

Project No.: ZHT-230608031E Page 1 of 28

FCC TEST REPORT FCC ID: 2AWDBHCS021FRF Report Number..... ZHT-230608031E Date of Test...... Jun. 08, 2023 to Jul. 03, 2023 Date of issue...... Jul. 03, 2023 Total number of pages...... 28 Test Result: PASS Testing Laboratory......: Guangdong Zhonghan Testing Technology Co., Ltd. Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address: Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Applicant's name: FUJIAN BALDR TECHNOLOGY CO., LTD Address 2F Jin Shan Ya Yuan, No. 36 Jin Rong North Road Fuzhou, China Manufacturer's name FUJIAN BALDR TECHNOLOGY CO., LTD Test specification: FCC CFR Title 47 Part 15 Subpart C Section 15.231 Standard.....: ANSI C63.10:2013 Test procedure.....: / Non-standard test method: N/A This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document. Product name...... : Sensor, Pool thermometer Trademark: N/A Model/Type reference.....: HCS021FRF HCS014ARF, TCS024B, HCS528ARF, HCS015T2H, HCS530THO, HTV115FRF, ICS005FRF, ICS005ARF, TCS014B Ratings..... Input: DC 1.5 V*3 AA by battery

Project No.: ZHT-230608031E Page 2 of 28

		Table of Conten	ts		Page
1. VE	ERSION				5
2. SI	JMMARY OF TES	ST RESULTS			6
		UNCERTAINTY			
3. GI		MATION			8
-	-	CRIPTION OF EUT			
3.	2 DESCRIPTION	OF TEST MODES			9
3.	3 BLOCK DIGRAM	I SHOWING THE CON	FIGURATION OF S	YSTEM TESTE	D 9
3.	4 DESCRIPTION (OF SUPPORT UNITS(C	ONDUCTED MODE	Ξ)	9
3.	5 EQUIPMENTS L	IST FOR ALL TEST ITE	MS		10
4. EI	AC EMISSION TE	EST			12
4.		MISSION MEASUREM			
		NE CONDUCTED EMIS			
	4.1.3 DEVIATION	FROM TEST STANDA	RD		13
		ATING CONDITIONS JLTS			
4.		SION MEASUREMEN			
		EMISSION LIMITS			
		CEDURE JP			
		ATING CONDITIONS			
	4.2.5 TEST RESU	JLTS			17
5. B/		Γ			
		OCEDURES / LIMIT EDURE			
		ROM STANDARD			
		FION CONDITIONS			
6.0		AVERAGE FACTOR			
		AVERAGE FACTOR			
		ANDARD			
		JRE			
		M STANDARD			

Page 4 of 28

		Table of Contents		Page
	7.4TEST SETUP			25
	7.5 EUT OPERATION C	ONDITIONS		25
	7.6 TEST RESULTS			26
8. A	NTENNA REQUIREM	IENT	<u></u>	
9. 1	TEST SETUP PHOTO			28
10.	EUT CONSTRUCTIO	NAL DETAILS		28

1. VERSION

Report No.	Version	Description	Approved
ZHT-230608031E	Rev.01	Initial issue of report	Jul. 03, 2023
15			

Ð				Ð
E				Ð
B				Ð
B				ð

2. SUMMARY OF TEST RESULTS

15

Test procedures according to the technical standards:

	FCC Part15 (15.231) , Subpart C					
2	Standard Section	Judgment	Remark			
	15.207	Conducted Emission	N/A			
15.209,15.231b		Fundamental &Radiated Spurious Emission Measurement	PASS			
	15.231c	Occupy Bandwidth	PASS			
	15.231a	Dwell time	PASS			
	15.203	Antenna Requirement	PASS	1.1		
1	20					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 % °$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(9k-30MHz)	±4.68dB
5	All emissions radiated(<1G)	±4.68dB
6	All emissions radiated(>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96dB

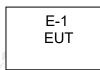
1 0755-27782934

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Sensor, Pool thermometer		
Trade Name	N/A		
Model Name	HCS021FRF		
	HCS014ARF, TCS024B, HCS528ARF, HCS015T2H,		
	HCS530THO, HTV115FRF, ICS005FRF, ICS005ARF,		
	TCS014B		
Model Difference	All the model are of the same circuit and RF module, and the		
	only difference is the model name. The model HCS021FRF is		
	the tested sample.		
Hardware version	V1.0		
Software version	V1.0		
Operation Frequency:	433.15MHz		
Modulation Type:	ASK		
Antenna Type:	Spring Antenna		
Antenna Gain:	2.15dBi		
Ratings	Input: DC 1.5 V*3 AA by battery		

3.2 DESCRIPTION OF TEST MODES


i	For All Emission	
Final Test Mode	Description	
Transmitting mode	Keep the EUT in continuously trar	nsmitting mode
	11	

Note:

(1) Fully-charged battery is used during the test

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

RE Spurious emissions

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Sensor	N/A	HCS021FRF	N/A	EUT
925					

Item	Shielded Type	Ferrite Core	Length	Note	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ ^rLength $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

	ltem	Equipment	Manufacturer	Model	Last Cal.	Next Cal.	
	1	Receiver	R&S	ESCI	Mar 12, 2023	Mar 11, 2024	
2	2	Loop antenna	EMCI	LAP600	Mar 12, 2023	Mar 11, 2024	
	3	Amplifier	Schwarzbeck	BBV 9743 B	Mar 12, 2023	Mar 11, 2024	
	4	Amplifier	Schwarzbeck	BBV 9718 B	Mar 12, 2023	Mar 11, 2024	
	5	Bilog Antenna	Schwarzbeck	VULB9162	Mar 17, 2023	Mar 16, 2024	
	6	Horn Antenna	Schwarzbeck	BBHA9120D	Mar 17, 2023	Mar 16, 2024	
	7	Horn Antenna	A.H.SYSTEMS	SAS574	Mar 12, 2023	Mar 11, 2024	
	8	Amplifier	AEROFLEX	100KHz-40GHz	Mar 12, 2023	Mar 11, 2024	
4	9	Spectrum Analyzer	R&S	FSV40	Mar 12, 2023	Mar 11, 2024	
	10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	Aug. 09, 2022	Aug. 08, 2023	
	11	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024	
	12	Spectrum Analyzer	KEYSIGHT	N9020A	Mar 12, 2023	Mar 11, 2024	
	13	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	Mar 12, 2023	Mar 11, 2024	
2	14	Single Generator	Agilent	N5182A	Mar 12, 2023	Mar 11, 2024	
	15	Power Sensor	MWRFtest	MW100-RFCB	Mar 12, 2023	Mar 11, 2024	
	16	Audio analyzer	R&S	UPL	Mar 12, 2023	Mar 11, 2024	
	17	Single Generator	R&S	SMB100A	Mar 12, 2023	Mar 11, 2024	
	18	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024	

Ð

Project No.: ZHT-230608031E Page 11 of 28

Conduction Test equipment

				3)
Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	Mar 12, 2023	Mar 11, 2024
LISN	R&S	ENV216	Mar 12, 2023	Mar 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	Mar 12, 2023	Mar 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	Mar 12, 2023	Mar 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	Mar 12, 2023	Mar 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	Mar 12, 2023	Mar 11, 2024
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-230608031E Page 12 of 28

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207	
Test Method:	ANSI C63.10:2013	
Test Frequency Range:	150KHz to 30MHz	
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto	

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS

(Frequency Range 150KHz-30MHz)

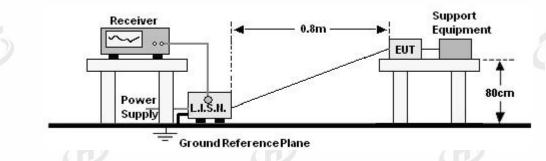
FREQUNCY (MHz)	Limit (dBuV)		Standard
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC
Note:		•	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

, , , , , , , , , , , , , , , , , , ,	
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Project No.: ZHT-230608031E Page 13 of 28

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- 4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

The EUT is powered by the Dry battery power supply, the test item is not applicable.

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

4.2.1 RADIATED EMISSION LIMITS

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	(C
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Project No.: ZHT-230608031E Page 15 of 28

FUNDAMENTAL AND HARMONICS EMISSION LIMITS

Fundamental	Field Strength of	Field Strength of
Frequency	Fundamental	Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)	
Below 1.705	30	
1.705 – 108	1000	
108 – 500	2000	
500 – 1000	5000	
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower	

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW setting	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

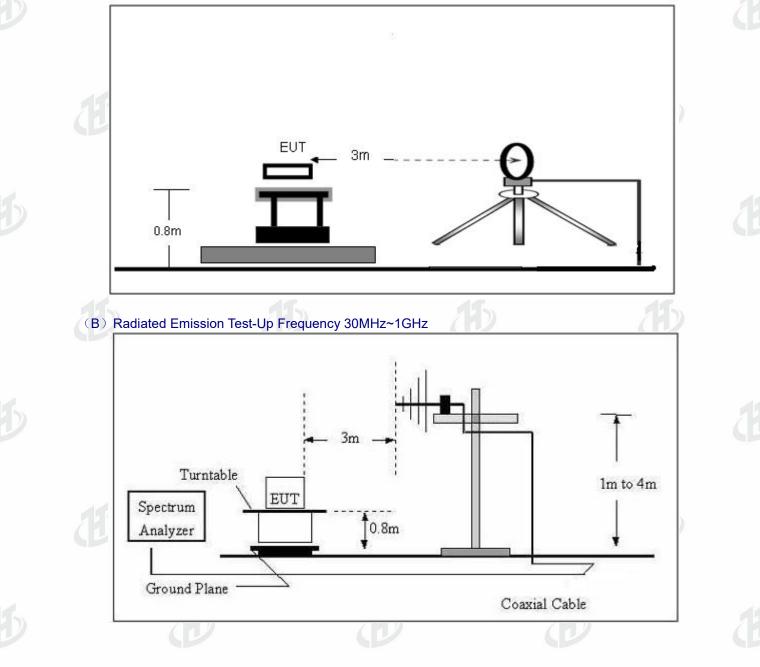
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

0755-27782934

🖂 admin@zht-lab.cn, 🕖

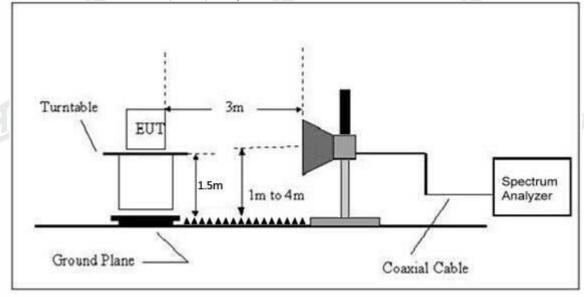
http://www.zht-lab.cn


Project No.: ZHT-230608031E Page 16 of 28

- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:
 - Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case was X axis and the emissions were reported

4.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

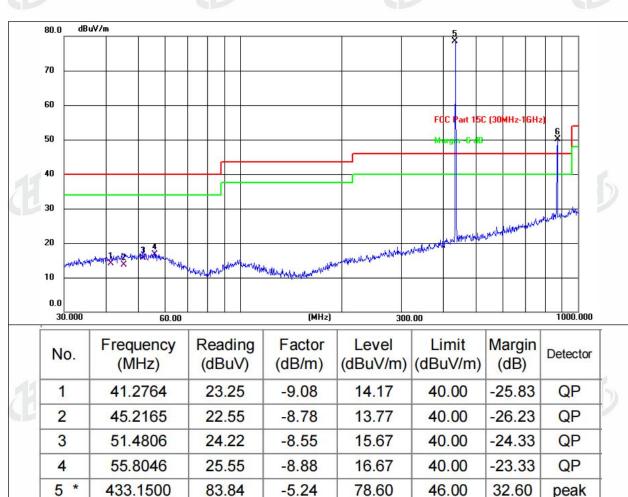
4.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.5 TEST RESULTS

Radiated Spurious Emission (Below 9KHz - 30MHz)

NOTE:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Temperature :	25.3 ℃	Relative Humidity :	54%
Pressure :	101 kPa	Polarization :	Horizontal
Test Voltage :	DC 4.5V		
Test Mode :	TX Mode		

Remarks:

6 X

869.1300

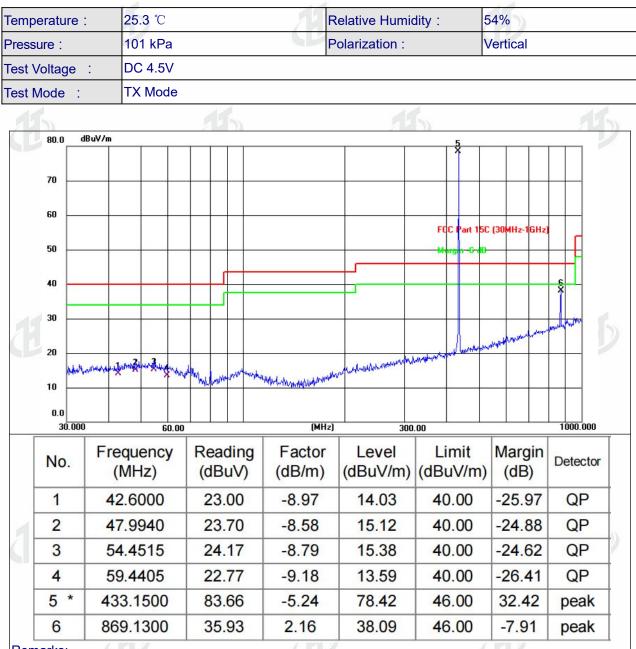
48.01

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

2.16

50.17

46.00


4.17

peak

Remarks:

1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor 2.The emission levels of other frequencies are very lower than the limit and not show in test report.

1 0755-27782934

🖂 admin@zht-lab.cn, 🚺 🏐 http://www.zht-lab.cn

For average Emission

225	8					125
Fraguanay	Peak	Duty	Averagel evel			P
Frequency	Level	cycle	AverageLevel	Limit	Margin	Polarization
MHz	dBuV/m	factor	dBuV/m	AV		
433.15	78.60	0	78.60	80.8	-2.20	Horizontal
869.13	50.17	0	50.17	60.8	-10.63	Horizontal

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 6.

Ð			B			B
Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Limit AV	Margin	Polarization
433.15	78.42	0	78.42	80.8	-2.38	Vertical
869.13	38.09	0	38.09	60.8	-22.71	Vertical

Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2. Duty cycle level please see clause 6.

2 0755-27782934

Project No.: ZHT-230608031E Page 21 of 28

Radiated Spurious Emission (1GHz to 10th harmonics)

	225			2 5					
Frequency	Peak	Peak Duty		ge Limit		Margiı	n dB		
Frequency MHz	Level	cycle	Level	שע	A) (PK	۸) (Polarization	
IVITIZ	dBuV/m	factor	dBuV/m	PK	AV	PK	AV		
868.13	52.88	0	52.88	74.0	54.0	-21.12	-1.12	Vertical	
1302.20	52.49	0	52.49	80.8	60.8	-28.31	-8.31	Vertical	
1736.26	50.73	0	50.73	80.8	60.8	-30.07	-10.07	Vertical	
2170.33	51.12	0	51.12	80.8	60.8	-29.68	-9.68	Vertical	
2604.39	50.54	0	50.54	80.8	60.8	-30.26	-10.26	Vertical	
3038.46	48.11	0	48.11	74.0	54.0	-25.89	-5.89	Vertical	
868.13	47.52	0	47.52	74.0	54.0	-26.48	-6.48	Horizontal	
1302.20	48.15	0	48.15	80.8	60.8	-32.65	-12.65	Horizontal	
1736.26	50.20	0	50.20	80.8	60.8	-30.6	-10.6	Horizontal	
2170.33	50.07	0	50.07	80.8	60.8	-30.73	-10.73	Horizontal	
2604.39	48.34	0	48.34	80.8	60.8	-32.46	-12.46	Horizontal	
3038.46	48.71	0	48.71	74.0	54.0	-25.29	-5.29	Horizontal	

Notes: 1.Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 6.

5. BANDWIDTH TEST

According to FCC 15.231(c) requirement:

5.1 APPLIED PROCEDURES / LIMIT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.15MHz = 1.0829MHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	100KHz
VB	≥RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW≥ RBW, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-230608031E Page 23 of 28

Temperatur	e : 25.1 °	C	Relative H	umidity : 5	5%	
Pressure :	101kF		Test Voltag	-	C 4.5V	
Test Mode						
11)			1	1)		
	_	20dB Bandwidth	Limit		D "	
	Frequency	(kHz)	(MHz)		Result	
	433.15MHz	376.5	1.0829)	PASS	
	Ð		Ð		Ð	
			Mode 1			
E	10 dB/div Ref	#FGain:Low Trig: F #Atten	ree Run Avg Hold:>10/10 10 dB	Radio Device: BTS	Center Freq	E
	-10.0				433.150000 MHz	
	-30.0	and a second sec	- Marine	Monteman		
	-50.0 -60.0			Sandar Carrier and		
	-70.0					
	Center 433.2 MH #Res BW 100 kH	z #	/BW 300 kHz	Span 1 M Sweep 1 r	Hz CF Step ns 100.000 kHz	
15)	Occupied B	andwidth 274.48 kHz	Total Power 6	i.08 dBm	Auto Man Freq Offset	
	Transmit Free		% of OBW Power	99.00 %	0 Hz	
	x dB Bandwid	lth 376.5 kHz	xdB -	20.00 dB		

Project No.: ZHT-230608031E Page 24 of 28

6. CALCULATION OF AVERAGE FACTOR

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 1MHz resolution bandwidth. Averaging factor in dB =20log (duty cycle)

Duty Cycle = 100%=1

Therefore, the averaging factor is found by 20log1= 0dB

Test plot as follows: Note: aperiodic.

x Sweep 1	RF 50 Ω AC		SENSE:INT	Avg Type: Log-Pwr	11:03:40 AM Jun 29, 2023 TRACE 1 2 3 4 5 6	Trace/Detector
		PNO: Wide ↔ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: 1/1	DET PNNNN	Select Trace
10 dB/div Log	Ref 20.00 dBm					
10.0						Clear Wri
0.00						
-10.0		-				Trace Avera
-20.0						Max Ho
-30.0						
-40.0						Min Ho
-50.0						
-60.0						View Blank Trace Or
-70.0						Mo
Center 4	33.150000 MHz				Span 0 Hz	1 0

B

1 0755-27782934

7. DWELL TIME

According to FCC 15.231(a) requirement:

A manually operated transmitter shall employ a switch that will automatically deactivate the

transmitter within not more than 5 seconds of being released.

7.2 TEST PROCEDURE

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

1.Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

2.Set RBW to 1MHz and VBW of spectrum analyzer to 3MHz with a convenient frequency span including 100 kHz bandwidth from band edge.

3.Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

4.Repeat above procedures until all measured frequencies were complete.

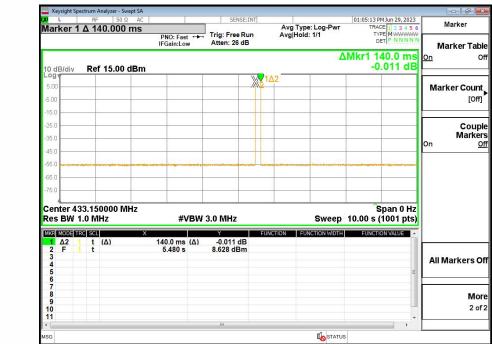
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

	14
EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS	

Dwell time (second)	Limit (second)	Result
0.140s	<5s	Pass

Test plot as follows:

8. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203
·	
15.203 requirement:	
An intentional radiator shall be de	igned to ensure that no antenna other than that furnished by the responsibl
party shall be used with the device	. The use of a permanently attached antenna or of an antenna that uses a
unique coupling to the intentional	adiator, the manufacturer may design the unit so that a broken antenna car
be replaced by the user, but the u	e of a standard antenna jack or electrical connector is prohibited.
EUT Antenna:	
The antenna is Spring Antenna, th	e best case gain of the antennas are 2.15dBi, reference to the appendix II fo
1 5	o /

74	ONGHAN		B	B	Project No.: Zł	HT-230608031E	
B	9. TEST SET		ndix I for details. L DETAILS		Ð	Page 28 of 28	
	Referen	nce to the apper	ndix II for details.				
B			**** E	RT ※※※※			
B							
B							
B							