) \\ \hline \end{gathered}$
	WIFI 5.8 GHz	$\begin{gathered} 802.11 \\ \text { ac80 } \end{gathered}$	Left	0	155	5775	15.00	15.50	1.122	N/A	N/A	N/A
\#5	WIFI 5.8 GHz	$\begin{gathered} 802.11 \\ \text { ac80 } \end{gathered}$	Right	0	155	5775	15.00	15.50	1.122	0.03	0.678	0.761
	WIFI 5.8 GHz	$\begin{gathered} 802.11 \\ \mathrm{ac} 80 \end{gathered}$	Top	0	155	5775	15.00	15.50	1.122	N/A	0.325	0.343
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \mathrm{ac} 80 \end{gathered}$	Bottom	0	155	5775	15.00	15.50	1.122	N/A	N/A	N/A
	WIFI 5.8 GHz	$\begin{gathered} 802.11 \\ \text { ac80 } \end{gathered}$	Front	0	155	5775	15.00	15.50	1.122	0.07	0.542	0.608
	WIFI 5.8 GHz	$\begin{gathered} 802.11 \\ \text { ac80 } \end{gathered}$	Back	0	155	5775	15.00	15.50	1.122	0.08	0.556	0.624

ANT2:

Plot No.	Band	Mode	Test Position	$\begin{gathered} \text { Gap } \\ (\mathrm{mm}) \end{gathered}$	Ch.	Freq. (MHz)	Averag e Power (dBm)	TuneUp Limit (dBm)	Scalin \mathbf{g} Factor	Powe r Drift (dB)	$\begin{gathered} \text { Measure } \\ d \\ \text { SAR }_{1 g} \\ (W / k g) \\ \hline \end{gathered}$	Reporte d SAR $_{1 \mathrm{~g}}$ (W/kg)
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \mathrm{ac} 40 \end{gathered}$	Left	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
\#6	WIFI 5.8GH	$\begin{gathered} 802.11 \\ \text { ac40 } \end{gathered}$	Right	0	159	5795	14.74	15.00	1.062	0.08	0.645	0.685
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \text { ac40 } \end{gathered}$	Top	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \text { ac40 } \end{gathered}$	Bottom	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \text { ac40 } \end{gathered}$	Front	0	159	5795	14.74	15.00	1.062	0.12	0.516	0.548
	WIFI 5.8GHz	$\begin{gathered} 802.11 \\ \text { ac40 } \end{gathered}$	Back	0	159	5795	14.74	15.00	1.062	0.14	0.536	0.569

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 41 of 94

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

No. Applicable Simultaneous Transmission

1. WIFI 2.4G ANT1 +WIFI 2.4G ANT2
2. WIFI 5.2G ANT1 +WIFI 5.2G ANT2
3. WIFI 5.8G ANT1 +WIFI 5.8G ANT2

Note: This product cannot support WIFI 2.4G+ WIFI 5G Simultaneous

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is $\leq 1.6 \mathrm{~W} / \mathrm{kg}$.

WIFI 2.4G ANT1 +WIFI 2.4G ANT2:

Test Position	WiFi ANT 1 SAR $_{1-\mathrm{g}}$ (W/Kg)	WiFi ANT 2 SAR $_{1-\mathrm{g}}$ (W/Kg)			Simut. Meas. Required
Left	N/A	N/A	N/A	1.6	N/A
Right	0.626	0.706	1.332	1.6	N/A
Top	0.362	N/A	0.362	1.6	N/A
Bottom	N/A	N/A	N/A	1.6	N/A
Front	0.535	0.590	1.125	1.6	N/A
Back	0.546	0.606	1.152	1.6	N/A

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 42 of 94 WIFI 5.2G ANT1 +WIFI 5.2G ANT2:

Test	WiFi Position SAR $_{1-\mathrm{g}}$ (W/Kg)	WiFi ANT 2 SAR $_{1-\mathrm{g}}$ $(\mathbf{W} / \mathrm{Kg})$	MAX. $\boldsymbol{\Sigma S A R}$ $\mathbf{1 - g}$ $(\mathbf{W} / \mathrm{Kg})$	SAR $_{1-\mathrm{g}}$ Limit (W/Kg)	Simut. Meas. Required
Left	N/A	N/A	N/A	1.6	N/A
Right	$\mathbf{0 . 7 3 2}$	$\mathbf{0 . 6 8 3}$	$\mathbf{1 . 4 1 5}$	1.6	N/A
Top	0.365	N/A	0.365	1.6	N/A
Bottom	N/A	N/A	N/A	1.6	N/A
Front	0.614	0.532	1.146	1.6	N/A
Back	0.628	0.549	1.177	1.6	N/A

WIFI 5.8G ANT1 +WIFI 5.8G ANT2:

Test Position	WiFi ANT 1 SAR $_{1-\mathrm{g}}$ (W/Kg)	WiFi ANT 2 SAR $_{1-\mathrm{g}}$ (W/Kg)	$\begin{gathered} \text { MAX. } \\ \Sigma S A R_{1-g} \\ (W / K g) \end{gathered}$	SAR $_{1-\mathrm{g}}$ Limit (W/Kg)	Simut. Meas. Required
Left	N/A	N/A	N/A	1.6	N/A
Right	0.761	0.685	1.446	1.6	N/A
Top	0.343	N/A	0.343	1.6	N/A
Bottom	N/A	N/A	N/A	1.6	N/A
Front	0.608	0.548	1.156	1.6	N/A
Back	0.624	0.569	1.193	1.6	N/A

Anbotek

Product Safety

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 43 of 94

14. Measurement Uncertainty

NO	Source	Uncert. ai (\%)	Prob. Dist.	$\begin{array}{r} \text { Div. } \\ \mathrm{k} \end{array}$	$\begin{array}{r} \text { ci } \\ (1 g) \end{array}$	$\begin{gathered} \text { ci } \\ (10 \mathrm{~g}) \end{gathered}$	Stand.U ncert. ui (1g)	Stand.U ncert. ui $(10 \mathrm{~g})$	Veff
1	Repeat	0.4	N	1	1	1	0.4	0.4	9
Instrument									
2	Probe calibration	7	N	2	1	1	3.5	3.5	∞
3	Axial isotropy	4.7	R	$\sqrt{ } 3^{-}$	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.4	R	$\sqrt{3}{ }^{-}$	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R	$\sqrt{3}{ }^{-}$	1	1	0.6	0.6	-
6	Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
7	Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
9	Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
10	Integration time	2.6	R	$\sqrt{3}{ }^{-}$	1	1	1.5	1.5	60^{100}
11	Ambient noise	3.0	R	$\sqrt{ } 3$	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R	$\sqrt{3}$	1	1	1.7		∞
13	Probe positioner mech. restrictions	0.4	R	$\sqrt{ } 3$	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞

Anbotek

Product Safety

Report No.: 18220WC30262301

15	Max.SAR evaluation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞

Anbotek

Product Safety

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 45 of 94

Appendix A. EUT Photos and Test Setup Photos

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 46 of 94

Appendix B. Plots of SAR System Check

2450MHz Body System Check

Date:12/18/2023
Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.88 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.14 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (81x81x1): Interpolated grid: $\mathrm{dx}=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=20.6 \mathrm{~W} / \mathrm{kg}$

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=89.751 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.12 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=12.69 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.96 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.8 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
5200MHz Body System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5200 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=5.2 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=48.23 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6 .10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: $\mathrm{dx}=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=20.9 \mathrm{~W} / \mathrm{kg}$

Configuration/Pin=100mWIZoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=4 m m, d y=4 m m$, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=59.857 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=34.58 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 6 3} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 1} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.8 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220WC30262301
5800MHz Body System Check
FCC ID: 2AWJK-WMT-C26
Page 48 of 94 Date:12/20/2023

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5800 MHz ;Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.74 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=48.54 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: $\mathrm{dx}=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=18.8 \mathrm{~W} / \mathrm{kg}$

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, dy=4mm, $\mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=56.773 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$
Peak SAR (extrapolated) $=31.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathrm{g})=\mathbf{7 . 9 5} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{2 . 5 4} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.8 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220WC30262301
FCC ID: 2AWJK-WMT-C26
Page 49 of 94

Appendix C. Plots of SAR Test Data

\#1

Date: 12/18/2023

2.4G WIFI_802.11b_CH11 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz ;Duty Cycle: 1:1
Medium parameters used (interpolated): $\mathrm{f}=2462 \mathrm{MHz} ; \sigma=1.88 \mathrm{~S} / \mathrm{m} ; \varepsilon_{r}=52.14 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT IArea Scan (31x81x1): Interpolated grid: $\mathrm{dx}=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.789 \mathrm{~W} / \mathrm{kg}$
BODY RIGHT IZoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, d y=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=8.369 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.753 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.617 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.297 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.639 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220WC30262301 \#2

FCC ID: 2AWJK-WMT-C26
Page 50 of 94
Date: 12/18/2023

2.4G WIFI_802.11b_CH11 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz ;Duty Cycle: 1:1
Medium parameters used (interpolated): $\mathrm{f}=2462 \mathrm{MHz} ; \sigma=1.88 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.14 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023;
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT IArea Scan (31x81x1): Interpolated grid: $\mathrm{dx}=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=1.852 \mathrm{~W} / \mathrm{kg}$

BODY RIGHT IZoom Scan ($7 \times 7 \times 7$)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, d y=5 \mathrm{~mm}, d z=5 \mathrm{~mm}$
Reference Value $=7.486 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.862 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathbf{g})=0.695 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.332 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.846 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220 WC 30262301 \#3

FCC ID: 2AWJK-WMT-C26
Page 51 of 94
Date: 12/19/2023

WIFI 5.2G_802.11ax20_CH36 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5180 MHz ;Duty Cycle: 1:1
Medium parameters used (interpolated): $\mathrm{f}=5180 \mathrm{MHz} ; \sigma=5.20 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=48.23 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023;
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6 .10 (7164)

BODY RIGHT IArea Scan (31x81x1): Measurement grid: $\mathrm{dx}=1.000 \mathrm{~mm}$, dy=1.000mm Maximum value of SAR (interpolated) $=1.871 \mathrm{~W} / \mathrm{kg}$

BODY RIGHT IZoom Scan ($8 x 8 x 8$)/Cube 0: Measurement grid: $d x=4 \mathrm{~mm}$, $d y=4 \mathrm{~mm}, \mathrm{dz}=4 \mathrm{~mm}$
Reference Value $=7.893 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.713 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathbf{g})=0.717 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.346 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.846 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220 WC 30262301 \#4

FCC ID: 2AWJK-WMT-C26
Page 52 of 94
Date: 12/19/2023

WIFI 5.2G_802.11a_CH36 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5180 MHz ;Duty Cycle: 1:1
Medium parameters used (interpolated): $\mathrm{f}=5180 \mathrm{MHz} ; \sigma=5.20 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=48.23 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT IArea Scan (31x81x1): Measurement grid: $d x=1.000 \mathrm{~mm}, d y=1.000 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=1.426 \mathrm{~W} / \mathrm{kg}$

BODY RIGHT IZoom Scan ($8 \times 8 \times 8$)/Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=4 \mathrm{~mm}$
Reference Value $=6.864 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.06 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.558 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathbf{g})=0.652 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.308 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.282 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220WC30262301 \#5

FCC ID: 2AWJK-WMT-C26
Page 53 of 94
Date: 12/20/2023

WIFI 5.8G_802.11ac80_CH155 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5775 MHz ; Duty Cycle: 1:1
Medium parameters used (interpolated): f=5775 MHz; $\sigma=5.74 \mathrm{~S} / \mathrm{m} ; \varepsilon \mathrm{\varepsilon r}=48.54 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT IArea Scan (31x81x1): Measurement grid: $\mathrm{dx}=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$ Maximum value of SAR (measured) $=1.486 \mathrm{~W} / \mathrm{kg}$

BODY RIGHT IZoom Scan ($8 \times 8 \times 8$)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=4 \mathrm{~mm}$
Reference Value $=6.746 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.652 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.678 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.319 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.597 \mathrm{~W} / \mathrm{kg}$

Anbotek

Report No.: 18220WC30262301 \#6

FCC ID: 2AWJK-WMT-C26
Page 54 of 94
Date: 12/20/2023

WIFI 5.8G_802.11ac40_CH159 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5795 MHz ; Duty Cycle: 1:1
Medium parameters used (interpolated): f=5795 MHz; $\sigma=5.74 \mathrm{~S} / \mathrm{m} ; \varepsilon \mathrm{\varepsilon r}=48.54 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT IArea Scan (31x81x1): Measurement grid: $\mathrm{dx}=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$ Maximum value of SAR (measured) $=1.297$ W/kg

BODY RIGHT /Zoom Scan ($8 \times 8 \times 8$)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=4 \mathrm{~mm}$
Reference Value $=5.493 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.167 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.645 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.302 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.682 \mathrm{~W} / \mathrm{kg}$

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 55 of 94

Appendix D. DASY System Calibration Certificate

Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China
Tel: $+86-10-62304633-2218 \quad$ Fax: $+86-10-62304633-2209$
E-mail: ctt1@chinatt.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORM $x, y, z \quad$ sensitivity in free space
ConvF sersitivity in TSL / NORMx,y,z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
$A, B, C, D \quad$ modulation dependent linearization parameters
Polarization $\Phi \quad \Phi$ rotation around probe axis
Polarization $\theta \quad \theta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\theta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $f>1800 \mathrm{MHz}$: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM $(f) x, y, z=$ NORM x, y, z^{*} frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; V R x, y, z: A, B, C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM x, y, z^{*} ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to $\pm 100 \mathrm{MHz}$.
- Spherical isotropy ($3 D$ deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Anbotek

Report No.: 18220 WC 30262301
FCC ID: 2AWJK-WMT-C26
Page 57 of 94

In Collaboration with

s	p	a

CALIBRATION LABORATORY
Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2023
Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Anbotek

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn
DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor Z	Unc (k=2)
Norm $\left(\boldsymbol{\mu} \mathbf{V} /(\mathbf{V} / \mathbf{m})^{\mathbf{2}}\right)^{\mathrm{A}}$	0.54	0.53	0.50	$\pm 10.0 \%$
$\mathrm{DCP}(\mathbf{m V})^{\mathbf{B}}$	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B $\mathrm{dB} / \mu \mathrm{V}$	C	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Unc }^{E} \\ & (\mathbf{k}=2) \end{aligned}$
0	CW	X	0.0	0.0	1.0	0.00	199.9	$\pm 2.4 \%$
		Y	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.
${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Page 5 and Page 6).
${ }^{B}$ Numerical linearization parameter: uncertainty not required.
${ }^{E}$ Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: $+86-10-62304633-2218 \quad$ Fax: $+86-10-62304633-2209$
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathbf{f}[\mathbf{M H z}]^{\text {c }}$	Relative Permittivity $^{\mathbf{F}}$	Conductivity $(\mathbf{S} / \mathbf{m})^{\mathbf{F}}$	ConvF X	ConvF Y	ConvF Z $^{\text {Alpha }}{ }^{\mathbf{G}}$	Depth $^{\mathbf{G}}$ $(\mathbf{m m})$	Unct. $(\mathbf{k}=\mathbf{2})$	
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	$\pm 12.1 \%$
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	$\pm 12.1 \%$
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	$\pm 12.1 \%$
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	$\pm 12.1 \%$
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	$\pm 12.1 \%$
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	$\pm 12.1 \%$
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	$\pm 12.1 \%$
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	$\pm 12.1 \%$
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	$\pm 12.1 \%$
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	$\pm 13.3 \%$
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	$\pm 13.3 \%$
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	$\pm 13.3 \%$

[^0]Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctl@chinatt.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}[\mathrm{MHz}]^{\text {C }}$	Relative Permittivity ${ }^{\text {F }}$	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{G} \\ (\mathrm{~mm}) \end{gathered}$	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	$\pm 12.1 \%$
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	$\pm 12.1 \%$
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	$\pm 12.1 \%$
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	$\pm 12.1 \%$
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	$\pm 12.1 \%$
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	$\pm 12.1 \%$
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	$\pm 12.1 \%$
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	$\pm 12.1 \%$
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	$\pm 12.1 \%$
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	$\pm 13.3 \%$
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	$\pm 13.3 \%$
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	$\pm 13.3 \%$

[^1]

Anbotek

FCC ID: 2AWJK-WMT-C26

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: $+86-10-62304633-2209$
E-mail: cttl@chinattl.com Http://www.chinattl.cn
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 7.4 \%$ ($\mathbf{k}=\mathbf{2}$)

Anbotek

FCC ID: 2AWJK-WMT-C26
Page 62 of 94

$T T L$ spea a
 CAUBRATION LABORATORY

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86 -10-62304633-2218 Fax: $+86-10-62304633-2209$
E-mail: cttlachinattl.com Http://www.chinattl.cn

Receiving Pattern (Φ), $\boldsymbol{\theta}=0^{\circ}$

$\mathrm{f}=600 \mathrm{MHz}$, TEM

\qquad

Page 8 of 11

[^0]: ${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128$, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{\mathrm{F}}$ At frequency below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for the frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^1]: ${ }^{\text {C }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128$, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequency below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{\text {G }}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for the frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

