

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 1 of 94

FCC SAR Test Report

Applicant

: Grastron Technology CO., LTD

Address

401 Building#B Dingxin Science and Technology Park,Honglangbei #2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China

Product Name

Wireless Presentation System

Date

Jan. 26, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

2.1 Client Information	Anbo		atelt	nipole.	Pan	
2.2 Description of Equipment Under Te 2.3 Device Category and SAR Limits	st (EUT)			arboter	Anb	7
2.3 Device Category and SAR Limits		poter I	ano-		×	9
2.4 Applied Standard		Model	Anbo			9
2.5 Environment of Test Site	100	Hat	nobo.			
2.6 Test Configuration	phone	Prove	6	oten	and setter	9
2.7 Description of Test Facility	by boter	Autor		augher H	pupor	10
3. Specific Absorption Rate (SAR)		N AND			pabol	
3.1 Introduction		,	nbore	Ann		11
3.2 SAR Definition			Luboler	Anbe		
4. SAR Measurement System 4.1 E-Field Probe	,boten I	inb.		pupe.		12
4.1 E-Field Probe	Advotek	Anbo'			abore	13
4.2 Data Acquisition Electronics (DAE)		hupore	Prov		mbotek	
4.2 Data Acquisition Electronics (DAE) 4.3 Robot		6	Jer A	nor		14
4.4 Measurement Server 4.5 Phantom	And		watek.		box	
4.5 Phantom	tek Anb			popote.	P.P.	15
4.6 Device Holder	water	oboto.	Annatok		18th	17
4.7 Data Storage and Evaluation		autooren.	Anbe		Watek-	
 5. Test Equipment List 6. Tissue Simulating Liquids 	Anbe		pupo	N 194		
6. Tissue Simulating Liquids	Anbo.	Per.	Å	vo ^{oter}	Pon	21
7. System Verification Procedures	anboho.	Ann		hoten	Anber	
8. EUT Testing Position		Ver No		- total		
8.1 Body Worn Position					ð	
9. Measurement Procedures						
9.1 Spatial Peak SAR Evaluation	hopone	An		6 ³⁴		
9.2 Power Reference Measurement	antroten	Puppe.		and the second	nboth	
9.3 Area Scan Procedures	all	phon		Mayou	parto des	
9.4 Zoom Scan Procedures	N	d ^k	o ^{ter}	Anu		
9.5 Volume Scan Procedures 9.6 Power Drift Monitoring	- Kon		Maghek	Aupo		
9.6 Power Drift Monitoring	pter pr	land land	- Aster	pabon		
10. Conducted Power		hupon			oten	
11. Antenna Location	en landt	Anboten	Aug		abotek	
12. SAR Test Results Summary	Any wet	-toote	in ant			
13. Simultaneous Transmission Analysis	Anbu		det	huppone	Ann	41
 10. Conducted Power 11. Antenna Location	* pribot	Alle	Lorat	Arboten	Aupo	
14. Measurement Uncertainty		ote	MAN W		×	43

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301	FCC I	D: 2AWJ	K-WMT-C26	Pag	e 3 of 94
Appendix A. EUT Photos and Test Setup P	hotos	(Don		dbolu.	45
Appendix B. Plots of SAR System Check	undel ^k	pobote	Hannel		46
Appendix C. Plots of SAR Test Data		potorer	Anton		
Appendix D. DASY System Calibration Cer	tificate		A Antonia		55

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 4 of 94 TESTREPORT

Applicant :	Grastron Technology CO., LTD
Manufacturer :	Grastron Technology CO., LTD
Product Name :	Wireless Presentation System
	WMT-C26, DG-C20, DG-C21, DG-C22, DG-C23, DG-C24, DG-C25, DG-C26,
Model No. :	DG-C27, DG-C28, DG-C29, WMT-C20, WMT-C21, WMT-C22, WMT-C23, WMT-C24, WMT-C25, WMT-C27, WMT-C28, WMT-C29
Trade Mark :	N/A Antonek Antonek Antonek Antonek Antonek Antonek
Rating(s) :	Input: 5V=0.7A

Test Standard(s) : IEC/IEEE 62209-1528:2020; FCC 47 CFR Part 2.1093; ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227; KDB 616217

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC/IEEE 62209-1528:2020, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 and Reference KDB 447498, KDB 248227, KDB 616217 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Date of Test Dec.18 , 2023 Dec.18-20 , 2023

Prepared By

Ella biano

(Ella Liang)

Idward pan

(Edward Pan)

Approved & Authorized Signer

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 5 of 94 Version

Ve	ersion No.		Date				Descript	tion		
k. bz.,	R00 Jan. 26, 2024		Original					Y P'		
otek	Anbotek	p	aboren pro-	botek.	Anboten	Anboi	otel	Anbotek	Aupor	stek
abotek	Anbotek	elt-	Anbotek	pabote	A Aupor	tek pro	unbotek.	Aupoter	An' An	botek
Anbote	Aupo	otek	anbolek	phb	our Pur	botek	Anbotek	6 Aupo	Lotek	anbot

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 6 of 94

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

Frequency Band	High	est Reported 1g-SAR(W/Kg)	SAR Test Limit
		Body-worn(0mm)	(W/Kg)
WIFI 2.4G ANT 1	Anbo	0.626	ek pootek Anbu ak
WIFI 2.4G ANT 2	k pupor	0.706	tek sabotek Anbor
WIFI 5.2G ANT 1	olek Anboic	0.732	po lok aborek Anbo
WIFI 5.2G ANT 2	notek Anboten	0.683	1.6
WIFI 5.8G ANT 1	Lotek unbol	0.761	Anbort Anu otek
WIFI 5.8G ANT 2	And stek and	0.685	Antonne Anto
Simultaneous	Prupa Pak	1.446	ak antotak Anbo
Test Result	Anboi	PASS	tek unbotek Anbo

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in KDB 447498 D01 v06, 2015 and ANSI/IEEE C95.1:2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301

2. General Information

2.1 Client Information

Applicant	: Grastron Technology CO., LTD
Address	401 Building#B Dingxin Science and Technology Park,Honglangbei #2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China
Manufacturer	: Grastron Technology CO., LTD
Address	401 Building#B Dingxin Science and Technology Park,Honglangbei #2 : Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China
Factory	: Grastron Technology CO., LTD
Address	401 Building#B Dingxin Science and Technology Park,Honglangbei #2 : Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China

2.2 Description of Equipment Under Test (EUT)

Product Name	:	Wireless Presentation System
Model No.	:	WMT-C26, DG-C20, DG-C21, DG-C22, DG-C23, DG-C24, DG-C25, DG-C26, DG-C27, DG-C28, DG-C29, WMT-C20, WMT-C21, WMT-C22, WMT-C23, WMT-C24, WMT-C25, WMT-C27, WMT-C28, WMT-C29 (Note: All samples are the same except the model number and appearance color, so we prepare "WMT-C26" for test only.)
Trade Mark	:	N/A et popole popolek probatek probatek probatek
Test Power Supply	:	DC 5V via PC
Test Sample No.	:	1-2-2(Engineering Sample)
5		WiFi 2.4G: 2412~2462MHz for 802.11b/g/n20/ax20 Operation 2422~2452MHz for 802.11n40/ax40 Frequency: WiFi 5.2G: 5180~5240MHz WiFi 5.8G: 5745~5825MHz
Product Description	:	WiFi 2.4G:11 Channels for 802.11b/g/n20/ax207 channels for 802.11n40/ax40WiFi 5.2G:4 Channels for 802.11b/g/n20/ax202 Channels for 802.11n40/ac40/ax40

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

400-003-0500 www.anbotek.com.cn

Hotline

Anborek Anboren	1 Channel for 802.11ac80/ax80 WiFi 5.8G:
Anboten Anor	5 Channels for 802.11b/g/n20/ax20
ek Anboten Ano	2 Channels for 802.11n40/ac40/ax40
otek hitboten h	1 Channel for 802.11ac80/ax80
Modulation Type:	WiFi 2.4G: CCK, DQPSK, DBPSK for DSSS; 64QAM, 16QAM, QPSK, BPSK for OFDM WiFi 5G: OFDM with BPSK, QPSK, 16QAM, 64QAM, 256QAM
Antenna Type:	ANT1: ceramic antenna ANT2: ceramic antenna
inbotek Anbotek	ANT1: 2.27 dBi for 2.4GHz(Provided by customer) 5.18 dBi for 5.1GHz(Provided by customer)
Antenna Gain(Peak):	4.09 dBi for 5.8GHz(Provided by customer) ANT2:
And make in	2.27 dBi for 2.4GHz(Provided by customer)
oren Anbor Ar	5.18 dBi for 5.1GHz(Provided by customer)
hotek Anbore	4.09 dBi for 5.8GHz(Provided by customer)

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

Page 9 of 94

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEC/IEEE 62209-1528:2020
- ANSI/IEEE C95.1:2005
- FCC 47 CFR Part 2.1093
- Reference FCC KDB 447498; KDB 248227; KDB 616217

2.5 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.6 Test Configuration

For WIFI and Bluetooth SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC30262301

2.7 Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 11 of 94

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ).The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 12 of 94

4. SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 13 of 94 components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	X
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	pottel
Directivity	± 0.3 dB in HSL (rotation around probe	15 ¹⁰¹
	axis)	
	± 0.5 dB in tissue material (rotation	
	normal to probe axis)	
Dynamic Range	10 μ W/g to 100 mW/g; Linearity: ± 0.2	
	dB (noise: typically < 1 μW/g)	otel
Dimensions	Overall length: 330 mm (Tip: 20 mm)	Photo of EX3DV4
	Tip diameter: 2.5 mm (Body: 12 mm)	snu tek sobotek Anbo
	Typical distance from probe tip to dipole	
	centers: 1 mm	

E-Field Probe Specification <EX3DV4 Probe>

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 14 of 94 The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

4.3Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- > High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AWJK-WMT-C26 Page

Page 15 of 94

4.4 Measurement Server

Report No.: 18220WC30262301

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;
	Center ear point: 6 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet
Measurement	Left Hand, Right Hand, Flat
Areas	Phantom

Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 16 of 94 <ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 17 of 94 4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301

FCC ID: 2AWJK-WMT-C26

Page 18 of 94

4.7 Data Storage and Evaluation

Data Storage

Anbotek Product Safety

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression po	pint dcp _i
Device parameters:	- Frequency	f abotek panbors
	- Crest factor	cfotek photee
Media parameters:	- Conductivity	O Antek unbole
	- Density	ρ ^{atel} ρ ^{enbo} ntek mb

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 19 of 94 compensate for peak power.

The formula for each channel can be given as:

$$\mathbf{V_i} = \mathbf{U_i} + \mathbf{U_i^2} \cdot \frac{\mathbf{cf}}{\mathbf{dcp}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i,(i = x, y, z) Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2 + E_y^2 + E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

Page 20 of 94

5. Test Equipment List

Manufacturer	Nome of Equipment	Turne/Mandal	Coriol Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2021	Oct. 01, 2024
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2023	Sept.05,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2023	May 05,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2023	Oct.25, 2024
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2023	Oct.25, 2024
Agilent	Spectrum Analyzer	N9020A	MY51170037	Oct.12, 2023	Oct.11, 2024
Agilent	Signal Generation	N5182A	MY47420647	Feb.23, 2023	Feb.22, 2024
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.26, 2023	Oct.25, 2024

Note:

1. The calibration certificate of DASY can be referred to appendix C of this report.

 The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.

3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.

- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

Page 21 of 94

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
				For Bo	dy			
2450	68.6	0	0 ^{enodo}	0°dra	31.4	0.0010	1.95	52.7
5200	78.6	0	10.7	0	10.7	0 0	5.27	49.0
5800	78.5	0	10.8	0 de la	10.7	10 Mar	6.00	48.2

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

Page 22 of 94

	Measured	Target T	issue		Measured Tissue			Liquid	
Tissue Type	Frequenc y (MHz)	٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Temp. (°C)	Test Date
2450MSL	2450	52.70	1.95	52.14	-1.07	1.88	-3.72	22.5	12/18/2023
5200MSL	5200	49.00	5.27	48.23	-1.60	5.20	-1.35	22.6	12/19/2023
5800MSL	5800	48.20	6.00	48.54	0.70	5.74	-4.53	22.7	12/20/2023

The following table shows the measuring results for simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

Page 23 of 94

7. System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 System Setup for System Evaluation

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Frequenc y (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviatio n (%)	Test Date
2450	Body	250	51.8	12.69	50.76	-2.01	12/18/2023
5200	Body	100	77.8	7.63	76.30	-1.93	12/19/2023
5800	Body	100	78.3	7.95	79.50	1.53	12/20/2023

Target and Measurement SAR after Normalized

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

FCC ID: 2AWJK-WMT-C26

Page 25 of 94

8. EUT Testing Position

Report No.: 18220WC30262301

8.1 Body Worn Position

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, bodyworn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

motherd tela

Body Worn Position

Shenzhen Anbotek Compliance Laboratory Limited

mother phantom

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FC

FCC ID: 2AWJK-WMT-C26

Page 26 of 94

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 27 of 94 sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		V. 1-01
	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution a x or y dimension of the test of measurement point on the te	on, is smaller than the above, must be \leq the corresponding device with at least one

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500

www.anbotek.com.cn

FCC ID: 2AWJK-WMT-C26

Page 28 of 94

9.4Zoom Scan Procedures

Report No.: 18220WC30262301

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	⇒ 3 GHz
Hoter Ann		tek vapo.	bu. "It "Pope.	ACIN
Maximum zoom scan s	patial reso	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^{*}$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^{*}$
6	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
grid		∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta$	z _{Zoom} (n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500

www.anbotek.com.cn

FCC ID: 2AWJK-WMT-C26

Page 29 of 94

9.5 Volume Scan Procedures

Report No.: 18220WC30262301

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

10. Conducted Power

<WIFI 2.4GHz Conducted Power>

ANT 1:

Mode	Channel	Frequen cy (MHz)	Average Power(dBm)	Tune-Up Limit(dBm)	Test Rate Data
	A1001	2412	13.08	13.50	1 Mbps
802.11 b	6 6 mbole	2437	13.12	13.50	1 Mbps
	. 11 . N	2462	13.44	13.50	1 Mbps
	1	2412	13.26	13.50	6 Mbps
802.11 g	6	2437	13.03	13.50	6 Mbps
	anb11	2462	13.15	13.50	6 Mbps
	Loter	2412	13.28	13.50	MCS0
802.11 n20	6 mote	2437	13.03	13.50	MCS0
	11	2462	13.21	13.50	MCS0
	3 An-	2422	13.51	14.00	MCS0
802.11 n40	bote 6 P	2437	13.57	14.00	MCS0
	9	2452	13.63	14.00	MCS0
	1 Jotek	2412	13.28	13.50	MCS0
802.11 ax20	6	2437	13.04	13.50	MCS0
	11	2462	13.23	13.50	MCS0
	ret 3 pribo	2422	14.36	14.50	MCS0
802.11 ax40	6	2437	13.86	14.50	MCS0
	9	2452	13.81	14.50	MCS0

ANT 2:

Mode	Channel	Frequen cy (MHz)	Average Power(dBm)	Tune-Up Limit(dBm)	Test Rate Data
	unte ¹	2412	14.03	14.50	1 Mbps
802.11 b	6	2437	14.25	14.50	1 Mbps
	P. 11	2462	14.43	14.50	1 Mbps
	Mibon	2412	14.13	15.00	6 Mbps
802.11 g	6 p. 100	2437	14.31	15.00	6 Mbps
	Het 11 ant	2462	14.76	15.00	6 Mbps
802.11 n20	1	2412	14.11	15.00	MCS0

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

No.: 18220W	/C30262301	FC	C ID: 2AWJ	K-WMT-C26	Page 3
	6	2437	14.23	15.00	MCS0
	11	2462	14.67	15.00	MCS0
	3	2422	14.56	15.00	MCS0
802.11 n40	* 6 pribo	2437	14.62	15.00	MCS0
	9	2452	14.95	15.00	MCS0
	1	2412	14.11	15.00	MCS0
802.11 ax20	6	2437	14.39	15.00	MCS0
	pm ¹ 11	2462	14.70	15.00	MCS0
	3	2422	14.54	15.50	MCS0
802.11 ax40	6 6 toold	2437	14.78	15.50	MCS0
	9	2452	15.08	15.50	MCS0

MIMO:

Test Mode Channel	Freque ncy		ted Average C Power(dBm)	Dutput	Maximum Tune-	Test Rate Data	
		(MHz)	Antenna 1	Antenna 2	Total	Up(dBm)	
	ph. 1	2412	13.28	14.11	16.73	17.50	MCS0
802.11 n20	6	2437	13.03	14.23	16.68	17.50	MCS0
	11 Antor	2462	13.21	14.67	17.01	17.50	MCS0
	otek 3 pr	2422	13.51	14.56	17.08	17.50	MCS0
802.11 n40	6	2437	13.57	14.62	17.14	17.50	MCS0
	9	2452	13.63	14.95	17.35	17.50	MCS0
	Anton 1	2412	13.28	14.11	16.73	17.50	MCS0
802.11 ax20	6	2437	13.04	14.39	16.78	17.50	MCS0
UNEU	* 11 mbor	2462	13.23	14.70	17.04	17.50	MCS0
	3 A	2422	14.36	14.54	17.46	17.50	MCS0
802.11 ax40	6	2437	13.86	14.78	17.35	17.50	MCS0
ax+0	9	2452	13.81	15.08	17.50	17.50	MCS0

Note:

- 1. Per KDB 447498 D01 v06, the test distance less than 5mm
- Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- 4. According to chapter 12 of this report, the max report SAR of ANT 1 802.11 b mode is 0.626W/Kg, and 0.626W/Kg x (27.29/22.08) = 0.774W/Kg, ANT 2 802.11 b mode is 0.706W/Kg, and 0.706W/Kg

Shenzhen Anbotek Compliance Laboratory Limited Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

-0500

Hotline

400-003-

ww.anbotek.com.cr

Report No.: 18220WC30262301FCC ID: 2AWJK-WMT-C26Page 32 of 94x (32.21/27.73) = 0.820W/Kg, which are smaller than 1.2W/Kg, so SAR evaluation of 802.11axmode is not required, the same method evaluate for 802.11g and 802.11n mode.

<WIFI 5GHz Conducted Power>

Band 1

ANT 1:

TestMode	Channel	Average Power[dBm]	Tune-Up Limit(dBm)	Test Rate Data
inbote. Any Jet	5180	14.23	14.50	6M
802.11a	5200	13.65	14.50	6M
hotek Anto	5240	12.86	14.50	6M
wotek pr	5180	14.16	14.50	MCS0
802.11n20	5200	13.65	14.50	MCS0
ten holos rek	5240	12.79	14.50	MCS0
hotek Anber	5190	14.47	14.50	MCS0
802.11n40	5230	13.31	14.50	MCS0
phi wotek pribot	5180	14.15	14.50	MCS0
802.11ac20	5200	13.61	14.50	MCS0
pinbo, with	5240	12.83	14.50	MCS0
000 44 Million - 40	5190	14.31	14.50	MCS0
802.11ac40	5230	13.44	14.50	MCS0
802.11ac80	5210	15.00	15.00	MCS0
And tek sobole	5180	15.41	15.50	MCS0
802.11ax20	5200	14.86	15.50	MCS0
Anboth Ar	5240	14.03	15.50	MCS0
902 44 av 40	5190	14.46	14.50	MCS0
802.11ax40	5230	13.42	14.50	MCS0
802.11ax80	5210	15.04	15.50	MCS0

ANT 2:

TestMode	Channel	Average Power[dBm]	Tune-Up Limit(dBm)	-	
indu at botek	5180	14.80	15.00	6M	
802.11a	5200	13.32	15.00	6M	
	5240	12.30	15.00	6M	
Anbotak Anbo	5180	13.47	13.50	MCS0	
802.11n20	5200	13.04	13.50	MCS0	
	5240	11.92	13.50	MCS0	

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Product Safety

Anbotek

eport No.: 18220	WC30262301 FC0	DID: 2AWJK	-WMT-C26	Page 33
902 11 m 10	5190	14.03	14.50	MCS0
802.11n40	5230	12.97	14.50	MCS0
prov stek popote	5180	13.69	14.00	MCS0
802.11ac20	5200	12.98	14.00	MCS0
	5240	12.06	14.00	MCS0
002 11 10	5190	13.96	14.00	MCS0
802.11ac40	5230	12.65	14.00	MCS0
802.11ac80	5210	14.40	14.50	MCS0
Anbor w with	5180	14.79	15.00	MCS0
802.11ax20	5200	14.13	15.00	MCS0
	5240	13.21	15.00	MCS0
802.11ax40	5190	13.90	14.00	MCS0
	5230	12.74	14.00	MCS0
802.11ax80	5210	14.27	14.50	MCS0

MIMO:

Test Mode	Frequency	Conducted Average Output Power(dBm)			Maximum Tune-	Test Rate
	(MHz)	Antenna 1	Antenna 2	Total	Up(dBm)	Data
bo. A. stek	5180	14.16	13.47	16.84	17.00	MCS0
802.11n20	5200	13.65	13.04	16.37	17.00	MCS0
hotek Anbore	5240	12.79	11.92	15.39	17.00	MCS0
000 44 - 40	5190	14.47	14.03	17.27	17.50	MCS0
802.11n40	5230	13.31	12.97	16.15	17.50	MCS0
ak Anboi k	5180	14.15	13.69	16.94	17.00	MCS0
802.11ac20	5200	13.61	12.98	16.32	17.00	MCS0
	5240	12.83	12.06	15.47	17.00	MCS0
000 44 40	5190	14.31	13.96	17.15	17.50	MCS0
802.11ac40	5230	13.44	12.65	16.07	17.50	MCS0
802.11ac80	5210	15.00	14.40	17.72	18.00	MCS0
k kupoten prob	5180	15.41	14.79	18.12	18.50	MCS0
802.11ax20	5200	14.86	14.13	17.52	18.50	MCS0
	5240	14.03	13.21	16.65	18.50	MCS0
000 44 40	5190	14.46	13.90	17.20	17.50	MCS0
802.11ax40	5230	13.42	12.74	16.10	17.50	MCS0
802.11ax80	5210	15.04	14.27	17.68	18.00	MCS0

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

400-003-0500 www.anbotek.com.cn

Hotline

Report No.: 18220WC30262301 Band 4

FCC ID: 2AWJK-WMT-C26

Page 34 of 94

ANT 1:

TestMode	Channel	Average Power[dBm]	Tune-Up Limit(dBm)	Test Rate Data	
Aupon k	5745	13.62	15.00	6M	
802.11a	5785	14.04	15.00	6M	
	5825	14.65	15.00	6M	
tek abotek	5745	13.48	15.00	MCS0	
802.11n20	5785	14.01	15.00	MCS0	
	5825	14.66	15.00	MCS0	
000 44 - 40	5755	14.38	15.00	MCS0	
802.11n40	5795	14.76	15.00	MCS0	
with botek	5745	13.57	15.00	MCS0	
802.11ac20	5785	14.01	15.00	MCS0	
	5825	14.74	15.00	MCS0	
000 44 - 40	5755	14.37	15.00	MCS0	
802.11ac40	5795	14.81	15.00	MCS0	
802.11ac80	5775	15.00	15.50	MCS0	
802.11ax20	5745	13.62	15.00	MCS0	
	5785	14.08	15.00	MCS0	
	5825	14.83	15.00	MCS0	
802.11ax40	5755	14.38	15.00	MCS0	
	5795	14.59	15.00	MCS0	
802.11ax80	5775	14.93	15.00	MCS0	

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FC ANT 2:

FCC ID: 2AWJK-WMT-C26

Page 35 of 94

TestMode	Channel	Average Power[dBm]	Tune-Up Limit(dBm)	Test Rate Data	
And tok alt	5745	13.75	14.50	6M	
802.11a	5785	14.05	14.50	6M	
	5825	14.13	14.50	6M	
ek anboten	5745	13.68	14.50	MCS0	
802.11n20	5785	14.02	14.50	MCS0	
	5825	14.08	14.50	MCS0	
000 44 - 40	5755	14.16	14.50	MCS0	
802.11n40	5795	14.45	14.50	MCS0	
puboten p	5745	13.66	14.50	MCS0	
802.11ac20	5785	13.95	14.50	MCS0	
	5825	14.33	14.50	MCS0	
000 11 10	5755	14.43	15.00	MCS0	
802.11ac40	5795	14.74	15.00	MCS0	
802.11ac80	5775	14.68	15.00	MCS0	
- nootelt pl	5745	13.79	14.50	MCS0	
802.11ax20	5785	14.23	14.50	MCS0	
Amprovek	5825	14.29	14.50	MCS0	
000 11 ov 10	5755	14.39	15.00	MCS0	
802.11ax40	5795	14.66	15.00	MCS0	
802.11ax80	5775	13.85	14.00	MCS0	

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 36 of 94 MIMO:

Test Mode	Frequency	Conducted Average Output Power(dBm)			Maximum Tune-	Test Rate	
	(MHz)	Antenna 1	Antenna 2	Total	Up(dBm)	Data	
pine stak and	5745	13.48	13.68	16.59	17.50	MCS0	
802.11n20	5785	14.01	14.02	17.03	17.50	MCS0	
	5825	14.66	14.08	17.39	17.50	MCS0	
000 44-40	5755	14.38	14.16	17.28	17.50	MCS0	
802.11n40	5795	14.76	14.45	17.62	17.50	MCS0	
Ano tek obote	5745	13.57	13.66	16.63	18.00	MCS0	
802.11ac20	5785	14.01	13.95	16.99	18.00	MCS0	
	5825	14.74	14.33	17.55	18.00	MCS0	
otek anboten A	5755	14.37	14.43	17.41	18.00	MCS0	
802.11ac40	5795	14.81	14.74	17.79	18.00	MCS0	
802.11ac80	5775	15.00	14.68	17.85	18.00	MCS0	
Anbour ek hotel	5745	13.62	13.79	16.72	18.50	MCS0	
802.11ax20	5785	14.08	14.23	17.17	18.50	MCS0	
	5825	14.83	14.29	17.58	18.50	MCS0	
802.11ax40	5755	14.38	14.39	17.40	18.00	MCS0	
	5795	14.59	14.66	17.64	18.00	MCS0	
802.11ax80	5775	14.93	13.85	17.43	17.50	MCS0	

Note:

1. Per KDB 447498 D02 v02r01, the test distance less than 5mm

2. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.

3. Per KDB 248227 D01, In the 5 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 5 GHz OFDM conditions:

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 37 of 94

11. Antenna Location

	Distance of The Antenna to the EUT surface and edge											
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side						
WiFi ANT1	<25mm	<25mm	<25mm	>25mm	>25mm	<25mm						
WiFi ANT2	<25mm	<25mm	>25mm	>25mm	>25mm	<25mm						

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26

94 Page 38 of

SAR Test Results Summary 12.

General Note:

- 1. Per KDB 447498 D01 v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor 2. Per KDB 447498 D01 v06, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

<WIFI 2.4GHz>

ANT1:

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	е	Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
ŀ	WIFI 2.4GHz	802.11b	Left	0 🔊	11	2462	13.44	13.50	1.014	N/A	N/A	N/A
#1	WIFI 2.4GHz	802.11b	Right	0	11	2462	13.44	13.50	1.014	0.05	0.617	0.626
Vo.	WIFI 2.4GHz	802.11b	Тор	0	11	2462	13.44	13.50	1.014	0.02	0.357	0.362
upor.	WIFI 2.4GHz	802.11b	Bottom	0	11	2462	13.44	13.50	1.014	N/A	N/A	N/A
Anbo	WIFI 2.4GHz	802.11b	Front	0	11	2462	13.44	13.50	1.014	0.08	0.528	0.535
6	WIFI 2.4GHz	802.11b	Back	0	11	2462	13.44	13.50	1.014	0.14	0.539	0.546

ANT2

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	е	Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
b,	WIFI 2.4GHz	802.11b	Left	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
#2	WIFI 2.4GHz	802.11b	Right	0	11	2462	14.43	14.50	1.016	0.07	0.695	0.706
101	WIFI 2.4GHz	802.11b	Тор	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
hatek.	WIFI 2.4GHz	802.11b	Bottom	0	11	2462	14.43	14.50	1.016	N/A	N/A	N/A
50	WIFI 2.4GHz	802.11b	Front	0	11	2462	14.43	14.50	1.016	0.12	0.581	0.590
bu.	WIFI 2.4GHz	802.11b	Back	0,10	11	2462	14.43	14.50	1.016	0.11	0.596	0.606

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@

Code:AB-RF-05-b Hotline 400-003-0500

FCC ID: 2AWJK-WMT-C26

Page 39 of 94

Report No.: 18220WC30262301 <WIFI 5GHz> Band 1

Band 1

ANT1:

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq.	Δ	Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
Anu	WIFI 5.2GHz	802.11 ax20	Left	0 vel	36	5180	15.41	15.50	1.021	N/A	N/A	N/A
#3	WIFI 5.2GHz	802.11 ax20	Right	0.00	36	5180	15.41	15.50	1.021	0.04	0.717	0.732
1×	WIFI 5.2GHz	802.11 ax20	Тор	0	36	5180	15.41	15.50	1.021	0.02	0.336	0.365
ootek	WIFI 5.2GHz	802.11 ax20	Bottom	0	36	5180	15.41	15.50	1.021	N/A	N/A	N/A
anbor	WIFI 5.2GHz	802.11 ax20	Front	0.4	36	5180	15.41	15.50	1.021	0.05	0.601	0.614
Bur	WIFI 5.2GHz	802.11 ax20	Back	0	36	5180	15.41	15.50	1.021	0.11	0.615	0.628

ANT2:

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)		Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
bu	WIFI 5.2GHz	802.11 a	Left	0.01	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
#4	WIFI 5.2GHz	802.11 a	Right	0	36	5180	14.80	15.00	1.047	0.06	0.652	0.683
rek v	WIFI 5.2GHz	802.11 a	Tophone	0	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
toote.	WIFI 5.2GHz	802.11 a	Bottom	0	36	5180	14.80	15.00	1.047	N/A	N/A	N/A
Pupp	WIFI 5.2GHz	802.11 a	Front	0	36	5180	14.80	15.00	1.047	0.07	0.508	0.532
b.	WIFI 5.2GHz	802.11 a	Back	Operio	36	5180	14.80	15.00	1.047	0.08	0.524	0.549

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500

FCC ID: 2AWJK-WMT-C26

Page 40 of 94

Band 4

ANT1:

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)		Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
Anu	WIFI 5.8GHz	802.11 ac80	Left	0	155	5775	15.00	15.50	1.122	N/A	N/A	N/A
#5	WIFI 5.8GHz	802.11 ac80	Right	0.00	155	5775	15.00	15.50	1.122	0.03	0.678	0.761
14	WIFI 5.8GHz	802.11 ac80	Тор	0	155	5775	15.00	15.50	1.122	N/A	0.325	0.343
otek	WIFI 5.8GHz	802.11 ac80	Bottom	0	155	5775	15.00	15.50	1.122	N/A	N/A	N/A
anbor	WIFI 5.8GHz	802.11 ac80	Front	0.4	155	5775	15.00	15.50	1.122	0.07	0.542	0.608
BUD	WIFI 5.8GHz	802.11 ac80	Back	0	155	5775	15.00	15.50	1.122	0.08	0.556	0.624

ANT2:

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune- Up Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reporte d SAR _{1g} (W/kg)
bor	WIFI 5.8GHz	802.11 ac40	Left	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
#6	WIFI 5.8GHz	802.11 ac40	Right	0	159	5795	14.74	15.00	1.062	0.08	0.645	0.685
Nelt V	WIFI 5.8GHz	802.11 ac40	Тор	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
ntoote	WIFI 5.8GHz	802.11 ac40	Bottom	0	159	5795	14.74	15.00	1.062	N/A	N/A	N/A
Pupp	WIFI 5.8GHz	802.11 ac40	Front	Oote	159	5795	14.74	15.00	1.062	0.12	0.516	0.548
b.	WIFI 5.8GHz	802.11 ac40	Back	0	159	5795	14.74	15.00	1.062	0.14	0.536	0.569

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 41 of 94

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

- No. Applicable Simultaneous Transmission
- 1. WIFI 2.4G ANT1 +WIFI 2.4G ANT2
- 2. WIFI 5.2G ANT1 +WIFI 5.2G ANT2
- 3. WIFI 5.8G ANT1 +WIFI 5.8G ANT2

Note: This product cannot support WIFI 2.4G+ WIFI 5G Simultaneous

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg.

Test Position	WiFi ANT 1 SAR _{1-g} (W/Kg)	WiFi ANT 2 SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left	N/A	N/A	N/A	o ^{tel} 1.6 m ¹⁰⁰	N/A
Right	0.626	0.706	1.332	1.6	N/A
Тор	0.362	N/A	0.362	1.6	N/A
Bottom	N/A	N/A	N/A	1.6	N/A
Front	0.535	0.590	1.125	1.6	N/A
Back	0.546	0.606	1.152	1.6	N/A

WIFI 2.4G ANT1 +WIFI 2.4G ANT2:

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline

400-003-0500

FCC ID: 2AWJK-WMT-C26

Page 42 of 94

Report No.: 18220WC30262301 WIFI 5.2G ANT1 +WIFI 5.2G ANT2:

Test Position	WiFi ANT 1 SAR _{1-g} (W/Kg)	WiFi ANT 2 SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left	N/A	N/A	N/A	1.6	N/A
Right	0.732	0.683	1.415	1.6	N/A
Тор	0.365	N/A	0.365	1.6	N/A
Bottom	N/A	N/A	N/A	1.6	N/A
Front	0.614	0.532	1.146	1.6	N/A
Back	0.628	0.549	1.177	1.6 Prov	N/A

WIFI 5.8G ANT1 +WIFI 5.8G ANT2:

Test Position	WiFi ANT 1 SAR _{1-g} (W/Kg)	WiFi ANT 2 SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left	N/A	N/A	N/A	1.6	N/A
Right	0.761	0.685	1.446	1.6	N/A
Тор	0.343	N/A	0.343	1.6	N/A
Bottom	N/A	N/A	N/A N/A	1.6	N/A
Front	0.608	0.548	1.156	1.6	N/A
Back	0.624	0.569	1.193	1.6	N/A
-100° P		der	000	101	-1001

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 43 of 94

14. Measurement Uncertainty

NO	Source Repeat	Uncert. ai (%) 0.4	Prob. Dist. N	Div. k	ci (1g) 1	ci (10g) 1	Stand.U ncert. ui (1g) 0. 4	Stand.U ncert. ui (10g) 0. 4	Veff 9
Anbr	and Anosek p	nbolek	Instru	iment	Anbotek	P	iboten	Anusbotek	Anbot
2	Probe calibration	Anboten 7	N	2	Pring	1	3.5	3.5	∞ P ⁽¹
3	Axial isotropy	4.7	R	√3	0.7	0.7	1.9	1.9 Ant	unbol ⁶⁰
4	Hemispherical isotropy	9.4	Rotek	√3	0.7	0.7	3.9	3.9	80
5	Boundary effect	1.0	R	√3	Anboi 1	ione 1	0.6	0.6	016 ¹⁶ 8
6 ^{eM}	Linearity	4.7	R	√3	tex 1	Anbotek 1.bot	2.7	2.7	ntoonek ∞ek
7	Detection limits	1.0	Rotek	√3	nbotek 1	1 An	0.6	0.6	∞ ∞
8	Readout electronics	0.3	Naboti	1	Anbor	May	0.3	0.3	80 80
9	Response time	0.8	R	√3	Ant	nbotek	0.5	0.5	Nootek ®
10	Integration time	2.6	Anborek R	√3	lok bosel1	Anbon 1 Ant	1.5	1.5	×190
11	Ambient noise	3.0	Ribore	√3	Anbotel	1	1.7	1.7 otek	∞ ^{Anbc}
12	Ambient reflections	3.0 ^{xnbott}	R R	√3	А ^{ль} 1 р	nbotek	1.7	helt 1.7	b ^{otek} ∞
13	Probe positioner mech. restrictions	0.4	R	√3	ooteM	Anbors 1Anb	0.2	0.2	×nbole ∞orek
14	Probe positioning with respect to phantom shell	2.9	R and	√3	Anbotek Anbo	tootat	1.7	Anbotek 1.7 ubot	ek Anbo

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Product Safety

An

botek

tek-	Ambois Am	h a	over 1	Upa	No.	wote	4 pob	pro pr	Har
15	Max.SAR evaluation	1.0	unbor R	√3	1 otek	Ant 1	0.6	0.6	∞
Anb	potek Anborek An	Anbotek	Anboten	р5 К	Anbotet		unbotek hotek	Anbotek	but
1	Antotek Anbotek	Anbo	Test samp	ole rel	ated	botek	Anbotek	Anto	ier p
16	Device positioning	3.8	ober N	Arloot	1	Anbotel	3.8	3.8	99
17	Device holder	5.1	N	120	note Itek	1 p	5.1	5.1	5.00
18	Drift of output power	5.0	Record	√3	Anbo 1	pot ^{c1}	2.9	2.9	ø
SK-	Anborn Australia	A pinb	Phantom	and s	et-up	Anbotek	Anbo	the por	Hotodo
19	Phantom uncertainty	4.0	R	√3	otok 1.ek	Anbo 1	2.3	2.3	Minorek ∞
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	ø
21	Liquid conductivity (meas)	2.5	N	potek anbhe	0.64	0.43	1.6	1.2	×
22	Liquid Permittivity (target)	5.0	Amboret R	√3	0.6	0.49	1.7	1.5	×
23	Liquid Permittivity (meas)	2.5	Nubot	otel.	0.6	0.49	1.5	1.2	nel ∞
tek.	Combined standard	ek Anbo sotek	RSS	and of the	$T_c = \sqrt{\sum_{i=1}^{n}}$	$C_i^2 U_i^2$	11.4%	11.3%	236
Pul	Expanded ertainty(P=95%)	Anboner	Anbote	J=ku	J ,k=:	2.4	22.8%	22.6%	Ant

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Code:AB-RF-05-b C Hotline

 Report No.: 18220WC30262301
 FCC ID: 2AWJK-WMT-C26
 Page 45 of 94

Appendix A. EUT Photos and Test Setup Photos

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 46 of 94

Appendix B. Plots of SAR System Check

2450MHz Body System Check

Date:12/18/2023

Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.88 S/m; ϵ_r = 52.14; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.6 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.751 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.69 W/kg; SAR(10 g) = 5.96W/kg

Maximum value of SAR (measured) = 20.8 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b

www.anbotek.com.cn

400-003-0500

FCC ID: 2AWJK-WMT-C26

Page 47 of 94 Date:12/19/2023

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.2 S/m; ϵ_r = 48.23; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Report No.: 18220WC30262301

5200MHz Body System Check

- Probe: EX3DV4 SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.9 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.857 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 34.58 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 20.8 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Report No.: 18220WC30262301FCC ID: 2AWJK-WMT-C26Page 48 of 945800MHz Body System CheckDate:12/20/2023DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160Communication System: UID 0, CW; Frequency: 5800 MHz;Duty Cycle: 1:1Medium parameters used: f = 5800 MHz; σ = 5.74 S/m; ε_r = 48.54; ρ = 1000 kg/m³Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.8 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.773 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 19.8 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 49 of 94

Appendix C. Plots of SAR Test Data

#1

Date: 12/18/2023

2.4G WIFI_802.11b_CH11 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.88 S/m; ϵ_r = 52.14; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.789 W/kg

BODY RIGHT /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.369 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.753 W/kg SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.297 W/kg Maximum value of SAR (measured) = 1.639 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400–003–0500 www.anbotek.com.cn

Report No.: 18220WC30262301 **#2**

FCC ID: 2AWJK-WMT-C26 Page 50 of 94 Date: 12/18/2023

2.4G WIFI_802.11b_CH11 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.88 S/m; ϵ_r = 52.14; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023;
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.852 W/kg

BODY RIGHT /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.486 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.862 W/kg SAR(1 g) = 0.695 W/kg; SAR(10 g) = 0.332 W/kg Maximum value of SAR (measured) = 1.846 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 #3

FCC ID: 2AWJK-WMT-C26 Page 51 of 94 Date: 12/19/2023

WIFI 5.2G_802.11ax20_CH36 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5180 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5180 MHz; σ = 5.20 S/m; ϵ_r = 48.23; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023;
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 1.871 W/kg

BODY RIGHT /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 7.893 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.713 W/kg SAR(1 g) = 0.717 W/kg; SAR(10 g) = 0.346 W/kg Maximum value of SAR (measured) = 1.846 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 #4 FCC ID: 2AWJK-WMT-C26 Page 52 of 94 Date: 12/19/2023

WIFI 5.2G_802.11a_CH36 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5180 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5180 MHz; σ = 5.20 S/m; ϵ_r = 48.23; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 1.426 W/kg

BODY RIGHT /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 6.864 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.558 W/kg SAR(1 g) = 0.652 W/kg; SAR(10 g) = 0.308 W/kg Maximum value of SAR (measured) = 1.282 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 53 of 94 #5 Date: 12/20/2023

WIFI 5.8G_802.11ac80_CH155 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5775 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5775 MHz; σ = 5.74 S/m; ϵ r = 48.54; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (measured) = 1.486W/kg

BODY RIGHT /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 6.746 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.652 W/kg SAR(1 g) = 0.678 W/kg; SAR(10 g) = 0.319 W/kg Maximum value of SAR (measured) = 1.597 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400–003–0500 www.anbotek.com.cn

Report No.: 18220WC30262301 FCC ID: 2AWJK-WMT-C26 Page 54 of 94 #6 Date: 12/20/2023

WIFI 5.8G_802.11ac40_CH159 BODY RIGHT

Communication System: UID 0, wifi (fcc) (0); Frequency: 5795 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5795 MHz; σ = 5.74 S/m; ϵ r = 48.54; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY RIGHT /Area Scan (31x81x1): Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (measured) = 1.297 W/kg

BODY RIGHT /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 5.493 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.167 W/kg SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 1.682 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400–003–0500 www.anbotek.com.cn

Appendix D. DASY System Calibration Certificate

		con with <u>e a g</u> N LABORATORY t, Beijing, 100191, China	NAS 国际互认 校准 CALIBRATII CNAS L057
Tel: +86-10-6230463 E-mail: ettl@chinattl	3-2218 Fax: +86	-10-62304633-2209 www.chinattl.cn	
Client Anbo	otek (Auden)	Certificate No: Z23-S	98671
CALIERATION CE	RTIFICATE		
Object	EX3DV4	- SN:7396	
Calibration Procedure(s)	FF-Z12-0	06-08	
		on Procedures for Dosimetric E-field Probes	
Calibration date:	May 00 1	2022	
Janbration date.	May 06, 2	2023	
	surements and th	aceability to national standards, which reali and uncertainties with confidence probability and	
measurements(SI). The mea pages and are part of the cer All calibrations have been humidity<70%.	surements and th rtificate. conducted in th	ne uncertainties with confidence probability an ne closed laboratory facility: environment t	re given on the following
measurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used	surements and th rtificate. conducted in th (M&TE critical for	e uncertainties with confidence probability and e closed laboratory facility: environment t calibration)	re given on the following emperature(22±3) [°] C and
neasurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used	surements and th rtificate. conducted in th (M&TE critical for	ne uncertainties with confidence probability an ne closed laboratory facility: environment t	re given on the following
neasurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	surements and th rtificate. conducted in th (M&TE critical for	e uncertainties with confidence probability and e closed laboratory facility: environment the calibration) Cal Date(Calibrated by, Certificate No.)	re given on the following emperature(22±3) [°] C and Scheduled Calibration
measurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	surements and th rtificate. conducted in th (M&TE critical for ID # (101919	te uncertainties with confidence probability au e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447)	re given on the following emperature(22±3) [®] and Scheduled Calibration Jun-21
measurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	surements and the rtificate. conducted in the (M&TE critical for ID # (101919 101547	te uncertainties with confidence probability au e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447)	re given on the following emperature(22±3) [®] and Scheduled Calibration Jun-21 Jun-21
measurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	Surements and the trificate. conducted in the (M&TE critical for 10 # () 101919 101547 101548	e uncertainties with confidence probability ar e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447)	re given on the following emperature(22±3) [®] and <u>Scheduled Calibration</u> Jun-21 Jun-21 Jun-21
neasurements(SI). The mea bages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	surements and the trificate. conducted in the (M&TE critical for the trificate) (M&TE critical for the trifical for the trification of trification	e uncertainties with confidence probability ar e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 13-Mar-23(CTTL,No.J23X01547)	re given on the following emperature(22±3) [®] and Scheduled Calibration Jun-21 Jun-21 Jun-21 Mar-22
measurements(SI). The measurements(SI). The measurements(SI). The measurements of the certain and the certain	surements and the trificate. conducted in the (M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB	e uncertainties with confidence probability ar e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 13-Mar-23(CTTL, No.J23X01547) 13-Mar-23(CTTL, No.J23X01548)	re given on the following emperature(22±3)°C and Scheduled Calibration Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21
measurements(SI). The measurements(SI). The measurements(SI). The measurements of the certain and the certain	surements and the trificate. conducted in the (M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433	e uncertainties with confidence probability ar e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 13-Mar-23 (CTTL, No.J23 X01547) 13-Mar-23 (CTTL, No.J23 X01548) 26-Sep-22 (SPEAG, No.EX3-7433_Sep22)	re given on the following emperature(22±3)°C and Scheduled Calibration Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21
measurements(SI). The mea pages and are part of the cer All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	surements and the rtificate. conducted in the (M&TE critical for ID # (101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7433 SN 549	e uncertainties with confidence probability ar e closed laboratory facility: environment t calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 20-Jun-22 (CTTL, No.J22 X07447) 13-Mar-23 (CTTL, No.J23 X01547) 13-Mar-23 (CTTL, No.J23 X01548) 26-Sep-22 (SPEAG, No.DAE4-549_Dec22) 13-Dec-22 (SPEAG, No.DAE4-549_Dec22)	re given on the following emperature(22±3)°C and Scheduled Calibration Jun-21 Jun-21 Jun-21 Mar-22 Mar-22 Sep-21 Dec -21

 Reviewed by:
 Lin Hao
 SAR Test Engineer

 Approved by:
 Qi Dianyuan
 SAR Project Leader

 Issued:
 May06 , 2023

 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z23-98671

Calibrated by:

Page 1 of 11

Function

SAR Test Engineer

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Name

Yu Zongying

Code:AB-RF-05-b Hotline 400-003-0500

Report No.: 18220WC30262301

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Glossary:

olossaly.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	$\theta=0$ is normal to probe axis

FCC ID: 2AWJK-WMT-C26

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" **Methods Applied and Interpretation of Parameters:**

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- *Connector Angle:* The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

Certificate No: Z21-98671

Page 2 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Hotline 400–003–0500 www.anbotek.com.cn

Page 56 of 94

FCC ID: 2AWJK-WMT-C26

Page 57 of 94

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2023

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z23-98671

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cr

FCC ID: 2AWJK-WMT-C26

Page 58 of 94

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication		A	в	С	D	VR	Unc ^E (k=2)
	System Name		dB	dBõV		dB	mV	
0 CW	CW	х	0.0	0.0	1.0	0.00	199.9	±2.4%
		Y	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z21-98671

Page 4 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com Code:AB-RF-05-b Hotline 400-003-0500 www.anbotek.com.cn

FCC ID: 2AWJK-WMT-C26

of 94 Page 59

Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	\pm 12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z21-98671

Page 5 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Code:AB-RF-05-b Hotline 400-003-0500

FCC ID: 2AWJK-WMT-C26

Page 60 of 94

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z21-98671

Page 6 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

FCC ID: 2AWJK-WMT-C26

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z21-98671

Page 7 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

