

TEST REPORT

Reference No.	-39	WTF24F02028421W001
FCC ID	er d	2AWIY002
Applicant	18	ORALUCENT Inc
Address		156 Granada Avenue Long Beach California USA 90803
Manufacturer	*	The same as above
Address		The same as above
Product Name	, sr	Oralucent Phototherapy Toothbrush
Model No		Model 2
Test specification	~	FCC CFR47 Part 15 Subpart C (Section 15.247)
Date of Receipt sample	ø	2024-02-20
Date of Test		2024-02-21 to 2024-04-19
Date of Issue	45	2024-04-19
Test Report Form No	:	WEW-15247A-01B
Test Result	٠,	Pass A Care A Star

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.Address: 1/F., Building 19, Sunlink Machinery City, Xingye 4 Road,Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town,
Shunde District, Foshan, Guangdong, ChinaTel:+86-757-23811398Fax:+86-757-23811381E-mail:info@waltek.com.cn

Tested by:

Kyrie Yu

Approved by:

VOU and Z Danny Zhou

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Page 1 of 33

1 Revision History

Test Report No.	Date of Issue	Description	Status
WTF24F02028421W001	2024-04-19	Original	Valid

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Deee

14.1

2 Contents

		Faye
1	REVISION HISTORY	2
2	CONTENTS	
3	GENERAL INFORMATION	
	 3.1 GENERAL DESCRIPTION OF E.U.T 3.2 TECHNICAL CHARACTERISTICS OF EUT 3.3 STANDARDS APPLICABLE FOR TESTING 3.4 TEST FACILITY 3.5 SUBCONTRACTED 3.6 ABNORMALITIES FROM STANDARD CONDITIONS 3.7 DISCLAIMER 	
4	EUT SETUP AND TEST MODE	6
5	EQUIPMENT USED DURING TEST	7
	 5.1 EQUIPMENT LIST 5.2 TEST SOFTWARE	
6	SUMMARY OF TEST RESULT	9
	 6.1 ANTENNA REQUIREMENT	
7	PHOTOGRAPHS TEST SETUP	
	7.1 PHOTOGRAPHS - RADIATED EMISSION TEST SETUP	
8	PHOTOGRAPHS – EUT CONSTRUCTIONAL DETAILS	

3 General Information

3.1 General Description of E.U.T

Product Name	:	Oralucent Phototherapy Toothbrush
Model No.	:	Model 2
Model Description	:	and which which we are
set set stor when when		Toothbrush: Battery: 3.7V Charging dock: DC 5V, 1000mA
Battery Capacity	÷	the star and a star with at
Power Adapter		AS0601A-0501000USU Input: 100-240V~, 50/60Hz, 0.2A Max Output: DC 5V, 1000mA

3.2 Technical Characteristics of EUT

Bluetooth Version	*	V5.2 (BLE mode)
Frequency Range	:5	2402-2480MHz
RF Output Power	÷	-10.660 dBm (Conducted)
Modulation	:	GFSK
Data Rate	e.	1Mbps
Quantity of Channels	÷	40
Channel Separation	:	2MHz
Type of Antenna	à,	Ceramic Antenna
Antenna Gain	2	-4.59dBi

3.3 Standards Applicable for Testing

The tests were performed according to following standards:

FCC Rules Part 15.247	Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
558074 D01 15.247 Meas	Guidance For Compliance Measurements On Digital Transmission System,
Guidance v05r02	Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The FCC Rules
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

5

3.4 Test Facility

The test facility has a test site registered with the following organizations:

• ISED – Registration No.: 21895

Waltek Testing Group (Foshan) Co., Ltd. has been registered and fully described in a report filed with the Innovation, Science an Economic Development Canada(ISED). The acceptance letter from the ISED is maintained in our files. Registration ISED number:21895, March 12, 2019

• FCC – Registration No.: 820106

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 820106, August 16, 2018

• FCC – Designation No.: CN5034

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation No. CN5034.

• NVLAP – Lab Code: 600191-0

Waltek Testing Group (Foshan) Co., Ltd. EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 600191-0. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

3.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

🗌 Yes 🛛 🖾 No

If Yes, list the related test items and lab information:

Test items: ---

Lab information: ---

3.6 Abnormalities from Standard Conditions

None.

3.7 Disclaimer

The antenna gain information is provided by the customer. The laboratory is not responsible for the accuracy of the antenna gain information.

4 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List					
Test Mode	Description	Remark			
TM1	Low Channel	2402MHz			
TM2	Middle Channel	2440MHz			
TM3	High Channel	2480MHz			

Test Conditions				
Temperature:	22~25°C			
Relative Humidity:	50~55%			
Atmospheric pressure:	101.9kPa			

5 Equipment Used during Test

5.1 Equipment List

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal	Cal Due
1.	EMI Test Receiver	R&S	ESR3	102423	Date 2024-01-05	Date 2025-01-04
2.	LISN	R&S	ENV216	101343	2024-01-05	2025-01-04
3.	Cable	HUBER+SUHNER	CBL2-NN-6M	223NN624	2024-01-04	2025-01-03
4.	Switch	CD	RSU-A4 18G	RSUA4008	2024-01-04	2025-01-03
	ducted Emissions 2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00 / 11 100	1100/11000	20210101	2020 01 00
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Cal Due Date
്1.	EMI Test Receiver	R&S	ESCI	101178	2024-01-06	2025-01-05
2.	LISN S	R&S	ENV216	101215	2024-01-05	2025-01-04
3.	Cable	HUBER+SUHNER	CBL2-NN-6M	6102701	2024-01-04	2025-01-03
4.	Switch	ESE	RSU/M2		2024-01-04	2025-01-03
Cor	ducted Emissions 3	#	15 5	the state with	and an	Sugar State
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Cal Due Date
1.	EMI Test Receiver	R&S	ESR3	102842	2024-01-05	2025-01-04
2.	LISN	R&S	ENV216	101542	2024-01-05	2025-01-04
3.	Cable	YIHENG	LMR195UF- NMNM-2.5		2024-01-04	2025-01-03
4.	Manual RF Switch	YIHENG	SW-2	RSU0402	2024-01-04	2025-01-03
⊠Rac	liation Emissions	NUTER AND AND	-24 - 4h		the second	to to
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	3m Semi-anechoic Chamber	CHANGCHUANG	9m×6m×6m	Wile Ship	2024-01-05	2025-01-04
2.	EMI Test Receiver	RS	ESR7	101566	2024-01-06	2025-01-05
3.	EMC Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
4.	Active Loop Antenna	SCHWARZBECK	FMZB1519B	00004	2024-01-05	2025-01-04
5.	Trilog Broadband Antenna	SCHWARZBECK	VULB 9162	9162-117	2024-01-05	2025-01-04
6.	Coaxial Cable (below 1GHz)	H+S	CBL3-NN- 12+3 m	214NN320	2024-01-06	2025-01-05
7.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	01561	2024-01-05	2025-01-04
8.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	01119	2024-01-05	2025-01-04
9.	Coaxial Cable (above 1GHz)	Times-Micorwave	CBL5-NN	an an	2024-01-04	2025-01-03
10.	Amplifier	Lunar E M	LNA1G18-40	20160501002	2024-01-04	2025-01-03

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

1-03

RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.0	Spectrum Analyzer	Agilent	N9020A	MY48011796	2024-01-04	2025-01-03
2.	Analog Signal Generator	Agilent	N5181A	MY48180720	2024-01-04	2025-01-03
3.	RF Control Unit	CHANGCHUANG	JS0806-2	50 50	2024-01-04	2025-01-03

: Not Used

: Used

5.2 Test Software

Manufacturer	Model	Version
FARATRONIC	EZ-EMC	EMEC-3A1
FARATRONIC	EZ-EMC	CON-03A1
FARATRONIC	EZ-EMC	COM 3A1.1
FARATRONIC	EZ-EMC	RA-03A1-1
TONSCEND	JS1120-2	V2.6
	FARATRONIC FARATRONIC FARATRONIC FARATRONIC	FARATRONICEZ-EMCFARATRONICEZ-EMCFARATRONICEZ-EMCFARATRONICEZ-EMC

5.3 Special Accessories and Auxiliary Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.
i 1. ∕r	and that we have	and the second	1	a lat at

5.4 Measurement Uncertainty

Parameter	Uncertainty			
RF Output Power	±2.2dB			
Occupied Bandwidth	±1.5%			
Conducted Emission	±2.6dB			
And the substance of the second secon	±3.8dB (for 25MHz-1GHz)			
Transmitter Spurious Emission	±5.0dB (for 1GHz-18GHz)			

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Items	FCC Rules	Result	
Antenna Requirement	§15.203; §15.247(b)(4)(i)	Compliant	
Restricted Band of Operation	§15.205	Compliant	
Conducted Emissions	§15.207(a)	N/A	
Radiated Spurious Emissions	§15.209(a)	Compliant	
Power Spectral Density	§15.247(e)	Compliant	
DTS Bandwidth	§15.247(a)(2)	Compliant	
RF Output Power	§15.247(b)(1)	Compliant	
and edge (Out of Band Emissions)	§15.247(d)	Compliant	

6 Summary of Test Result

Remark:

Pass	Test item meets the requirement
Fail	Test item does not meet the requirement
N/A	Test case does not apply to the test object

6.1 Antenna Requirement

6.1.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

6.1.2 Evaluation Information

The EUT has a Ceramic Antenna, the gain is -4.59 dBi, fulfil the requirement of this section.

6.2 Radiated Spurious Emissions

6.2.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

6.2.2 Test Procedure

1) The EUT is placed on a turntable, which is 0.8m(Below 1G) 1.5m(above 1G)above ground plane.

2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3) EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

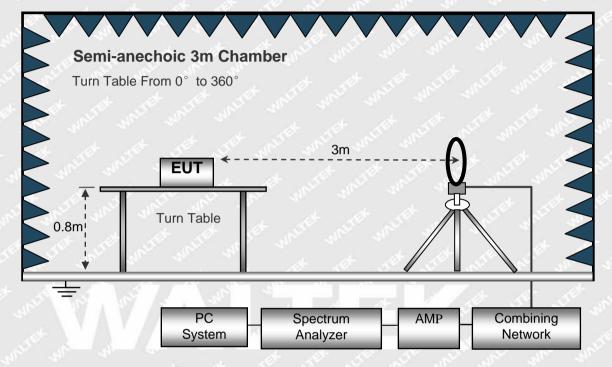
4) Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5) And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6) Repeat above procedures until the measurements for all frequencies are complete.

7) The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

J



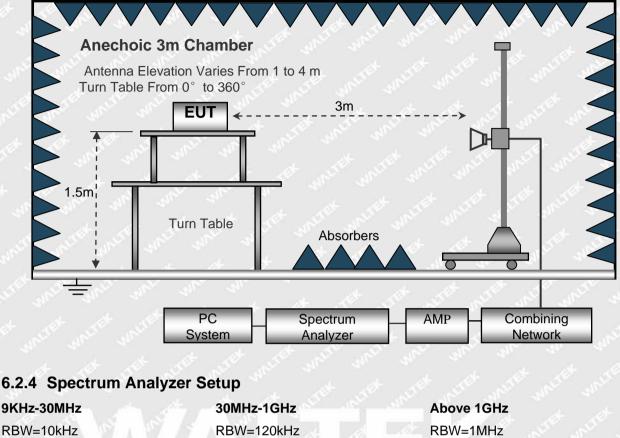
6.2.3 Test Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.


I ← · · · · · · · · · · · · · · · · · ·	Antenna E	Techoic 3m Chai Elevation Varies Fron e From 0° to 360°			and she
		¢	3m	> 	
8m Turn Table	at at	EUT	NOTES WALFES WALFO	Suntre unt	
			the state what		and at
PC Spectrum AMP Combining	.8m				

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

K

The test setup for emission measurement above 1 GHz.

RBW=10kHz	RBW=120kHz	RBW=1MHz
VBW=30kHz	VBW=300kHz	VBW=3MHz(Peak), 10MHz(AV)
Sweep time=Auto	Sweep time=Auto	Sweep time=Auto
Trace=Max hold	Trace=Max hold	Trace=Max hold
Detector function=peak	Detector function=peak, QP	Detector function=peak, AV

6.2.5 Corrected Amplitude & Margin Calculation

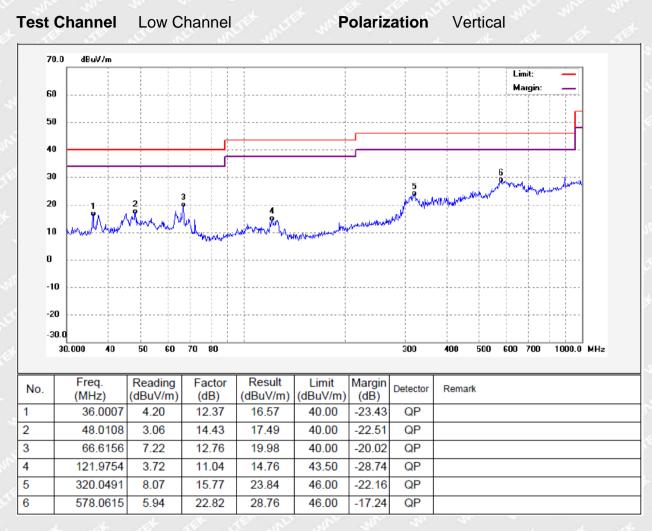
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Corr. Factor

Corr.Factor=Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

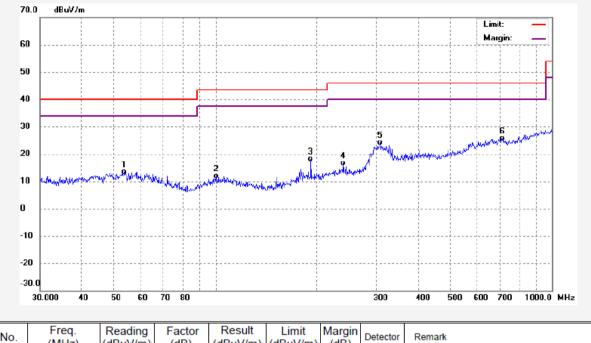
Margin = Corr. Ampl. - Limit


Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

X

6.2.6 Test Results

Test Frequency: Below 1GHz



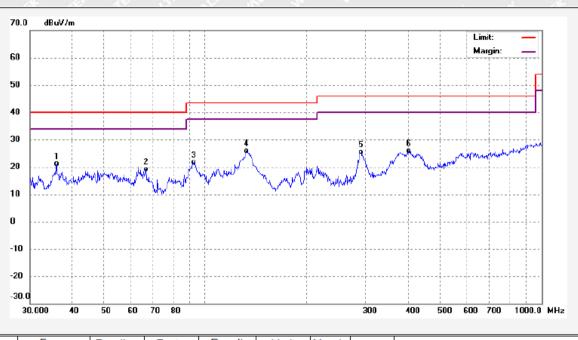
- 00

2. ...

Test Channel Low Channel

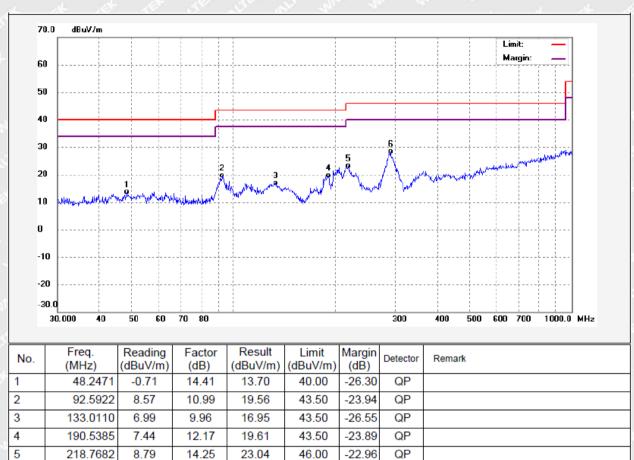
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	53.6743	-0.91	14.30	13.39	40.00	-26.61	QP	
2	100.3692	-0.57	12.33	11.76	43.50	-31.74	QP	
3	192.0141	5.80	12.23	18.03	43.50	-25.47	QP	
4	239.9873	1.90	14.66	16.56	46.00	-29.44	QP	
5	309.9977	8.38	15.83	24.21	46.00	-21.79	QP	
6	712.4224	1.73	24.02	25.75	46.00	-20.25	QP	

Polarization


Vertical

5

17


	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
	1	36.0007	8.66	12.37	21.03	40.00	-18.97	QP	
	2	66.5223	6.33	12.79	19.12	40.00	-20.88	QP	
	3	92.1388	10.81	10.89	21.70	43.50	-21.80	QP	
	4	132.5920	15.86	9.94	25.80	43.50	-17.70	QP	
	5	290.7300	9.89	15.56	25.45	46.00	-20.55	QP	
Į	6	403.1086	7.63	18.19	25.82	46.00	-20.18	QP	

Polarization

Horizontal

Test Channel Middle Channel

46.00

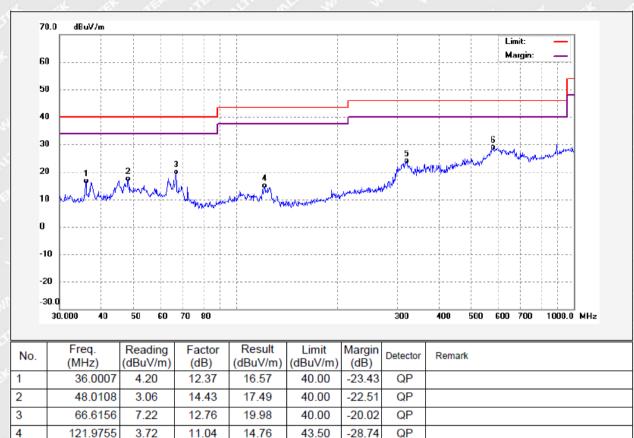
-17.61

QP

6

291.4444

12.81


15.58

28.39

Test Channel High Channel

46.00

46.00

-22.16

-17.24

QP

QP

8.07

5.94

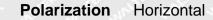
15.77

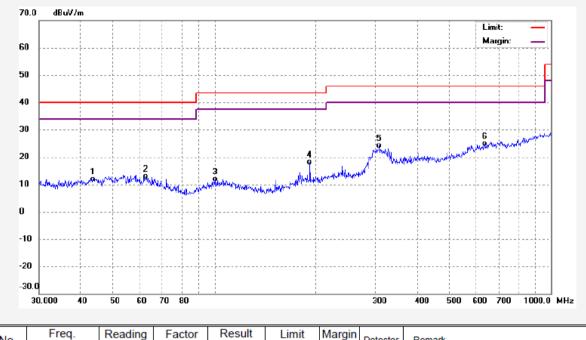
22.82

23.84

28.76

320.0492


578.0615


5

6

Test Channel High Channel

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
	1	43.5974	-2.30	14.11	11.81	40.00	-28.19	QP	
ľ	2	62.5848	-0.80	13.58	12.78	40.00	-27.22	QP	
ľ	3	100.3693	-0.57	12.33	11.76	43.50	-31.74	QP	
	4	192.0142	5.79	12.24	18.03	43.50	-25.47	QP	
	5	309.9977	8.38	15.83	24.21	46.00	-21.79	QP	
	6	637.6974	1.90	23.00	24.90	46.00	-21.10	QP	

Test Frequency: Above 1GHz

Frequency (MHz)	Reading (dBµV/m)	Detector	Polar (H/V)	Corrected Factor (dB)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Interest support	aller aller	10. 10.	Low Char	nnel d	5° . 5	A LINE A	Nº2 1
4804.00	47.00	Peak	J. H.	-4.38	42.62	74	-31.38
4804.00	43.82	AVG	Н	-4.38	39.44	54	-14.56
7206.00	42.10	Peak	∿%_H <i>∿</i> ∿	3.75	45.85	74	-28.15
7206.00	45.63	AVG	H≺	3.75	49.38	54	-4.62
4804.00	52.22	Peak	V	-4.19	48.03	74	-25.97
4804.00	52.06	AVG	V d	-4.19	47.87	54	-6.13
7206.00	44.95	Peak	V	3.79	48.74	74	-25.26
7206.00	44.71	AVG	V	3.79	48.50	54	-5.50
5 St .	5 5 3	St and	Middle Cha	annel	1. 1.	15 1	đ i
4880.00	48.77	Peak	_⊘H	-3.03	45.74	74	-28.26
4880.00	48.22	AVG	⊳ н "	-3.03	45.19	54	-8.81
7320.00	36.47	Peak	& H_S	3.21	39.68	74	-34.32
7320.00	30.55	AVG	Ĥ	3.21	33.76	54	-20.24
4880.00	35.84	Peak	V	-3.99	31.85	74	-42.15
4880.00	47.64	AVG	V	-3.99	43.65	54	-10.35
7320.00	46.39	Peak	V	3.25	49.64	74	-24.36
7320.00	39.06	AVG	V	3.25	42.31	54	-11.69
the second	i de d	5 B .	High Cha	nnel	an i	h. h.	
4960.00	35.91	Peak	Н	-2.83	33.08	74	-40.92
4960.00	52.05	AVG	H	-2.83	49.22	54	-4.78
7440.00	37.33	Peak	н	4.75	42.08	74	-31.92
7440.00	43.85	AVG	. H	4.75	48.60	54	-5.40
4960.00	40.53	Peak	V	-3.92	36.61	74	-37.39
4960.00	50.45	AVG	V v	-3.92	46.53	54	-7.47
7440.00	27.49	Peak	V	2.58	30.07	74	-43.93
7440.00	46.52	AVG	َنْ V	2.58	49.10	54	-4.90

Note:

 Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 Average measurement was not performed if peak level is lower than average limit 54 dBuV/m) for above 1GHz.

WT-510-201-12-A

1

6.3 Power Spectral Density

6.3.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.3.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.10.2, the test method of power spectral density as below:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

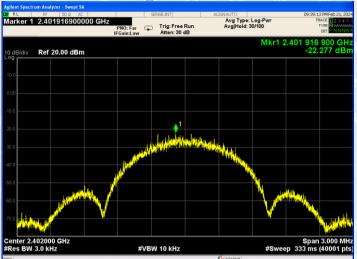
d) Set the VBW \geq 3 × RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

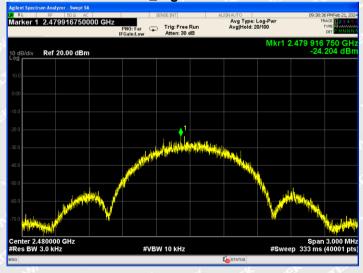
h) Allow trace to fully stabilize.


i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3.3 Test Result

Test Mode	Test Channel	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	Low	-22.277	A 58 5 .
BLE	Middle	-23.746	8
eres anine and an	High	-24.204	8,0



BLE_Low Channel

BLE_High Channel

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

6.4 DTS Bandwidth

6.4.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.4.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.4.3 Test Result

Test Mode	Test Channel	6dB Bandwidth kHz	Limit kHz
in and any an	Low	696.3	≥500
BLE	Middle	697.7	≥500
to at at	High	699.4	≥500

BLE_Low Channel

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

6.5 RF Output Power

6.5.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

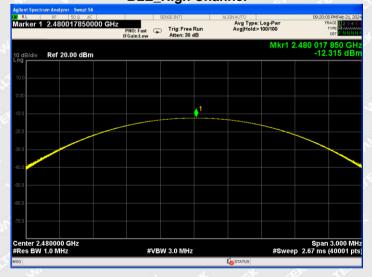
6.5.2 Test Procedure

According to the KDB-558074 D01 v05r02 Subclause 8.3.1.1 and ANSI C63.10-2013 Subclause 11.9.1.1, this procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \ge 3 × RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

6.5.3 Test Result

Modulation	Test Channel	Reading (dBm)	Output Power (mW)	Limit (mW)
	Low	-10.660	0.086	1000
BLE	Middle	-11.223	0.075	1000
	High	-12.315	0.059	1000


BLE_Low Channel

BLE_High Channel

#VBW 3.0 MHz

Span 3.000 MH #Sweep 2.67 ms (40001 pt

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Center 2.440000 GHz #Res BW 1.0 MHz

G

6.6 Out of Band Emissions

6.6.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

6.6.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge,

as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz

for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emissions must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205.

Note that the method of measurement KDB publication number: 913591 may be used for the radiated band edge measurements.

B. Antenna-port conducted measurements

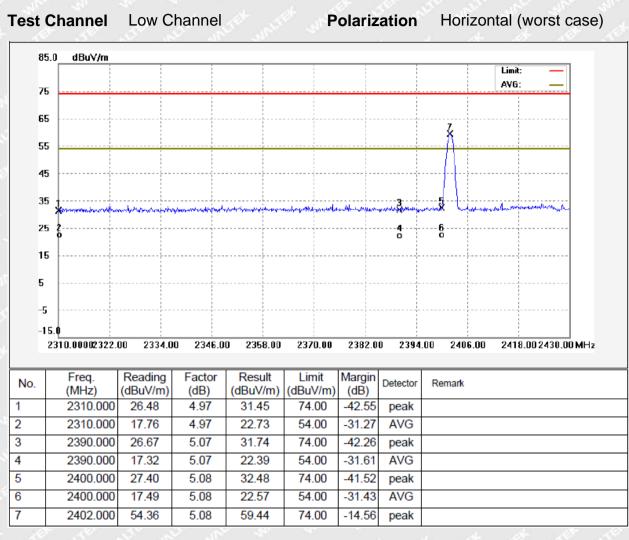
Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 9/
- b) VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

Table 9-RBW as a function of frequency


If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1.

6.6.3 Test Result

Radiated Test

55 45

35

25

15

5

-5 -15.0

No.

1

2

3

4

5

2475.00002477.50

Freq.

(MHz)

2480.000

2483.500

2483.500

2500.000

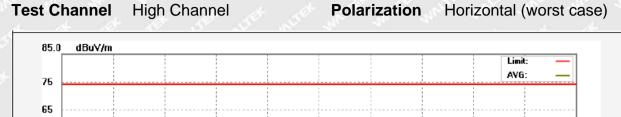
2500.000

2480.00

Reading

(dBuV/m)

51.09


24.49

14.66

23.12

14.38

3

2482.50

Factor

(dB)

5.18

5.18

5.18

5.20

5.20

2485.00

(dBuV/m) (dBuV/m)

Result

56.27

29.67

19.84

28.32

19.58

2487.50

Limit

74.00

74.00

54.00

74.00

54.00

2490.00

Margin

(dB)

-17.73

-44.33

-34.16

-45.68

-34.42

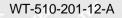
2492.50

Detector

peak

peak

AVG


peak

AVG

2495.00

Remark

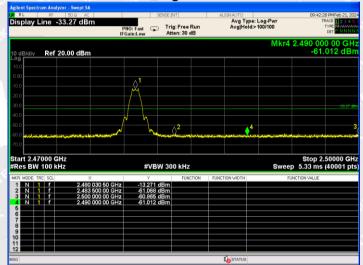
2497.502500.00 MHz

Ster V

0

100

ļ

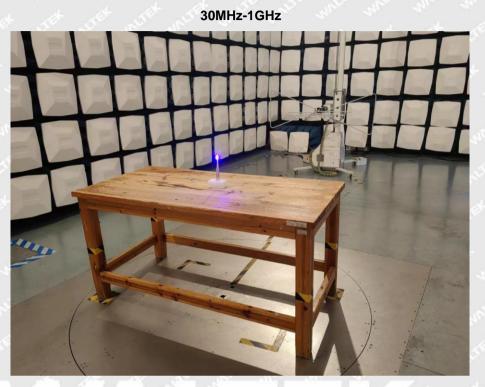

*

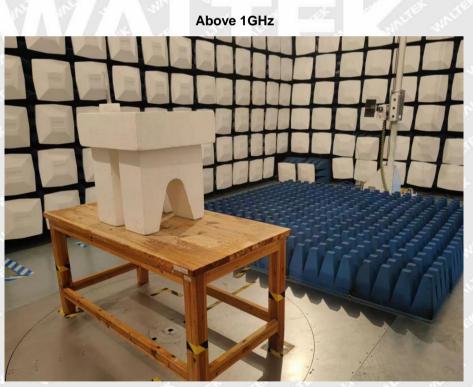
Conducted Test

lisplay		- 30.76	dBm	NO: Fast Tri Gain:Low At	ig: Free Run ten: 30 dB		ſype: Log-Pwr Iold≫100/100	09:46:05 PM Feb 21, 202 TRACE 1 2 3 4 5 TYPE M
0 dB/di	/ R(ef 20.00 (:IBm				Mkr1	2.402 271 8 GH -10.758 dBr
10.0								
0.00								1
10.0								<u>?</u> `
20.0								
30.0								-30.76 d9
40.0								<u> </u>
50.0							Q ²	
70.0	deel tech	a deside and the late	in all a differences and the life state			te fi ni Statione te in		
start 2.	31000 W 100			#VBW 30	0 kHz		Sweep	Stop 2.41200 GH: 10.7 ms (40001 pts
Res D		1	X	Y	FUNCTION	FUNCTION WIDTH	FUN	ICTION VALUE
KR MODE								
KR MODE	1 1 1 1		2.402 271 8 GHz 2.390 000 0 GHz 2.400 000 0 GHz	-10.758 dBm -59.843 dBm -58.932 dBm				
KR MODE 1 N 2 N 3 N 4 N	1 f		2.402 271 8 GHz 2.390 000 0 GHz 2.400 000 0 GHz 2.369 000 0 GHz	-10./58 dBm -59.843 dBm -58.932 dBm -61.442 dBm				
4KR MODE 1 N 2 N 3 N 4 N 5 6	1 f 1 f 1 f		2.390 000 0 GHz 2.400 000 0 GHz	-59.843 dBm -58.932 dBm				
1 N 2 N 3 N 4 N 5 6 7 8	1 f 1 f 1 f		2.390 000 0 GHz 2.400 000 0 GHz	-59.843 dBm -58.932 dBm				
1 N 2 N 3 N 4 N 5 6 7	1 f 1 f 1 f		2.390 000 0 GHz 2.400 000 0 GHz	-59.843 dBm -58.932 dBm				

BLE_Low Channel

BLE_High Channel


Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn



NOLTO /

7 Photographs Test Setup

7.1 Photographs - Radiated Emission Test Setup

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

8 Photographs – EUT Constructional Details

Please refer to "ANNEX".

=====End of Report======

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn