

Test report

REP010975-1TRFWL

Date of issue: May 30, 2024

Applicant:

Space Exploration Technologies Corporation

Product description:

Wireless Module

Model:

Product marketing name(s):

UTW-231

N/A

FCC ID:

2AWHPW231

ISED certification number:

26207-UTW231

Specifications:

FCC 47 CFR Part 15, Subpart C – §15.247
 Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, 5727 – 5850 MHz

Industry Canada RSS-247, Issue 3 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

www.nemko.com

FCC 15.247 & RSS-247 (WiFi).dotm, Version V1.1

Nemko USA Inc., a testing laboratory, is accredited by ANAB. The tests included in this report are within the scope of this accreditation.

Lab and test locations

Company name	Nemko USA Inc.	
Address	2210 Faraday Ave, Suite 150	
City	Carlsbad	
State	California	
Postal code	92008	
Country	USA	
Telephone	+1 760 444 3500	
Website	www.nemko.com	
FCC Site Number	Test Firm Registration Number: 392943; Designation Number: US5058	
ISED Test Site	20408-3	
Tested by	Lan Sayasane, EMC Test Engineer	
	Chenhao Ma, Wireless Test Technician	
Reviewed by	James Cunningham, EMC/WL Manager	
Review date	May 30, 2024	
Reviewer signature	281	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by ANAB, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of (Contents	3
Section 1	Report summary	
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Summary of test results	5
2.1	Sample information	5
2.2	Testing period	5
2.3	Test results	5
Section 3	Equipment under test (EUT) details	7
3.1	Disclaimer	7
3.2	Applicant	7
3.3	Manufacturer	7
3.4	EUT information	7
3.5	Transmitter Information	8
3.6	Channel list	8
3.7	Operating modes	9
3.8	Transmitter power settings	9
3.9	EUT setup details	. 10
Section 4	Engineering considerations	. 11
4.1	Modifications incorporated in the EUT	. 11
4.2	Technical judgement	. 11
4.3	Deviations from laboratory test procedures	. 11
Section 5	Test conditions	. 12
5.1	Atmospheric conditions	. 12
5.2	Power supply range	. 12
Section 6		
6.1	Uncertainty of measurement	
Section 7	Test equipment	. 14
7.1	Test equipment list	
7.2	Test software list	. 14
Section 8		
8.1	Duty cycle of test signal	
8.2	Conducted limits / power line conducted emissions limits for licence-exempt radio apparatus	
8.3	Variation of power source	. 18
8.4	Antenna requirement	. 19
8.5	Minimum 6 dB bandwidth	
8.6	Maximum peak output power	
8.7	Spurious emissions	
8.8	Power spectral density	
8.9	99% occupied bandwidth	. 91

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C – §15.247	Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, 5727 – 5850 MHz
Industry Canada RSS-247, Issue 3	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.2 Exclusions

None.

1.3 Statement of compliance

Testing was performed against all relevant requirements of the test standard(s).

Results obtained indicate that the product under test complies in full with the tested requirements.

The test results relate only to the item(s) tested.

See "Section 2 Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Revision #	Issue Date	Details of changes made to test report
REP010975-1TRFEMC	May 30, 2024	Original report issued

Section 2 Summary of test results

2.1 Sample information

Receipt date	26-Feb-24
Nemko sample ID number	REP010975

2.2 Testing period

Test start date	26-Feb-24
Test end date	26-Apr-24

2.3 Test results

Table 2.3-1: FCC 47 CFR Part 15, Subpart B & C, general requirements

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass 1
§15.31(e)	Variation of power source	Pass
§15.203	Antenna requirement	Pass

Notes: ¹ EUT is directly or indirectly powered via AC mains

Table 2.3-2: FCC 47 CFR Part 15, Subpart C, §15.247 requirements

Part	Test description	Verdict
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400– 2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(b)(4)	Transmitting antennas of directional gain greater than 6 dBi	Not applicable
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

Table 2.3-3: ISED RSS-247 requirements

Part	Test description	Verdict
5.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
5.1 (b)	Minimum channel spacing for frequency hopping systems	Not applicable
5.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
5.2 (a)	Minimum 6 dB bandwidth	Pass
5.2 (b)	Maximum power spectral density	Pass
5.3 (a)	Digital modulation turned off	Not applicable
5.3 (b)	Frequency hopping turned off	Not applicable
5.4 (a)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
5.4 (b)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
5.4 (c)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
5.4 (d)	Systems employing digital modulation techniques	Pass
5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
5.5	Out-of-band emissions	Pass

Table 2.3-4: ISED RSS-GEN requirements

Part	Test description	Verdict
6.7	Occupied bandwidth (99%)	Pass
7.3	Receiver radiated emission limits	Not applicable ¹
7.4	Receiver conducted emission limits	Not applicable ¹
8.8	Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus	Pass

Notes: ¹Only applicable to scanner receivers or stand-alone receivers operating in the band 30-960 MHz

Section 3 Equipment under test (EUT) details

3.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

3.2 Applicant

Company name	Space Exploration Technologies Corporation
Address	1 Rocket Road
City	Hawthorne
State	CA
Postal/Zip code	90240
Country	United States

3.3 Manufacturer

Company name	Space Exploration Technologies Corporation
Address	1 Rocket Road
City	Hawthorne
State	CA
Postal/Zip code	90240
Country	United States

3.4 EUT information

Product name	Wireless Module
Model	UTW-231
Variant(s)	N/A
Serial number	N/A
Part number	N/A
Power requirements	30 V DC / 2 A via 100-240 V AC/DC Adaptor
Description/theory of operation	Wi-Fi router supporting IEEE 802.11b/g/n/ax
Operational frequencies	2400 - 2483.5 MHz
Software details	N/A

3.5 Transmitter Information

Frequency band	2400 – 2483.5 MHz		
	Frequency hopping s	spread spectrum (FHSS)	
Transmitter type	Digital transmission	system (DTS)	
	Hybrid FHSS / DTS		
Minimum frequency (MHz)	2412		
Maximum frequency (MHz)	2462		
	IEEE 802.11b:	DSSS-BPSK, DSSS-DQPSK, CCK-DQPSK, CCK-DQPSK	
Type of modulation	IEEE 802.11g:	OFDM-BPSK, OFDM-QPSK, OFDM-16QAM, OFDM-64QAM	
	IEEE 802.11n:	OFDM-BPSK, OFDM-QPSK, OFDM-16QAM, OFDM-64QAM	
	IEEE 802.11b:	Up to 11 Mbps	
Data rate	IEEE 802.11g:	Up to 54 Mbps	
Data rate	IEEE 802.11n (HT20):	Up to 195 Mbps	
	IEEE 802.11n (HT40):	Up to 405 Mbps	
	EUT includes 3 antenna	a ports (denoted ANT1, ANT2, ANT3). Maximum gain of each antenna in the operating b	band:
	ANT1:	5.11 dBi	
	ANT2:	5.03 dBi	
	ANT3:	4.56 dBi	
Antenna information	Calculated using equati	ain (for beamforming modes): 9.67 dBi ion 40 from ANSI C63.10:2020:	
	Directional gain =	$10 \log \left[\left(10^{G_1/20} + 10^{G_2/20} + + 10^{G_N/20} \right)^2 / N_{ANT} \right] dBi$	(40)
Number of channels:	IEEE 802.11b, IEEE 802.	.11g, IEEE 802.11n (HT20): 11	
Number of channels.	IEEE 802.11n (HT40): 7		
MIMO operation		d (HT40) support beamforming and cyclic delay diversity (CDD) modes of operation	
while operation	IEEE 802.11b and g only	y support CDD mode	

3.6 Channel list

Channel	Frequency	Channel	Frequency	
1	2412 MHz	7	2442 MHz	
2	2417 MHz	8	2447 MHz	
3	2422 MHz	9	2452 MHz	
4	2427 MHz	10	2457 MHz	
5	2432MHz	11	2462 MHz	
5	2437 MHz			
channels are available f	or IEEE 802.11n (HT40) operational mode	2:		
Channel	Frequency	Channel	Frequency	
}	2422 MHz	7	2442 MHz	
	2427 MHz	8	2447 MHz	
5	2432 MHz	9	2452 MHz	
5	2437 MHz			

3.7 Operating modes

Pre-scanning was performed to identify:

a. Worst-case spatial orientation for maximum emission

b. Worst-case modulation/data rate settings for a given IEEE 802.11x operating mode

Based on this pre-scanning, the following channels/modes were selected for testing:

Test Item	Mode	Signal mode	Tested channel(s)	Modulation / data rate
	IEEE 802.11b	CDD	1, 6, 11	CCK-DQPSK (5.5 Mbps)
DE output nouvor	IEEE 802.11g	CDD	1, 7, 11	OFDM-64QAM (54 Mbps)
RF output power	IEEE 802.11n (HT20)	CDD and beamforming	1, 7, 11	OFDM-64QAM_MCS23 (195 Mbps)
	IEEE 802.11n (HT40)	CDD and beamforming	3, 6, 9	OFDM-64QAM_MCS22 (175.5 Mbps)
Power spectral density	IEEE 802.11b	CDD	1, 7, 11	CCK-DQPSK (5.5 Mbps)
DTS bandwidth	IEEE 802.11g	CDD	1, 7, 11	OFDM-64QAM (54 Mbps)
Conducted spurious	IEEE 802.11n (HT20)	CDD	1, 7, 11	OFDM-64QAM_MCS23 (195 Mbps)
emissions	IEEE 802.11n (HT40)	CDD	3, 6, 9	OFDM-64QAM_MCS22 (175.5 Mbps)
AC power line conducted emissions	IEEE 802.11n (HT40)	CDD	7	OFDM-64QAM_MCS22 (175.5 Mbps)
Radiated emissions < 1 GHz	IEEE 802.11n (HT40)	CDD	7	OFDM-64QAM_MCS22 (175.5 Mbps)
	IEEE 802.11b	CDD	1, 7, 11	CCK-DQPSK (5.5 Mbps)
Radiated emissions > 1 GHz	IEEE 802.11g	CDD	1, 7, 11	OFDM-64QAM (54 Mbps)
	IEEE 802.11n (HT20)	CDD	1, 7, 11	OFDM-64QAM_MCS23 (195 Mbps)
	IEEE 802.11 (HT40)	CDD	3, 6, 9	OFDM-64QAM_MCS22 (175.5 Mbps)

3.8 Transmitter power settings

Power levels of the transmitter were set to the levels below using proprietary software. The levels below were used for all testing.

Table 3.8-1: EUT transmitter power levels

Operational Mode	Channel	Frequency	Power Level in Tool
	1	2412	0x28
IEEE 802.11b	7	2442	0x28
	11	2462	0x27
	1	2412	0x1A
IEEE 802.11g	7	2442	0x28
	11	2462	0x1D
	1	2412	0x17
IEEE 802.11n (HT20), CDD	7	2442	0x17
	11	2462	0x17
	3	2422	0x0C
IEEE 802.11n (HT40), CDD	6	2437	0x2E
	9	2465	0x17
	1	2412	0x25
IEEE 802.11n (HT20), Beamforming	7	2442	0x25
	11	2462	0x25
	3	2422	0x24
IEEE 802.11n (HT40), Beamforming	6	2437	0x24
	9	2465	0x24

3.9 EUT setup details

Table 3.9-1 : E	EUT sub assemblies		
Brand name	Model/Part number	Serial number	Rev.
Starlink	UTR-232	UTA232W-CON-DUT-2	N/A
Starlink	UTP-231L	PMLV241080000674	N/A
Table 3.9-2 : [EUT interface ports		
			Qty.
			1
			1
Table 3.9-3: 5	Support equipment		
Brand name	Model/Part number	Serial number	Rev.
Table 3.9-4: Int	er-connection cables		
From	То		Length (m)
Laptop PC	C Wireless	router (EUT)	1
Facility po	ower AC/DC a	daptor	1
EUT (UTR- 231) ▲Ethernet	AC/DC adaptor ——To facility power-	→	
	Brand name Starlink Starlink Table 3.9-2: I Table 3.9-3: : Brand name Table 3.9-4: Int From Laptop PC Facility pc EUT (UTR-	Brand name Model/Part number Starlink UTR-232 Starlink UTP-231L Table 3.9-2: EUT interface ports Table 3.9-2: EUT interface ports Table 3.9-3: Support equipment Brand name Model/Part number Table 3.9-3: Support equipment Table 3.9-3: Support equipment Table 3.9-4: Inter-connection cables From To Laptop PC Wireless Facility power AC/DC ar	Brand name Model/Part number Serial number Starlink UTR-232 UTA232W-CON-DUT-2 Starlink UTP-231L PMLV241080000674 Table 3.9-2: EUT interface ports PMLV241080000674 Table 3.9-2: EUT interface ports

Figure 3.9-1: Test setup diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

None.

4.2 Technical judgement

None.

4.3 Deviations from laboratory test procedures

None.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics, and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

Measurement		U _{cispr} dB	U _{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit
- V-AMN: V type artificial mains network
- AAN: Asymmetric artificial network
- CP: Current probe
- CVP: Capacitive voltage probe
- SAC: Semi-anechoic chamber
- FAR: Fully anechoic room

Section 7 Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Two Line V-Network	Rohde & Schwarz	ENV216	E1019	1 year	03-Oct-2024
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESCI 7	E1026	1 year	18-Apr-2025
Antenna, Bilog	Schaffner	CBL 6111D	1763	2 years	01-Jul-2024
Power Sensor	ETS-Lindgren	7002-006	E1061	1 year	27-Jul-2024
Power Sensor	ETS-Lindgren	7002-006	E1062	1 year	27-Jul-2024
Power Sensor	ETS-Lindgren	7002-006	EW110	1 year	14-Apr-2025
EMI Test Receiver	Rohde & Schwarz	ESU 40	E1121	1 year	23-Aug-2024
Transient Limiter	HP	11947A	E1159	1 year	28-Feb-2025
DRG Horn (medium)	ETS-Lindgren	3117-PA	E1160	2 years	13-Feb-2025
Signal & Spectrum Analyzer 2Hz / 43.5 GHz	Rohde & Schwarz	FSW43	E1302	1 year	22-Jan-2025

Notes: NCR: no calibration required VBU: verify before use

7.2 Test software list

Table 7.2-1: Test Software		
Manufacturer	Details	
Rohde & Schwarz	EMC 32 V10.60.10 (AC conducted emissions)	
Rohde & Schwarz	EMC 32 V10.60.15 (radiated emissions)	

Section 8 Testing data

8.1 Duty cycle of test signal

8.1.1 References and limits

For information only.

8.1.2 Test summary

Verdict	For information		
Test date	February 26, 2024	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1007 mbar
Test location	 10m semi anechoic chamber 3m semi anechoic chamber Wireless bench: Other: 	Relative humidity	49 %

8.1.3 Notes

None

8.1.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	⊠ Table-top
	Floor standing
	Other:

Measurements were performed with an RF power meter with built-in duty cycle and transmission duration measurement.

8.1.5 Test data

IEEE 802.11b operation:

	Table 8.1-1: Duty cycle of test signal test data			
	Duty Cycle (%)	Transmission Duration (ms)		
	99.295	8.416		
IEEE 802.11g operation:				
	Table 8.1-2: Duty cy	cle of test signal test data		
	Duty Cycle (%)	Transmission Duration (ms)		
	95.856	1.396		
IEEE 802.11n (HT20) operation:				
	Table 8.1-3: Duty cy	cle of test signal test data		
	Duty Cycle (%)	Transmission Duration (ms)		
	91.769	0.672		

IEEE 802.11n (HT40) operation:

Table 8.1-4: Duty cycle of test signal test data

Duty Cycle (%)	Transmission Duration (ms)
91.541	0.648

8.2 Conducted limits / power line conducted emissions limits for licence-exempt radio apparatus

8.2.1 References and limits

- FCC 47 CFR Part 15, Subpart C: §15.207

- ISED: RSS-GEN §6.8

- Test method: ANSI C63.10-2020 §6.2

Table 8.2-1: Conducted emissions limit

Frequency of emission,	Conducted limit, dBµV		
MHz	Quasi-peak	Average	
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Note: * Decreases with the logarithm of the frequency.

8.2.2 Test summary

Verdict	Pass		
Test date	March 8, 2024	Temperature	18 °C
Test engineer	Chenhao Ma, Wireless Test Technician	Air pressure	1006 mbar
Test location	 10m semi anechoic chamber 3m semi anechoic chamber Other: Ground plane 	Relative humidity	1005 %

8.2.3 Notes

Testing was performed with the transmitter operating on a fixed channel (lowest, middle, and highest) at maximum output power.

The spectral plots within this section have been corrected with all relevant transducer factors.

For EUT's supporting multiple modulation schemes and/or data rates, testing is performed with the modulation and data rate that produces the highest transmitter output power.

8.2.4 Setup details

Port under test	AC power input
EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🛛 Table-top
	Floor standing
	□ Other:
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
Modulation scheme / data rate	IEEE 802.11n HT40, middle channel
tested	(Other operational modes investigated – only this worst-case mode reported)

Receiver settings:

Resolution bandwidth	9 kHz		
Video bandwidth	30 kHz		
Detector mode	 Peak (Preview measurement) 		
	Quasi-peak and CAverage (Final measurement)		
Trace mode	Max Hold		
Measurement time	 100 ms (Peak and Average preview measurement) 		
	– 5000 ms (Quasi-peak final measurement)		
	 5000 ms (CAverage final measurement) 		

Section 8	Testing data
Test name	Conducted limits / power line conducted emissions limits for licence-exempt radio apparatus
Specification(s)	FCC 15.247 & RSS-247

8.2.5 Test data

Full Spectrum

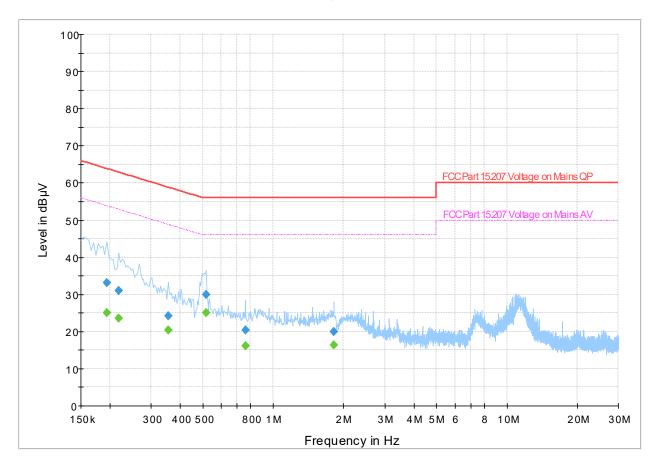


Figure 8.2-1: Conducted emissions at mains port spectral plot (150 kHz - 30 MHz)

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.194000	33.07		63.86	30.79	5000.0	9.000	Ν	ON	19.6
0.194000		25.14	53.86	28.72	5000.0	9.000	Ν	ON	19.6
0.218000		23.63	52.90	29.27	5000.0	9.000	Ν	ON	19.7
0.218000	31.10		62.90	31.79	5000.0	9.000	Ν	ON	19.7
0.354000	24.24		58.87	34.63	5000.0	9.000	Ν	ON	19.7
0.354000		20.42	48.87	28.45	5000.0	9.000	Ν	ON	19.7
0.514000		25.02	46.00	20.98	5000.0	9.000	L1	ON	19.7
0.514000	30.04		56.00	25.96	5000.0	9.000	L1	ON	19.7
0.758000		16.13	46.00	29.87	5000.0	9.000	Ν	ON	19.7
0.758000	20.36		56.00	35.64	5000.0	9.000	Ν	ON	19.7
1.818000		16.43	46.00	29.57	5000.0	9.000	Ν	ON	19.8
1.818000	20.02		56.00	35.98	5000.0	9.000	N	ON	19.8

Table 8.2-2: Conducted emissions at mains port results

 1 Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB). 2 Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Notes:

8.3 Variation of power source

8.3.1 References and limits

- FCC 47 CFR Part 15, Subpart A: §15.31(e)

- Test method: ANSI C63.10-2020 §5.13

§15.31(e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.3.2 Test summary

Verdict	Pass				
Test date	March 1, 2024 Temperature 21 °C				
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1006 mbar		
Test location	☑ Wireless bench□ Other:	Relative humidity	54 %		

8.3.3 Notes

Testing was performed with the transmitter operating on a fixed channel (middle) at maximum output power.

8.3.4 Setup details

EUT power input during test	120 VAC / 60 Hz
-----------------------------	-----------------

8.3.5 Test data

	EUT is battery operated. Therefore, all tests performed with a new fully charged battery			
\boxtimes	EUT power supply voltage varied across supported range. No variation in transmitter output power observed therefore all tests performed at			
	nominal power supply voltage.			
	EUT power supply voltage varied across supported range. Transmitter output power variation was observed. All tests performed with the EUT			
	operated at the worst-case operating voltage with respect to transmitter output power: V.			

8.4 Antenna requirement

8.4.1 References and limits

- FCC 47 CFR Part 15, Subpart C: §15.203

§15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Test summary

Verdict	Pass					
Test date	March 25, 2024 Temperature 20 °C					
Test engineer	Chenhao Ma, Wireless Test Technician	Air pressure	1006 mbar			
Test location	☑ Wireless bench□ Other:	Relative humidity	55 %			

8.4.2 Notes

None

8.4.3 Test data

Antenna part number:	Not provided
Technical description:	Not provided
	ANT1: 5.11 dBi
Peak gain (dBi):	ANT2: 5.03 dBi
	ANT3: 4.56 dBi
	Declared by client
Source of gain data:	Antenna data sheet or specification. Document name:
	Antenna gain test report. Document name: Test Summary_P24010066_WNC_Spacex mini desh_Gain_20240202.xls

8.5 Minimum 6 dB bandwidth

8.5.1 References and limits

- FCC 47 CFR Part 15, Subpart C: §15.247(a)(2)
- ISED: RSS-247 5.2(a)
- Test method: ANSI C63.10-2020 §11.8.1

§15.247:

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-247:

- 5.2 DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:
 - (a) The minimum 6 dB bandwidth shall be 500 kHz.

8.5.2 Test summary

Verdict	Pass		
Test date	February 29, 2024	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1008 mbar
Test location	☑ Wireless bench□ Other:	Relative humidity	55 %

8.5.3 Notes

Testing was performed with the transmitter operating on a fixed channel (lowest, middle, and highest) at maximum output power.

The spectral plots within this section have been corrected with all relevant transducer factors.

8.5.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	⊠ Table-top □ Floor standing
	Other:

Receiver/spectrum analyzer settings:

Resolution bandwidth	1 – 5 % of nominal bandwidth, minimum of 100 kHz
Video bandwidth	3 x resolution bandwidth
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

8.5.5 Test data

8.5.5.1 IEEE 802.11b (CDD) mode:

Channel	Frequency (MHz)	Modulation	DT	S Bandwidth (k	Hz)	Limit (kHz)
			ANT1	ANT2	ANT3	
1	2412		7691.040	7913.745	7667.765	
7	2442	CCK-DQPSK (5.5 Mbps)	7890.960	8308.440	7957.600	≥ 500
11	2462		7946.820	8278.550	7890.225	
	DTS bandwidth, TX: 241	2 MHz, BW: 20MHz, MOD: CCK_BQPSK_5.5Mbps_ANT2				
		thum Offset 20 00 db = PBW 300 Hz SWT 101 ms = VIW 1 HHz Mode Sweep 		SGL Count M1[1] 10.05 2411428 M2[1] 12.95 2409.056	Max dBm 9 GHz dBm	
	0 dbn -10 dbe -10	1001 ps	2./2 MBz/	Span 27.195	<u></u>	
	Type Ref Trc M1 1 M2 1 D3 M2 1	X-Value Y-Value 2.411 428 9 GHz 18.85 dBm 2.408 056 7 GHz 12.90 dBm 7.913 7 MHz 0.11 dB	Function	Function Result Ready	~	

Table 8.5-1: Minimum 6 dB bandwidth test data, IEEE 802.11b (CDD) mode

Figure 8.5-1: Minimum 6 dB bandwidth, IEEE 802.11b (CDD mode), minimum measured DTS bandwidth

8.5.5.2 IEEE 802.11g (CDD) mode:

Channel	Frequency (MHz)	Modulation	DTS Bandwidth (kHz)		Limit (kHz)	
			ANT1	ANT2	ANT3	
1	2412		16310.000	16170.000	15820.000	
7	2442	OFDM-64QAM (54 Mbps)	15610.000	15610.000	16030.000	≥ 500
11	2462		16170.000	16240.000	15750.000	

Figure 8.5-2: Minimum 6 dB bandwidth, IEEE 802.11g (CDD mode), minimum measured DTS bandwidth

8.5.5.3 IEEE 802.11n HT20 (CDD) mode:

Channel	Frequency (MHz)	Modulation	DTS Bandwidth (kHz)		Limit (kHz)	
			ANT1	ANT2	ANT3	
1	2412		16940.000	17430.000	17360.000	
7	2442	OFDM-64QAM_MCS23 (195 Mbps)	16100.000	16940.000	17220.000	≥ 500
11	2462		17430.000	16170.000	17150.000	

Figure 8.5-3: Minimum 6 dB bandwidth, IEEE 802.11n HT20 (CDD mode), minimum measured DTS bandwidth

8.5.5.4 IEEE 802.11n HT40 (CDD) mode:

Channel	Frequency (MHz)	Modulation	DTS Bandwidth (kHz)		Limit (kHz)	
			ANT1	ANT2	ANT3	
3	2422		35280.000	35700.000	35560.000	
6	2437	OFDM-64QAM_MCS22	34860.000	35980.000	35700.000	≥ 500
9	2452	(175.5 Mbps)	34720.000	35840.000	35980.000	
DTS bandwidth, TX: 2437 MHz, BW: 40MHz, MOD: 0FDM. 640AM. MCS22. 175.5Mbps						

Figure 8.5-4: Minimum 6 dB bandwidth, IEEE 802.11n HT40 (CDD mode), minimum measured DTS bandwidth

8.6 Maximum peak output power

8.6.1 References and limits

- FCC 47 CFR Part 15, Subpart C: §15.247(b)(3)

- ISED: RSS-247 5.4(d)
- Test method: ANSI C63.10-2020 §11.9.2.3.1 (Average power method AVGPM)

§15.247:

- (b) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

RSS-247:

- 5.4 Devices shall comply with the following requirements, where applicable:
 - (d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The EIRP shall not exceed 4 W, except as provided in RSS 247 section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

8.6.2 Test summary

Verdict	Pass		
Test date	February 29, 2024	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1008 mbar
Test location	☑ Wireless bench□ Other:	Relative humidity	55 %

8.6.3 Notes

Testing was performed with the transmitter operating on a fixed channel (lowest, middle, and highest) at maximum output power.

The spectral plots within this section have been corrected with all relevant transducer factors.

8.6.4 Setup details

EUT power input during test	120 VAC, 60 Hz
EUT setup configuration	🛛 Table-top
	□ Floor standing
	□ Other:

8.6.5 Test data

8.6.5.1 IEEE 802.11b (CDD) mode

Table 8.6-1: Maximum	neak outnut i	nower test data

Channel	Frequency	Modulation	Ave	rage power (d	Bm)	Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power (mw)	power (dBm)	Limit (dBm)	(ISED) (dBm)
1	2412		24.75	23.90	25.18	873.619	29.41	30.00	34.52
7	2442	CCK-DQPSK (5.5	24.82	24.01	25.43	904.297	29.56	30.00	34.67
11	2462	Mbps)	24.92	24.10	25.36	911.053	29.60	30.00	34.71

EIRP reported per ISED requirements and calculated by adding highest (worst-case) antenna gain (5.11 dBi) to total conducted power. The maximum gain is 5.11 dBi < 6 dBi, so the output power limit shall not be reduced.

8.6.5.2 IEEE 802.11g (CDD) mode

Table 8.6-2: Maximum peak output power test data

Channel	Frequency	Modulation	Ave	rage power (d	lBm)	Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power	power	Limit	(ISED)
						(mw)	(dBm)	(dBm)	(dBm)
1	2412		25.03	24.27	25.62	950.474	29.78	30.00	34.89
7	2442	OFDM-64QAM (54	25.12	24.45	25.73	977.810	29.90	30.00	35.01
11	2462	Mbps)	25.28	24.46	25.83	998.724	29.99	30.00	25.10

EIRP reported per ISED requirements and calculated by adding highest (worst-case) antenna gain (5.11 dBi) to total conducted power. The maximum gain is 5.11 dBi < 6 dBi, so the output power limit shall not be reduced.

8.6.5.3 IEEE 802.11n HT20 (CDD) mode

Table 8.6-3: Maximum peak output power test data

Channel	Frequency	Modulation	Ave	rage power (d	Bm)	Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power (mw)	power (dBm)	Limit (dBm)	(ISED) (dBm)
1	2412	OFDM-	23.33	22.52	23.74	630.519	28.00	30.00	33.11
7	2442	64QAM_MCS23 (195	23.44	22.63	23.95	652.345	28.14	30.00	33.25
11	2462	Mbps)	25.20	24.56	25.82	998.834	29.99	30.00	35.10

EIRP reported per ISED requirements and calculated by adding highest (worst-case) antenna gain (5.11 dBi) to total conducted power. The maximum gain is 5.11 dBi < 6 dBi, so the output power limit shall not be reduced.

8.6.5.4 IEEE 802.11n HT40 (CDD) mode

Table 8.6-4: Maximum peak output power test data

Channel	Frequency	Modulation	Ave	rage power (d	lBm)	Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power (mw)	power (dBm)	Limit (dBm)	(ISED) (dBm)
3	2422	OFDM-	19.75	19.39	21.21	313.432	24.96	30.00	30.07
6	2437	64QAM_MCS22	19.70	19.31	21.23	311.375	24.93	30.00	30.04
9	2452	(175.5 Mbps)	19.80	19.33	21.29	315.789	24.99	30.00	30.10

EIRP reported per ISED requirements and calculated by adding highest (worst-case) antenna gain (5.11 dBi) to total conducted power. The maximum gain is 5.11 dBi < 6 dBi, so the output power limit shall not be reduced.

8.6.5.5 IEEE 802.11n HT20 (beamforming) mode

Table 8.6-5: Maximum peak output power test data

Channel	Frequency	Modulation	Ave	Average power (dBm)		Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power	power	Limit	(ISED)
						(mw)	(dBm)	(dBm)	(dBm)
1	2412	OFDM-	19.76	19.48	20.89	306.083	24.86	26.33	34.53
7	2442	64QAM_MCS23 (195	19.45	19.09	20.63	284.812	24.55	26.33	34.22
11	2462	Mbps)	19.46	19.11	20.78	289.452	24.62	30.00	34.29

Directional gain is 9.67 dBi which is greater than 6 dBi. Therefore, conducted power limit is reduced by 9.67 – 6 = 3.67 dB.

EIRP reported per ISED requirements and calculated by adding highest directional gain (9.67 dBi) to total conducted power.

8.6.5.6 IEEE 802.11n HT40 (beamforming) mode

Table 8.6-6: Maximum	peak output	power test data

Channel	Frequency	Modulation	Ave	rage power (d	lBm)	Total	Total	Power	EIRP
	(MHz)		ANT1	ANT2	ANT3	power (mw)	power (dBm)	Limit (dBm)	(ISED) (dBm)
3	2422	OFDM-	21.19	20.69	22.45	424.534	26.28	26.33	35.95
6	2437	64QAM_MCS22	21.27	20.83	22.40	428.808	26.33	26.33	35.99
9	2452	(175.5 Mbps)	21.25	20.81	22.42	428.438	26.32	26.33	35.99

Directional gain is 9.67 dBi which is greater than 6 dBi. Therefore, conducted power limit is reduced by 9.67 - 6 = 3.67 dB. EIRP reported per ISED requirements and calculated by adding highest directional gain (9.67 dBi) to total conducted power.

8.7 Spurious emissions

8.7.1 References and limits

- FCC 47 CFR Part 15, Subpart C: §15.247(d)

- RSS-247: §5.5
- Test method: ANSI C63.10-2020 §6.10.4 (authorized band edge)
- Test method: ANSI C63.10-2020 §11.11 (antenna port conducted spurious emissions)
- Test method: ANSI C63.10-2020 §11.12.3 (radiated restricted band edge)
- Test method: ANSI C63.10-2020 §6.5, 6.6 (radiated emissions in restricted bands)

§15.247:

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

RSS-247:

5.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency,	Field stren	gth of emissions	Measurement distance, m
MHz	μV/m	dBµV/m	
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

	Table 8.7-2: FCC restricted frequency bands							
MHz	MHz	MHz	GHz					
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75					
4.125-4.128	25.5-25.67	1300–1427	8.025-8.5					
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2					
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5					
6.215-6.218	74.8–75.2	1660–1710	10.6-12.7					
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4					
6.31175–6.31225	123–138	2200–2300	14.47–14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4					
8.37625-8.38675	156.7-156.9	2690–2900	22.01-23.12					
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0					
12.29-12.293	167.72-173.2	3332–3339	31.2–31.8					
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5					
12.57675-12.57725	322-335.4	3600-4400	Above 38.6					
13.36–13.41								

Testing data Spurious emissions FCC 15.247 & RSS-247

Table 8.7-3: ISED RSS-GEN restricted frequency bands				
MHz	MHz	GHz		
090 - 0.110	149.9 - 150.05	9.0 - 9.2		
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5		
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7		
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4		
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5		
4.17725 - 4.17775	240 - 285	15.35 - 16.2		
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4		
5.677 - 5.683	399.9 - 410	22.01 - 23.12		
6.215 - 6.218	608 - 614	23.6 - 24.0		
6.26775 - 6.26825	960 - 1427	31.2 - 31.8		
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5		
8.291 - 8.294	1645.5 - 1646.5	Above 38.6		
8.362 - 8.366	1660 - 1710			
8.37625 - 8.38675	1718.8 - 1722.2			
8.41425 - 8.41475	2200 - 2300			
12.29 - 12.293	2310 - 2390			
12.51975 - 12.52025	2483.5 - 2500			
12.57675 - 12.57725	2655 - 2900			
13.36 - 13.41	3260 - 3267			
16.42 - 16.423	3332 - 3339			
16.69475 - 16.69525	3345.8 - 3358			
16.80425 - 16.80475	3500 - 4400			
25.5 - 25.67	4500 - 5150			
37.5 - 38.25	5350 - 5460			
73 - 74.6	7250 - 7750			
74.8 - 75.2	8025 - 8500			
108 - 138				

8.7.2 Test summary

Verdict	Pass		
Test date	March 1, 2024	Temperature	21 °C
Test engineer	Chenhao Ma, Wireless Test Technician	Air pressure	1005 mbar
Test location	 Wireless bench (conducted tests) 10 m semi-anechoic chamber (radiated tests) 3 m semi-anechoic chamber (radiated tests) Other: 	Relative humidity	59 %

8.7.3 Notes

Testing was performed with the transmitter operating on a fixed channel at full power. Low, middle, and high channels were tested. The spectrum was searched from 30 MHz to 26 GHz (above the 10th harmonic of the highest transmit frequency).

The spectral plots within this section have been corrected with all relevant transducer factors.

8.7.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🖂 Table-top
	Floor standing
	Other:

Spectrum analyzer settings (conducted emissions):	
Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

Receiver settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (preview measurements)
	Quasi-Peak (final measurements)

Receiver settings for radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak (preview measurements)
	Peak and average (final measurements)

8.7.5 Test data – Conducted out-of-band emissions, authorized band edge

8.7.5.1 IEEE 802.11b (CDD) mode

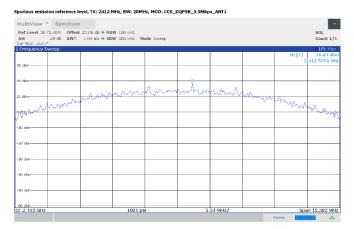


Figure 8.7-1: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 1 Authorized band edge, TX: 2412 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT1

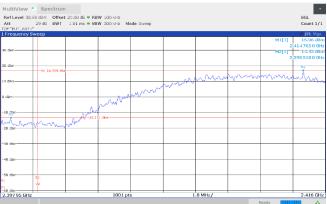
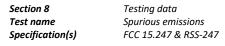



Figure 8.7-2: Authorized band-edge emissions, 2412 MHz, Antenna 1

Spurious emission reference level, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT1

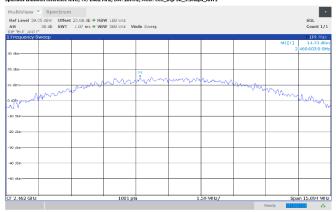


Figure 8.7-3: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 1

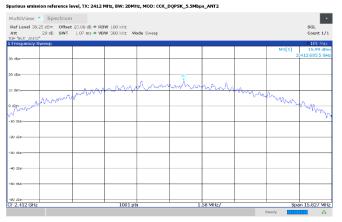


Figure 8.7-5: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 2

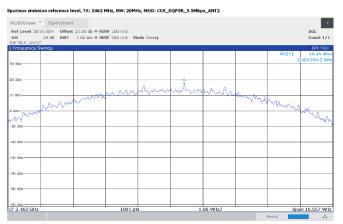


Figure 8.7-7: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 2

Authorized band edge, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT1

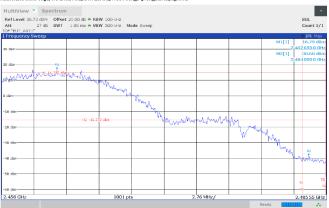


Figure 8.7-4: Authorized band-edge emissions, 2462 MHz, Antenna 1

Authorized band edge, TX: 2412 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT2

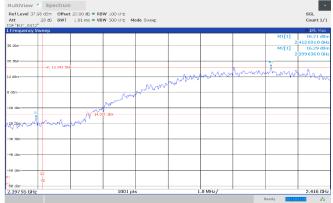


Figure 8.7-6: Authorized band-edge emissions, 2412 MHz, Antenna 2

Authorized band edge, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT2

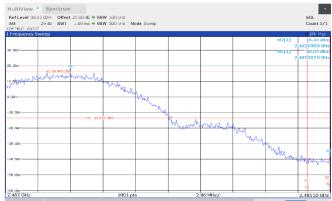
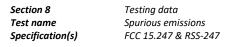



Figure 8.7-8: Authorized band-edge emissions, 2462 MHz, Antenna 2

rious emission reference level, TX: 2412 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT3

Figure 8.7-9: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 3

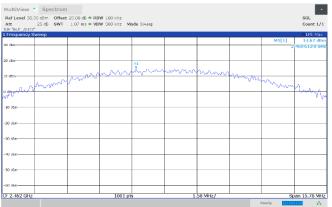


Figure 8.7-11: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 3

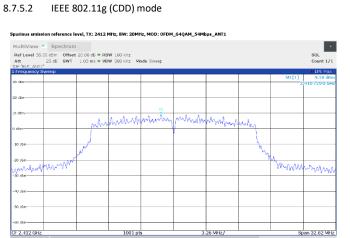
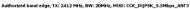



Figure 8.7-13: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 1

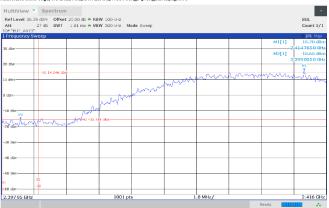
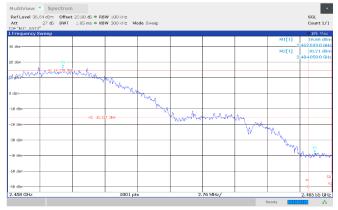
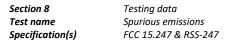
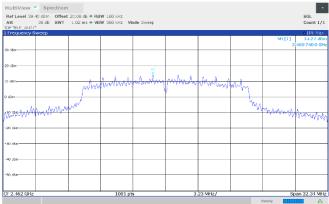


Figure 8.7-10: Authorized band-edge emissions, 2412 MHz, Antenna 3

Authorized band edge, TX: 2462 MHz, BW: 20MHz, MOD: CCK_D0PSK_5.5Mbps_ANT3




Figure 8.7-12: Authorized band-edge emissions, 2462 MHz, Antenna 3


Figure 8.7-14: Authorized band-edge emissions, 2412 MHz, Antenna 1

us emission reference level, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT3

us emission reference level, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT1

Antenna 1

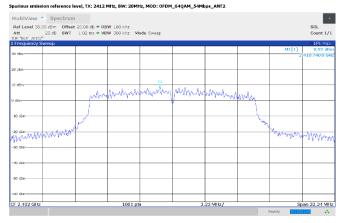


Figure 8.7-17: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 2

Figure 8.7-19: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 2

Authorized band edge, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT1

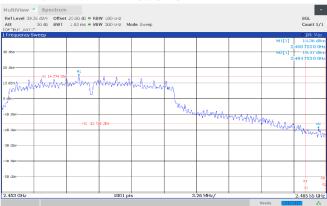


Figure 8.7-16: Authorized band-edge emissions, 2462 MHz, Antenna 1

orized band edge, TX: 2412 MHz, BW: 20MHz, MOD: 0FDM_640AM_54Mbps_ANT2

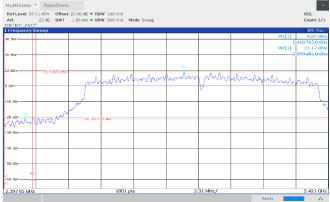


Figure 8.7-18: Authorized band-edge emissions, 2412 MHz, Antenna 2

orized band edge, TX: 2462 MHz, BW: 20MHz, MOD: OFDM_64QAM_54Mbps_ANT2

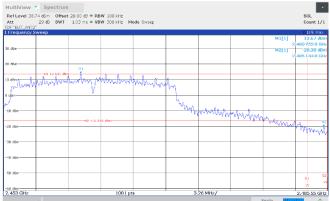


Figure 8.7-20: Authorized band-edge emissions, 2462 MHz, Antenna 2

Figure 8.7-15: Authorized band-edge emissions, reference level, 2462 MHz,

ous emission reference level, TX: 2412 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT3

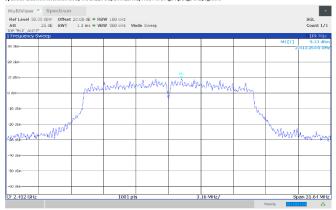


Figure 8.7-21: Authorized band-edge emissions, reference level, 2412 MHz,

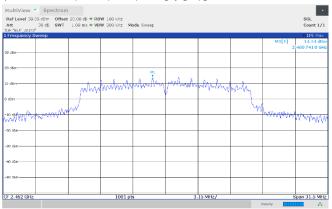


Figure 8.7-23: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 3

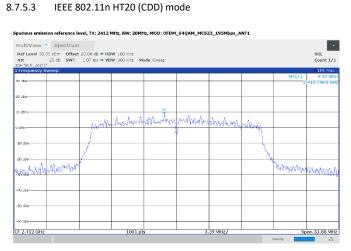


Figure 8.7-25: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 1

Authorized band edge, TX: 2412 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT3

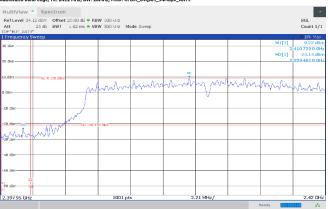


Figure 8.7-22: Authorized band-edge emissions, 2412 MHz, Antenna 3

prized band edge, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_640AM_54Mbps_ANT3

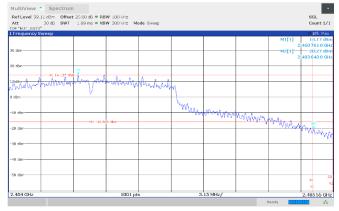


Figure 8.7-24: Authorized band-edge emissions, 2462 MHz, Antenna 3

Figure 8.7-26: Authorized band-edge emissions, 2412 MHz, Antenna 1

Antenna 3 us emission reference level, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_640AM_54Mbps_ANT3

Figure 8.7-27: Authorized band-edge emissions, reference level, 2462 MHz,

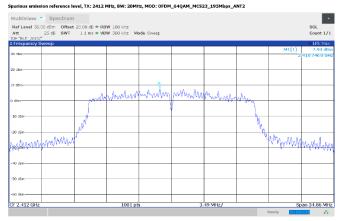


Figure 8.7-29: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 2

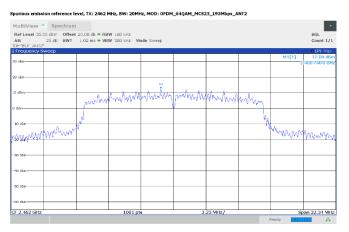


Figure 8.7-31: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 2

Authorized band edge, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_64QAM_MCS23_195Mbps_ANT1

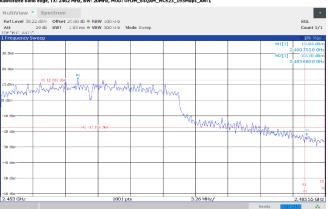


Figure 8.7-28: Authorized band-edge emissions, 2462 MHz, Antenna 1

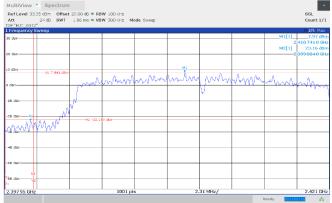
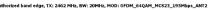



Figure 8.7-30: Authorized band-edge emissions, 2412 MHz, Antenna 2

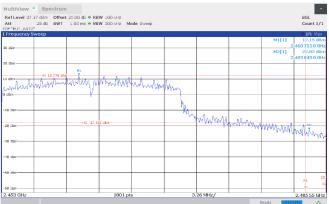


Figure 8.7-32: Authorized band-edge emissions, 2462 MHz, Antenna 2

Antenna 1

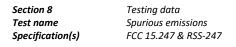


Figure 8.7-33: Authorized band-edge emissions, reference level, 2412 MHz, Antenna 3



Figure 8.7-35: Authorized band-edge emissions, reference level, 2462 MHz, Antenna 3

Figure 8.7-37: Authorized band-edge emissions, reference level, 2422 MHz, Antenna 1

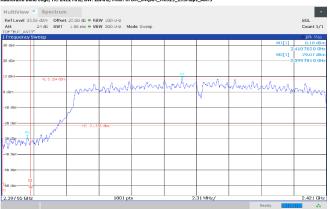


Figure 8.7-34: Authorized band-edge emissions, 2412 MHz, Antenna 3

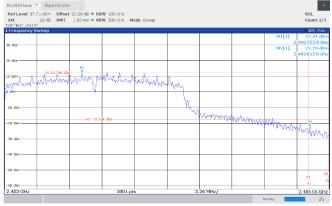


Figure 8.7-36: Authorized band-edge emissions, 2462 MHz, Antenna 3

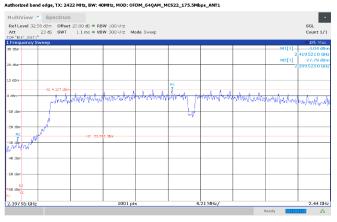
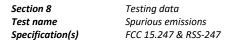



Figure 8.7-38: Authorized band-edge emissions, 2422 MHz, Antenna 1

ous emission reference level, TX: 2452 MHz, BW: 40MHz, MOD: 0FDM_64QAM_MCS22_175.5Mbps_ANT1

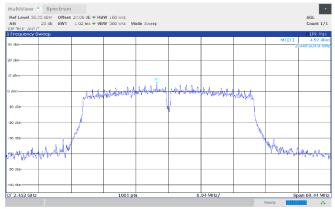



Figure 8.7-39: Authorized band-edge emissions, reference level, 2452 MHz, Antenna 1

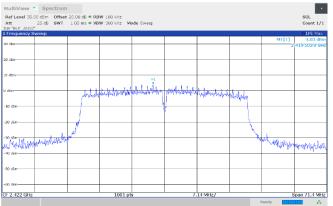


Figure 8.7-41: Authorized band-edge emissions, reference level, 2422 MHz, Antenna 2



Figure 8.7-43: Authorized band-edge emissions, reference level, 2452 MHz, Antenna 2

Authorized band edge, TX: 2452 MHz, BW: 40MHz, MOD: 0FDM_64QAM_MCS22_175.5Mbps_ANT1

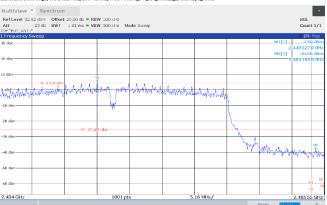


Figure 8.7-40: Authorized band-edge emissions, 2452 MHz, Antenna 1

prized band edge, TX: 2422 MHz, BW: 40MHz, MOD: 0FDM_640AM_MCS22_175.5Mbps_ANT2

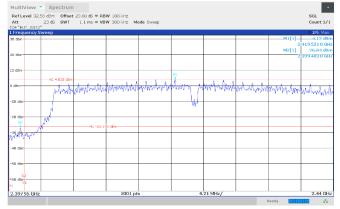
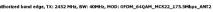



Figure 8.7-42: Authorized band-edge emissions, 2422 MHz, Antenna 2

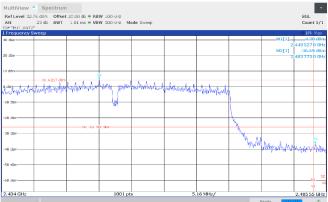


Figure 8.7-44: Authorized band-edge emissions, 2452 MHz, Antenna 2

Report reference ID: REP010975-1TRFEMC

Spurious emission reference level, TX: 2422 MHz, BW: 40MHz, MOD: 0FDM_64QAM_MCS22_175.5Mbps_ANT3

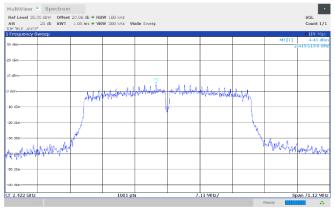


Figure 8.7-45: Authorized band-edge emissions, reference level, 2422 MHz, Antenna 3

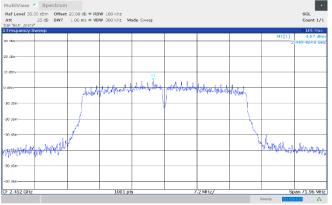
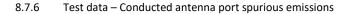



Figure 8.7-47: Authorized band-edge emissions, reference level, 2452 MHz, Antenna 3

8.7.6.1 IEEE 802.11b (CDD) mode

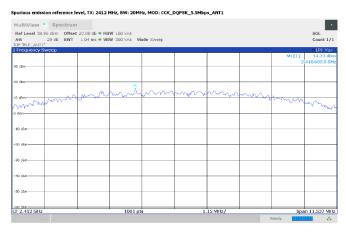


Figure 8.7-49: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 1

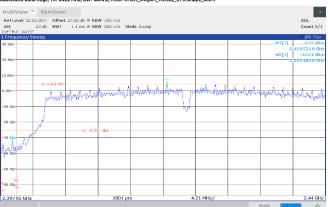


Figure 8.7-46: Authorized band-edge emissions, 2422 MHz, Antenna 3

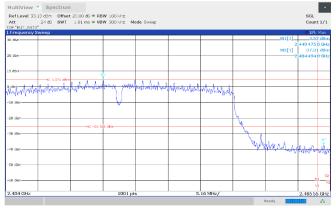


Figure 8.7-48: Authorized band-edge emissions, 2452 MHz, Antenna 3

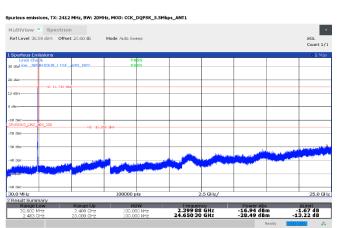
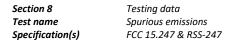



Figure 8.7-50: Conducted antenna port spurious emissions, 2412 MHz, Antenna 1

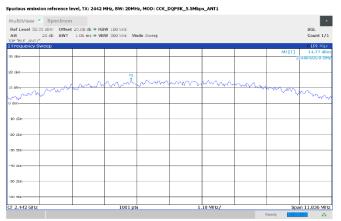


Figure 8.7-51: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 1

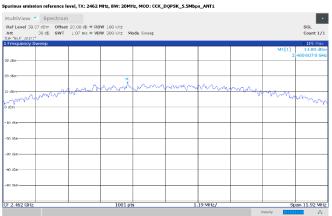


Figure 8.7-53: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 1

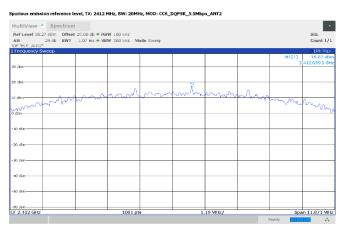


Figure 8.7-55: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 2

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT1

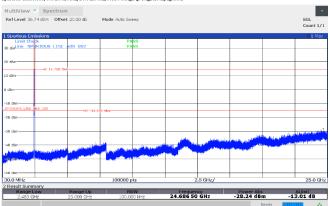


Figure 8.7-52: Conducted antenna port spurious emissions, 2442 MHz, Antenna 1

Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT1

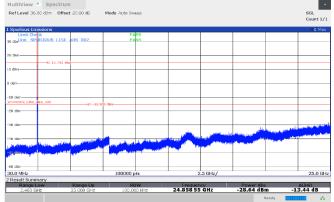


Figure 8.7-54: Conducted antenna port spurious emissions, 2462 MHz, Antenna 1

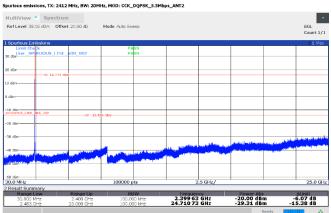
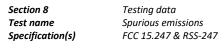



Figure 8.7-56: Conducted antenna port spurious emissions, 2412 MHz, Antenna 2

Spurious emission reference level, TX: 2442 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT2

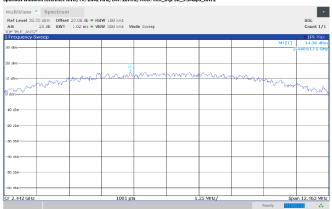


Figure 8.7-57: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 2

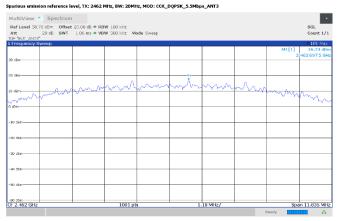


Figure 8.7-59: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 2

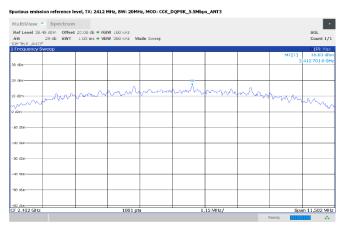
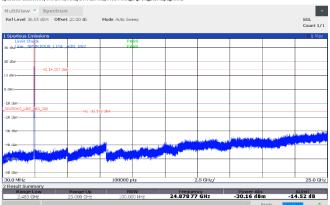
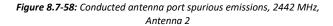




Figure 8.7-61: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 3

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT2

Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT3

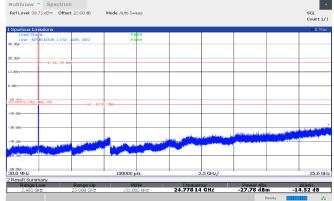


Figure 8.7-60: Conducted antenna port spurious emissions, 2462 MHz, Antenna 2

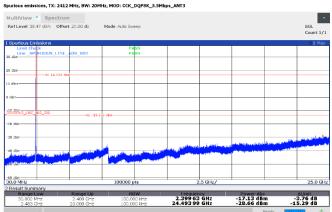
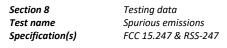



Figure 8.7-62: Conducted antenna port spurious emissions, 2412 MHz, Antenna 3

purious emission reference level, TX: 2442 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT3

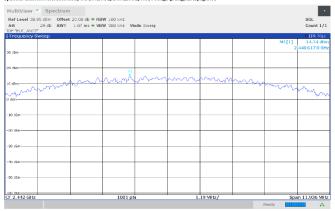
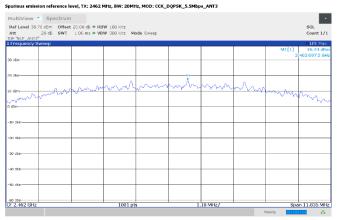
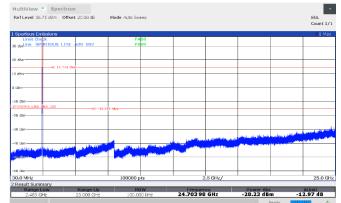
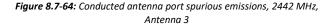
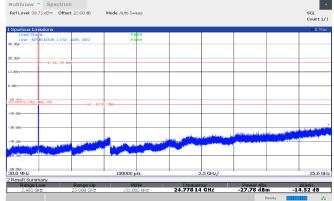
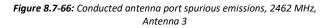
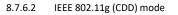


Figure 8.7-63: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 3


Figure 8.7-65: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 3



Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: CCK_DQPSK_5.5Mbps_ANT3

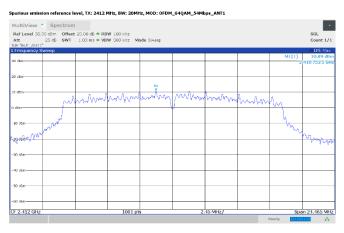


Figure 8.7-67: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 1

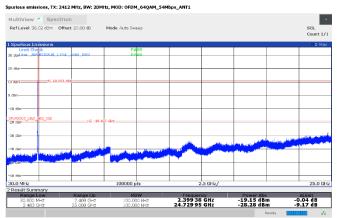


Figure 8.7-68: Conducted antenna port spurious emissions, 2412 MHz, Antenna 1

ous emission reference level, TX: 2442 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT1

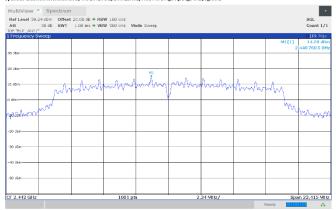


Figure 8.7-69: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 1

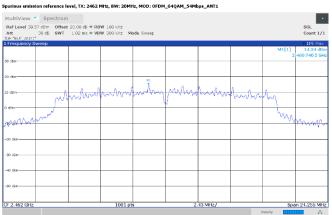


Figure 8.7-71: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 1

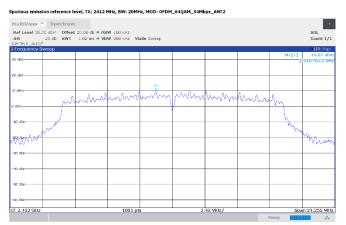


Figure 8.7-73: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 2

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_54Mbps_ANT1

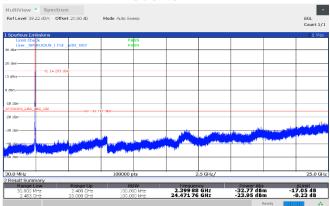
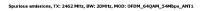



Figure 8.7-70: Conducted antenna port spurious emissions, 2442 MHz, Antenna 1

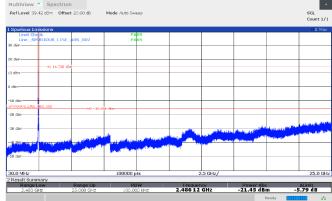


Figure 8.7-72: Conducted antenna port spurious emissions, 2462 MHz, Antenna 1

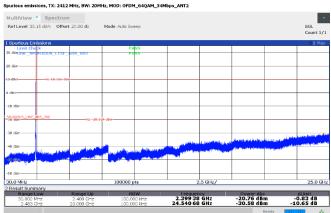
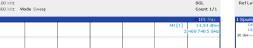



Figure 8.7-74: Conducted antenna port spurious emissions, 2412 MHz, Antenna 2

purious emission reference level, TX: 2442 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT2

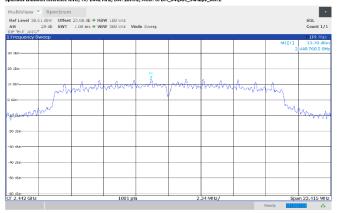


Figure 8.7-75: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 2

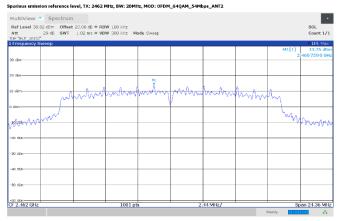


Figure 8.7-77: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 2

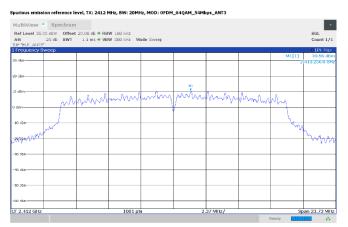


Figure 8.7-79: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 3

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_54Mbps_ANT2

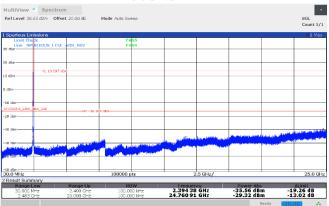


Figure 8.7-76: Conducted antenna port spurious emissions, 2442 MHz, Antenna 2

Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT2

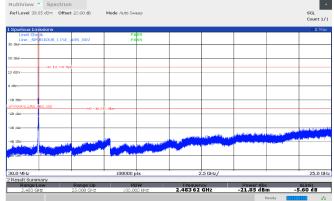


Figure 8.7-78: Conducted antenna port spurious emissions, 2462 MHz, Antenna 2

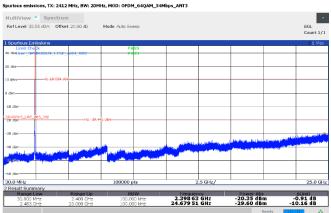


Figure 8.7-80: Conducted antenna port spurious emissions, 2412 MHz, Antenna 3

Report reference ID: REP010975-1TRFEMC

us emission reference level, TX: 2442 MHz, BW: 20MHz, MOD: 0FDM_64QAM_54Mbps_ANT3

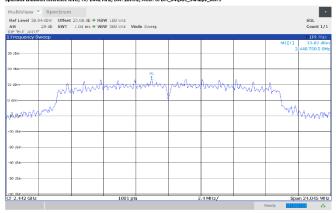


Figure 8.7-81: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 3

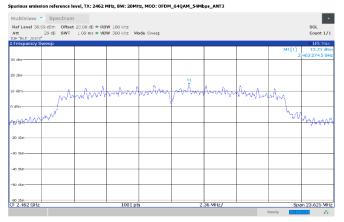


Figure 8.7-83: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 3

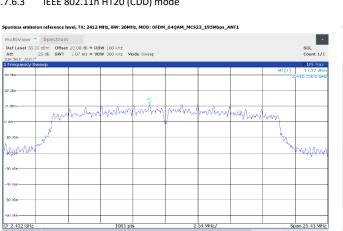
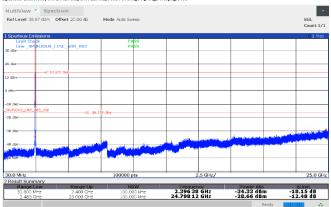
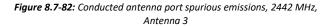




Figure 8.7-85: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 1

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_54Mbps_ANT3

purious emissions, TX: 2462 MHz, BW: 20MHz, MOD: OFDM_640AM_54Mbps_ANT3

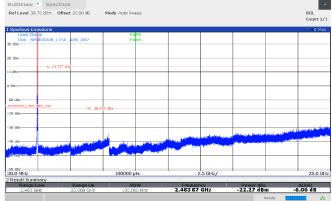


Figure 8.7-84: Conducted antenna port spurious emissions, 2462 MHz, Antenna 3

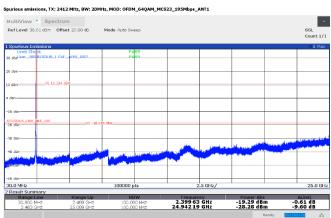
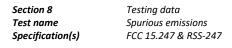



Figure 8.7-86: Conducted antenna port spurious emissions, 2412 MHz, Antenna 1

8.7.6.3 IEEE 802.11n HT20 (CDD) mode

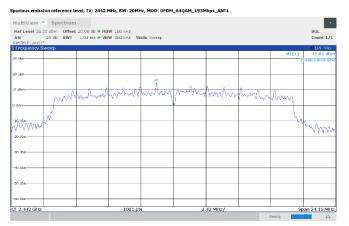


Figure 8.7-87: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 1

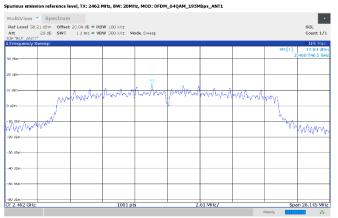


Figure 8.7-89: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 1

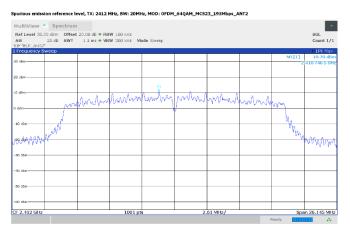


Figure 8.7-91: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 2

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_195Mbps_ANT1

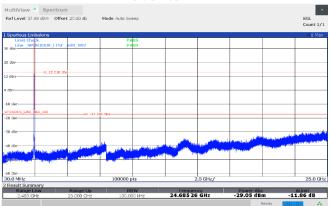


Figure 8.7-88: Conducted antenna port spurious emissions, 2442 MHz, Antenna 1

Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: OFDM_64QAM_195Mbps_ANT1

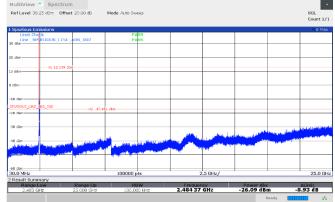


Figure 8.7-90: Conducted antenna port spurious emissions, 2462 MHz, Antenna 1

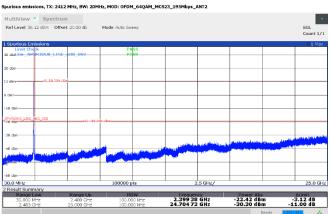
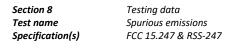



Figure 8.7-92: Conducted antenna port spurious emissions, 2412 MHz, Antenna 2

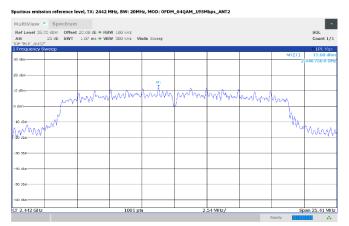


Figure 8.7-93: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 2

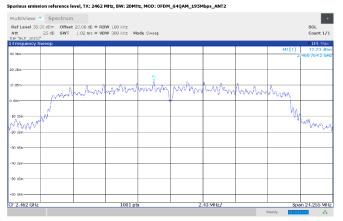


Figure 8.7-95: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 2

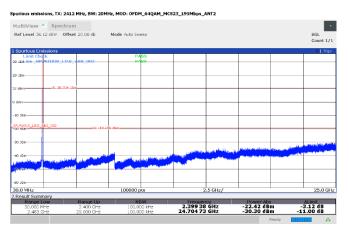
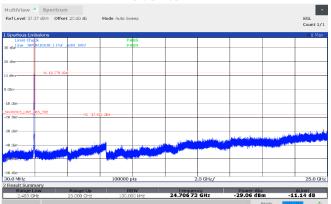



Figure 8.7-97: Conducted antenna port spurious emissions, reference level, 2412 MHz, Antenna 3

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_195Mbps_ANT2

Figure 8.7-94: Conducted antenna port spurious emissions, 2442 MHz, Antenna 2

Spurious emissions, TX: 2462 MHz, BW: 20MHz, MOD: OFDM_64QAM_195Mbps_ANT2

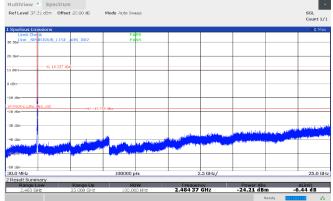


Figure 8.7-96: Conducted antenna port spurious emissions, 2462 MHz, Antenna 2

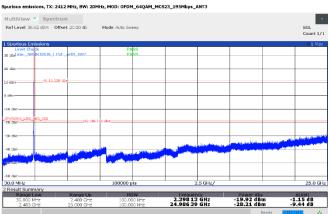
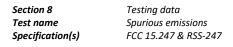



Figure 8.7-98: Conducted antenna port spurious emissions, 2412 MHz, Antenna 3

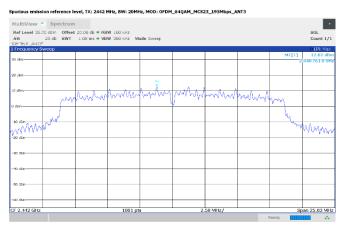


Figure 8.7-99: Conducted antenna port spurious emissions, reference level, 2442 MHz, Antenna 3

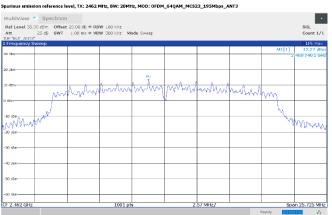
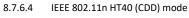



Figure 8.7-101: Conducted antenna port spurious emissions, reference level, 2462 MHz, Antenna 3

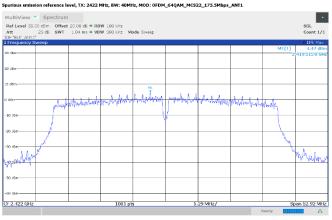


Figure 8.7-103: Conducted antenna port spurious emissions, reference level, 2422 MHz, Antenna 1

Spurious emissions, TX: 2442 MHz, BW: 20MHz, MOD: OFDM_64QAM_MCS23_195Mbps_ANT3

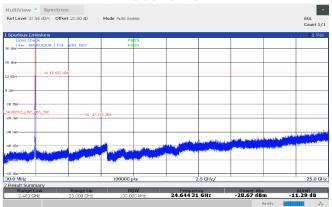


Figure 8.7-100: Conducted antenna port spurious emissions, 2442 MHz, Antenna 3

urious emissions, TX: 2462 MHz, BW: 20MHz, MOD: OFDM_640AM_MCS23_195Mbps_ANT3

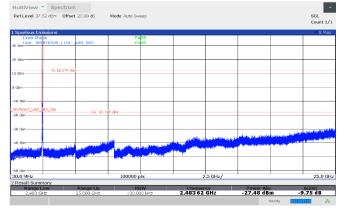


Figure 8.7-102: Conducted antenna port spurious emissions, 2462 MHz, Antenna 3

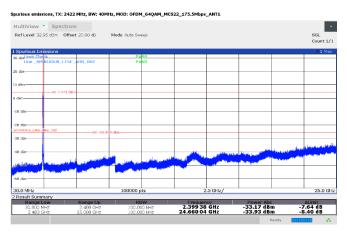
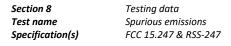



Figure 8.7-104: Conducted antenna port spurious emissions, 2422 MHz, Antenna 1

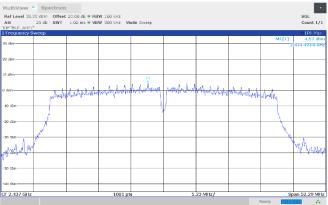


Figure 8.7-105: Conducted antenna port spurious emissions, reference level, 2437 MHz, Antenna 1

Figure 8.7-107: Conducted antenna port spurious emissions, reference level, 2452 MHz, Antenna 1

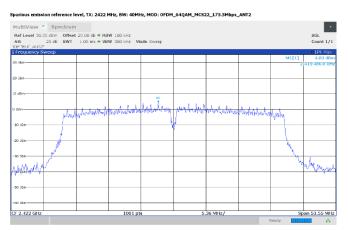


Figure 8.7-109: Conducted antenna port spurious emissions, reference level, 2422 MHz, Antenna 2

Spurious emissions, TX: 2437 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT1

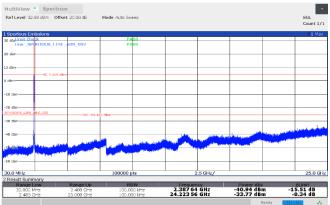
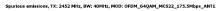



Figure 8.7-106: Conducted antenna port spurious emissions, 2437 MHz, Antenna 1

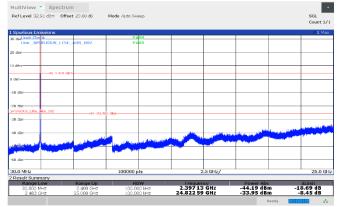


Figure 8.7-108: Conducted antenna port spurious emissions, 2452 MHz, Antenna 1

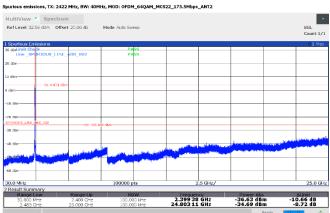
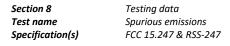



Figure 8.7-110: Conducted antenna port spurious emissions, 2422 MHz, Antenna 2

Spurious emission reference level, TX: 2437 MHz, BW: 40MHz, MOD: 0FDM_64QAM_MCS22_175.5Mbps_ANT2

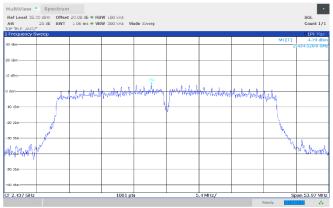



Figure 8.7-111: Conducted antenna port spurious emissions, reference level, 2437 MHz, Antenna 2

us emission reference level, TX: 2452 MHz, BW: 40MHz, MOD: 0FDM_640AM_MCS22_175.5Mbps_ANT2

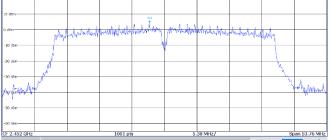


Figure 8.7-113: Conducted antenna port spurious emissions, reference level, 2452 MHz, Antenna 2

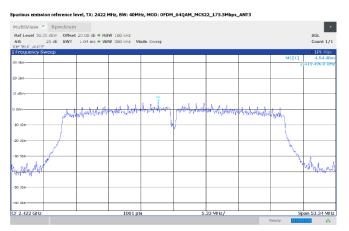


Figure 8.7-115: Conducted antenna port spurious emissions, reference level, 2422 MHz, Antenna 3

Spurious emissions, TX: 2437 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT2

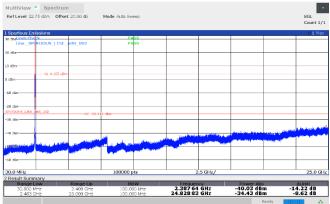


Figure 8.7-112: Conducted antenna port spurious emissions, 2437 MHz, Antenna 2

Spurious emissions, TX: 2452 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT2

•

SGL Count 1/1

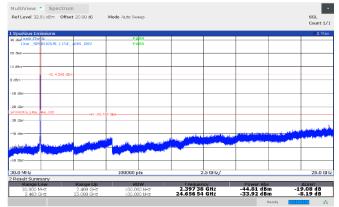


Figure 8.7-114: Conducted antenna port spurious emissions, 2452 MHz, Antenna 2

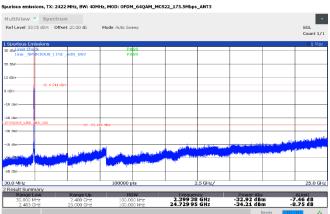
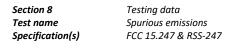



Figure 8.7-116: Conducted antenna port spurious emissions, 2422 MHz, Antenna 3

Report reference ID: REP010975-1TRFEMC

Spurious emission reference level, TX: 2437 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT3

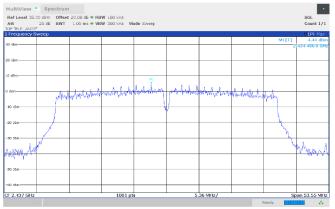


Figure 8.7-117: Conducted antenna port spurious emissions, reference level, 2437 MHz, Antenna 3

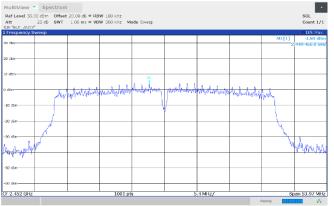


Figure 8.7-119: Conducted antenna port spurious emissions, reference level, 2452 MHz, Antenna 3

Spurious emissions, TX: 2437 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT3

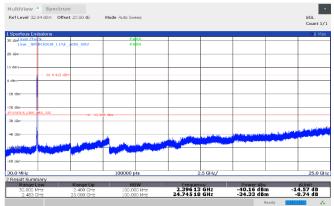


Figure 8.7-118: Conducted antenna port spurious emissions, 2437 MHz, Antenna 3

Spurious emissions, TX: 2452 MHz, BW: 40MHz, MOD: OFDM_64QAM_MCS22_175.5Mbps_ANT3

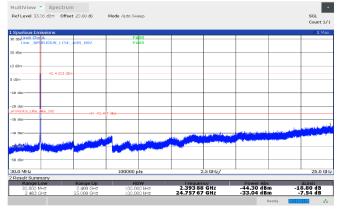


Figure 8.7-120: Conducted antenna port spurious emissions, 2452 MHz, Antenna 3

Nemko

8.7.7 Test data – Radiated emissions – restricted band edge

8.7.7.1 IEEE 802.11b (CDD) mode

Full Spectrum

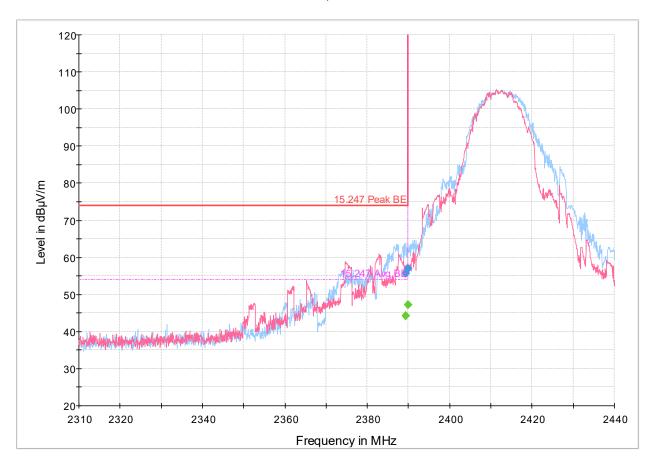
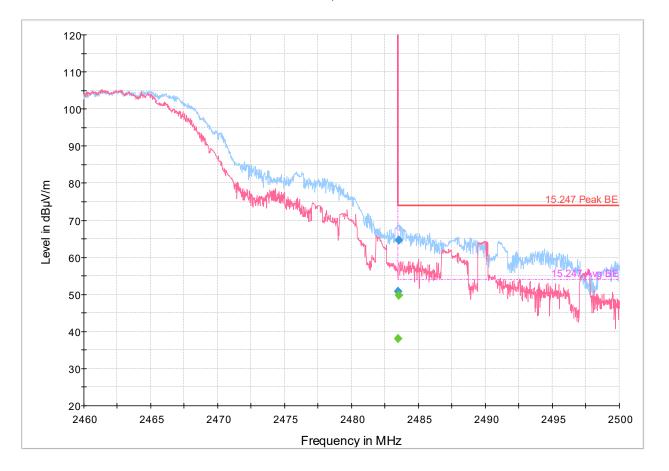


Figure 8.7-121: Radiated emissions spectral plot (2.31 GHz - 2.44 GHz)

Table 8.7-4: Radiated emissions results

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2389.365000	55.57		73.90	18.33	5000.0	1000.000	104.0	V	128.0	-4.4
2389.365000		44.12	53.90	9.78	5000.0	1000.000	104.0	V	128.0	-4.4
2390.000000	56.88		73.90	17.02	5000.0	1000.000	339.0	Н	0.0	-4.4
2390.000000		47.22	53.90	6.68	5000.0	1000.000	339.0	н	0.0	-4.4

Notes: ¹ Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)


² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Full Spectrum

Figure 8.7-122: Radiated emissions spectral plot (2.46 GHz
--

Table 8.7-5: Radiated emissions results

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000	50.84		73.90	23.06	5000.0	1000.000	304.0	V	313.0	-4.0
2483.500000		38.07	53.90	15.83	5000.0	1000.000	304.0	V	313.0	-4.0
2483.540000	64.50		73.90	9.40	5000.0	1000.000	116.0	н	289.0	-4.0
2483.540000		49.76	53.90	4.14	5000.0	1000.000	116.0	Н	289.0	-4.0

Notes: ¹ Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

I

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.