FCC Test Report

Report No.:AGC09966200405FE04

FCC ID : 2AWFM-MARAPHONES-X1

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Mara Phones X1

BRAND NAME : Mara Phones

MODEL NAME : Mara Phones X1

APPLICNAT: Mara Phones Limited

DATE OF ISSUE : Jun. 05, 2020

STANDARD(S) FCC Part 15.247

TEST PROCEDURE(S) KDB 558074 D01 15.247 Meas Guidance v05r01

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 05, 2020	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. IEEE 802.11N MODULATION SCHEME	
2.4. RELATED SUBMITTAL(S) / GRANT (S)	
2.5. TEST METHODOLOGY	
2.6. SPECIAL ACCESSORIES	
2.7. EQUIPMENT MODIFICATIONS	
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	
5 SYSTEM TEST CONFIGURATION	11
5.1. CONFIGURATION OF EUT SYSTEM	11
5.2. EQUIPMENT USED IN EUT SYSTEM	11
5.3. SUMMARY OF TEST RESULTS	11
6. TEST FACILITY	
6. OUTPUT POWER	13
6.1. MEASUREMENT PROCEDURE	13
6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)13
6.3. LIMITS AND MEASUREMENT RESULT	14
7. 6DB BANDWIDTH	16
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)16
7.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	21
9.1. MEASUREMENT PROCEDURE	21
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)21
9.3. MEASUREMENT EQUIPMENT USED	21
9.4. LIMITS AND MEASUREMENT RESULT	22
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL D	ENSITY 31
10.1 MEASUREMENT PROCEDURE	31
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION	J)31
10.3 MEASUREMENT EQUIPMENT USED	31
10.4 LIMITS AND MEASUREMENT RESULT	32
11. RADIATED EMISSION	36

11.1. MEASUREMENT PROCEDURE	36
11.2. TEST SETUP	37
11.3. LIMITS AND MEASUREMENT RESULT	38
11.4. TEST RESULT	39
12. BAND EDGE EMISSION	42
12.1. MEASUREMENT PROCEDURE	
12.2. TEST SET-UP	42
12.3. TEST RESULT	43
13. FCC LINE CONDUCTED EMISSION TEST	59
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	59
13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	59
13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	60
13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	61
13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	62
ADDENDIV A. DUOTOCO ADUS OF TEST SETUD	6.4

1. VERIFICATION OF CONFORMITY

Applicant	Mara Phones Limited
Address	C/O SAFYR UTILIS LTD, 7th Floor, Tower 1, Nexteracom, Cybercity Ebene, 72201, Mauritius
Manufacturer	Mara Phones Rwanda Limited
Address	Plot No 2166, Kigali Special Economic Zone, Masoro, Ndera, Gasabo District, Kigali, Rwanda
Factory 1	Mara Phones Rwanda Limited
Address 1	Plot no 2166, Kigali Special Economic Zone, Masoro Ndera, Gasabo
Factory 2	Mara Phones South Africa (PTY) Limited
Address 2	Dube Trade Port, No.5 Umkhomazi Drive, ERF 618 La MercyDurban, KwaZulu-Natal, 4399, South Afric
Product Designation	Mara Phones X1
Brand Name	Mara Phones
Test Model	Mara Phones X1
Date of test	Apr. 09, 2020~Jun. 05, 2020
Deviation	None
Condition of Test Sample	Normal
Report Template	AGCRT-US-BGN/RF

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance(Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement.

The test results of this report relate only to the tested sample identified in this report.

S

Prepared By

Donjon Huang (Project Engineer)

Max Zhang (Reviewer)

Approved By

Forrest Lei (Authorized Officer)

Jun. 05, 2020

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Mara Phones X1". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description of EUT is described as following

71 major toorimoar accomption t	Si Le i la described de l'elle Willig
Operation Frequency	2.412 GHz~2.462GHz
Output Power	IEEE 802.11b: 13.37 dBm, IEEE 802.11g: 11.13 dBm;
Output rower	IEEE 802.11n(20): 9.98 Bm, IEEE 802.11n(40): 9.91 Bm,
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Number of channels	11 Channels (IEEE802.11b/g/n20)& 7 Channels (IEEE802.11n40)
Hardware Version	K6012Q_02
Software Version	Mara_X1_d_V1.0_20200420
Antenna Designation	PIFA Antenna(Comply with requirements of the FCC part 15.203)
Antenna Gain	0dBi
Power Supply	DC 3.85V by Built-in Li-ion Battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	1	2412 MHZ
	2	2417 MHZ
	3	2422 MHZ
	4	2427 MHZ
	5	2432 MHZ
2400~2483.5MHZ	6	2437 MHZ
	7	2442 MHZ
	8	2447 MHZ
	9	2452 MHZ
	10	2457 MHZ
	11	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11

For 802.11n 40MHZ bandwidth system use Channel 3 to Channel 9.

2.3. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Modulation	R	NBPSC	NCBPS		NCBPS NDBPS		BPS	Da rate(N 800r	/lbps)
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5	
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AWFM-MARAPHONES-X1** filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

Others testing (listed at item 5.3) was performed according to the procedures in FCC Part 15.247 rules KDB 558074 D01 15.247 Meas Guidance v05r01.

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

Note:

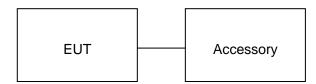
Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:


- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 11 of 65

5 SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Mara Phones X1	Mara Phones X1	FCC ID: 2AWFM-MARAPHONES-X1	EUT
2	Adapter(US)	HJ-0505000N2-US Input: 100-240V 50~60Hz, 0.3A Output: DC 5.0V 1.5A		AE
3	Adapter(EU)	Mara	Input: 100-240V 50~60Hz, 0.3A Output: DC 5.0V 1.5A	AE
4	Battery	MPX1Z1	DC 3.85V 3900mAh	AE
5	USB Cable	N/A	N/A	AE
6	Earphone	N/A	N/A	AE

Note: All the accessories have been used during the test in conduction emission test.

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA	

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020
Test software	R&S	ES-K1 (Ver V1.71)	N/A	N/A	N/A

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun. 11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 18, 2019	Dec. 17, 2020
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2019	Jun. 11, 2020
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2019	Jun. 11, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 17, 2019	May. 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 14, 2020
ANTENNA	SCHWARZBECK	VULB9168	D69250	Jan. 09, 2019	Jan. 08, 2021
Test software	Tonscend	JS32-RE	N/A	N/A	N/A

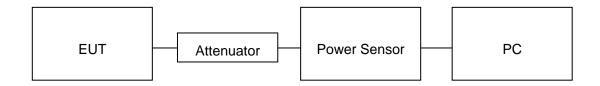
TEST EQUIPMENT OF RF CONDUCTED TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
USB Wideband Power Sensor	Aglient	U2021XA	MY54110007	Sep. 09, 2019	Sep. 08, 2020
USB Wideband Power Sensor	Aglient	U2021XA	MY54110009	Sep. 09, 2019	Sep. 08, 2020
SIGNAL ANALYZER	Aglient	N9020A	MY52090123	Sep. 09, 2019	Sep. 08, 2020

Page 13 of 65

6. OUTPUT POWER

6.1. MEASUREMENT PROCEDURE


For max average conducted output power test:

- 1. Connect EUT RF output port to power probe through an RF attenuator.
- 2. Connect the power probe to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

AVERAGE POWER SETUP

6.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	12.45	30	Pass
2.437	12.79	30	Pass
2.462	13.37	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

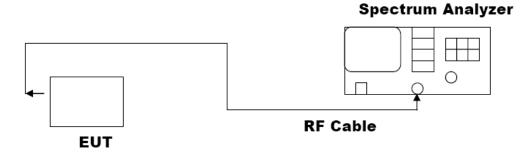
Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	10.28	30	Pass
2.437	10.85	30	Pass
2.462	11.13	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	9.24	30	Pass
2.437	9.72	30	Pass
2.462	9.98	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 40 with data rate 13.5

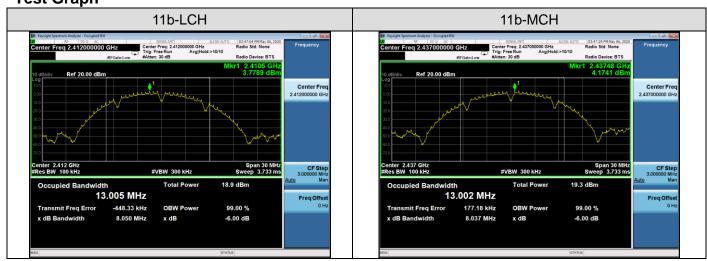
Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	9.16	30	Pass
2.437	9.91	30	Pass
2.452	9.82	30	Pass

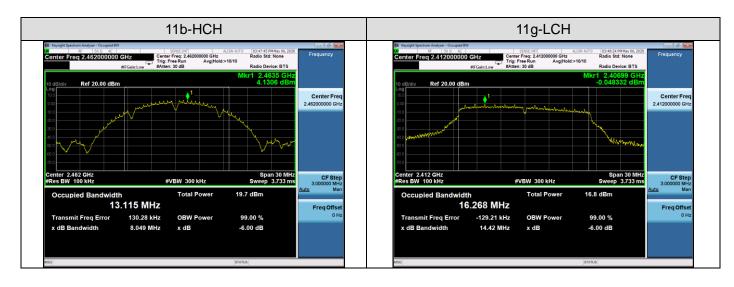

7. 6dB BANDWIDTH

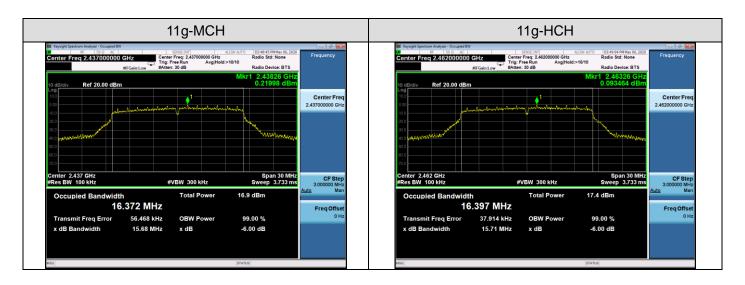
7.1. MEASUREMENT PROCEDURE

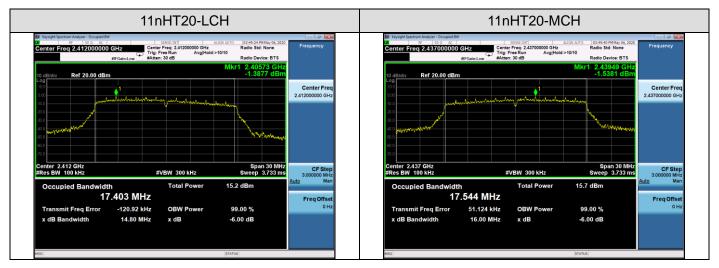
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

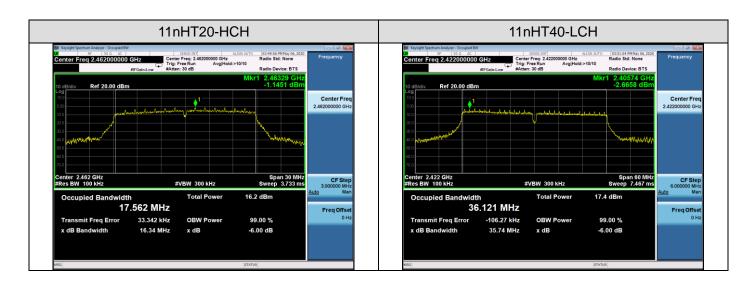
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

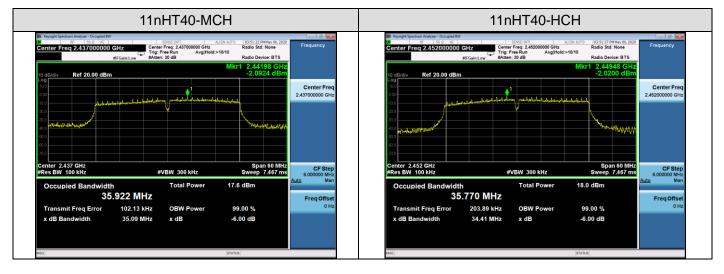

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)




7.3. LIMITS AND MEASUREMENT RESULTS


Mode	Channel	6dB Bandwidth [MHz]	Verdict
11b	LCH	8.050	PASS
	MCH	8.037	PASS
	HCH	8.049	PASS
11g	LCH	14.42	PASS
	MCH	15.68	PASS
	HCH	15.71	PASS
11nHT20	LCH	14.80	PASS
	MCH	16.00	PASS
	HCH	16.34	PASS
11nHT40	LCH	35.74	PASS
	MCH	35.09	PASS
	HCH	34.41	PASS


Test Graph



Page 21 of 65

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

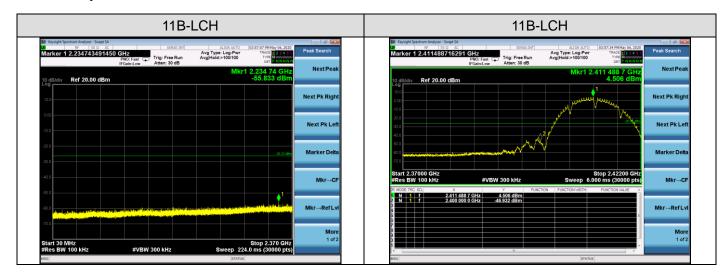
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

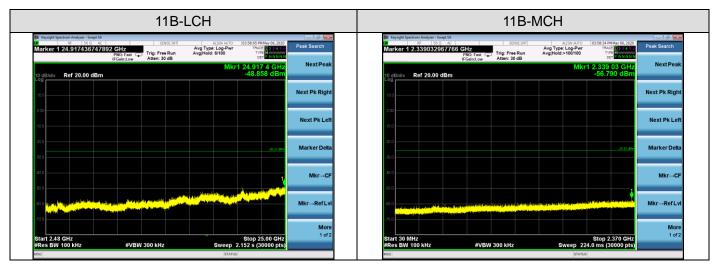
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

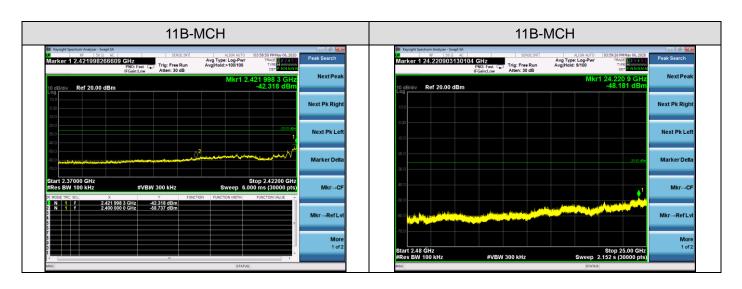
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

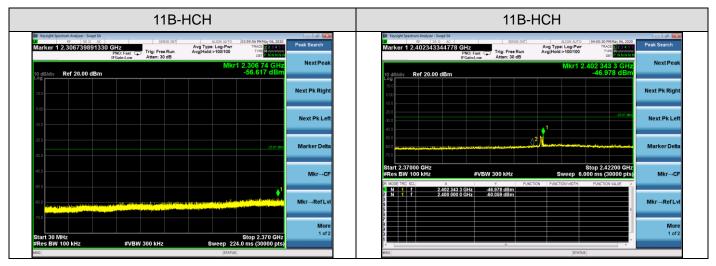
The same as described in section 8.2.

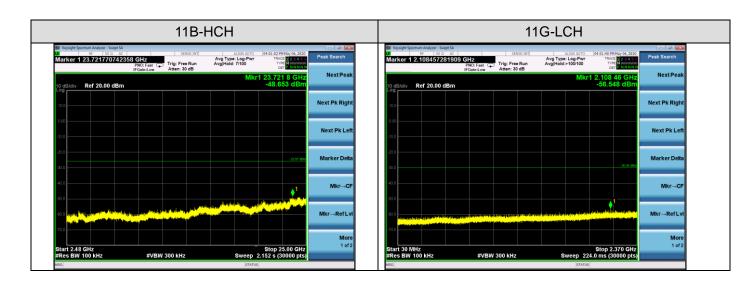
9.3. MEASUREMENT EQUIPMENT USED

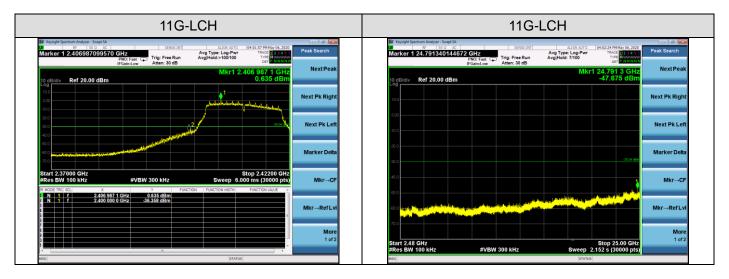

The same as described in section 6.

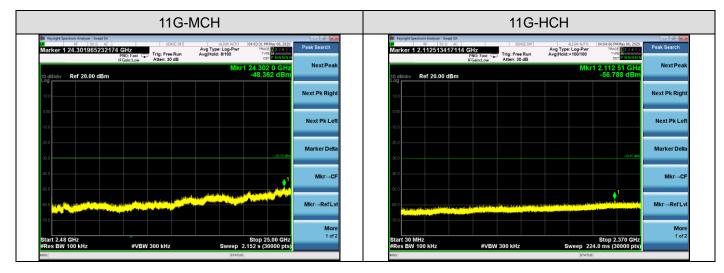

Page 22 of 65

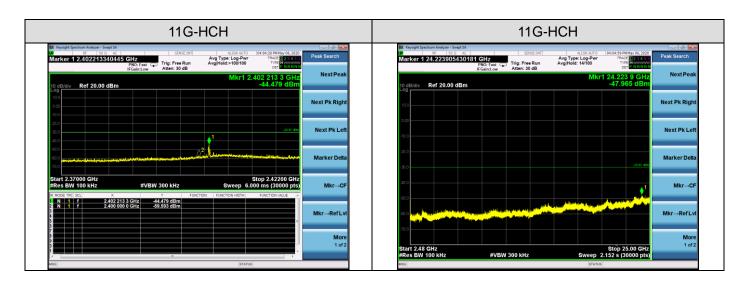

9.4. LIMITS AND MEASUREMENT RESULT

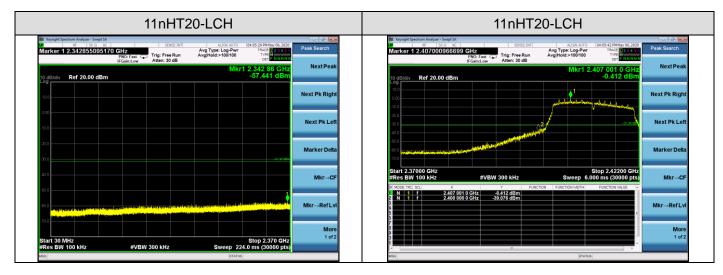

LIMITS AND MEASUREMENT RESULT				
Angliaghla Limita	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 KHz Bandwidth Outside the				
frequency band in which the spread spectrum				
intentional radiator is operating, the radio frequency				
power that is produce by the intentional radiator				
shall be at least 30 dB below that in 100KHz				
bandwidth within the band that contains the highest	Refer Test Graph	PASS		
level of the desired power.				
In addition, radiation emissions which fall in the				
restricted bands, as defined in §15.205(a), must also				
comply with the radiated emission limits specified				
in§15.209(a))				

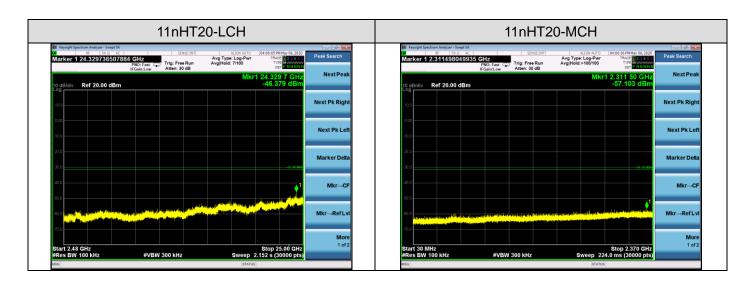

Test Graph

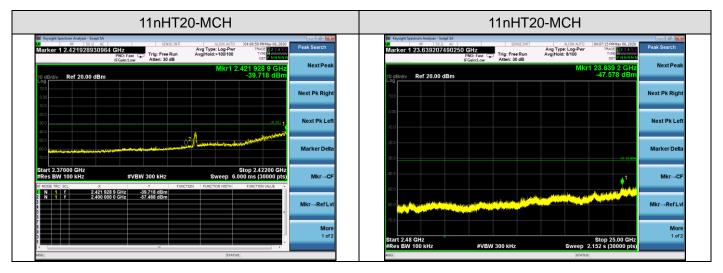


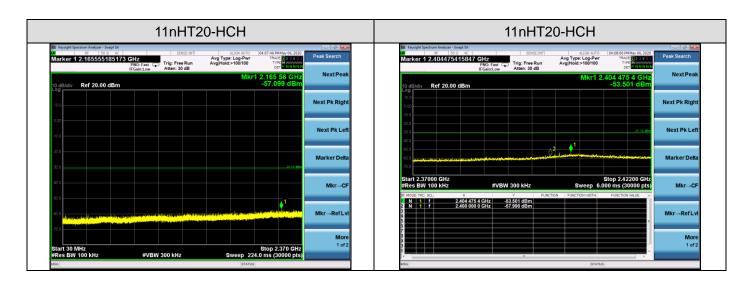


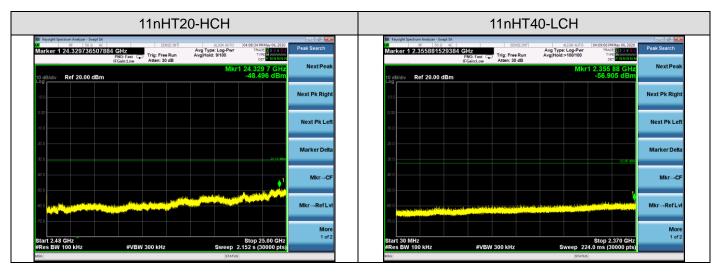


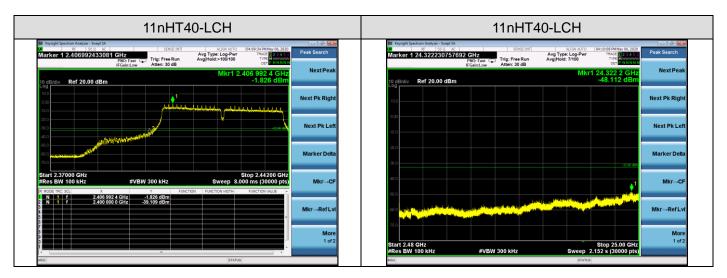


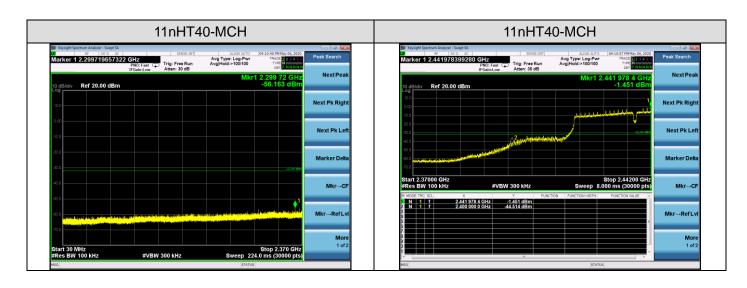


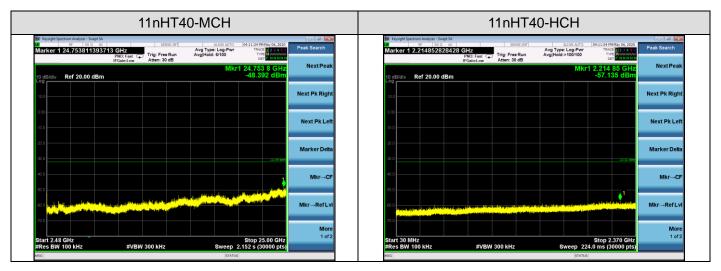


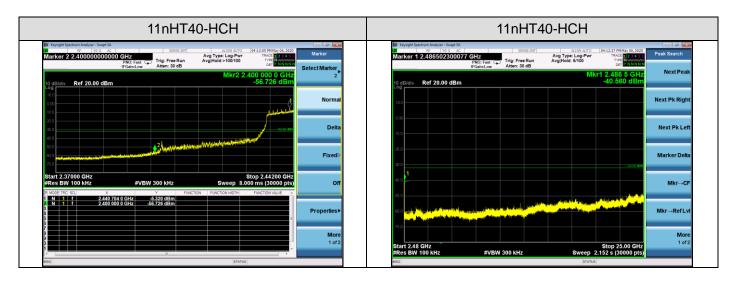












Page 31 of 65

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

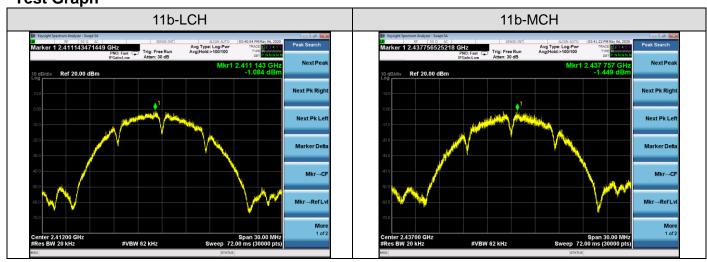
10.1 MEASUREMENT PROCEDURE

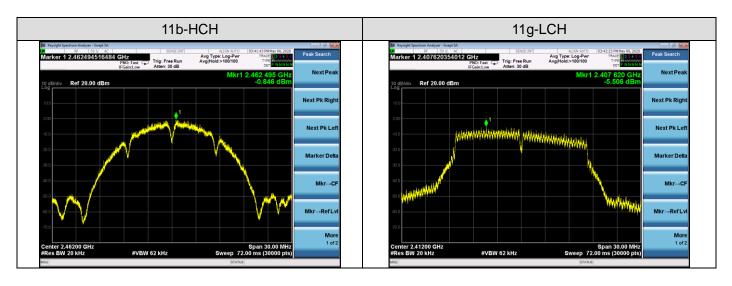
- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

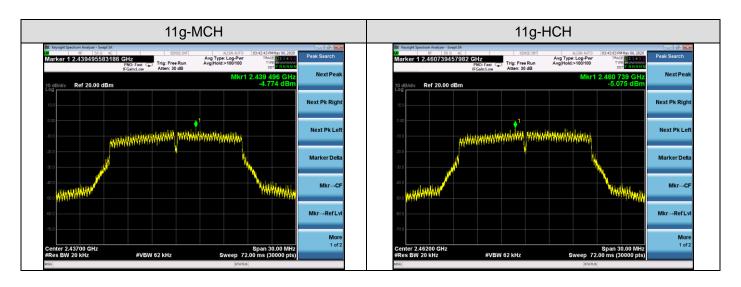
Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing.

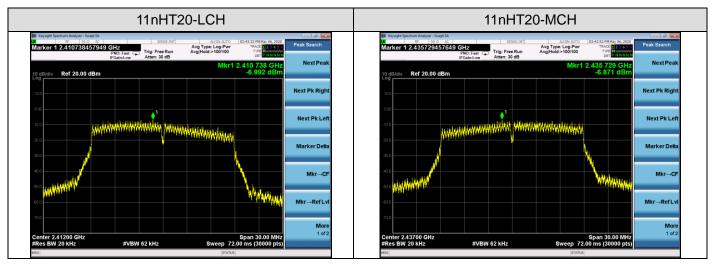
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

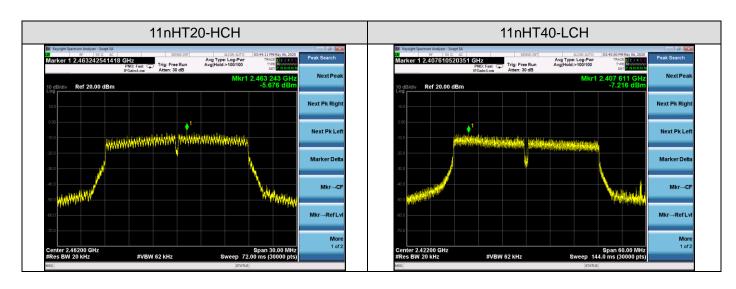
Refer To Section 8.2.

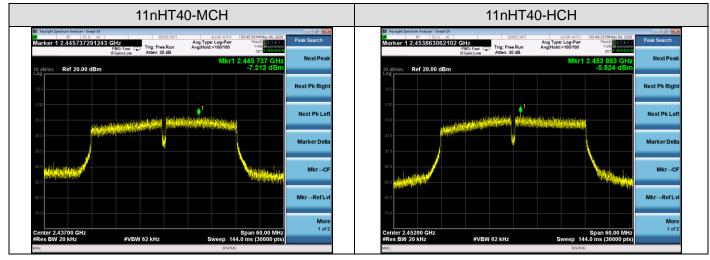

10.3 MEASUREMENT EQUIPMENT USED


Refer To Section 6.

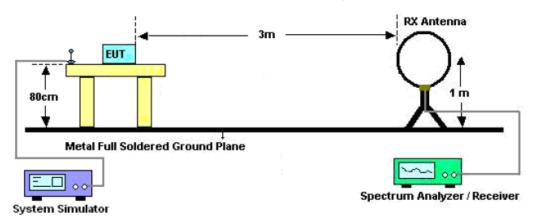

10.4 LIMITS AND MEASUREMENT RESULT


Mode	Channel	PSD [dBm/20kHz]	Limit[dBm/3kHz]	Verdict
11b	LCH	-1.084	8	PASS
	MCH	-1.449	8	PASS
	HCH	-0.846	8	PASS
11g	LCH	-5.506	8	PASS
	MCH	-4.774	8	PASS
	HCH	-5.075	8	PASS
11nHT20	LCH	-6.992	8	PASS
	MCH	-6.871	8	PASS
	HCH	-5.676	8	PASS
11NHT40	LCH	-7.216	8	PASS
	MCH	-7.212	8	PASS
	HCH	-5.824	8	PASS

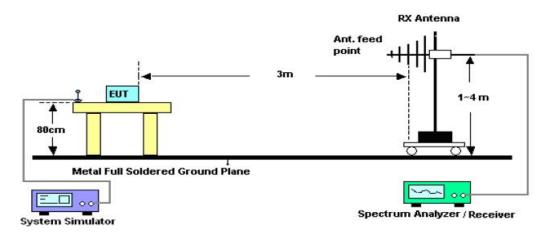

Test Graph



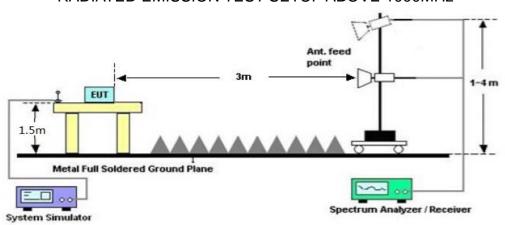
Report No.:AGC09966200405FE04 Page 36 of 65


11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.