

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 1 of 47

FCC Test Report

Applicant : Grastron Technology CO., LTD

401 Building#B Dingxin Science and

Address Technology Park, Honglangbei #2 Road, Xin'an

street, Baoan district, Shenzhen, Guangdong

Province, 518101, China

Product Name : BYOM Wireless Conference System

Report Date : Jan. 19, 2024

Shenzhen Anbotek Compliance Laboratory Limited

* Approved **

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 2 of 47

Contents

1 00101	rol Information							You
i. Gene	ral Information		otek	Nodel	- Kupo _{se} .	- hote	jk	
101.	Client Information Client Information Description of Device (Auxiliary Equipment Us Operation channel list. Description of Test Mod Measurement Uncertain Test Summary Description of Test Fact Disclaimer	oter	7 ₀	" Notek	Anbore		k)?tog
1.2.	Description of Device (EUT)	- whote		ek sb	4ez	,	(
1.3. 1. <i>1</i>	Operation channel list	sea During 1	est	PUPO.		rek	'upaker	990 ₂₁
1.4.	Description of Test Mod	des Maria	bib	ek o	porek.	'/a,	notek.	pg
	Measurement Uncertain	inty	Anbu		uaiek	, abote	Vur	M
1.7.	Test Summary	- bi.	,,,	,60,6c	And	, botek	Aupor	10
Anb 1.8.	Description of Test Fac	ility		Ye/	Anbore	Vu.,	,	,at 1(
1.9.	Disclaimer	work A	'poje	191.	nboye!	Wapo.		1
P.1.10	o. Test Equipment List	, e/-	botel	Aupo;		iek anb	A/e;	,0Y 14
2. Cond	ucted Emission at AC p	ower line	Air.		AUD.	-ok	Yeroda	
otek 2.1.	EUT Operation		Anbe		oiek pi	pore P	····························/•/ ₇ /	14
2.2.	Test Setup		Anbot	V.		botek	- bupo	14
2.3.	Test Data		ek a		W.p.o.,	V. Olek	arodna	1
3. Duty	Description of Test Face Disclaimer	iek bupo	, DI,		Allooter.	And		.:: [!] 19
3.1.	EUT Operation	, kelt	boter	Vup.	hotek	Anbore	ν	19
3.2.	Test Setup	/po	~~~	Mpore	VL.	30,,,	Jek P	19
3.3.	Test Data	Aupore,	Ant		k Wpo.			91
4. Maxin	num conducted output p	ower	Vupo,	δ b.,		poter A		20
4.1.	FUT Operation	W. Otek	anbore	YU _D	-a/-	abotek	Vupo,	20
4.2.	Test Setup	Anb	,)\	,otek	^{Tup} o,	Pr.	, oboter	2
4.3.	Test Data	ek Hubo,	V.		tenter	Anbo ak		.e.t2
5. Powe	r spectral density EUT Operation Test Setup		ootek	Anbo.	w. "otek	Aupore.	Ann	22
5.1.	FUT Operation							22
5.2.	Test Setup	Aupole	V.	bote	Anb		uojek	2
- 5 X	Lest Data							٠).
6. Emiss	sion bandwidth and occi	upied bandw	idth مانداند	VUD.		.botek	Aupo.	24
6 1	FLIT Operation	Anbe	 U. 4c					21
6.2.	Test Setup	k Aupo,		_tek	opores	Vub.	vo,	20
7. Band	edge emissions (Radia	ted)	hotek	Anbore.	VU.	k abor	SK VU	27
Anbo	ELIT Operation	inbore.		abotek				Aupote
7.1.	Test Setup	potek	VUPO:		tek anb	2,42,	, ek	29
7.3.	Test Data	K.	opo _{te} .	Ann		Abo ^{tek}	Vupo,	30
8. Unde	sirable emission limits (below 1GHz)	Hek Ar	ipore P	in.	anboten	34
Anbore 0.4	ELIT Operation	Anbor	,	· otek	Anborer	Ann	¹ 00°	3/
0.1. 8.2	Test Setup	utek vup	016/E		hotek	Auport	<i>p.</i> //	3
8.3.	Test Data	,	otek	Vupole	Mu. vej	· John	An'	38
9 Unde	Test Data	above 1GHz	J wek	anbotek	Anbo.	ok k	otek	Anbote
7. J. 140.	FUT Operation	anbotek Jille	Anbo	~o*	ek Vup	Va Viv	arek	200
9.1.	EO L'Operation	177	7.6,	~02			790.	44

Report No.: 1022011C30202004	FCC ID. ZAVVJK-VV	IVID-P35	rage 3 01 4	1
9.2. Test Setup				44
9.3. Test Data	2000 Yaya	ken Vuo	k	. 45
APPENDIX I TEST SETUP PHOTOGRAPH	Vup.	potek Anbor		. 47
APPENDIX II EXTERNAL PHOTOGRAPH	Jek Vupo, b		Oter AUF	. 47
APPENDIX III INTERNAL PHOTOGRAPH	V 2010/K	Vupo. N.	ds. Yes	47

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 4 of 47

TEST REPORT

Applicant : Grastron Technology CO., LTD

Manufacturer : Grastron Technology CO., LTD

Product Name : BYOM Wireless Conference System

Test Model No. : WMB-P35

WU-20, WU-21, WU-22, WU-23, WU-24, WU-25, WU-26, WU-27, WU-28,

Reference Model No. : WU-29, WMB-P30, WMB-P31, WMB-P32, WMB-P33, WMB-P34, WMB-

P36, WMB-P37, WMB-P38, WMB-P39

Trade Mark : N/A

Rating(s) : Input: 12V--- 3A

47 CFR Part 15E ANSI C63.10-2020

Test Standard(s) KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Dec. 12, 2023
Date of Test:	Dec. 12, 2023 ~ Jan. 05, 2024
	Nian xiu Chen
Prepared By:	Autore Autore Au
	(Nianxiu Chen)
	Zolward pan
Approved & Authorized Signer:	Anbote And tek abotek Anbo
	(Edward Pan)

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 5 of 47

Revision History

	Report Version	Description	Issued Date
	Anborte R00 potek An	Original Issue.	Jan. 19, 2024
97	Anbotek Anbotek	Anbotek Anbotek Anbotek	K abotek Anbotek Anb
10	or Anbotek Anboten	Anbotek Anbotek Anbo.	tek anbotek Anbotek

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 6 of 47

1. General Information

1.1. Client Information

Applicant	:	Grastron Technology CO., LTD		
Address	:	401 Building#B Dingxin Science and Technology Park,Honglangbei #2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China		
Manufacturer	Manufacturer : Grastron Technology CO., LTD			
Address	401 Building#B Dingxin Science and Technology Park,Honglangbei ess : Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China			
Factory	:	Grastron Technology CO., LTD		
Address	:	401 Building#B Dingxin Science and Technology Park,Honglangbei #2 Road,Xin'an street,Baoan district, Shenzhen, Guangdong Province, 518101, China		

1.2. Description of Device (EUT)

Product Name	:	BYOM Wireless Conference System
Test Model No.	:	WMB-P35
Reference Model No.	:	WU-20, WU-21, WU-22, WU-23, WU-24,WU-25, WU-26, WU-27, WU-28, WU-29, WMB-P30, WMB-P31, WMB-P32, WMB-P33, WMB-P34, WMB-P36, WMB-P37, WMB-P38, WMB-P39 (Note: All samples are the same except the model number and appearance color, so we prepare "WMB-P35" for test only.)
Trade Mark	:	N/A otek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V/60Hz for Adapter
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	Manufacturer: Dong Guan City GangQi Electronic Co., Ltd Model: GQ36-120300-AX Input: 100-240V~ 50/60Hz 1.0A Max Output: 12.0V= 3.0A 36.0W
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4;

Report No.: Page 7 of 47 18220WC30262604 FCC ID: 2AWJK-WMB-P35

hote. And		tek noo, W. ok pose, Wun
,		U-NII Band 3: 5;
		802.11n(HT40)/ac(VHT40)/ax(HEW40):
		U-NII Band 1: 2;
		U-NII Band 3: 2;
		And tek spotek Ando k hotek Andore And
(e		802.11ac(VHT80)/ax(HEW80):
V		U-NII Band 1: 1; U-NII Band 3: 1
2.		802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);
		802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
Modulation Type	1:	802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
		802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
		Anbote And ok shotek Anbo A. Stek Anbote
Antenna Type		ANT1: Rod Antenna
Titletina Type	ļ.	ANT2: Rod Antenna
		WiFi 5.2G ANT1: 1.75 dBi
Antenna Gain(Peak)		WiFi 5.2G ANT2: 1.75 dBi
Antenna Gamer Care	•	WiFi 5.8G ANT1: 3.88 dBi
		WiFi 5.8G ANT2: 3.88 dBi
Directional antenna		WiFi 5.2G: 4.76 dBi
gain	T:	WiFi 5.8G: 6.89 dBi
Dalas and a N		

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

FCC ID: 2AWJK-WMB-P35 Report No.: 18220WC30262604 Page 8 of 47

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Anborek / Anbore	Antotek Anbotek	Anbor An nbotek	Anbotel And hote

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	20MHz Bandwidth:		40MHz Bandwidth:	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	otek 38 Mbotek	5190	abor 42 Ant	5210
40 otek	5200	hotek 46 Anbor	5230	by Yek	Aupoles / Aug
tek 44 nbotek	5220	And hotely Ant	otek / Allpo	k hotek	Anboro. An
48	5240	Pur Pick	Aupolek / Aupon	tek I spotek	Vupoje,

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	obotek 5755 Anbote	155	5775
153	5765 botel	159	5795 And	ofe /Ans	ALX OF CH
157	Sport 5785 Anhore	Agoo	anborek 6	upore 1 Am	tek Anbotek
A-161	5805 And	oten / Anbo	Amorek	Anbor An	botek / Anboter
165	5825	inpose. / Aug	tek Inbotek	Aupo, A	abotek / Anbo

Hotline

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 9 of 47

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek Anbotek Ar	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
otek Anborek Antika Anborek Anborek Anborek	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
otek Anbotek Anbotek TM4 Anbotek Anbotek Anbote	Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anbore And Anborek Anborek
Conducted Output Power	0.76dB Anbore And Anborek Anborek
Power Spectral Density	0.76dB Anborek Anborek Anborek
Occupied Bandwidth	925Hz Anborek Anborek
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB Anbotek Anbotek Anbotek Anbotek
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 10 of 47

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	Ant P tek
Duty Cycle	Mode1,2,3,4	P
Maximum conducted output power	Mode1,2,3,4	P P
Power spectral density	Mode1,2,3,4	b by
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	Inport Pk
Band edge emissions (Radiated)	Mode1,2,3,4	Anber Priek
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	PP of
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	Panb
Note: P: Pass N: N/A, not applicable	hotek Anbotek Anb	upotek An

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 11 of 47

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 12 of 47

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k spotel	Anbore	An
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2 5016K	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	rek /Anbotek	Anborotek

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Emis	sion pandwidin and d	occupied bandwidth		, oo,	br.	- ~oie,
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _A nk	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A nbo	2023-10-16	2024-10-15
_e 2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3'	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An4ote	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

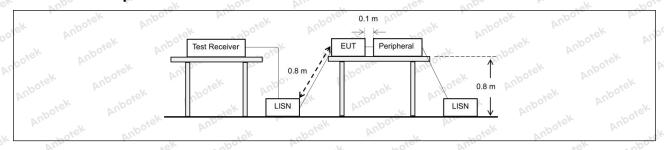
Hotline

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 13 of 47

Band	edge emissions (Ra	idiated)	N. Anbotak	Aupore	Ann	Aupotek A
Unde	sirable emission limi	ts (above 1GHz)	hotek	Aupore	V.L.	- abotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbote 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Anbotek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limit	ts (below 1GHz)	Anbore.	Vur Potek	Anbotek	Anbo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11
3/-	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Anitotel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A door	y Aupo	k Anbotek

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 14 of 47

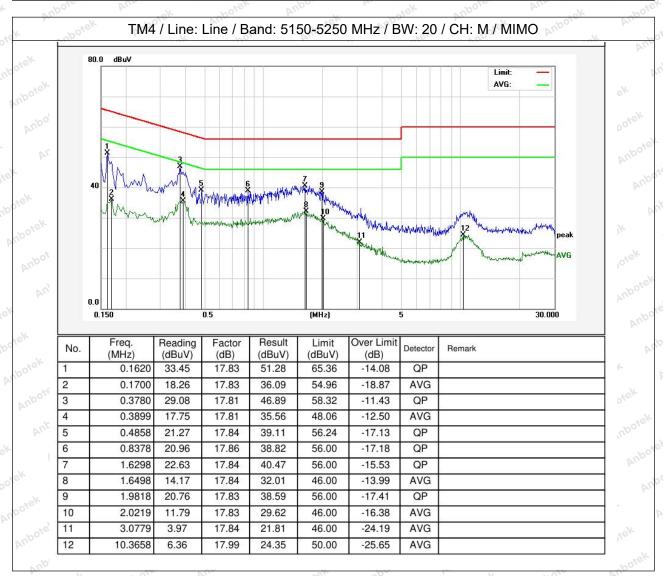

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	ick hotek An	pore. And
Aug sek spotek	Frequency of emission (MHz)	Conducted limit (dBµV) boten And
Anbor Ar	tel uporen And	Quasi-peak	Average
K- Lotek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And	56°	46 300 tell
otek Anbore A	5-30	60 hotek Anbot	50
atek Anbotek	*Decreases with the logarithm of the	he frequency.	Aupo Sk
Test Method:	ANSI C63.10-2020 section 6.2	Augo Kek	otek Anbore

2.1. EUT Operation

Operating Envi	ronment: And tek Andorek Andorek Andorek Andorek Andorek
otek Anbotek Nbotek Anbot Anbotek An	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbote	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

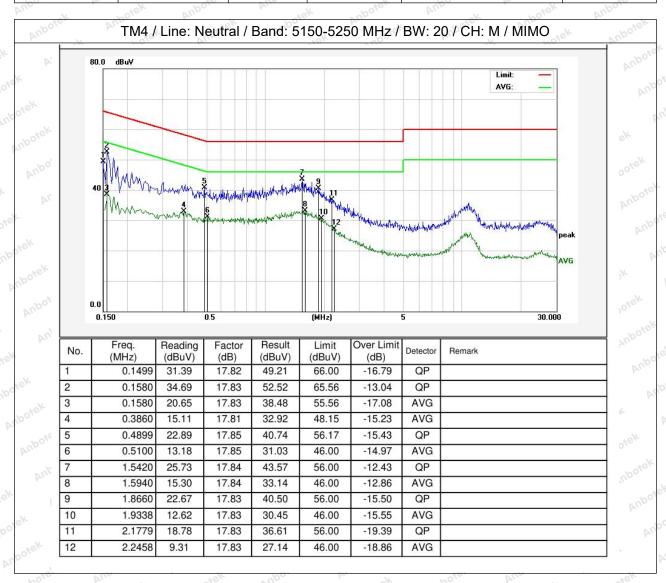
2.2. Test Setup



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 15 of 47

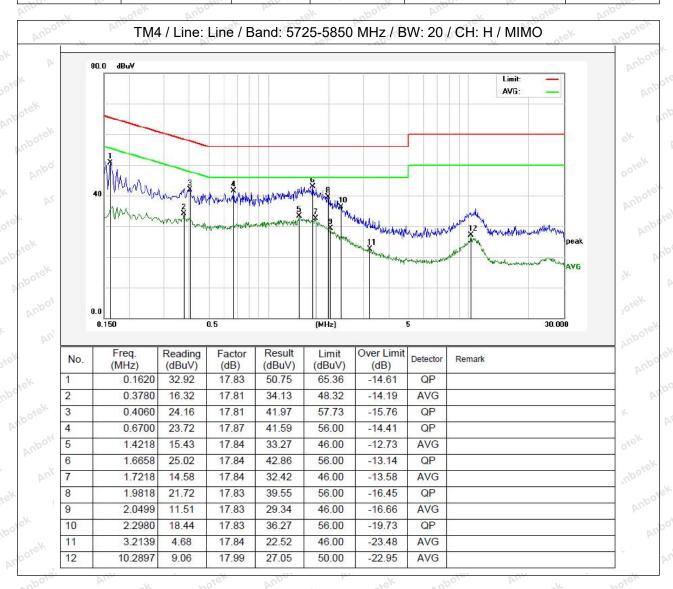
2.3. Test Data

T-200' P''	40.000	0107	i alidi u	E4 0/	Val	Atus a sulla Dua a suura u	VADA LIDE OF CHET
Temperature:	19.2°C	_ \u00ab Ht	ımidity:	51 %	-1070	Atmospheric Pressure:	TOTKPA
· -V-	V.O.	Pro-	-	740.	V U	70) ·



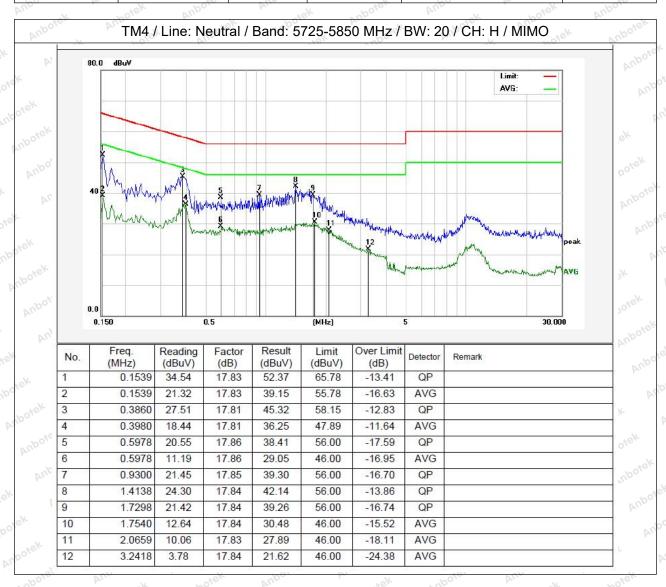
Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 16 of 47

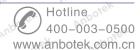
Temperature: 19.2 °C Humidity: 51 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 17 of 47

Temperature: 19.2 °C Humidity: 51 % Atmospheric Pressure: 101 kPa



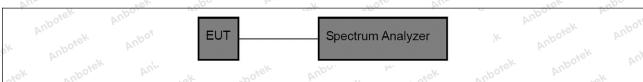


Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 18 of 47

Temperature: 19.2 °C Humidity: 51 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 19 of 47


3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW.
otek Anbotek Anb	iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	ronment: Andrek Andrek Andrek Andrek Andrek Andrek
tek Anbotek hbotek Anbote anbotek Anbote	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ootek Anbotel	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	25.4 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

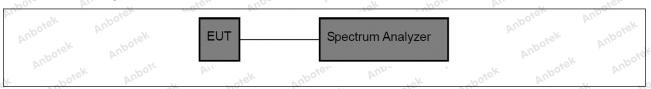
Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 20 of 47

4. Maximum conducted output power

Procedure:	Refer to ANSI C63.10-2020 section 12.4
Test Method:	ANSI C63.10-2013, section 12.4
nbotek Anbotek Antotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that
k Anbotek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)

4.1. EUT Operation

Operating Env	ironment:
sek Aupotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is
hotek Anbote	the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n
Anbotek Anb	modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Aupotek Aupote Potek Vupote	4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 21 of 47

4.2. Test Setup

4.3. Test Data

10	Tanàn araturas	25.4 °C	Llumpidite	4C 0/0010	Atmoonbaria Drassura	101 kDa
	Temperature:	25.4 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

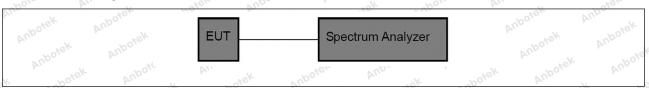
Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 22 of 47

5. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek Anborek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters
Anbotek Anbotek	transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

5.1. EUT Operation

Operating Envi	ronment:
potek Anbotek	1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 23 of 47

5.2. Test Setup

5.3. Test Data

10	Tanàn araturas	25.4 °C	Llumpidite	4C 0/0010	Atmoonbaria Drassura	101 kDa
	Temperature:	25.4 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 24 of 47

6. Emission bandwidth and occupied bandwidth

- spotek Anbote	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	Anbo Anbore Anbore Anbore Anbore
Aupore Am	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Anbotek Anb	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands,
V. Votek	the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Pupo, k. Polsky	- 400, by, A 2046, My
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the
	peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and
	repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	as needed until the NEW/LEW ratio is approximately 176.
anboten Anbo	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and
	5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise
- Intek Anbor	specified by the
Procedure:	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
	from exceeding the
	maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
Anbe	in 4.1.5.2.
aboten And	d) Step a) through step c) might require iteration to adjust within the
	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
un of wotek	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 25 of 47

recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached:

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

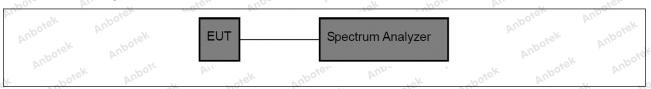
6.1. EUT Operation

Operating Environment:

- 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


www.anbotek.com.cn

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 26 of 47

6.2. Test Setup

6.3. Test Data

10	Tanàn araturas	25.4 °C	Llumpidite	4C 0/0010	Atmoonbaria Drassura	101 kDa
	Temperature:	25.4 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 27 of 47

7. Band edge emissions (Radiated)

hotek Anba	47 CFR Part 15.407(b			
st Requirement:	47 CFR Part 15.407(b	W.) " O		
Aupole, Aug	47 CFR Part 15.407(b)(10)	Anbore. A	, ok
potek Anbor	For transmitters opera	ting in the 5.15-5.25	GHz band: All en	nissions outsid
And	of the 5.15-5.35 GHz k	oand shall not exceed	l an e.i.r.p. of −2	7 dBm/MHz.
Anbore An				
ok hotek	For transmitters opera			
Ve. Vun	All emissions shall be			
botek Anbore	above or below the ba			
is abotek	above or below the ba	.0.1"		
Anbore And	edge increasing linear below the band edge,			
hotek Anbo.	increasing linearly to a			
Aug Sek	MHz	MHz	MHz	
Anbore Air		177.	- AV	GHZ
ok hotek	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
An	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
otek Anbore	2.1735-2.1905	16.80425-	960-1240	7.25-7.75
ok botek	2.1733-2.1903	16.80475	900-1240	1.25-1.15 Anbo
Aupore Aur	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
botek Anbors	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
Anu ok be	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Anbore And	Lotek Anbore.	Yun rek spotel	1646.5	K. Siek
ik upoter A	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
st Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
St Lillit.	6.31175-6.31225	123-138	2200-2300	14.47-14.5
Aupore Arra	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
Anbotek Anbot	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
Anbote. And	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
h hotek ar	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
And	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
otek unbote.	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
, h. Joseph	12.57675-12.57725	322-335.4	3600-4400	(2) Anbor
aboten And	13.36-13.41	bi.	"poier Vup.	
itek anboter				
Aupo, A.	¹ Until February 1, 1999	9, this restricted band	l shall be 0.490-0	0.510 MHz.
anboter Anbo		'upo, Air		
bi.	² Above 38.6			
Yupo, W.				
ek abojek	The field strength of er			
br.	not exceed the limits s			
polek Aupo.	1000 MHz, compliance			
*ek ~potek	using measurement in			
MOJ. WILL	detector. Above 1000 I			
And	15.209shall be demon	. V. 14.01	- PAT	e 41 1/20

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 28 of 47

frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizonl and vertical polarizations of the antenna are set to make the measurement d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU	otek Anbotek		where in this subpart, the emis- not exceed the field strength le	
0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30 30 30 30 88-216 150 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 3 Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241 In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7	Anbotek Anbote	otek Anbotek Anbo		distance
1.705-30.0 30 30 30 30 30 30 30 30-88 100 ** 3 30 88-216 150 ** 3 216-960 200 ** 3 216-960 200 ** 3 3 Above 960 500 30 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §\$ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz; a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be re-test			2400/F(kHz)	300
30-88 88-216 150 ** 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be re-tested one by one using peak or average method as specified and then reported in a data sheet.				.167
88-216				AU V
216-960 200 ** 3 3 216-960 Above 960 500 3 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w. rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be re-tested one by one using peak or average method as specified	ote, Aug			
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. **Set Method:** ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz; a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table we rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be re-tested one by one using peak or average method as specified and then reported in a data sheet.				ICA -
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz; a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be re-tested one by one using peak or average method as specified and then reported in a data sheet.		124		
intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table we rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.	aboven Anbe	Above 960	500 above 1	AV 3
ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz. a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.		sections of this part, e.g In the emission table about the emission limits show employing a CISPR quay 90 kHz, 110–490 kHz ar these three bands are bounds.	., §§ 15.231 and 15.241. ove, the tighter limit applies at t wn in the above table are based si-peak detector except for the nd above 1000 MHz. Radiated 6	the band edges. If on measurements frequency bands 9– emission limits in
a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table w rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizont and vertical polarizations of the antenna are set to make the measurement d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.	est Method:	The state of the s	tion 12.7.4, 12.7.6, 12.7.7	tek anbotek
and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.		a. For above 1GHz, the meters above the groun rotated 360 degrees to 0 b. The EUT was set 3 m which was mounted on 1 c. The antenna height is ground to determine the and vertical polarization d. For each suspected e and then the antenna was	d at a 3 meter fully-anechoic chetermine the position of the higher saway from the interference the top of a variable-height antervaried from one meter to four maximum value of the field stress of the antenna are set to make mission, the EUT was arranged as tuned to heights from 1 meters.	namber. The table wanted the state of the st
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EU would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.	rocedure:	and the rotatable table v maximum reading.	vas turned from 0 degrees to 36	60 degrees to find th
limit specified, then testing could be stopped and the peak values of the EL would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.				Ann
would be re-tested one by one using peak or average method as specified and then reported in a data sheet.			the FLIT in neak mode was 10	. I
g. Test the EUT in the lowest channel, the middle channel, the Highest			ng could be stopped and the pe	eak values of the EU
ATT THE TOTAL CONTRACT OF THE PARTY OF THE P		would be reported. Othe would be re-tested one I and then reported in a d	ng could be stopped and the perwise the emissions that did no by one using peak or average nate sheet.	eak values of the EU of have 10dB margin nethod as specified

Shenzhen Anbotek Compliance Laboratory Limited

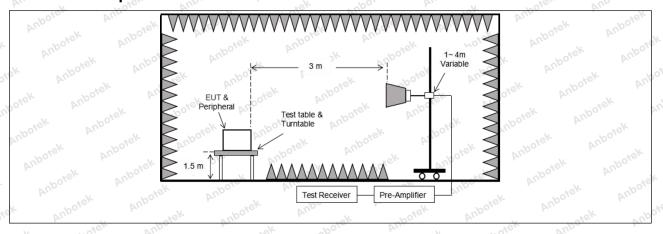
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst

case.

Report No.: 18220WC30262604 Page 29 of 47 FCC ID: 2AWJK-WMB-P35

- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation


Operating Environment:

- 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

7.2. Test Setup

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 30 of 47

7.3. Test Data

Temperature:	25.4 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa	
Tomporataro.	p=20.1 O	Tarriarty.	10 70 %	7 tarrioopriorio i roccaro.	101 Ki G	

WiFi 5.2G:

	TM1 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.89	15.99	52.88	68.20	-15.32	nbotek H Ar	Peak				
5150.00	38.95	15.99	54.94	68.20	-13.26	Aupo &	Peak				
5150.00	26.85	15.99	42.84	54.00	-11.16	"HP, tek	AVG				
5150.00	28.88	15.99	44.87	54.00	-9.13	V _{nbotek}	AVG				
	100		TM1	I / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	37.36	16.43	53.79	68.20	-14.41	nbot H	Peak				
5250.00	40.25	16.43	56.68	68.20	-11.52	Viek	Peak				
5250.00	28.65	16.43	45.08	54.00	-8.92	Hotek	AVG				
5250.00	29.58	16.43	46.01	54.00	-7.99	V	AVG				

Remark:

- 1. Result=Reading + Factor
- 2. During the test, pre-scan ANT1 and ANT2 modes, and only the worst case (ANT1) is recorded in the report.

V 0 2		~0.	N.	750	V U P.		70.				
	TM2 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	35.87	15.99	51.86	68.20	-16.34 · · · · · · · · · · · · · · · · · · ·	H	Peak No				
5150.00	37.24	15.99	53.23 And	68.20	14.97	ooter Aur	Peak				
5150.00	26.59	15.99	42.58	54.00	-11.42	Anbotel H	AVG				
5150.00	27.59	15.99	43.58	54.00	-10.42	AUP Sight	AVG				
			TM2	2 / H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5250.00	37.68	16.43	54.11 Prob	68.20	14.09	H Priv	Peak				
5250.00	38.73	16.43	55.16	68.20	-13.04	nbotek P	Peak				
5250.00	27.70	16.43	44.13	54.00	-9.87	_b oH ^N	AVG				
5250.00	29.13	16.43	45.56	54.00	-8.44	Notek	AVG				
710	VU-	-/0-	-100	A	0/10	000	- OK				

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 31 of 47

O.L. VILLE		246k V41k	,	100	POLO VILLE		CASIL VI	
			TM	3 / L				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.37	15.99	52.36	68.20	-15.84	AH LON	Peak	
5150.00	38.23	15.99	54.22	68.20	-13.98	Nupp.	Peak	
5150.00	26.94	15.99	42.93 A	54.00	11.07 NO	otek H Anbo	AVG	
5150.00	28.70	15.99	44.69	54.00	-9.31	nbotek V Ar	AVG	
TM3 / H								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.01	16.43	54.44	68.20	-13.76	Hup	Peak	
5250.00	36.90	16.43	53.33 NOO'	68.20	-14.87	isk A Vupo,	Peak	
5250.00	28.19	16.43	44.62	54.00	-9.38	Lotek H An	AVG	
5250.00	29.37	16.43	45.80	54.00	-8.20	Y	AVG	

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

		" upo.					3k "po.
			TM4	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.83	15.99	52.82	68.20	-15.38	Anbo. H	Peak
5150.00	38.56	15.99	54.55	68.20	-13.65	Audo,	Peak
5150.00	26.50	15.99	42.49	54.00	-11.51	1H)	AVG
5150.00	28.66	15.99	44.65	54.00	-9.35 ₁₀₀ 1	Sk Avpour	AVG
			TM4	4 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.82	16.43	54.25	68.20	-13.95	AnbH ak	Peak
5250.00	38.08	16.43	54.51	68.20	-13.69	AV O'	Peak
5250.00	27.72	16.43	44.15	54.00	-9.85	K Hupoter	AVG
5250.00	28.25	16.43	44.68	54.00	-9.32	.ek V .000	AVG

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

Report No.: 18220WC30262604 Page 32 of 47

PU VI	V	Olek V	Upo Pr	You	*p070	74
		TM ²	1 / L			
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.27	16.37	54.64	68.20	-13.56	k Hupote	Peak
39.69	16.37	56.06	68.20	-12.14	otek V Anb	Peak
29.10	16.70 And	45.80	54.00	-8.20	H	AVG
30.23	16.70	46.93	54.00	-7.07	N. O. V.	AVG
	,	TM1	I / H		,	
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
39.23	17.21	56.44	68.20	-11.76	tek H Anbo	Peak
39.62	otek 17.21 pabe	56.83	68.20	-11.37 ·····	vel√ V	Peak
29.20		46.41	54.00	7.59	No. H	AVG
29.20	17.21	46.41	54.00	-7.59	Anbord	AVG
	(dBuV) 38.27 39.69 29.10 30.23 Reading (dBuV) 39.23 39.62 29.20	(dBuV) (dB/m) 38.27 16.37 39.69 16.37 29.10 16.70 30.23 16.70 Reading (dBuV) (dB/m) 39.23 17.21 39.62 17.21 29.20 17.21	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.27 16.37 54.64 39.69 16.37 56.06 29.10 16.70 45.80 30.23 16.70 46.93 TM1 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 39.23 17.21 56.44 39.62 17.21 56.83 29.20 17.21 46.41	(dBuV) (dB/m) (dBuV/m) (dBuV/m) 38.27 16.37 54.64 68.20 39.69 16.37 56.06 68.20 29.10 16.70 45.80 54.00 30.23 16.70 46.93 54.00 TM1 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 39.23 17.21 56.44 68.20 39.62 17.21 56.83 68.20 29.20 17.21 46.41 54.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 38.27 16.37 54.64 68.20 -13.56 39.69 16.37 56.06 68.20 -12.14 29.10 16.70 45.80 54.00 -8.20 30.23 16.70 46.93 54.00 -7.07 TM1 / H Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 39.23 17.21 56.44 68.20 -11.76 39.62 17.21 56.83 68.20 -11.37 29.20 17.21 46.41 54.00 -7.59	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 38.27 16.37 54.64 68.20 -13.56 H 39.69 16.37 56.06 68.20 -12.14 V 29.10 16.70 45.80 54.00 -8.20 H 30.23 16.70 46.93 54.00 -7.07 V TM1 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Over limit (dB) Antenna Pol. 39.23 17.21 56.44 68.20 -11.76 H 39.62 17.21 56.83 68.20 -11.37 V 29.20 17.21 46.41 54.00 -7.59 H

Remark: 1. Result=Reading + Factor 2. During the test, pre-scan ANT1 and ANT2 modes, and only the worst case (ANT1) is recorded in the report.

~K 201	$\nabla_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_$		18 19 19 19 19 19 19 19 19 19 19 19 19 19		~k ~o.	V. VIII	
			TM2	2 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.25	17.05	55.30	68.20	-12.90	ANDHER	Peak
5725.00	38.86	17.05	55.91	68.20	-12.29	Morek	Peak
5725.00	27.65	17.05	44.70	54.00	-9.30	ek H _{nbote}	AVG
5725.00	28.21	17.05 nbox	45.26	otek 54.00 _{pn} bo	-8.74	siek V nb	AVG M
			TM2	2 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.47	17.21	54.68	68.20	-13.52	Hotek	Peak
5850.00	38.06	17.21	55.27	68.20	-12.93	k V poiel	Peak
5850.00	27.77	17.21,00°	44.98	54.00	-9.02 · · · ·	H	Rel AVG
5850.00	28.56	17.21	45.77 M	54.00		Ofer V And	AVG

Remark: 1. Result=Reading + Factor
2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

www.anbotek.com.cn

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 33 of 47

	TM3 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5725.00	37.83	17.05	54.88	68.20	-13.32	AHk	Peak			
5725.00	38.74	17.05	55.79	68.20	-12.41	Nupo,	Peak			
5725.00	27.13	17.05	44.18 AV	54.00	-9.82 NO	otek H Anbo	AVG			
5725.00	28.45	17.05	45.50	54.00	-8.50	nbotek V Ar	AVG			
	TM3 / H									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	38.19	17.21	55.40	68.20	-12.80	Hup	Peak			
5850.00	38.55	17.21	55.76	68.20	-12.44	yek A Vupo,	Peak			
5850.00	28.37	17.21	45.58	54.00	-8.42	Lotek H An	AVG AN			
5850.00	29.44	17.21	46.65	54.00	7.35	Y	AVG			

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

AUD	Yes	"po,	bu.	-k hote	AUD		ek "po,
			TM4	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.46	17.05	54.51	68.20	-13.69	Anbo. H	Peak
5725.00	37.57	17.05	54.62	68.20	-13.58	Aupo,	Peak
5725.00	28.35	17.05	45.40	54.00	-8.60	M _{poot}	AVG
5725.00	29.20	17.05	46.25	54.00	-7.75 bot	ok VAnbor	AVG
			TM4	4 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.20	17.21	55.41	68.20	-12.79	Pup H	Peak
5850.00	39.06	17.21	56.27	68.20	-11.93	NO.	Peak
5850.00	28.05	17.21	45.26	54.00	-8.74	K H _{unboie}	AVG
5850.00	29.16	17.21	46.37	54.00	-7.63	ek V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, pre-scan SISO and MIMO modes, and only the worst case (MIMO) is recorded in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 34 of 47

8. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	And aborek Anb	or Ali
Anbotek Anbotek	Unwanted emissions below strength limits set forth in §	1 GHz must comply with the ge 15.209.	eneral field
tek Anbotek An		ere in this subpart, the emissions t exceed the field strength levels	
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300
Test Limit:	1.705-30.0 30-88	30 100 ** 150 **	30 3
botek Anbotek	88-216 216-960 Above 960	200 **	3
	** Except as provided in pa intentional radiators operat frequency bands 54-72 MH	ragraph (g), fundamental emissi ing under this section shall not b lz, 76-88 MHz, 174-216 MHz or these frequency bands is permitt	ons from e located in the 470-806 MHz.
	In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a	e, the tighter limit applies at the bein the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emised on measurements employing	measurements uency bands 9– sion limits in
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.5	And tek
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mount c. The antenna height is va ground to determine the materials.	T was placed on the top of a rota t a 3 meter semi-anechoic cham determine the position of the hi meters away from the interference ed on the top of a variable-heigh wried from one meter to four meter aximum value of the field strength	ber. The table ghest radiation. nce-receiving it antenna tower. ers above the h. Both horizonta
Procedure:	d. For each suspected emis and then the antenna was test frequency of below 300	ssion, the EUT was arranged to tuned to heights from 1 meter to MHz, the antenna was tuned to he turned from 0 degrees to 360 de	its worst case 4 meters (for the neights 1 meter)
Anbotek Anbotek Anbotek Anbotek	e. The test-receiver system Bandwidth with Maximum I f. If the emission level of the limit specified, then testing	n was set to Peak Detect Function Hold Mode. The EUT in peak mode was 10dB I Could be stopped and the peak vise the emissions that did not ha	ower than the values of the EU

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 35 of 47

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 36 of 47

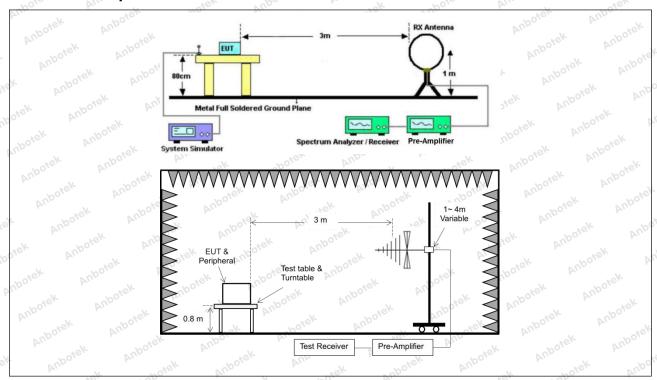
below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

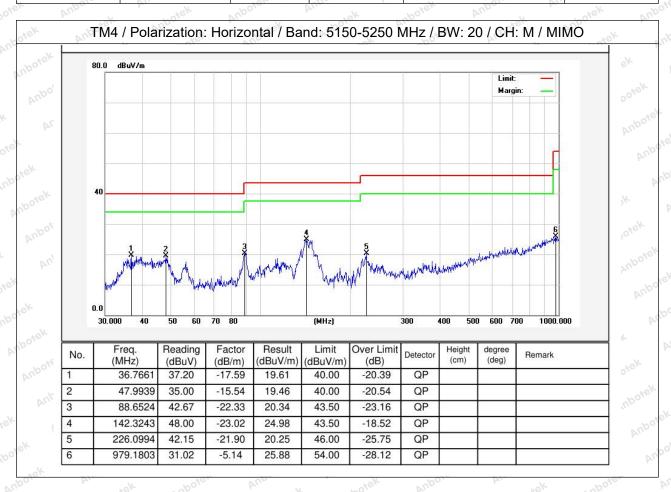
	70,	100	- 200	Prince Control		200
Operating Envi	ronment:	orek Anbore				
otek Anbotek Notek Anbotek Anbotek Anbot	1: 802.11a mode modulation type. the worst case. 0 2: 802.11n mode modulation type. rate @ MCS0 is report.	All data rates hat Only the data of well the EUT All bandwidth all	as been tested worst case is re in continuously nd data rates h	and found the ecorded in the transmitting r as been tested	data rate @ report. node with 80 d and found t	6Mbps is 2.11n the data
Test mode:	3: 802.11ac mod modulation type. rate @ MCS0 is report. 4: 802.11ax mod	. All bandwidth a the worst case.	nd data rates h Only the data o	nas been tested of worst case is	d and found to recorded in	the data the

modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the


report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 37 of 47

8.2. Test Setup

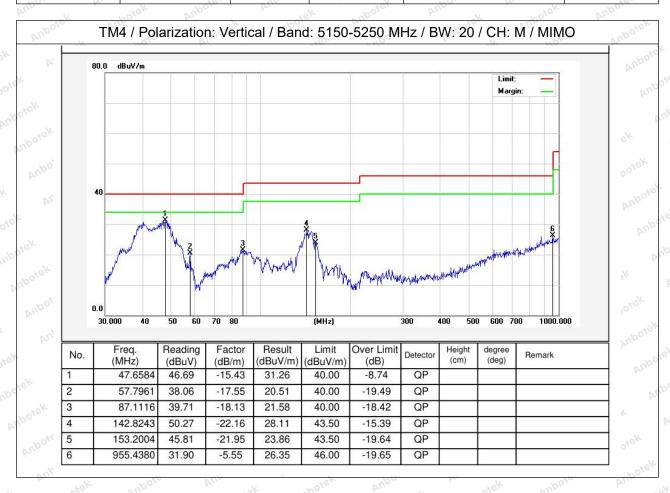


Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 38 of 47

8.3. Test Data

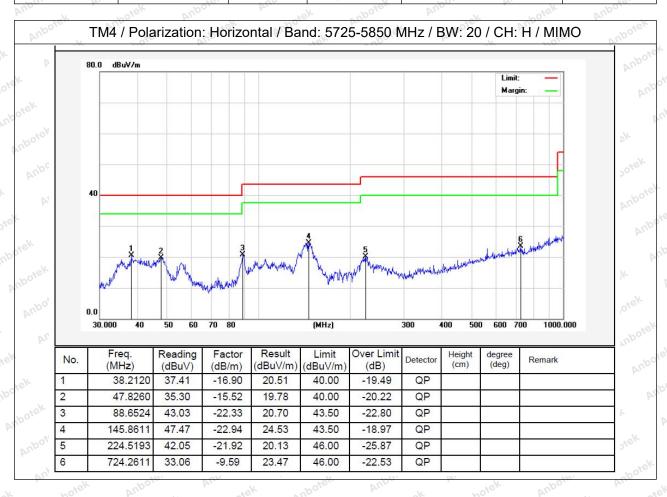
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

	Temperature:	22.5 °C	DUP.	Humidity:	48 %	Atmos	pheric Pres	sure:	101 kPa
- 1	romporataro.			i iditiidity.	10.70	7 (11100	priorio i goc	oui o.	p-101 Ki Gi



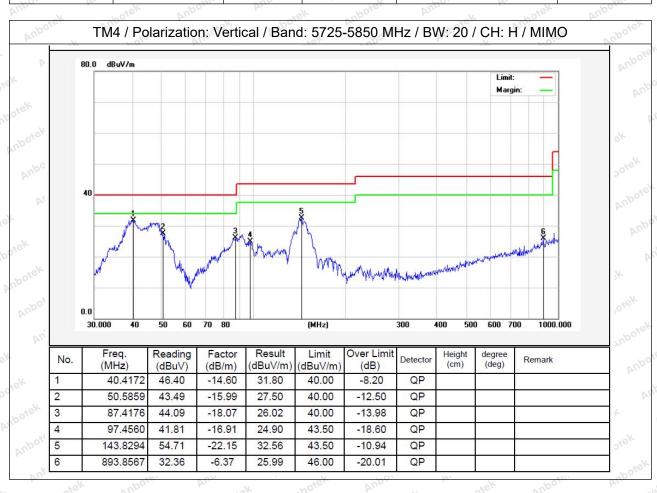
Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 39 of 47

Temperature: 22.5 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 40 of 47

Temperature: 22.5 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 41 of 47

Temperature: 22.5 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 42 of 47

9. Undesirable emission limits (above 1GHz)

47 CFR Part 15.407(b) 47 CFR Part 15.407(b) For transmitters opera of the 5.15-5.35 GHz b For transmitters opera All emissions shall be above or below the ba above or below the ba above or below the ba adde increasing linear below the band edge, ncreasing linearly to a MHz 0.090-0.110 10.495-0.505	ting in the 5.15-5.25 cand shall not exceed ting solely in the 5.72 limited to a level of -: nd edge increasing lind edge, and from 25 ly to a level of 15.6 dland from 5 MHz above	d an e.i.r.p. of -2 25-5.850 GHz ba 27 dBm/MHz at nearly to 10 dBm 5 MHz above or l Bm/MHz at 5 MH ve or below the b z at the band ed	7 dBm/MHz. nd: 75 MHz or mo n/MHz at 25 M below the band dz above or band edge
For transmitters opera of the 5.15-5.35 GHz to fine from the first opera All emissions shall be above or below the bacabove or below the bacabove increasing linearly to a MHz 0.090-0.110	ting in the 5.15-5.25 cand shall not exceed ting solely in the 5.72 limited to a level of -: nd edge increasing lind edge, and from 25 ly to a level of 15.6 dl and from 5 MHz about level of 27 dBm/MHz	d an e.i.r.p. of -2 25-5.850 GHz ba 27 dBm/MHz at nearly to 10 dBm 5 MHz above or l Bm/MHz at 5 MH ve or below the b z at the band ed	7 dBm/MHz. nd: 75 MHz or mo n/MHz at 25 M below the band dz above or band edge
For transmitters opera All emissions shall be above or below the basedge increasing linear pelow the band edge, ncreasing linearly to a MHz	ting solely in the 5.72 limited to a level of -; nd edge increasing lind edge, and from 25 ly to a level of 15.6 dl and from 5 MHz about level of 27 dBm/MHz	d an e.i.r.p. of -2 25-5.850 GHz ba 27 dBm/MHz at nearly to 10 dBm 5 MHz above or l Bm/MHz at 5 MH ve or below the b z at the band ed	7 dBm/MHz. nd: 75 MHz or mo n/MHz at 25 M below the band dz above or band edge
For transmitters opera All emissions shall be above or below the basedge increasing linear pelow the band edge, ncreasing linearly to a MHz	ting solely in the 5.72 limited to a level of -: nd edge increasing li nd edge, and from 25 ly to a level of 15.6 dl and from 5 MHz abov level of 27 dBm/MHz MHz	25-5.850 GHz ba 27 dBm/MHz at nearly to 10 dBm 5 MHz above or l Bm/MHz at 5 MH ve or below the b z at the band edo	nd: 75 MHz or mo n/MHz at 25 M below the band dz above or pand edge
All emissions shall be above or below the basebove or below the basedge increasing linear below the band edge, ncreasing linearly to a MHz	limited to a level of -; nd edge increasing li nd edge, and from 25 ly to a level of 15.6 dl and from 5 MHz abov level of 27 dBm/MHz MHz	27 dBm/MHz at a nearly to 10 dBm of the first to 10 dBm of the first to 10 dBm/MHz at 5 MH or below the because the band edges	75 MHz or mo n/MHz at 25 M below the band dz above or band edge
All emissions shall be above or below the basebove or below the basedge increasing linear below the band edge, ncreasing linearly to a MHz	limited to a level of -; nd edge increasing li nd edge, and from 25 ly to a level of 15.6 dl and from 5 MHz abov level of 27 dBm/MHz MHz	27 dBm/MHz at a nearly to 10 dBm of the first to 10 dBm of the first to 10 dBm/MHz at 5 MH or below the because the band edges	75 MHz or mo n/MHz at 25 M below the band dz above or band edge
above or below the bath above or below the bath above or below the bath above increasing linearly to a minus of the bath above increasing linearly i	nd edge increasing li nd edge, and from 25 ly to a level of 15.6 dl and from 5 MHz abov level of 27 dBm/MH: MHz	nearly to 10 dBm 5 MHz above or I Bm/MHz at 5 MH ve or below the b z at the band edo	n/MHz at 25 M below the band dz above or band edge
above or below the ba edge increasing linear below the band edge, ncreasing linearly to a MHz 0.090-0.110	nd edge, and from 25 ly to a level of 15.6 dl and from 5 MHz abov level of 27 dBm/MH: MHz	5 MHz above or I Bm/MHz at 5 MH ve or below the b z at the band edo	below the band Iz above or band edge
edge increasing linear below the band edge, ncreasing linearly to a MHz 0.090-0.110	ly to a level of 15.6 d and from 5 MHz abov level of 27 dBm/MH: MHz	Bm/MHz at 5 MH ve or below the b z at the band edo	dz above or band edge
pelow the band edge, ncreasing linearly to a MHz 0.090-0.110	and from 5 MHz abov level of 27 dBm/MH: MHz	ve or below the because the because the band edge	oand edge
ncreasing linearly to a MHz 0.090-0.110	level of 27 dBm/MHz	z at the band ed	
MHz 0.090-0.110	MHz		JEV.
0.090-0.110	177.		
V		MHz	GHz
10.495-0.505	V-U'	399.9-410	4.5-5.15
	16.69475-	608-614	5.35-5.46
2.1735-2.1905	16.69525 16.80425-	960-1240	7.25-7.75
2.1735-2.1905	16.80475	900-1240	1,20-1.10
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
4.20120-4.20110	Anio-14.0 p. hotel	1646.5	0,0=0.0
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	40	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) Mbot
13.36-13.41	P.I.	" upoter Aup.	
Aug ok P	otek Anbo.	W. Sek	upoje. Au
Until February 1, 199	9, this restricted band	l shall be 0.490-0	0.510 MHz.
L Loick	'upor Au	abotek	
Above 38.6			
detector. Above 1000		n the emission lin	nite in と
15.209shall be demon			
No No No No No No No No	6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.366 8.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41 Until February 1, 1999 Above 38.6 The field strength of enot exceed the limits so one will be exceed the limits so	6.26775-6.26825 108-121.94 6.31175-6.31225 123-138 8.291-8.294 149.9-150.05 8.362-8.366 156.52475- 156.52525 8.37625-8.38675 156.7-156.9 8.41425-8.41475 162.0125-167.17 12.29-12.293 167.72-173.2 12.51975-12.52025 240-285 12.57675-12.57725 322-335.4 13.36-13.41 Until February 1, 1999, this restricted band had been accorded as a second	6.215-6.218 74.8-75.2 1660-1710 6.26775-6.26825 108-121.94 1718.8-1722.2 6.31175-6.31225 123-138 2200-2300 8.291-8.294 149.9-150.05 2310-2390 8.362-8.366 156.52475-156.9 2483.5-2500 8.37625-8.38675 156.7-156.9 2690-2900 8.41425-8.41475 162.0125-167.17 3260-3267 12.29-12.293 167.72-173.2 3332-3339 12.51975-12.52025 240-285 3345.8-3358 12.57675-12.57725 322-335.4 3600-4400 13.36-13.41 Until February 1, 1999, this restricted band shall be 0.490-0

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 43 of 47

	intentional radiator shall i following table:	where in this subpart, the emission of exceed the field strength leve	els specified in the
Anbotek Anbote	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
And	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	rek 30 nabote
otek Anbe	30-88	100 **	3 Sotek
	88-216	150 **	100 3 AM
	216-960	200 **	3,ek noote
	Above 960	500	3
	The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	ove, the tighter limit applies at the rn in the above table are based on si-peak detector except for the from d above 1000 MHz. Radiated en sed on measurements employing	on measurements equency bands 9– nission limits in
est Method:	ANSI C63.10-2020, secti	on 12.7.4, 12.7.6, 12.7.7	k aboiek
	meters above the ground rotated 360 degrees to do b. The EUT was set 3 me which was mounted on the c. The antenna height is ground to determine the and vertical polarizations d. For each suspected er	EUT was placed on the top of a rat a 3 meter fully-anechoic charactermine the position of the higheters away from the interference top of a variable-height antenivaried from one meter to four memaximum value of the field strent of the antenna are set to make mission, the EUT was arranged to	mber. The table wa est radiation. -receiving antenna na tower. eters above the igth. Both horizont
Procedure:	test frequency of below 3 and the rotatable table w maximum reading.	s tuned to heights from 1 meter :0MHz, the antenna was tuned to as turned from 0 degrees to 360	o its worst case to 4 meters (for the o heights 1 meter) degrees to find th
Procedure: Anborek Anborek Anborek Anborek Anborek Anborek	test frequency of below 3 and the rotatable table we maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testin would be reported. Other	s tuned to heights from 1 meter 10MHz, the antenna was tuned to as turned from 0 degrees to 360 cm was set to Peak Detect Function Hold Mode. The EUT in peak mode was 10de ag could be stopped and the peak wise the emissions that did not by one using peak or average me	to its worst case to 4 meters (for the cheights 1 meter) degrees to find the tion and Specified B lower than the k values of the EU nave 10dB margin

Shenzhen Anbotek Compliance Laboratory Limited

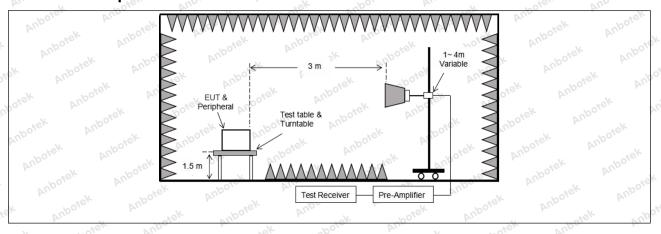
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst

case.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 44 of 47

- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation


Operating Environment:

- 1: 802.11a mode: Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 45 of 47

9.3. Test Data

Temperature:	22.5 °C	Humidity: 48	% Atmo	spheric Pressure:	101 kPa
WiFi 5 2G:	de les	De K	- Ole	VUP	y 200.

WiFi 5.2G:

WIFI 5.2G:	Pole.	VU.	-tek	rupo.	N. OK	hote	Aric
			TM4 /	CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10360.00	31.41	23.81	55.22	68.20	-12.98	V	Peak
15540.00	32.70	28.68	61.38	68.20	-6.82	Nupo. A	Peak
10360.00	31.73	23.81	55.54	68.20	-12.66	PupoH	Peak
15540.00	32.81	28.68	61.49	68.20	-6.71	or Hoter	Peak
10360.00	20.747	23.81	44.56	54.00	-9.44	Vootek	AVG
15540.00	21.780	28.68	50.46	54.00	-3.54	V V	AVG
10360.00	20.918	23.81	44.73	54.00	otek -9.27 And	H Pur	AVG
15540.00	21.514	28.68	50.19	54.00	-3.81	nbotek H A	AVG
			TM4 /	CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10400.00	30.77	23.81	54.58	68.20	-13.62	Kupose	Peak
15600.00	32.23	29.13	61.36	68.20	-6.84	ek V nboi	Peak
10400.00	31.22	23.81	55.03	68.20	-13.17	, H	o ^{teV} Peak ⋈
15600.00	32.33	29.13	61.46	68.20	-6.74	h H	Peak
10400.00	21.017	23.81	44.83	54.00	-9.17	Anbore	AVG
15600.00	21.900	29.13	51.03	54.00	-2.97	NUPA SK	AVG
10400.00	20.908	23.81	44.72	54.00	-9.28	Hotek	AVG
15600.00	21.594	29.13	50.72	54.00	-3.28	H more	AVG
			TM4 /	CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10480.00	30.34	23.80	54.14	68.20	-14.06	Aup. A	Peak
15720.00	31.71	30.03	61.74	68.20	-6.46	Anbo	Peak
10480.00	30.86	23.80	54.66	68.20	-13.54	Hoores	Peak
15720.00	31.24	30.03	61.27	68.20	-6.93	ek H _{abote}	Peak
10480.00	19.69	23.80	43.49	54.00	-10.51	V V	AVG M
15720.00	20.66	30.03	50.69	54.00	otel -3.31 pm	V	AVG
10480.00	20.12	23.80	43.92	54.00	-10.08	Anbote H	AVG
15720.00	20.38	30.03	50.41	54.00	-3.59	_bdf [™]	AVG

Remark:

- 1. Result =Reading + Factor
- During the test, pre-scan the all modulation, only the worst case(802.11ax(HEW20) MIMO) is recorded in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 46 of 47

WiFi 5.8G:

WiFi 5.8G:	ojek .	rupo.	ak .	Pole.	AUL	ntek.	rupo.
			TM4 /	CH: L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11490.000	28.58	23.36	51.94	68.20	-16.26	V V	Peak
17235.000	29.98	31.97	61.95	68.20	otel -6.25 And	V Am	Peak
11490.000	29.11	23.36	52.47	68.20	-15.73	nboten H A	Peak
17235.000	30.18	31.97	62.15	68.20	-6.05	, both	Peak
11490.000	17.93	23.36	41.29	54.00	-12.71	Votek	AVG
17235.000	18.74	31.97	50.71	54.00	-3.29	AND YEK	AVG
11490.000	18.14	23.36	41.50	54.00	-12.50	H _{Upo}	AVG
17235.000	18.11	31.97	50.08	54.00	-3.92	itek H Anbo	AVG
			TM4 /	CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11570.000	29.16	23.42	52.58	68.20	-15.62	VUN. Nice	Peak
17355.000	29.86	32.18	62.04	68.20	-6.16	Votek	Peak
11570.000	29.31	23.42	52.73	68.20	-15.47	H	Peak
17355.000	30.27	32.18	62.45	68.20	-5.75 Anbo	H Pup	Peak
11570.000	19.197	23.42	42.62	54.00	-11.38	botek V An	AVG
17355.000	19.060	32.18	51.24	54.00	-2.76	Voront V	AVG
11570.000	19.128	23.42	42.55	54.00	-11.45	Hek	AVG
17355.000	18.494	32.18	50.67	54.00	-3.33	AND HER	AVG
			TM4 /	CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11650.000	28.67	23.49	52.16	68.20	-16.04	DO. A D	Peak
17475.000	30.10	32.39	62.49	68.20	-5.71	Anborev	Peak
11650.000	29.05	23.49	52.54	68.20	-15.66	~ Hek	Peak
17475.000	29.88	32.39	62.27	68.20	-5.93	Hotek	Peak
11650.000	18.27	23.49	41.76	54.00	-12.24	V	AVG
17475.000	18.86	32.39	51.25	54.00	-2.75 box	Abupo	AVG
11650.000	18.31	23.49	41.80 M	54.00	-12.20	otek H Anb	AVG
17475.000	18.46	32.39	50.85	54.00	-3.15	ωo ^{tel} Ή ο	AVG

Remark:

- 1. Result =Reading + Factor
- During the test, pre-scan the all modulation, only the worst case(802.11ax(HEW20) MIMO) is recorded in the report.

Report No.: 18220WC30262604 FCC ID: 2AWJK-WMB-P35 Page 47 of 47

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

