MPE REPORT

FCC ID：2AWDJ－BLM5200

Date of issue：May 11， 2020

Report number：
MTi20041604－4E2

Sample description：
Bluetooth device

Model（s）：
BLM5200

Applicant：
Suzhou BeeLinker Technology Co．，Ltd

Address：
No． 399 Lin Quan Road，Suzhou Industrial Park

Date of test：
Apr．28， 2020 to May 11， 2020

Shenzhen Microtest Co．，Ltd．

http：／／www．mtitest．com

TEST RESULT CERTIFICATION	
Applicant＇s name：	Suzhou BeeLinker Technology Co．，Ltd
Address：	No．399 Lin Quan Road，Suzhou Industrial Park
Manufacture＇s name：	Suzhou BeeLinker Technology Co．，Ltd
Address：	No．399 Lin Quan Road，Suzhou Industrial Park
Product name：	Bluetooth device
Trademark：	BeeLinker
Model and／or type reference：	BLM5200
Serial model：	N／A
RF exposure procedures：	KDB 447498 D01 v06

This device described above has been tested by Shenzhen Microtest Co．，Ltd and the test results show that the equipment under test（EUT）is in compliance with the FCC requirements．And it is applicable only to the tested sample identified in the report．

Tested by：

Demi Mu
Leo Su May 11，2020
Tom Xue
May 11， 2020
Mas 11，2020

RF EXPOSURE EVALUATION

According to FCC 1．1310：The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency（RF）Radiation as specified in §1．1307（b）

Limits for Maximum Permissible Exposure（MPE）

Frequency range （MHz）	Electric field strength （V／m）	Magnetic field strength （ A / m ）	Power density （mW／cm ${ }^{2}$ ）	Averaging time （minutes）
（A）Limits for Occupational／Controlled Exposure				
0．3－3．0	614	1.63	＊100	6
3．0－30	1842／f	4．89／f	＊900／f ${ }^{2}$	6
30－300	61.4	0.163	1.0	6
300－1，500			6／300	6
1，500－100，000			5	6
（B）Limits for General Population／Uncontrolled Exposure				
0．3－1．34	614	1.63	＊100	30
1．34－30	824／f	2．19／f	＊180／4 ${ }^{2}$	30
30－300	27.5	0.073	0.2	30
300－1，500			f／1500	30
1，500－100，000			1.0	30

$\mathrm{f}=$ frequency in MHz ＊$=$ Plane－wave equivalent power density

MPE Calculation Method

Friis transmission formula： $\mathrm{Pd}=\left(\mathrm{Pout}^{*} \mathrm{G}\right) \backslash\left(4^{*} \mathrm{pi}^{*} \mathrm{R}^{2}\right)$
Where
$\mathrm{Pd}=$ Power density in $\mathrm{mW} / \mathrm{cm} 2$
Pout＝output power to antenna in mW
$G=$ Numeric gain of the antenna relative to isotropic antenna

$\mathrm{Pi}=3.1415926$

$\mathrm{R}=$ distance between observation point and center of the radiator in $\mathrm{cm}(20 \mathrm{~cm})$
Pd the limit of MPE， $1 \mathrm{~mW} / \mathrm{cm} 2$ ．If we know the maximum gain of the antenna and total power input to the antenna，through the calculation，we will know the distance where the MPE limit is reached．

Measurement Result

BLE：

Operation Frequency：2402－2480MHz
Power density limited： $1 \mathrm{~mW} / \mathrm{cm}^{2}$
Antenna Type：PCB Antenna；
WIFI antenna gain：2dBi
$\mathrm{R}=20 \mathrm{~cm}$
$\mathrm{mW}=10^{\wedge}(\mathrm{dBm} / 10)$
antenna gain Numeric $=10^{\wedge}(\mathrm{dBi} / 10)=10^{\wedge}(2 / 10)=1.58$

Channel Freq． （MHz）	modulation	conducted power	Tune－ up power （dBm）	Max		Antenna		Evaluation result（ $\mathrm{mW} / \mathrm{cm} 2$ ）	Power density Limits （ $\mathrm{mW} / \mathrm{cm} 2$ ）
		（dBm）		tune－up power		Gain			
				（dBm）	（mW）	（dBi）	Numeric		
2402	GFSK	0.066	0 ± 1	1	1.259	2.00	1.58	0.0004	1
2440		0.088	0 ± 1	1	1.259	2.00	1.58	0.0004	1
2480		－0．22	0 ± 1	1	1.259	2.00	1.58	0.0004	1

Conclusion：

For the max result： $0.0004 \leq 1.0$ for 1 g SAR ，No SAR is required．

