

Page 1 of 98

TEST REPORT

Echelon Strength Cable Crossover Pro

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

- : Echelon
- : ECH-STCROSS-s-22
- : N/A
- : EED32Q80705104
- 2AWD4-STCROSS22
- : Oct. 31, 2024
- 47 CFR Part 15 Subpart E
- PASS

Prepared for:

Echelon Fitness Multimedia, LLC 605 Chestnut Street Suite 700, Chattanooga, TN USA 37450

		tre Testing In gwei Industri Shenzhen TEL: +8	Prepared by: Iternational Grou al Zone, Bao'an , Guangdong, Cl 36-755-3368 3668 86-755-3368 3388	70 District, hina 8	
	piled by: RNATIONAL oved by:	Keven Im. Keven Tan Acuron Ma	Reviewed by:	Frazer Oct. 31,	LI
BUILITY Ref	port Seal	Aaron Ma		Chec	k No.: 6737240524

Page 2 of 98

	•••••						
2 VERSION		••••••		•••••		•••••	
3 TEST SUM	MARY	••••••		•••••		•••••	
4 GENERAL	INFORMATION.	••••••		•••••		••••••	
-	INFORMATION						
5 TEST CON	FIGURATION		•••••		••••••		
5.2 DESCRI 5.3 TEST LO	NVIRONMENT PTION OF SUPPOF DCATION REMENT UNCERTA	T UNITS					
	T LIST	•					
	HNICAL REQU						
7.7 FREQUE	IM POWER SPECT ENCY STABILITY ED EMISSION ED EMISSION WHI	CH FALL IN THE	RESTRICTED B	ANDS			
7.9 RADIAT	5G WI-FI			•••••		••••••	
7.9 RADIAT 8 APPENDIX PHOTOGRAI	PHS OF TEST S	ETUP					
7.9 RADIAT 8 APPENDIX PHOTOGRAI		ETUP					
7.9 RADIAT 8 APPENDIX PHOTOGRAI	PHS OF TEST S	ETUP					
7.9 RADIAT 8 APPENDIX PHOTOGRAI	PHS OF TEST S	ETUP					

Page 3 of 98

Version No.	Date	Description	
00	Oct. 31, 2024	Original	
			1

Test Cump means

Page 4 of 98

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth		PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Remark:		(\mathcal{A})

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

S

Page 5 of 98

4 General Information

4.1 Client Information

Applicant:	Echelon Fitness Multimedia, LLC					
Address of Applicant:	605 Chestnut Street Suite 700, Chattanooga, TN USA 37450					
Manufacturer:	Guangzhou Yuandong Smart Sports Technology Co., Ltd					
Address of Manufacturer:	Room 192 Kezhu Road, Huangpu District, Guangzhou					
Factory:	Shandong Relax Sports Technology Co.,Ltd.					
Address of Factory:	No. 101 Shantou Road, Rizhao, Shandong, China					
I.2 General Descript	ion of EUT					
Product Name:	Echelon Strength Cable Crossover Pro					
Model No.(EUT):	ECH-STCROSS-s-22					
Trade mark:	Echelon					
Product Type:	Mobile Portable Fixed Location					
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)					
Operating Frequency	U-NII-1: 5150-5250MHz U-NII-2A: 5250-5350MHz U-NII-2C:5500-5700MHz U-NII-3:5745-5825MHz					
Sample Type:	☐ Mobile ☐ Portable					
Antenna Type:						
	FPC Antenna					
Antenna Gain:	FPC Antenna U-NII-1: ANT1: 3.85, ANT2: 3.86 U-NII-2A: ANT1: 3.85, ANT2: 3.55 U-NII-2C: ANT1: 3.54, ANT2: 4.24 U-NII-3: ANT1: 3.87, ANT2: 3.51					
1	U-NII-1: ANT1: 3.85, ANT2: 3.86 U-NII-2A: ANT1: 3.85, ANT2: 3.55 U-NII-2C: ANT1: 3.54, ANT2: 4.24					
Antenna Gain:	U-NII-1: ANT1: 3.85, ANT2: 3.86 U-NII-2A: ANT1: 3.85, ANT2: 3.55 U-NII-2C: ANT1: 3.54, ANT2: 4.24 U-NII-3: ANT1: 3.87, ANT2: 3.51					
Antenna Gain: Function Power Supply:	U-NII-1: ANT1: 3.85, ANT2: 3.86 U-NII-2A: ANT1: 3.85, ANT2: 3.55 U-NII-2C: ANT1: 3.54, ANT2: 4.24 U-NII-3: ANT1: 3.87, ANT2: 3.51 ⊠ SISO ⊠ 2x2 MIMO □ 3x3 MIMO □ 4x4MIMO					
Antenna Gain: Function	U-NII-1: ANT1: 3.85, ANT2: 3.86 U-NII-2A: ANT1: 3.85, ANT2: 3.55 U-NII-2C: ANT1: 3.54, ANT2: 4.24 U-NII-3: ANT1: 3.87, ANT2: 3.51 ⊠ SISO ⊠ 2x2 MIMO □ 3x3 MIMO □ 4x4MIMO Adapter: DC12V					

Operation Frequency each of channel

802.11a/802.11n/802.11ac(20MHz) Frequency/Channel Operations:

U-NII-1		l	U-NII-2A		U-NII-2C		U-NII-3	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	52	5260	100	5500	149	5745	
40	5200	56	5280	104	5520	153	5765	
44	5220	60	5300	108	5540	157	5785	
48	5240	64	5320	112	5560	161	5805	
- (0	D -	6	ν.	116	5580	165	5825	
-	-	-	-	132	5660	-	-	
-	- ~~~~	-		136	5680	-	205	
) -	- (~)	-	(<u>.</u>)	140	5700	-	(\mathcal{A})	

802.11n/802.11ac(40MHz) Frequency/Channel Operations:

1	U-NII-1	12	J-NII-2A		J-NII-2C		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
- 6	- (2)	-		134	5670	-	
1 -		-		142	5710	-	

802.11ac(80MHz) Frequency/Channel Operations:

U-NII-1 U-NII-2A		U-NII-2C		U-NII-3	
y(MHz) Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
0 58	5290	106	5530	155	5775
- 10		138	5610	-	
	0 58	0 58 5290	0 58 5290 106	0 58 5290 106 5530	

802.11ac(160MHz) Frequency/Channel Operations:

U-NII	-1&U-NII-2A	U-NII-2C		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
50	5250	114	5570	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 7 of 98

5 Test Configuration

EUT Test Software Settings:			
Software:	adb.exe		
EUT Power Grade:	Default		
Use test software to set the low transmitting of the EUT.	vest frequency, the m	iddle frequency and the	e highest frequency keep
Test Mode:			
We have verified the constructi the EUT in transmitting operation			est modes were carried out with defined as follows:
Per-scan all kind of data rate	in lowest channel, a	and found the follow	ist which it
was worst case.			
Mode	10.0 /		
Iviode			Data rate
802.11a			Data rate 6 Mbps
802.11a	20)		6 Mbps
802.11a 802.11n(HT	20) 40)		6 Mbps MCS0
802.11a 802.11n(HT 802.11n(HT 802.11n(HT	20) 40) IT20)		6 Mbps MCS0 MCS0

5.1 Test Environment

		L. L.	
Operating Environment:			
Radiated Spurious Emission	s:		
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH	~	~>>
Atmospheric Pressure:	1010mbar		
Conducted Emissions:			
Temperature:	22~25.0 °C		
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar	6	
RF Conducted:			
Humidity:	50~55 % RH		
Atmospheric Pressure:	1010mbar		
	NT (Normal Temperature)	22~25.0 °C	
Temperature:	LT (Low Temperature)	0 °C	6
	HT (High Temperature)	40.0 °C	
	NV (Normal Voltage)	12V	
Working Voltage of the EUT:	LV (Low Voltage)	10.8V	12
	HV (High Voltage)	13.2V	

Page 8 of 98

(SC)

5.2 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	DESKTOP-	FCC&CE	СТІ
		H31GDCQ		
	10		12	10

5.3 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

Page 9 of 98

5.4 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Sourceus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Page 10 of 98

Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
1		0		(e)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024
Communication test	R&S	CMW500	169004	03-08-2024	03-07-2025
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	нм10	1804186	06-01-2023 05-29-2024	05-31-2024 05-28-2025
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		(1)
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

Page 11 of 98

			Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025	
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025	
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024	
Barometer	changchun	DYM3	1188		(in)	
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		6	
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025	
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024	

Page 12 of 98

Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	трк	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre	(\mathbf{c})	
Cable line	Fulai(7M)	SF106	5219/6A		~~
Cable line	Fulai(6M)	SF106	5220/6A		<u>(5)</u>
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A		

Page 13 of 98

((<u>()</u>
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic JS Tonscend test software		JS36-RSE	10166	(J)	6
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		9
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		()
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	$\underline{\circ}$	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<u></u>
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		e
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(2
	S	U		U	0

Page 14 of 98

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

	equirement:		Part 15C Sec	tion 15.203			
responsible antenna tha so that a br electrical co	nal radiator sh party shall be at uses a uniq oken antenna onnector is pre	e used with th ue coupling to a can be repla ohibited.	ne device. The othe intention of the intention of the use of the u	e use of a pe nal radiator, th er, but the us	na other than rmanently atta ne manufactur se of a standa	ached antenn er may desig	a or of an n the unit
EUT Anten		667	see Internal pl st case gain o	16.5	a are: U-NII-1	: ANT1 : 3.8	5dBi, ANT2 :
3.86dBi. U-	NII-2A: ANT1	: 3.85dBi, A	NT2:3.55dE	Bi. U-NII-2C: A	ANT1:3.54dB	Bi, ANT2:4.2	24dBi.
U-NII-3: AN	IT1:3.87dBi,	, ANT2:3.51	dBi.				

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 15 of 98

7.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15	.207							
Test Method:	ANSI C63.10: 2013								
Test Frequency Range	e: 150kHz to 30MHz								
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limit:		Limit	(dBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarith								
Test Setup:	AC Mains	AE USN2 + AC Ground Reference Plane							
Test Procedure:	 impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal g 4) The test was performed w the EUT shall be 0.4 m vertical ground reference plane. The LIS unit under test and bo mounted on top of the ground the test and bo mounted on top of the ground the ground	d to AC power sourc Network) which provide cables of all other SN 2, which was bonc as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-met And for floor-standing ground reference plane from the vertical ground re- from the vertical ground n 1 was placed 0.8 m inded to a ground re- pund reference plane. LISN 1 and the EUT. at was at least 0.8 m fro- num emission, the rela- ables must be changed	e through a LISN 1 (Lin es a $50\Omega/50\mu$ H + 5Ω linea units of the EUT wer led to the ground reference e unit being measured multiple power cables to not exceeded. tallic table 0.8m above th arrangement, the EUT wa e. eference plane. The rear of bund reference plane. The to the horizontal groun in from the boundary of th eference plane for LISN This distance was betwee All other units of the EU om the LISN 2. tive positions of equipmer d according to						

(S)

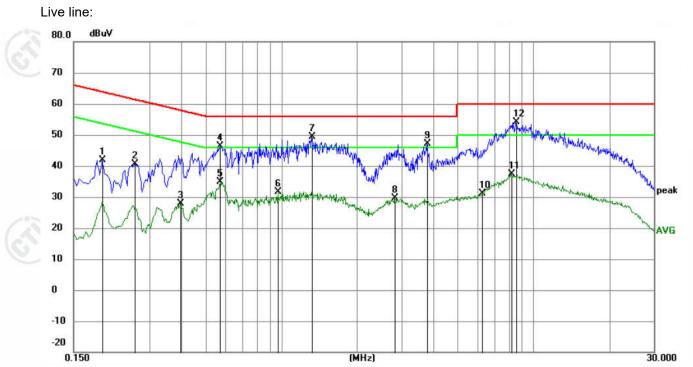
Report No. : EED32Q80705104

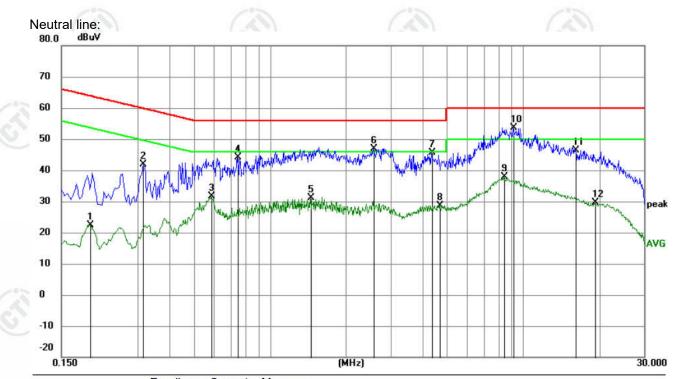
Page 16 of 98

Test Mode:	All modes were tested,	only the worst case was rec	orded in the report.
Test Results:	Pass	(C)	(C)

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 17 of 98




	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
1		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.1949	31.98	9.87	41.85	63.83	-21.98	QP	
1	2	0.2625	31.08	9.66	40.74	61.35	-20.61	QP	
5 .	3	0.3975	18.02	9.78	27.80	47.91	-20.11	AVG	
-	4	0.5730	36.82	9.64	46.46	56.00	-9.54	QP	
3	5	0.5730	25.15	9.64	34.79	46.00	-11.21	AVG	
82	6	0.9735	21.77	9.76	31.53	46.00	-14.47	AVG	
-	7	1.3200	39.52	9.74	49.26	56.00	-6.74	QP	
2	8	2.8184	19.78	9.77	29.55	46.00	-16.45	AVG	
1	9	3.7905	37.21	9.80	47.01	56.00	-8.99	QP	
2-	10	6.2609	21.21	9.85	31.06	50.00	-18.94	AVG	
1	11	8.1825	27.57	9.84	37.41	50.00	-12.59	AVG	
	12 *	8.5200	44.37	9.84	54.21	60.00	-5.79	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 18 of 98

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1949	12.55	9.87	22.42	53.83	-31.41	AVG	
2	0.3165	32.38	9.58	41.96	59.80	-17.84	QP	
3	0.5865	21.91	9.62	31.53	46.00	-14.47	AVG	
4	0.7440	34.18	9.90	44.08	56.00	-11.92	QP	
5	1.4460	21.42	9.74	31.16	46.00	-14.84	AVG	
6	2.5665	37.14	9.77	46.91	56.00	-9.09	QP	
7	4.3439	35.86	9.82	45.68	56.00	-10.32	QP	
8	4.6860	18.87	9.83	28.70	46.00	-17.30	AVG	
9	8.4075	27.94	9.84	37.78	50.00	-12.22	AVG	
10 *	9.1500	43.80	9.84	53.64	60.00	-6.36	QP	
11	16.1340	36.56	9.89	46.45	60.00	-13.55	QP	
12	19.3200	19.68	10.01	29.69	50.00	-20.31	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

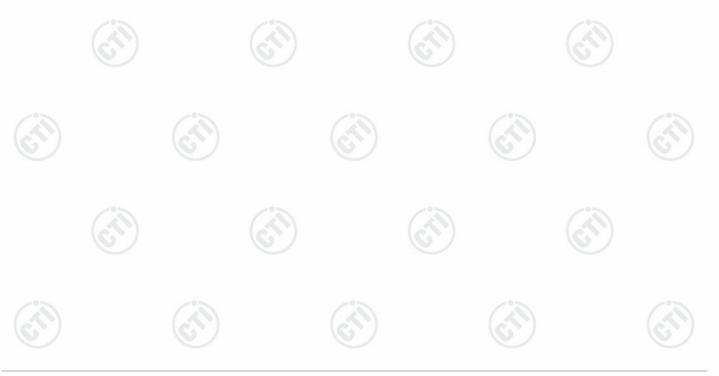
Page 19 of 98

7.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))					
	Test Method:	KDB789033 D02 G E	eneral UNII Tes	est Procedures New Rules v02r01 Secti					
Ś	Test Setup:	6	19		(A)				
		Control Computer Power Supply TemPERATURE CAB	Attenuator	RF test – System Instrument					
		6	57	(67)	(cri				
	Test Procedure:	General UNII Test 2. The RF output of attenuator. The pair measurement. 3. Set to the maxin continuously.	Procedures New f EUT was conne th loss was comp num power setting	nent Procedure of KDB78 Rules v02r01 Section E, acted to the power meter bensated to the results fo g and enable the EUT transver ower and record the result	3, a by RF cable and r each ansmit				
2	Limit:		í A						
2		Frequency band (MHz)	Limit	C	G				
		5150-5250	≤1W(30dBm) fc	or master device					
			, ,	m) for client device 📂	S				
		5250-5350	≤250mW(24dB	m) for client device or 11	dBm+10logB*				
		5470-5725	≤250mW(24dB	m) for client device or 11	dBm+10logB*				
		5725-5850	≤1W(30dBm)						
ŝ		Remark:	mark: * Where B is the 26dB emission bandwidth in MHz The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms- equivalent voltage.						
3			equivalent volta	Transmitting mode with modulation					
2	Test Mode:	Transmitting mode	-	ige.					

7.4 6dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (e)
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Ś	Test Setup:	
		Congular Congul
(Å		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
13	Limit:	≥ 500 kHz
	Test Mode:	Transmitting mode with modulation
	Test Results:	Refer to Appendix 5G Wi-Fi



Page 21 of 98

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (a)
	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
6	Test Setup:	
		Control Computer Supply Forwer Future CABNET Table
×		Remark: Offset=Cable loss+ attenuation factor.
2	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
	Limit:	No restriction limits
	Test Mode:	Transmitting mode with modulation
	Test Results:	Refer to Appendix 5G Wi-Fi

Page 22 of 98

7.6 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)		
	Test Method:		()		Rules v02r01 Section F
	Test Setup:	~		1	
		Control Computer Supply TemPERATURE CABP	Attenuator	RF test System Instrument	9
<u>Ş</u> _	Test Procedure:		analyzer or EMI	receiver span to vi	iew the entire emission
		bandwidth. 1. Set R		MHz, VBW ≥ 3*RE	3W, Sweep time =
		Auto, Detector = RM 2. Allow the sweeps 3. Use the peak ma	s to continue unti		s. num amplitude level.
	Limit:	2. Allow the sweeps	s to continue unti		
	Limit:	2. Allow the sweeps 3. Use the peak ma	s to continue until Irker function to d		mum amplitude level.
2	Limit:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	s to continue unti irker function to d Limit ≤17dBm in 1MF	etermine the maxi	mum amplitude level.
	Limit:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz)	s to continue unti irker function to d Limit ≤17dBm in 1MF ≤11dBm in 1MF	etermine the maxin Iz for master devic	mum amplitude level.
	Limit:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250	s to continue unti irker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH	etermine the maxin Iz for master devic Iz for client device	mum amplitude level.
	Limit:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350	s to continue unti irker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH	etermine the maxin Iz for master devic Iz for client device Iz for client device Iz for client device	mum amplitude level.
	Limit:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725	s to continue until irker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤30dBm in 500 The maximum p a conducted em	etermine the maxin Iz for master device Iz for client device Iz for client device Iz for client device KHz power spectral den hission by direct co	num amplitude level. e sity is measured as
	Limit: Test Mode:	2. Allow the sweeps 3. Use the peak ma Frequency band (MHz) 5150-5250 5250-5350 5470-5725 5725-5850	s to continue unti irker function to d Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤30dBm in 500 The maximum p a conducted en calibrated test in	etermine the maxin Iz for master device Iz for client device Iz for client device Iz for client device KHz power spectral den hission by direct co	e sity is measured as nnection of a

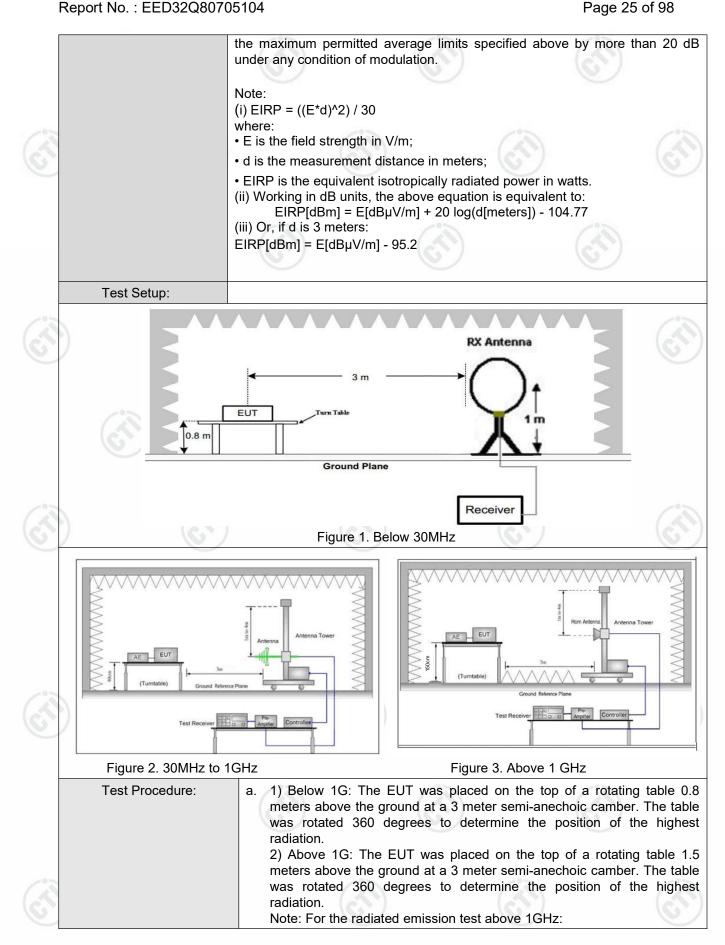
Page 23 of 98

7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Computer Power Supply TemPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. Turn the EUT on and couple its output to a spectrum analyzer. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G Wi-Fi
G	

Page 24 of 98

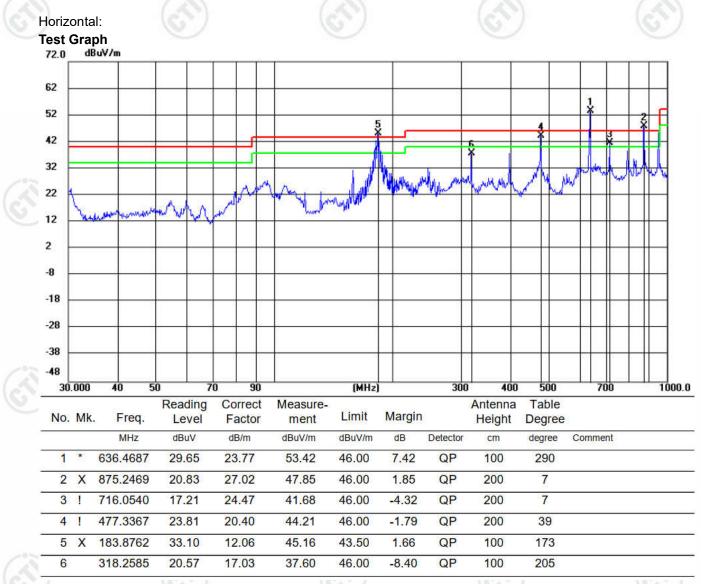
7.8 Radiated Emission


	Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)			
	Test Method:	ANSI C63.10 2013						
-	Test Site:	Measurement Distance	e: 3n	n (Semi-Ane	choic Cha	mbe	r)	100
	Receiver Setup:	Frequency	(2)	Detector	RB	N	VBW	Remark
2		0.009MHz-0.090MH	Ηz	Peak	10k	Hz 30kHz		Peak
		0.009MHz-0.090MH	Ηz	Average	10kł	Ηz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	ak 10kł	Ηz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10kH	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kł	Ηz	30kHz	Average
		0.490MHz -30MHz	z	Quasi-pea	ak 10kł	Ηz	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-pea	ak 100 k	Hz	300kHz	Quasi-peak
3		Above 1011-	1	Peak	1MH	Ηz	3MHz	Peak
		Above 1GHz	9	Peak	1MF	Ιz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	24	00/F(kHz)	-		- (8	300
				000/F(kHz)	-		. @	30
		1.705MHz-30MHz		30	-		-	30
		30MHz-88MHz		100	40.0	Qu	iasi-peak	3
		88MHz-216MHz	0	150	43.5	Qu	iasi-peak	3
		216MHz-960MHz	2	200	46.0	Qu	iasi-peak	3
		960MHz-1GHz		500	54.0	Qu	iasi-peak	3
		Above 1GHz		500	54.0	A	verage	3
201		 *(1) For transmitters outside of the 5.15-4 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz to (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be 	5.35 eratii band opera 5.725 eratii be lir	GHz band ng in the 5.2 shall not exe ating in the GHz band ng in the 5.7 nited to a lev	shall not 5-5.35 G⊢ ceed an e. 5.47-5.72 I shall no 25-5.85 G /el of −27	t ex i.r.p. 25 G t ex Hz t dBm	and: All em of -27 dE Hz band: acceed an pand: n/MHz at 7	e.i.r.p. of −27 hissions outside Bm/MHz. All emissions e.i.r.p. of −27 5 MHz or more
		above or below the ba above or below the b edge increasing linear the band edge, and f linearly to a level of 27 Remark: The emission measurements emplor frequency bands 9-9 emission limits in these an average detector, the second se	and ly to rom dBn on li oying 0kHz se th	edge, and f a level of 15 5 MHz abo n/MHz at the imits showr a CISPR z, 110-490k ree bands a	rom 25 M 5.6 dBm/N ve or belo band edg n in the quasi-pea Hz and a re based	Hz a Hz a w th e. abov ak abov on r	above or k at 5 MHz a ne band e ve table detector e ve 1000 M measurem	below the band above or below dge increasing are based or except for the MHz. Radiated ents employing

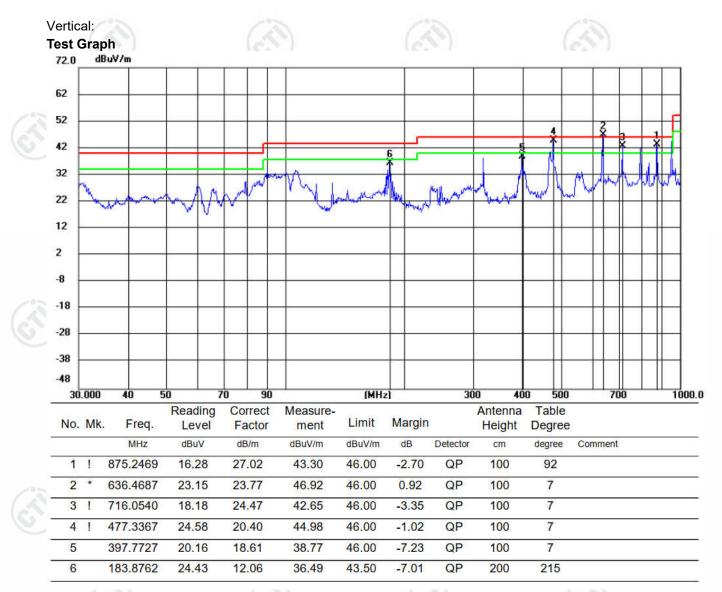
CTI华测检测

- 05 -f 00

	 Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz


Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case U-NII-1 middle channel of 6Mbps for 802.11a was recorded in the report.

Note:Since the product was certified according to class A when it was certified 47 CFR Part 15 Subpart B, the data frequencies of the above fail were not generated by the wireless module, and these frequencies did not belong to 47 CFR Part 15 Subpart C section 15.205, so the evaluation could not be carried out, and the test passed.

Page 28 of 98

Note:Since the product was certified according to class A when it was certified 47 CFR Part 15 Subpart B, the data frequencies of the above fail were not generated by the wireless module, and these frequencies did not belong to 47 CFR Part 15 Subpart C section 15.205, so the evaluation could not be carried out, and the test passed.

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission from 1GHz to 40GHz was performed in all modes,,

for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case;

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case;

only the worst case U-NII-1 was recorded in the report.

U-NI	I-1:								
Mode	:	80)2.11 a Tran	smitting		Channel:		5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1224.4224	7.57	38.16	45.73	68.20	22.47	PASS	Horizontal	PK
2	1750.275	8.63	39.75	48.38	68.20	19.82	PASS	Horizontal	PK
3	3048.9549	12.40	37.62	50.02	68.20	18.18	PASS	Horizontal	PK
4	6597.1799	-8.44	52.18	43.74	68.20	24.46	PASS	Horizontal	PK
5	9236.5618	-3.39	49.96	46.57	68.20	21.63	PASS	Horizontal	PK
6	10362.4681	-1.51	50.89	49.38	68.20	18.82	PASS	Horizontal	PK
7	1193.6194	7.40	41.86	49.26	68.20	18.94	PASS	Vertical	PK
8	2311.3311	10.44	41.27	51.71	68.20	16.49	PASS	Vertical	PK
9	3779.4279	14.33	34.75	49.08	68.20	19.12	PASS	Vertical	PK
10	6600.055	-8.41	54.04	45.63	68.20	22.57	PASS	Vertical	PK
11	10359.593	-1.51	50.69	49.18	68.20	19.02	PASS	Vertical	PK
12	13661.4081	5.51	43.54	49.05	68.20	19.15	PASS	Vertical	PK
2		(\sim)					·]	(2

	Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1193.0693	7.40	38.31	45.71	68.20	22.49	PASS	Horizontal	PK
	2	1750.275	8.63	40.29	48.92	68.20	19.28	PASS	Horizontal	PK
	3	3083.0583	12.41	36.94	49.35	68.20	18.85	PASS	Horizontal	PK
1	4	6603.5052	-8.39	51.75	43.36	68.20	24.84	PASS	Horizontal	PK
1	5	9238.8619	-3.37	49.45	46.08	68.20	22.12	PASS	Horizontal	PK
4	6	13647.6074	5.67	44.18	49.85	68.20	18.35	PASS	Horizontal	PK
	7	1193.6194	7.40	40.48	47.88	68.20	20.32	PASS	Vertical	PK
	8	2310.231	10.43	41.10	51.53	68.20	16.67	PASS	Vertical	PK
	9	4056.6557	15.57	33.33	48.90	68.20	19.30	PASS	Vertical	PK
	10	6602.3551	-8.39	54.09	45.70	68.20	22.50	PASS	Vertical	PK
	11	10380.294	-1.55	50.59	49.04	68.20	19.16	PASS	Vertical	PK
	12	14291.6396	6.30	42.09	48.39	68.20	19.81	PASS	Vertical	PK

Page 29 of 98

Page 30 of 98

				(1)		11		1	1	
	Mode:		8	802.11 ac(VH	T80) Transm	nitting	Channe	el:	5210MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1193.6194	7.40	38.35	45.75	68.20	22.45	PASS	Horizontal	PK
6	2	1750.275	8.63	39.88	48.51	68.20	19.69	PASS	Horizontal	PK
~	3	3343.2343	13.37	35.78	49.15	68.20	19.05	PASS	Horizontal	PK
	4	6597.7549	-8.43	53.80	45.37	68.20	22.83	PASS	Horizontal	PK
	5	9241.7371	-3.33	49.68	46.35	68.20	21.85	PASS	Horizontal	PK
	6	13655.6578	5.58	43.66	49.24	68.20	18.96	PASS	Horizontal	PK
	7	1193.6194	7.40	40.16	47.56	68.20	20.64	PASS	Vertical	PK
	8	2480.7481	11.55	40.76	52.31	68.20	15.89	PASS	Vertical	PK
	9	3910.341	14.57	35.25	49.82	68.20	18.38	PASS	Vertical	PK
10	10	6602.9301	-8.39	53.36	44.97	68.20	23.23	PASS	Vertical	PK
4	11	9241.1621	-3.34	49.58	46.24	68.20	21.96	PASS	Vertical	PK
C	12	14305.4403	6.21	42.56	48.77	68.20	19.43	PASS	Vertical	PK

MIMO:

	0.		0.00					-0-	
Mode	:	80)2.11 n(HT2	0) Transmitti	ng	Channel:		5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1193.0693	7.40	39.03	46.43	68.20	21.77	PASS	Horizontal	PK
2	1749.725	8.61	40.93	49.54	68.20	18.66	PASS	Horizontal	PK
3	3651.2651	13.81	35.53	49.34	68.20	18.86	PASS	Horizontal	PK
4	6600.63	-8.41	51.83	43.42	68.20	24.78	PASS	Horizontal	PK
5	10362.4681	-1.51	53.64	52.13	68.20	16.07	PASS	Horizontal	PK
6	13717.7609	4.80	43.77	48.57	68.20	19.63	PASS	Horizontal	PK
7	1319.582	8.09	39.45	47.54	68.20	20.66	PASS	Vertical	PK
8	1749.725	8.61	37.60	46.21	68.20	21.99	PASS	Vertical	PK
9	2488.9989	11.64	40.17	51.81	68.20	16.39	PASS	Vertical	PK
10	3959.2959	15.03	34.97	50.00	68.20	18.20	PASS	Vertical	PK
11	6597.1799	-8.44	53.78	45.34	68.20	22.86	PASS	Vertical	PK
12	10359.593	-1.51	59.71	58.20	68.20	10.00	PASS	Vertical	PK
13	13659.683	5.54	43.38	48.92	68.20	19.28	PASS	Vertical	PK
14	10360.168	-1.51	49.99	48.48	54.00	5.52	PASS	Vertical	AV

					(1.1		1		
ſ	Mode	:		802.11 n(HT4	0) Transmitti	ing	Chann	el:	5190MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1193.6194	7.40	37.94	45.34	68.20	22.86	PASS	Horizontal	PK
	2	1750.275	8.63	40.41	49.04	68.20	19.16	PASS	Horizontal	PK
~	3	2564.3564	11.61	37.22	48.83	68.20	19.37	PASS	Horizontal	PK
	4	3767.3267	14.30	34.53	48.83	68.20	19.37	PASS	Horizontal	PK
	5	6601.2051	-8.41	51.56	43.15	68.20	25.05	PASS	Horizontal	PK
	6	10373.3937	-1.54	49.95	48.41	68.20	19.79	PASS	Horizontal	PK
	7	1352.5853	8.19	41.75	49.94	68.20	18.26	PASS	Vertical	PK
	8	2476.8977	11.52	40.06	51.58	68.20	16.62	PASS	Vertical	PK
	9	4099.0099	15.69	34.18	49.87	68.20	18.33	PASS	Vertical	PK
20	10	6599.48	-8.41	54.20	45.79	68.20	22.41	PASS	Vertical	PK
4	11	10380.294	-1.55	54.68	53.13	68.20	15.07	PASS	Vertical	PK
3	12	13671.7586	5.39	43.36	48.75	68.20	19.45	PASS	Vertical	PK

Mo	de:	8	302.11 ac(VH	T80) Transm	nitting	Channe	el:	5210MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1272.2772	7.86	37.69	45.55	68.20	22.65	PASS	Horizontal	PK
2	1750.275	8.63	41.10	49.73	68.20	18.47	PASS	Horizontal	PK
3	3303.0803	13.54	35.92	49.46	68.20	18.74	PASS	Horizontal	PK
4	6602.3551	-8.39	52.01	43.62	68.20	24.58	PASS	Horizontal	PK
5	9241.1621	-3.34	50.70	47.36	68.20	20.84	PASS	Horizontal	PK
6	10419.396	-1.35	49.14	47.79	68.20	20.41	PASS	Horizontal	PK
7	1352.0352	8.19	40.92	49.11	68.20	19.09	PASS	Vertical	PK
8	2475.7976	11.51	39.86	51.37	68.20	16.83	PASS	Vertical	PK
9	3814.6315	14.41	35.84	50.25	68.20	17.95	PASS	Vertical	PK
10	6599.48	-8.41	53.02	44.61	68.20	23.59	PASS	Vertical	PK
11	10418.8209	-1.36	53.44	52.08	68.20	16.12	PASS	Vertical	PK
12	14297.3899	6.26	42.45	48.71	68.20	19.49	PASS	Vertical	PK

Transmitter Emission above 18GHz

									51	
	Mode	:	8	02.11 a Tran	smitting		Channe	el:	5180MHz	
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	18889.6756	-24.72	63.33	38.61	68.2	29.59	PASS	Horizontal	PK
-	2	21594.5838	-24.82	61.95	37.13	68.2	31.07	PASS	Horizontal	PK
	3	24029.9212	-20.45	58.36	37.91	68.2	30.29	PASS	Horizontal	PK
	4	27653.0261	-20.40	58.87	38.47	68.2	29.73	PASS	Horizontal	PK
	5	30923.757	-17.50	56.83	39.33	68.2	28.87	PASS	Horizontal	PK
	6	36593.0237	-14.17	51.63	37.46	68.2	30.74	PASS	Horizontal	PK
	7	18640.3456	-25.49	63.16	37.67	68.2	30.53	PASS	Vertical	PK
	8	21962.5985	-25.03	61.23	36.20	68.2	32.00	PASS	Vertical	PK
20	9	24822.9929	-19.81	57.80	37.99	68.2	30.21	PASS	Vertical	PK
5	10	29695.5078	-19.43	57.90	38.47	68.2	29.73	PASS	Vertical	PK
2	11	33435.4574	-15.98	54.57	38.59	68.2	29.61	PASS	Vertical	PK
	12	38734.8694	-11.65	49.60	37.95	68.2	30.25	PASS	Vertical	PK

Mode:			802.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	19438.9376	-23.94	62.65	38.71	68.2	29.49	PASS	Horizontal	PK	
2	22209.1684	-24.69	62.33	37.64	68.2	30.56	PASS	Horizontal	PK	
3	25693.3477	-18.80	58.34	39.54	68.2	28.66	PASS	Horizontal	PK	
4	28277.7311	-20.55	5 58.57	38.02	68.2	30.18	PASS	Horizontal	PK	
5	31662.5465	-17.18	54.66	37.48	68.2	30.72	PASS	Horizontal	PK	
6	34886.3555	-15.47	′ 54.04	38.57	68.2	29.63	PASS	Horizontal	PK	
7	19088.4035	-24.43	62.62	38.19	68.2	30.01	PASS	Vertical	PK	
8	21817.2327	-24.75	61.39	36.64	68.2	31.56	PASS	Vertical	PK	
9	25097.1639	-19.35	5 57.26	37.91	68.2	30.29	PASS	Vertical	PK	
10	29313.6925	-20.14	57.65	37.51	68.2	30.69	PASS	Vertical	PK	
11	33155.7662	-16.19	53.91	37.72	68.2	30.48	PASS	Vertical	PK	
12	38192.9677	-12.89	49.37	36.48	68.2	31.72	PASS	Vertical	PK	

Page 32 of 98

Page 33 of 98

								1		
	Mode:		80	2.11 ac(VH	T80) Transm	nitting	Channe	el:	5210MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	19956.9183	-23.17	61.48	38.31	68.2	29.89	PASS	Horizontal	PK
ධ	2	23321.4929	-22.90	59.44	36.54	68.2	31.66	PASS	Horizontal	PK
1	3	26456.0582	-19.43	58.68	39.25	68.2	28.95	PASS	Horizontal	PK
	4	29574.983	-19.36	57.05	37.69	68.2	30.51	PASS	Horizontal	PK
	5	34403.3361	-15.87	52.23	36.36	68.2	31.84	PASS	Horizontal	PK
	6	38437.6975	-12.10	49.02	36.92	68.2	31.28	PASS	Horizontal	PK
	7	19371.7749	-24.00	62.35	38.35	68.2	29.85	PASS	Vertical	PK
	8	22431.8173	-24.40	60.88	36.48	68.2	31.72	PASS	Vertical	PK
	9	25598.5839	-18.71	57.79	39.08	68.2	29.12	PASS	Vertical	PK
20	10	29554.7422	-19.44	57.30	37.86	68.2	30.34	PASS	Vertical	PK
A	11	32593.6237	-16.44	54.94	38.50	68.2	29.70	PASS	Vertical	PK
0	12	38698.988	-11.82	49.97	38.15	68.2	30.05	PASS	Vertical	PK

MIMO:

Mode:		2.11 n(HT2	0) Transmitti	ng	Channe	el:	5180MHz		
Freq. [MHz]			Level Limit [dBµV/m] [dBµV/m]		Margin [dB]	Result	Polarity	Remark	
19814.3126	-23.58	61.36	37.78	68.2	30.42	PASS	Horizontal	PK	
22779.5912	-24.39	60.12	35.73	68.2	32.47	PASS	Horizontal	PK	
26418.3367	-19.44	58.16	38.72	68.2	29.48	PASS	Horizontal	PK	
31294.5318	-17.65	55.88	38.23	68.2	29.97	PASS	Horizontal	PK	
37149.646	-15.16	51.46	36.30	68.2	31.90	PASS	Horizontal	PK	
39331.9733	-11.69	47.92	36.23	68.2	31.97	PASS	Horizontal	PK	
19077.3631	-24.44	62.48	38.04	68.2	30.16	PASS	Vertical	PK	
21468.5387	-24.86	61.80	36.94	68.2	31.26	PASS	Vertical	PK	
25864.4746	-18.98	57.67	38.69	68.2	29.51	PASS	Vertical	PK	
29599.824	-19.27	57.72	38.45	68.2	29.75	PASS	Vertical	PK	
33478.6991	-15.83	54.83	39.00	68.2	29.20	PASS	Vertical	PK	
38671.3869	-11.96	50.04	38.08	68.2	30.12	PASS	Vertical	PK	
	Freq. [MHz] 19814.3126 22779.5912 26418.3367 31294.5318 37149.646 39331.9733 19077.3631 21468.5387 25864.4746 29599.824 33478.6991	Freq. [MHz]Factor [dB]19814.3126-23.5822779.5912-24.3926418.3367-19.4431294.5318-17.6537149.646-15.1639331.9733-11.6919077.3631-24.4421468.5387-24.8625864.4746-18.9829599.824-19.2733478.6991-15.83	Freq. [MHz]Factor [dB]Reading [dBµV]19814.3126-23.5861.3622779.5912-24.3960.1226418.3367-19.4458.1631294.5318-17.6555.8837149.646-15.1651.4639331.9733-11.6947.9219077.3631-24.4462.4821468.5387-24.8661.8025864.4746-18.9857.6729599.824-19.2757.7233478.6991-15.8354.83	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]19814.3126-23.5861.3637.7822779.5912-24.3960.1235.7326418.3367-19.4458.1638.7231294.5318-17.6555.8838.2337149.646-15.1651.4636.3039331.9733-11.6947.9236.2319077.3631-24.4462.4838.0421468.5387-24.8661.8036.9425864.4746-18.9857.6738.6929599.824-19.2757.7238.4533478.6991-15.8354.8339.00	Freq. [MHz]Factor [dB]Reading [dBμV]Level [dBμV/m]Limit [dBμV/m]19814.3126-23.5861.3637.7868.222779.5912-24.3960.1235.7368.226418.3367-19.4458.1638.7268.231294.5318-17.6555.8838.2368.237149.646-15.1651.4636.3068.239331.9733-11.6947.9236.2368.219077.3631-24.4462.4838.0468.221468.5387-24.8661.8036.9468.225864.4746-18.9857.6738.6968.229599.824-19.2757.7238.4568.233478.6991-15.8354.8339.0068.2	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]19814.3126-23.5861.3637.7868.230.4222779.5912-24.3960.1235.7368.232.4726418.3367-19.4458.1638.7268.229.4831294.5318-17.6555.8838.2368.229.9737149.646-15.1651.4636.3068.231.9039331.9733-11.6947.9236.2368.230.1621468.5387-24.8661.8036.9468.231.2625864.4746-18.9857.6738.6968.229.5129599.824-19.2757.7238.4568.229.7533478.6991-15.8354.8339.0068.229.20	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]Result19814.3126-23.5861.3637.7868.230.42PASS22779.5912-24.3960.1235.7368.232.47PASS26418.3367-19.4458.1638.7268.229.48PASS31294.5318-17.6555.8838.2368.229.97PASS37149.646-15.1651.4636.3068.231.90PASS39331.9733-11.6947.9236.2368.230.16PASS19077.3631-24.4462.4838.0468.230.16PASS21468.5387-24.8661.8036.9468.231.26PASS25864.4746-18.9857.6738.6968.229.75PASS33478.6991-15.8354.8339.0068.229.20PASS	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity19814.3126-23.5861.3637.7868.230.42PASSHorizontal22779.5912-24.3960.1235.7368.232.47PASSHorizontal26418.3367-19.4458.1638.7268.229.48PASSHorizontal31294.5318-17.6555.8838.2368.229.97PASSHorizontal37149.646-15.1651.4636.3068.231.90PASSHorizontal39331.9733-11.6947.9236.2368.230.16PASSHorizontal19077.3631-24.4462.4838.0468.230.16PASSVertical21468.5387-24.8661.8036.9468.231.26PASSVertical25864.4746-18.9857.6738.6968.229.51PASSVertical29599.824-19.2757.7238.4568.229.20PASSVertical33478.6991-15.8354.8339.0068.229.20PASSVertical	



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

									1			
M	Mode:			802.	11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz		
N	0	Freq. [MHz]	Facto [dB]		Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
-	1	19409.4964	-23.9	4	61.70	37.76	68.2	30.44	PASS	Horizontal	PK	
2	2	21906.4763	-24.9	2	60.86	35.94	68.2	32.26	PASS	Horizontal	PK	
3	3	25192.8477	-18.8	7	56.92	38.05	68.2	30.15	PASS	Horizontal	PK	
4	4	29130.6052	-20.2	3	58.18	37.95	68.2	30.25	PASS	Horizontal	PK	
Ę	5	33210.0484	-16.0	9	54.09	38.00	68.2	30.20	PASS	Horizontal	PK	
6	6	38102.8041	-13.4	0	49.53	36.13	68.2	32.07	PASS	Horizontal	PK	
7	7	19300.932	-24.1	4	61.93	37.79	68.2	30.41	PASS	Vertical	PK	
8	3	22143.8458	-24.8	1	60.92	36.11	68.2	32.09	PASS	Vertical	PK	
ę	Э	25237.0095	-18.9	2	57.55	38.63	68.2	29.57	PASS	Vertical	PK	
1	0	29044.1218	-20.1	8	58.12	37.94	68.2	30.26	PASS	Vertical	PK	
1	1	32798.792	-16.3	7	54.35	37.98	68.2	30.22	PASS	Vertical	PK	
1	2	39019.1608	-10.7	5	47.97	37.22	68.2	30.98	PASS	Vertical	PK	

Mode:)2.11 ac(VH	T80) Transm	nitting	Channe	el:	5210MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	19311.9725	-24.12	62.86	38.74	68.2	29.46	PASS	Horizontal	PK
2	21841.1536	-24.80	61.43	36.63	68.2	31.57	PASS	Horizontal	PK
3	25112.8045	-19.26	57.08	37.82	68.2	30.38	PASS	Horizontal	PK
4	28843.5537	-20.36	58.61	38.25	68.2	29.95	PASS	Horizontal	PK
5	33284.5714	-16.10	54.10	38.00	68.2	30.20	PASS	Horizontal	PK
6	38808.4723	-11.31	48.63	37.32	68.2	30.88	PASS	Horizontal	PK
7	19020.3208	-24.49	62.21	37.72	68.2	30.48	PASS	Vertical	PK
8	21509.0204	-24.85	61.81	36.96	68.2	31.24	PASS	Vertical	PK
9	25874.595	-18.98	58.02	39.04	68.2	29.16	PASS	Vertical	PK
10	30091.1236	-19.69	57.76	38.07	68.2	30.13	PASS	Vertical	PK
11	34707.8683	-15.27	51.98	36.71	68.2	31.49	PASS	Vertical	PK
12	38741.3097	-11.62	49.16	37.54	68.2	30.66	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

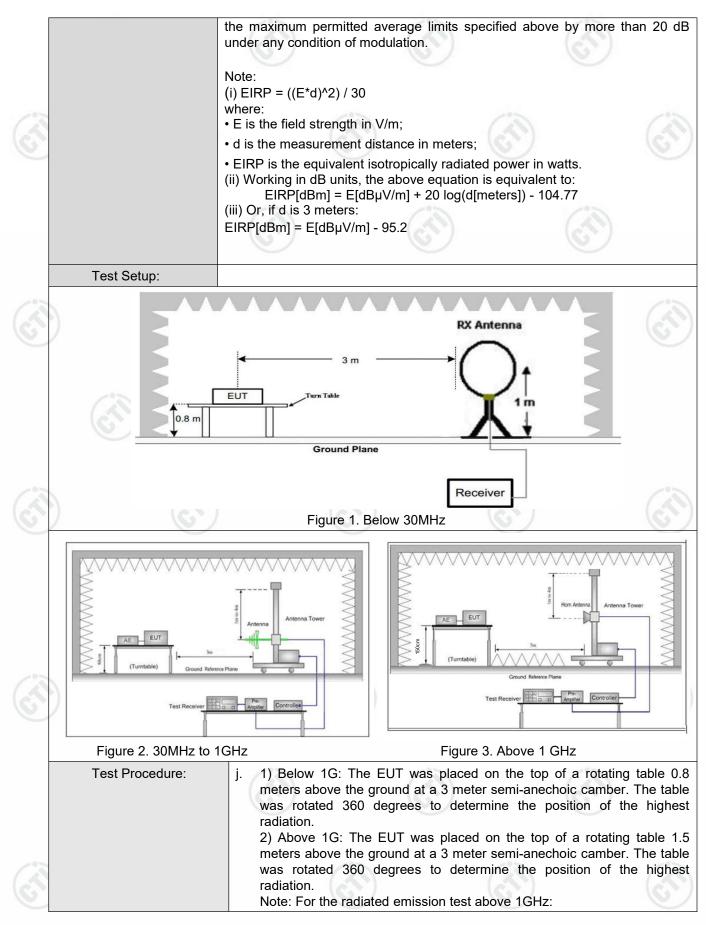
2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 35 of 98

7.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Sect	tion 1	5.209 and 1	5.407 (b)				
	Test Method:	ANSI C63.10 2013								
-	Test Site:	Measurement Distanc	e: 3n	n (Semi-Ane	choic Ch	ambe	er)	12		
	Receiver Setup:	Frequency	(2)	Detector	R	3W	VBW	Remark		
		0.009MHz-0.090MH	Ηz	Peak	10	кНz	30kHz	Peak		
		0.009MHz-0.090MHz		Average	10	кНz	30kHz	Average		
		0.090MHz-0.110MH	Ηz	Quasi-pea	ak 10	кНz	30kHz	Quasi-peak		
		0.110MHz-0.490MH	Ηz	Peak	10	кНz	30kHz	Peak		
		0.110MHz-0.490MH	Ηz	Average	10	кНz	30kHz	Average		
		0.490MHz -30MH	z	Quasi-pea	ak 10	кНz	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak		
3		Above 1011	0	Peak	11	1Hz	3MHz	Peak		
		Above 1GHz		Peak	11	1Hz	10kHz	Average		
	Limit:	Frequency		ld strength	Limit	F	Remark	Measuremer		
			(mic	rovolt/meter)	(dBuV/r	n) '	Centark	distance (m)		
		0.009MHz-0.490MHz		00/F(kHz)	-		- (25	300		
		0.490MHz-1.705MHz		24000/F(kHz)			- 2	30		
		1.705MHz-30MHz		30			-	30		
-		30MHz-88MHz		100	40.0	Qu	uasi-peak	3		
		88MHz-216MHz		150	43.5	Qu	uasi-peak	3		
2		216MHz-960MHz		200		Qu	uasi-peak	3		
		960MHz-1GHz		500		Qu	uasi-peak	3		
		Above 1GHz		500		A	verage	3		
22		 *(1) For transmitters outside of the 5.15- dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz to (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall above or below the base above or below the base 	5.35 berationand operational berational be line and end ly to	GHz band ng in the 5.2 shall not ex- ating in the GHz band ng in the 5.7 nited to a level edge increase edge, and f a level of 1	shall n 5-5.35 G ceed an 5.47-5. d shall r 225-5.85 vel of -2 sing linea from 25 l 5.6 dBm	ot ex Hz ba e.i.r.p 25 C 725 C 00 ex 00 t ex 01 t 01 t 01 t 01 t 01 t 01 t 01 t 01 t	and: All em . of –27 dE GHz band: xceed an band: n/MHz at 7 0 10 dBm/N above or b at 5 MHz	e.i.r.p. of -2 nissions outside 3m/MHz. All emission e.i.r.p. of -2 75 MHz or more MHz at 25 MH pelow the ban- above or below		
		the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed								

CTI华测检测


Report No. : EED32Q80705104

G

Page 37 of 98

 oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevator for maximum emissions shall be restricted to a range of heights of f 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receir antenna, which was mounted on the top of a variable-height anter tower. I. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. E horizontal and vertical polarizations of the antenna are set to make measurement. m. For each suspected emission, the EUT was arranged to its worst or and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to height meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emision shat did not have 1 margin would be reported one by one using peak, quasi-peak average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is worst case. r. Repeat above procedures until all frequencies measured was comple 	Test Results:	Pass
 oriented for maximum response. The measurement antenna may he to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions shall be restricted to a range of heights of 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receivantenna, which was mounted on the top of a variable-height anter tower. l. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. E horizontal and vertical polarizations of the antenna are set to make measurement. m. For each suspected emission, the EUT was arranged to its worst or and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to height meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is worst case. 		
 oriented for maximum response. The measurement antenna may here to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevation shall be which maximum signal. The final measurement antenna elevation shall be which maximum emissions shall be restricted to a range of heights of 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receive antenna, which was mounted on the top of a variable-height anter tower. i. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. E horizontal and vertical polarizations of the antenna are set to make measurement. m. For each suspected emission, the EUT was arranged to its worst or and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to height meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Speci Bandwidth with Maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than thim t specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 1 margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is worst case. 	Test Moder	
 oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna eleva for maximum emissions shall be restricted to a range of heights of f 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receive antenna, which was mounted on the top of a variable-height anter tower. I. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. En horizontal and vertical polarizations of the antenna are set to make measurement. m. For each suspected emission, the EUT was arranged to its worst of and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to height meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Speci Bandwidth with Maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 1 margin would be re-tested one by one using peak, quasi-peak 	5 ⁵	 p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
 oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevator for maximum emissions shall be restricted to a range of heights of f 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiver antenna, which was mounted on the top of a variable-height anter tower. I. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. E horizontal and vertical polarizations of the antenna are set to make measurement. m. For each suspected emission, the EUT was arranged to its worst or and then the antenna was tuned to heights from 1 meter to 4 meters the test frequency of below 30MHz, the antenna was tuned to height meter) and the rotatable table was turned from 0 degrees to degrees to find the maximum reading. 		 Bandwidth with Maximum Hold Mode. o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
 oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevator for maximum emissions shall be restricted to a range of heights of f 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receive antenna, which was mounted on the top of a variable-height anter tower. I. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. E horizontal and vertical polarizations of the antenna are set to make 	er l	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
 oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevator for maximum emissions shall be restricted to a range of heights of f 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiver antenna, which was mounted on the top of a variable-height anter 	~~~	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
oriented for maximum response. The measurement antenna may h to be higher or lower than the EUT, depending on the radiation patter the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be which maximizes the emissions. The measurement antenna elevat for maximum emissions shall be restricted to a range of heights of f		k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
distance, while keeping the measurement antenna aimed at the sou	5 ¹	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from

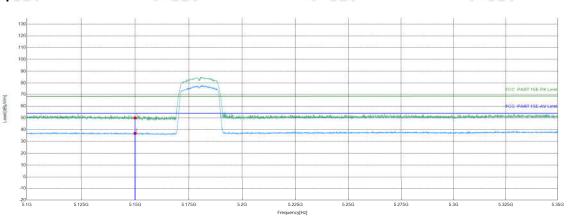
Remark: During the test, all modes was test,

for 20MHz Occupied Bandwidth, 802.11 n(HT20) mode was the worst case;

for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case;

for 80MHz Occupied Bandwidth, 802.11 ac(VHT80) mode was the worst case;

only the worst case was recorded in the report.


est Data: Test_Mode 802.11 n(HT20) Transmitting Test_Frequency 5180MH Tset_Engineer Aiden.wang Test_Date 2024/07 Remark \ •••••••••••••••••••••••••••••••••••	
Test_mode Transmitting Test_Frequency S180Min Tset_Engineer Aiden.wang Test_Date 2024/07 Remark \	
Remark \ **** ************************************	/31
est Graph	
100	10.5
100	
100	
	FCC PART IS
	perintere harden de la serie
201	5.325G
PK Limit AV Limit Horizontal PK Horizontal AV PK Detector AV Detector	
Suspected List	
NOFreq. [MHz]I dotor [dB]Reading [dBμV]LevelLimitMargin [dBμV/m]Result	Polarity
1 5150 17.42 32.29 49.71 68.26 18.55 PASS	Horizonta
2 5150 17.42 19.04 36.46 54.00 17.54 PASS	Horizonta
2 5150 17.42 19.04 50.40 54.00 17.54 FAS5	HUHZUHL

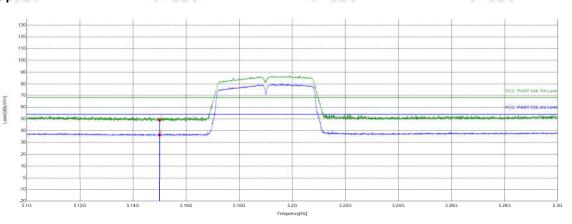
Page 39 of 98

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
Remark	١		

Test Graph

PK Limit — AV Limit — Vertical PK — Vertical A PK Detector AV Detector

Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.42	32.64	50.06	68.26	18.20	PASS	Vertical	PK
2	5150	17.42	19.54	36.96	54.00	17.04	PASS	Vertical	AV
0						(s)			



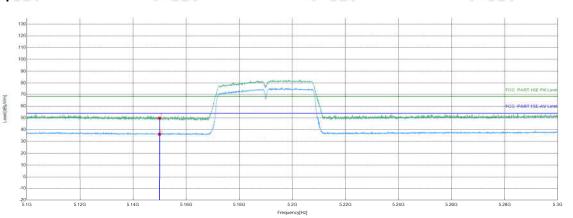
Page 40 of 98

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
Remark	1		

Test Graph

ntal PK ----- Horizontal AV PK Limit - AV Limit · AV Detecto

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	31.88	49.16	68.20	19.04	PASS	Horizontal	PK
2	5150	17.28	19.27	36.55	54.00	17.45	PASS	Horizontal	AV

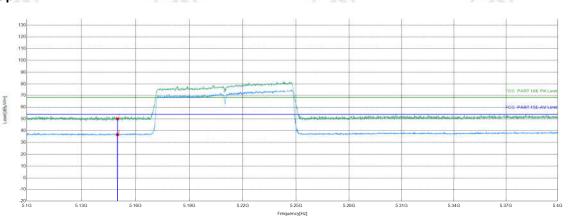


Page 41 of 98

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
Remark	١		

Test Graph

Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	32.59	49.87	68.20	18.33	PASS	Vertical	PK
2	5150	17.28	18.96	36.24	54.00	17.76	PASS	Vertical	AV
0	1	_							



Page 43 of 98

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	6
Remark	١			

Test Graph

- PK Limit - AV Limit ical PK · AV Detector

2							10		
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	32.82	50.10	68.20	18.10	PASS	Vertical	PK
2	5150	17.28	19.41	36.69	54.00	17.31	PASS	Vertical	AV
0				-					



Page 44 of 98

	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5320MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024/08/01
	Remark	١		
C				
Gra	aph			
	120			
	90 80			FCC PART 10
	70 60 50 50 50 50 50		Anyman	FOC PARTIE
	40		have been a second and the second	
	10			

Suspecte	ed List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
1	5350	18.45	33.50	51.95	68.20	16.25	PASS	Horizontal	PK
2	5350	18.45	19.67	38.12	54.00	15.88	PASS	Horizontal	AV
•	($\langle \rangle$	1	(\mathcal{A})	1	(2	(2)	1	(\sim)

Page 45 of 98

	Test_Mode	802.11 n(HT20) Transmitting	1	est_Frequency	5320MHz	
	Tset_Engineer	Aiden.wang		Test_Date	2024/08/01	Ċ
	Remark	١				
est Grap	h)					
	130					
	110 100 90		2			
Leve[dBy/Vm]	00 70 60 50 whites thick fiddematches Chestheory Phil	www.www.www.com.com	Putlikenen	ka waxa waxa waxa waxa waxa waxa waxa wa	a particular and the state of the	FCC PART ISE PK Link
	40					C. 201. R. 1910. An
	-10 -20 5256 5270	529G 531G	5.33G 5	356 5376 5	396 5416	5.43G 5.45G
		Vertical PK Vertical AV		ency[Hz]		0.00
	PK Detector AV Detector AV Detector					

	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5350	18.45	33.45	51.90	68.20	16.30	PASS	Vertical	PK
1	2	5350	18.45	19.89	38.34	54.00	15.66	PASS	Vertical	AV
	')		<u>()</u>		(c)		6	\mathbb{N}		(\mathcal{O})

Page 46 of 98

		Test_Mode		2.11 n(HT40 ansmitting))	Test_Frequ	ency	5310MHz	2	
)	Tset_Engine	er Aic	len.wang	(I)	Test_Dat	te	2024/07/3	31	
		Remark	١							
T	Test Grap	h								
		130 120 110 00 00 70							FCC PART 15E P	< Lint
	LeveldButhmi	60 50	1000 1000 1000 () 		Contraction of the second	2.444			FGC PARTISEA	A E Lorent Manyako
		20 10 -10 -20 5.25G 5.27G								
			5.290		5.33G F	5.35G 5.37G requency[Hz]	5.39G	5.41G	5.436	5.45G
S)	PK Limit A	V Limit — Horizo	ntal PK — Horizontal AV	U.		Q	U		
	Suspecte	dList								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark

	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	5350	18.45	33.80	52.25	68.20	15.95	PASS	Horizontal	PK
1	2	5350	18.45	19.49	37.94	54.00	16.06	PASS	Horizontal	AV
5	')		2		(Δ)		6			(2)

Page 47 of 98

_	Test_Mode	802.11 n(HT40) Transmitting	Tes	st_Frequency	5310MHz	
	Tset_Engineer	Aiden.wang		Test_Date	2024/07/31	(c)
	Remark	١				
est Gra	ph					
	120					
	90 90 60					FCC PART ISE PK LINK
LeveldBuMm]	70 90 50		Manual Markenson	agana adalariy dirta da arta ina da arta ina arta i	Carles an eye last Addition - and Artic Article	FOC PART-ISE AV Limb
	30 20 10					
	0 -10 -20 5256 5276	529G 5.31G 5.	13G 5.35G Frequency(H		5.39G 5.41G	5.43G 5.45G
	- PK Limit - AV Limit		(and the second s	-1		

Suspect	ed List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Deput	Polarity	Domork
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
1	5350	18.45	32.20	50.65	68.20	17.55	PASS	Vertical	PK
2	5350	18.45	19.29	37.74	54.00	16.26	PASS	Vertical	AV
•)		$\langle \mathcal{O} \rangle$		(a)		(é.	(\mathbf{N})		(\mathcal{O})

Page 48 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequenc	y 5290MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	
	Remark	١			
at Ca					
st Gr	100				
	120				
	90 90				
		Service and the service of the servi	<u>\</u>		FCC PART ISE PK Link
	50 40			han an a	Automotic water
	30				
	10				
	-10 -20 5.25G 5.27G	529G 5.31G	5.33G 5.35G 5.37G	5.39G 5.41G 5.4	13G 5.45G
			Frequency[Hz]		

	Suspecte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Tolanty	Remark
	1	5350	18.45	33.00	51.45	68.20	16.75	PASS	Horizontal	PK
1	2	5350	18.45	19.41	37.86	54.00	16.14	PASS	Horizontal	AV
	·)	. (.	(\mathcal{N})		(a)		6	(\cdot)		(\mathcal{A})

Page 49 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5290MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	6
	Remark	٨			
et G	raph				
51 0	130		t		
	120 110 100				
	90 80 70			FCC PA	RT ISE PKLINK
	10			FGC-PJ A MJ - M Mark - My - Markara - Markara - Markara -	ART-15E-AV Limit Mjøserkertiketse
	30 20				
	-10				
	-20 5.25G 5.27G	5.29G 5.31G 5.	33G 5.35G 5.37G 5.3 Frequency[Hz]	9G 5.41G 5.43G	5.45G

Suspecte	ed List			Γ	1			Γ	
NO	Freq.	Factor	Reading	Level	Limit	Margin	Deput	Polarity	Domor
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
1	5350	18.45	31.95	50.40	68.20	17.80	PASS	Vertical	PK
2	5350	18.45	19.40	37.85	54.00	16.15	PASS	Vertical	AV
)	. (<u>()</u>	•	(A)		(é.	(\mathbf{N})		(a)

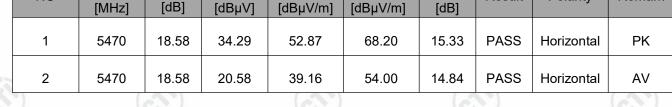
Page 50 of 98

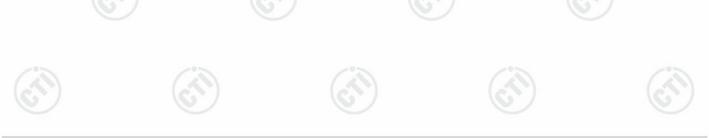
t_Mode	802.11 n(HT20) Transmitting	Test	_Frequency	5500MHz	
Engineer	Aiden.wang	С те	est_Date	2024/08/01	(
emark	١				
					_
	~				
					FCC PART ISE PKLINK
		a yek aynet a porta an Antonia an		una an Anangunya (pankaj ang ang	radional definition and a statement
5.475G	5.56 5.5256	5.55G 5.575G Frequency[Hz]	5.6G 5	625G 5.65G	5.675G 5.7
CLimit — AV Limit < Detector	Horizontal PK Horizontal AV				
	K Limit — AV Limit	Engineer Aiden.wang emark \ to be a stress of the stress	Engineer Aiden.wang Test emark \ by the second sec	Engineer Aiden.wang Test_Frequency emark \ baseline baseline base	It_Mode Transmitting Test_Frequency 5500MHz Engineer Aiden.wang Test_Date 2024/08/01 emark 1 Compared to the state of t

	Suspecte	a List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
	1	5470	18.44	33.00	51.44	68.20	16.76	PASS	Horizontal	PK
2	2	5470	18.44	20.48	38.92	54.00	15.08	PASS	Horizontal	AV
~	*)		(2)		(cN)		6	(\cdot, \cdot)		(c^{γ})

Page 51 of 98

-	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5500MHz	
	Tset_Engineer	Aiden.wang	Aiden.wang Test_Date		6
	Remark	١			
t Gra					
I GIZ	120				
	120 110 100				
					RT 15E-Pic Linst
	50 50 50 50 50 50 50 50 50 50 50 50 50 5				
	20				
	10 0				


	Suspecte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	D	Dubuitu	D
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	5470	18.44	34.39	52.83	68.20	15.37	PASS	Vertical	PK
21	2	5470	18.44	20.14	38.58	54.00	15.42	PASS	Vertical	AV
5	•)	. (.	(\sim)	·	(a)		6	(\cdot)		(\mathcal{O})



Page 52 of 98

		Test_Mod	de l	302.11 n(HT4 Fransmitting	0)	-	Test_Frequ	uency	5510MHz	2	
)	Tset_Engin	ieer A	Aiden.wang	C		Test_Da	ate	2024/08/	01	I
		Remark	: ۱								
·	Test Grap	h									
		120 120 110									
		100 90 80 70			F					FCC PART ISE PI	Chime
	Level(dBL/Mm)	60 50 an and 70 an all all an a		an a	n and the second se		WWWWWWWWWW	an talah dari kata dari dari s		FIC-PARTISEA	- Limit
		20									
		-20 5.35G 5.3	85G	5.42G 5.455G	5.49G		5.525G 5.5 uency[Hz]	6G 5.595G	5.63G	5.665G	5.7G
		PK Limit PK Detector	AV Limit	Horizontal PK — Horizontal A ¹							
	Suspecte	ed List									
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Levo [dBµV		Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark

Page 53 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5510MHz
Т	set_Engineer	Aiden.wang	Test_Date	2024/08/01
	Remark	١		
(A				
st Graph				
130				
10				
00 F) 			FCC PART ISE PKL
Tevel(dB/V/m)	and the second se		WWW/Wedgewareningeraachmanicemacher	FGC-PART-ISE-AVL
40		and a second		
28				
-10	35G 5.385G	5.42G 5.455G 5.490	5.525G 5.58G 5.5 Frequency[Hz]	95G 5.63G 5.665G
-10 -20 5.				

	Suspecte	d List			-					
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
								-		
	1	5470	18.58	33.66	52.24	68.20	15.96	PASS	Vertical	PK
2	2	5470	18.58	20.38	38.96	54.00	15.04	PASS	Vertical	AV
5	*)	. (.	3		(6)		6	(\cdot, \cdot)		(\mathcal{O})

Page 54 of 98

	Test_Mod	e I	2.11 ac(VHT) ansmitting	80)	Test_Frequen	cy 5530)MHz	
	Tset_Engine	eer Aid	den.wang	6	Test_Date	2024	ł/08/01	
	Remark	١						
Test G	raph							
	120 120 110 100 00 00 00 00 00 00 00 00 00 00			Junior Arr	have been a second of the seco		TCC PART 155	PK Lint
	5 00 10 10 23550 5385		6 54550	5.496	5.5250 5.580	55850	5.830 5.685G	5.76
	PK Limit PK Detector	- AV Limit — Horiz	ontal PK — Horizontal AV		Frequency(Hz)			

	Juspecie									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5470	18.58	35.36	53.94	68.20	14.26	PASS	Horizontal	PK
10	2	5470	18.58	20.89	39.47	54.00	14.53	PASS	Horizontal	AV
-)		(2)		(c)		6	(\cdot, \cdot)		(\mathcal{O})

Page 55 of 98

	Test_Mode	802.11 ac(VHT8 Transmitting	0) Test_F	Frequency 4	5530MHz	
	Tset_Enginee	Aiden.wang	Tes	t_Date	2024/08/01	6
	Remark	١				
est Gi	raph					
	130 120 110					
	100 90 60 70		for the second s			CC PART ISE PKLINK
	Feedback		out with		an chan din ann an tha air an tha	GG PARTI SE AV Linet
	10					
	-10 -20 5.35G 5.385G					

	Suspecte	d List			-					-
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
		= 1 = 0	40.50		== ==		15.05			514
	1	5470	18.58	33.75	52.33	68.20	15.87	PASS	Vertical	PK
13	2	5470	18.58	20.50	39.08	54.00	14.92	PASS	Vertical	AV
2	*)	. (.	3		(\mathcal{O})		(6)	(\mathbf{N})		(\mathcal{O})

Page 56 of 98

Test_Mod	le 802.11 n(HT20) Transmitting	Test_Frequency	5745MHz	
Tset_Engin	eer Aiden.wang	Test_Date	2024\08\30	
Remark	1			
st Graph				
120 110 100				
00 60 70 [uq/YGB] Jase 7 50			FCG P	wti5E PKLink
50 50	whether and the state of the st	and a support of the second	and the second	and the second
20 10 0				
-10	6G	Frequency[Hz]	76	7.25G
-20L5.46G				

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5743.85	-9.40	101.42	92.02	122.20	30.18	PASS	Horizontal	PK

Page 57 of 98

-	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz	
)	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	G
	Remark	١			
	(D)				
est Gra	120				
	120 110 100				
)	90	\wedge		FO	C PartisE PKLinst
	70 70 70 70 70 70 70 70 70 70 70 70 70 7		مى يې دەر مەمۇلەر يېرىمە مەمۇمەر يې بىلىلىدە ئەتلەر يې	ور الدين وروسه على دو تيراوي سود من الدين وروسي محمد الدين وروسي محمد المروسي	
	30 20		and and the second s		
	-10				
	-20 5.46G	6G	Frequency[Hz]	76	7.25G

Suspecte	d List							-	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5747.43	-9.25	99.86	90.61	122.20	31.59	PASS	Vertical	PK

Page 58 of 98

	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz	
)	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	G
	Remark	١			
Test Gra	120				-
	120 110 100				
)	60 60 F 70	\land		FOC Partifie	PicLinit
	00 00 00 00 00 00 00 00 00 00 00 00 00		and and a superior of the	an an an in a far a coin a star a	
	30				
	0 -10 -20 546G				
	5.46G	6G	Frequency[Hz]	76	7.25G
	PK Limit Horizontal F PK Detector # AV Detector				

Suspecte	d List						-		
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	5824.44	-9.12	100.78	91.66	122.20	30.54	PASS	Horizontal	PK

Page 59 of 98

	Test_Mod	e	02.11 n(HT2) ansmitting	0)	Test_Frequ	iency	5825MHz	2	
	Tset_Engin	eer Ai	den.wang	(J	Test_Da	ite	2024\08\	30	(\mathbf{S})
	Remark	١							
Test G	raph								
	130 120 110 100 00 00 00 00 00 00 00 00 00 00	and the second			ne an		Surger of Station and Lines	FCC Parties	** Linut
	.20. 5.46G		6G		Frequency[Hz]			76	7.256
	← PK Limit ← ★ PK Detector ★	Vertical PK AV Detector							
Suspe	ected List		_				1		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5823.55	-9.12	99.62	90.50	122.20	31.70	PASS	Vertical	РК

Page 60 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	6
	Remark	١			
Test C	Graph				
	120 120 110 100				
	00 60 70 60 50	\mathbb{A}^{\setminus}	аналанан аларын алар аларын аларын аларын аларын аларын	POC	PartišE PK Link
	40 30 20	n na ser an	Namen and Samen and S	الىمەن مەكەرىكە ئەكەرىيە ئەلىدىدە بىلىدىدە بىلىرىنى رويىسە بىلى	
	-10 -20 5.46G	6G	Frequency[Hz]	76	7.256
	PK Limit Horizo PK Detector + AV Det				
\odot	C				6

Suspecte	uspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5748.33	-9.21	99.22	90.01	122.20	32.19	PASS	Horizontal	PK			

Page 61 of 98

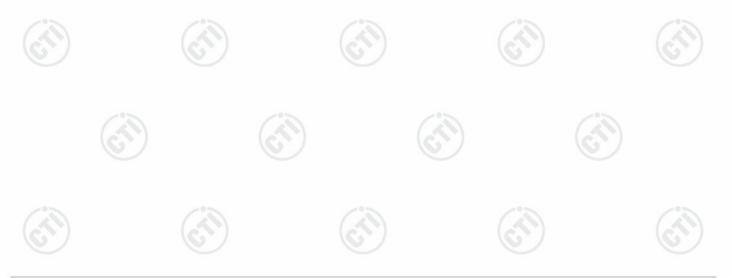
	Test_Mod	le	2.11 n(HT4 ansmitting	0)	Test_Frequ	ency	5755MH2	2	
	Tset_Engin	eer Ai	den.wang	Ì	Test_Da	te	2024\08\	30	S
	Remark	١.							
Test Gr	aph								
	120 120 100 00 00 00 00 00 00 00 00 00 00 00 0		t	Sector and the sector and	مر اس ور معال 100 المروز وروز والا العرب ور			FOC Parties	PKLIM
(F)	-20L 5.46G	Vertical PK AV Detector	60		Frequency(Hz)	e	ت	76	7256
Suspe	cted List Freq.	Factor	Reading	Level	Limit	Margin			
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	5750.12	-9.15	97.89	88.74	122.20	33.46	PASS	Vertical	PK

Page 62 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	6
	Remark	١			
est Gi	ranh				
	120				
	110 100 90	*			
	60 70 60 60 50			Poo 1	PartišE PKLinit
	20 40 30 20	/ Munomination	and a second second and a second s	genetering and an and the color and the second s	Quart all an a start and a start of
	10 0 -10				
	-20 5.46G	6G		7G	7.25G

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5792.21	-9.27	98.53	89.26	122.20	32.94	PASS	Horizontal	PK

Page 63 of 98


6								(T)	
	Test_Mod	le	02.11 n(HT4 ansmitting	0)	Test_Frequ	ency	5795MHz	2	
	Tset_Engin	eer Ai	den.wang		Test_Da	te	2024\08\;	30	(5)
	Remark	١	P.2010						
Test Grap	h								
Invertigation	130 130 100 00 00 00 00 00 00 00 00	sime			مر المراجع من المراجع م مراجع من المراجع من الم			FCC Parties	PK Linn PK Linn 7250
	PK Limit -	Vertical PK AV Detector			requency[Hz]				
Suspecte	d List		1				_		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5796.68	-9.29	97.48	88.19	122.20	34.01	PASS	Vertical	РК

Page 64 of 98

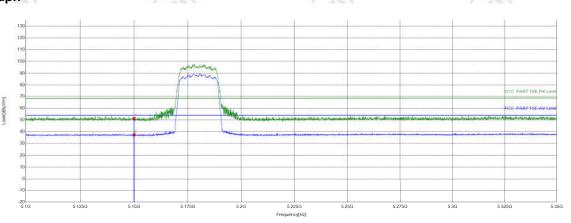
	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz	
	Tset_Engineer		Test_Date	2024\08\30	C
	Remark	١			
Test G	Graph				
	120 120 110 100 00				
	60 70 60 50 40 30	and have been and the second	n the special state of the stat	PCO Puritis	E PK Linst
	20 10 -10 -20 5.46G	66	Frequency(Hz)	18	7.25G
	PK Limit Horizon				
	* PK Detector * AV Det	ector			

Ouspee									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
1	5771.61	-9.22	97.38	88.16	122.20	34.04	PASS	Horizontal	PK
					0	0			

Page 65 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30
	Remark	١		
۲est G	raph			
	120 120 110 100 00			
	80 70			FCO PartisE PK Line
	10	Mary	an and an angle of the second	and a stand of the second s
	40	My have a subserver and a subserver and a subserver and a subserver a subserve	an tan manang mang kanang kanang mang di tang kanang manang kanang kanang kanang kanang kanang kanang kanang ka	
	00 50 20 10 0 5460		Frequency[Hz]	76 7250

Suspecte	d List	_	-				-		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5776.98	-9.23	95.07	85.84	122.20	36.36	PASS	Vertical	PK

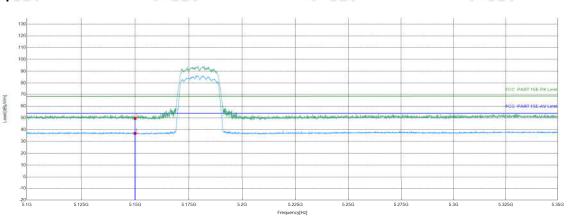


Page 66 of 98

Test_Mode 802.11 n(HT20) Transmitting Test_Frequency 5180MHz Tset_Engineer Aiden.wang Test_Date 2024/07/31 Remark \

Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.42	33.85	51.27	68.26	16.99	PASS	Horizontal	PK
2	5150	17.42	19.98	37.40	54.00	16.60	PASS	Horizontal	AV



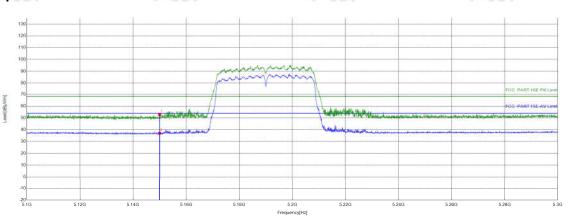
Page 67 of 98

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	6
Remark	١			

Test Graph

- PK Limit - AV Limit ical PK · AV Detector

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.42	32.21	49.63	68.26	18.63	PASS	Vertical	PK
2	5150	17.42	19.46	36.88	54.00	17.12	PASS	Vertical	AV


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

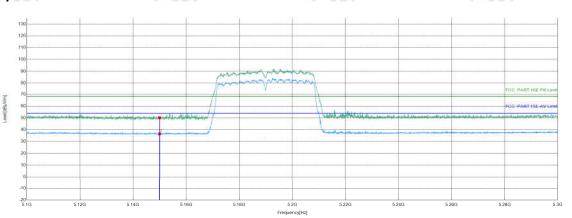
Page 68 of 98

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
Remark	١		

Test Graph

PK Limit AV Limit Horizontal PK Horizontal AV PK Detector AV Detector

Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	35.55	52.83	68.20	15.37	PASS	Horizontal	PK
2	5150	17.28	19.69	36.97	54.00	17.03	PASS	Horizontal	AV
6									



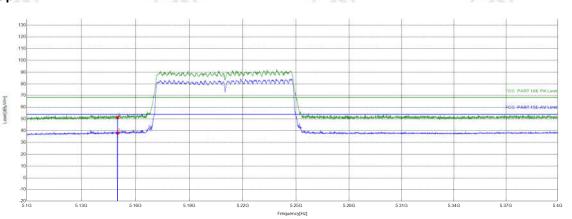
Page 69 of 98

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
Remark	١		

Test Graph

PK Limit - AV Limi AV Detector

Suspect	ed List				_				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	32.89	50.17	68.20	18.03	PASS	Vertical	PK
2	5150	17.28	19.24	36.52	54.00	17.48	PASS	Vertical	AV
7		_	NO 7						



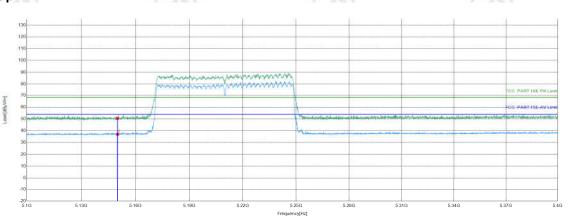
Page 70 of 98

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	6
Remark	١			

Test Graph

- PK Limit - AV Limit Horizontal PK - Horizontal AV · AV Detector

Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
68.20	17.03	PASS	Horizontal	PK
54.00	15.94	PASS	Horizontal	AV



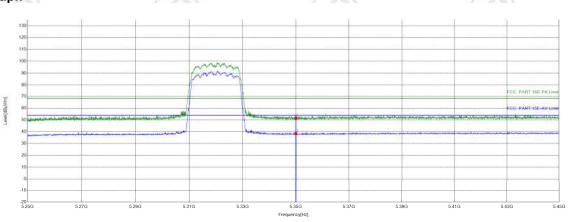
Page 71 of 98

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/31	6
Remark	1			

Test Graph

- PK Limit - AV Limit ical PK · AV Detector

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	33.25	50.53	68.20	17.67	PASS	Vertical	PK
2	5150	17.28	19.74	37.02	54.00	16.98	PASS	Vertical	AV
6						(*)			


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 72 of 98

3)	802.11 n(HT20)		(I)		\odot	
Test_Mode	Transmitting		Test_Frequency		5320MHz	
Tset_Engineer	Aiden.wang	(3)	Test_Date	0	2024/07/31	1
Remark	1	6)	S	D	C

Test Graph

						<u></u>			
Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result		
1	5350	18.45	33.13	51.58	68.20	16.62	PASS	Horizontal	PK
2	5350	18.45	19.91	38.36	54.00	15.64	PASS	Horizontal	AV

Page 73 of 98

	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5320MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
	Remark	١		
st Gr	anh			
31 01	130			
	120 110 100			
	90 60 70	mining		PCC PART ISE PK
			n Bendam and an the an index of the design of the design of the second state of the second state of the second	FUC PARTIES AV
	40			
	10			

Suspecte	d List			_			_		-
NO	Freq.	Factor	Reading	Level	Limit	Margin	Desult	Delevity	Demeril
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	5350	18.45	32.24	50.69	68.20	17.51	PASS	Vertical	PK
2	5350	18.45	19.24	37.69	54.00	16.31	PASS	Vertical	AV
2	5350	18.45	19.24	37.69	54.00	16.31	PASS	Vertical	

Page 74 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5310MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024/07/31
	Remark	١		
t Grap				
	130			
	120 110 100			
	80	hundred	7	FCC PART
Level(dBy/Wm)	00 50 Marine Marine Marine Succession Marine Succession Marine	again a dharain an		FBC-PART
-	40		- Wine	
	20			
	-10			
	-20 5.2G 5.23G	5.26G 5.29G 5.32G	5.35G 5.38G 5 Frequency[Hz]	.41G 5.44G 5.47G
	PK Limit AV Limit	- Horizontal PK - Horizontal AV		

	Suspecte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
	1	5350	18.53	32.51	51.04	68.20	17.16	PASS	Horizontal	PK
	2	5350	18.53	19.47	38.00	54.00	16.00	PASS	Horizontal	AV
0					100					

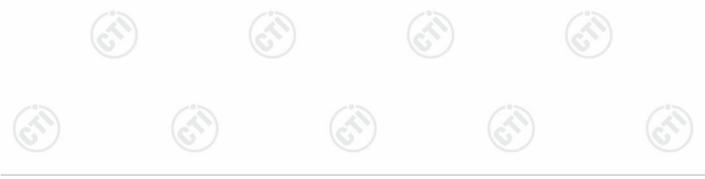
Page 75 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5310MHz		
	Tset_Engineer	Aiden.wang	Test_Date	2024/07/31		
	Remark	١				
est Gra	ph					
	120					
	110 100 90		<u>^</u>			
Level(dB,Mm)	80 70 60 50	Angel and an angel harder and a set		FCC PART ISE PK Lin FCC PART ISE PK Lin FCC PART ISE AV Lin		
	40 30 20					
	10 	528G 529G 532G	5.35G 5.38G 5.	41G 544G 547G 5		
	520 5230	5,200 5,200 5,320	Frequency(Hz)	10 3440 3470 5		

Suspecte	d List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Deput	Delerity	Domork
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	5350	18.53	32.72	51.25	68.20	16.95	PASS	Vertical	PK
2	5350	18.53	18.98	37.51	54.00	16.49	PASS	Vertical	AV

Page 76 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Т	est_Frequency	5290MHz	
	Tset_Engineer	Aiden.wang	(\mathcal{I})	Test_Date	2024/08/01	(
	Remark	١				
est Gra	ph					
	130 120 110 100					
(m/)/ city	90 60 70 60		him	www.www.www		FCC PART ISE PKLINK
1) January	50 Market Market Market work and an and a set of the s	an a	monther	Land		
	10 -10 -20 5.16 5.136G	517G 5205G	524G 52	75G 5.31G 5.3	45G 538G	5.415G 5/
	PK Limit AV Limit	- Horizontal PK - Horizontal AV		ncy[Hz]		
	* PK Detector * AV Detec	dor				


Suspecie	aList								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
1	5350	18.53	31.94	50.47	68.20	17.73	PASS	Horizontal	PK
2	5350	18.53	19.24	37.77	54.00	16.23	PASS	Horizontal	AV

Page 77 of 98

Test	_Mode	802.11 ac(VHT Transmitting	80)	Test_Frequ	ency	5290MHz	
Tset_E	Ingineer	Aiden.wang	(J	Test_Da	te	2024/08/01	
Re	mark	١					
st Graph							
130 120							
100 00 60				www.www.hourson	nhang WWW		FCC PART ISE-PK LINK
(Live 10 00 00 00 00 00 00 00 00 00 00 00 00	hanal fingly a straight of the start back	ga mana ang mang mining pang mang mang mang mang mang mang mang m	wheeter was addition of			un an	FEC-PART-ISE-AV-Limit
30 20 10							
-10 -20 5.16	5.135G	5.17G 5.205G	5.24G	5275G 5.31G Frequency[Hz]	5.345G	5.38G	5.415G 5.450
PK Li	nit — AV Limit						

Ouspe		•								
NO	Fre [Mł		Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	53	50	18.53	33.44	51.97	68.20	16.23	PASS	Vertical	PK
2	53	50	18.53	19.37	37.90	54.00	16.10	PASS	Vertical	AV
	1	- ($\langle \rangle$	1	(\mathcal{A})	1	(ć	S~)		(\sim)

Page 78 of 98

	Test_	Mode	802.11 n(HT20) Transmitting	Test_Frequency	5500MHz
	Tset_E	ngineer	Aiden.wang	Test_Date	2024/08/01
	Rer	nark	١		
Test G	raph				
	130				
	110 100 90		minun		
	60 [IWW/GD] 60 50				CC PART ISE PK LIM IGC PART ISE AV LIM
	3 50 40 30				
	10				
	-10				

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5470	18.44	34.55	52.99	68.20	15.21	PASS	Horizontal	PK
2	5470	18.44	20.43	38.87	54.00	15.13	PASS	Horizontal	AV

Page 79 of 98

		Test_M	lode	802.11 r Transmi			Test_	Frequency	5500)MHz		
		Tset_En	gineer	Aiden.wa	ang	S	Te	st_Date	2024	/08/01	(
		Rema	ark	١								
Test	Grap	h										
		130 120 110 100 90		(marine)								
	Leve[dBuMm]	80 70 60 50 40	,#ke,						1944 - 1977 - 1974 - 19	- Consector to the of	FCC PART ISE PK Link	
		20 10 -10 -20										
		-20 5.45G	5.475G	5.5G	5.525G	5.55G	5.575G Frequency[Hz]	5.8G	5.625G	5.65G 5	.675G 5.1	76
(S)		PK Limit	AV Limit AV Detector	— Vertical PK — ·	Vertical AV	S.)		S.		y.	.)

Suspecte NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5470	18.44	33.92	52.36	68.20	15.84	PASS	Vertical	PK
2	5470	18.44	20.83	39.27	54.00	14.73	PASS	Vertical	AV
)	((2)		(2)		(2	()		(\mathcal{S})

Page 80 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5510MHz	
)	Tset_Engineer	Aiden.wang	Test_Date	2024/08/01	6
	Remark	١			
est Gra	ph				
(unit) Leevel(dB),MMI	00 60 50 60 50 60 60 60 60 60 60 60 60 60 6				15E PK Linkt
	10 -10 -20 5 356 5 3856	5.42G 5.455G 5.49	0 5.5250 5.560 Frequency(Hz]	55950 5630 56656	5.70
	PK Limit AV Limit PK Detector AV Detector	Horizontal PK Horizontal AV			

	Suspecie									
	NO	Freq. [MHz]	Factor [dB]	Reading	Level	Limit [dBµV/m]	Margin	Result	Polarity	Remark
				[dBµV]	[dBµV/m]	[ασμν/π]	[dB]			
	1	5470	18.58	34.41	52.99	68.20	15.21	PASS	Horizontal	PK
	2	5470	18.58	20.62	39.20	54.00	14.80	PASS	Horizontal	AV
5	•)	($\langle \rangle$		(\sim)		(2	$\langle \cdot \rangle$		(\sim)

Page 81 of 98

_	Test_Mo	de	802.11 Transr	n(HT40) nitting		Test_	_Frequenc	y 55	10MHz	
	Tset_Engi	neer	Aiden.	wang	C	Т	est_Date	202	24/08/01	
	Remar	k	١					·		
st Gra	nh									
	130									-
	120 110 100									
in the second se	90 60 70					and have been a				FCC PART ISE PKL
(million of the second	60 50 int set of a set of an and a set of a set				and the second		agilgan on an dagga an gady far			EG PARTISE AV U
	30 20 10	_								
	-10 -20 5.35G 5.	385G	5.42G	5.455G	5.49G	5.525G	5.56G	5.595G	5.63G	5.665G
						Frequency[Hz]				

	Suspecte	d List				1				
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
	1	5470	18.58	35.57	54.15	68.20	14.05	PASS	Vertical	PK
.0.1	2	5470	18.58	20.56	39.14	54.00	14.86	PASS	Vertical	AV
5	•)	. ($\langle \rangle$	1	(\mathcal{A})		(2)	()		(\sim)

Page 82 of 98

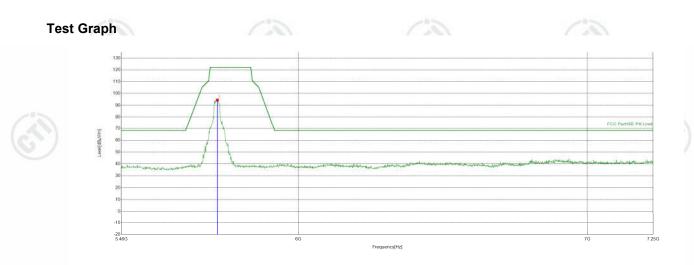
		Test_Mo	de	802.11 ac(VHT Transmitting	80)	Test_Freque	псу	5530MHz	
		Tset_Engir	neer	Aiden.wang	(J)	Test_Date	Ċ	2024/08/01	E
		Remark	¢	١					
Test G	irap	h)
	Level(dByA/m)	100 00 00 00 00 00 00 00 00 00						Padruka ni kana na kan Na kana na kana	PCC PART ISE PK Link
		20 10 -10 -20 5.45G 5.4	75G	5.50 5.5256	5.550	5.575G 5.6G Frequency(Hz)	5.625G	5.65G	5675G 5.7G

Suspecte	d List					-			
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
1	5470	18.44	33.31	51.75	68.20	16.45	PASS	Horizontal	PK
2	5470	18.44	20.48	38.92	54.00	15.08	PASS	Horizontal	AV
•)	. (.	$\langle \rangle$	1	(\mathcal{A})	1	6	$\langle \rangle$	1	(\sim)

Page 83 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5530MHz
	Tset_Enginee	er Aiden.wang	Test_Date	2024/08/01
	Remark	1		
Test G	raph			
	120			
	110 100 90 60		Anorthingsle	FCC PART ISE PKLINK
	100 00 00 00 00 00 00 00 00 00 00 00 00			SC PARTIS AND A FEW MANAGES
	20			
	10			
	-10 -20 5.450 5.4750	5.5G 5.525G 5.55	G 5575G 5.6G 5.6 Frequency(Hz)	25G 5.65G 5.675G 5.7G

	Suspecte	d List	-						-	
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Deput	Delerity	Domork
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	5470	18.44	32.95	51.39	68.20	16.81	PASS	Vertical	PK
1	2	5470	18.44	20.07	38.51	54.00	15.49	PASS	Vertical	AV
S	»)	($\langle \rangle$	I	(2)		(2	$\langle \rangle$		(\sim)

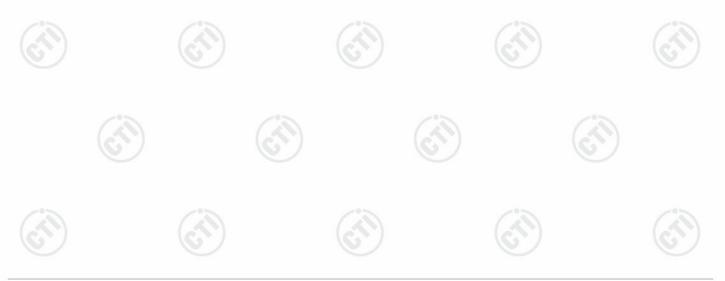


- Horizontal Pk

Page 84 of 98

Test_Mode	802.11 n(HT20) Transmitting		Test_Frequency		5745MHz	
Tset_Engineer	Aiden.wang		Test_Date	6	2024\08\30	6
Remark	١	6		C	\mathcal{O}	6

 PK Detector 	 AV Detector 							
d List								
Freq.	Factor	Reading	Level	Limit	Margin	Deput	Delerity	Domork
[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
5746.54	-9.29	103.79	94.50	122.20	27.70	PASS	Horizontal	PK
	d List Freq. [MHz]	d List Freq. Factor [MHz] [dB]	d List Freq. Factor Reading [MHz] [dB] [dBμV]	d List Freq. Factor Reading Level [MHz] [dB] [dBµV] [dBµV/m]	d List Freq. Factor Reading Level Limit [MHz] [dB] [dBμV] [dBμV/m]	d List Freq. Factor Reading Level Limit Margin [MHz] [dB] [dBµV] [dBµV/m] [dBµV/m] [dB]	d List Freq. Factor Reading Level Limit Margin [MHz] [dB] [dBμV] [dBμV/m] [dBμV/m] [dB] Result	d List Freq. Factor Reading Level Limit Margin [MHz] [dB] [dBμV] [dBμV/m] [dBμV/m] [dB] Polarity



Page 85 of 98

Te	st_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz	
Tset	_Engineer	Aiden.wang	Test_Date	2024\08\30	E
F	lemark	١			
est Graph					
120					
120 110 100 90	/				
60 70 00 00 50 50				FOOI	PartišE PK Linst
40 	- man have been been been been been been been be	Lasterer and a second and a second	ىرى ئەلە ئەلەيتەن بىلەرىمە مەرەپىرىلە ئەلىرىكى بىلىغى بىلەرىنى بىلىغانىيەن بىرىكى بىلىغى بىلەرىلى بىلىغان بىلى	na managana ani katalan dada kun ani ani katalah kun m	Menuel and a second d
50					
20 10					
20 10 -10 -20 5.40G		6G	Frequency[Hz]	76	7.25G

Suspecte	d List		_						
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5749.22	-9.18	102.84	93.66	122.20	28.54	PASS	Vertical	PK

Page 86 of 98

Test_Engineer Aiden.wang Test_Date 2024/08/30 Remark 1		Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz
		Tset_Engineer	Aiden.wang	Test_Date	2024\08\30
Image: state of the state		Remark	١		
Image: state of the state	Test C				
Image: state	Test Gr				
Image: state of the state o		110			
		80	\land		FCC PartisE PK Linu
		60		الم	an and and and and and and and and and a
20 246G 66 76 7256		40	and the second sec		
		40)			
		30			
		30		Frequency[Hz]	73 72

Suspecie								1	
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
1	5824.44	-9.12	103.38	94.26	122.20	27.94	PASS	Horizontal	PK

Page 87 of 98

	Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	Ś
	Remark	١			
Test G	arapn				4
	120				-
	90			FCC PartiSE PK Linst	
	Linvo (gg) 800		anan marka ang ang ang ang ang ang ang ang ang an		
	40 mar		مان در از این می از مان این مان مان مان مان مان مان مان مان مان ما	gyaran yang menyang kanaran sering kanaran sering kanaran negarak kanaran pertakan kanaran sering kanaran kanar	4
	10				
	-20 5.46G	6G	Frequency[Hz]	76 72	25G
	PK Limit Vertical P				
	PK Limit Vertical P PK Detector				

Suspecie					-		-		-
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtoount	rolanty	rtomant
1	5824.44	-9.12	103.00	93.88	122.20	28.32	PASS	Vertical	PK

Page 88 of 98

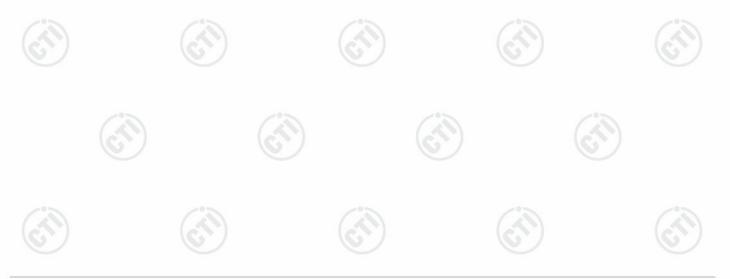
Test_Moc	le 802.11 n(Transmitt		Test_Frequency	5755MHz	
Tset_Engin	eer Aiden.wa	ng	Test_Date	2024\08\30	(
Remark	١				
Graph					
130 120 110					
100 90 60 70 90	$/ \wedge$			P	CC PartisE PKLink
20 50 50 50 50 50 50 50 50 50 5	week have been a second	and we want the set of the second	การและสารางการเสียงเป็นสารางสารางสารางสาราชสารเสียงสารางสาราชสาราชสาราชสาราชสาราชสาราชสารา	ىدۇرايىلىغى ۋەرىرى، بىلىغانلىرىنى بىلامغان بىلو _{نىك} ەر بىلىغۇر	n Maria an
10 0 -10 -20 5.46G		66		76	7.2
			Frequency[Hz]		

Suspecte	d List	-	-				_	_	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5752.81	-9.16	101.14	91.98	122.20	30.22	PASS	Horizontal	PK

Page 89 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755MHz	
)	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	(S
	Remark	١			
	65				
est Gra	.130				
	120 110 100				
)	00 80 70	\wedge		FC	C PartisE PKLine
тени (друун)	60 50 40	hand minimum and a marine and a		generation of the state of the	even discoursed
	30 20 10				
	-10 -20 5.46G	6G		76	7.25G
			Frequency[Hz]		

Suspecte	d List			_				_	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5758.18	-9.18	101.26	92.08	122.20	30.12	PASS	Vertical	PK



Page 90 of 98

	Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	(S
	Remark	1			
			(P)		
Test (Graph				1
	120				
	100 90 60	$\Lambda \setminus$		FC	© PartišE PK Linst
	[III/070] 00 00 50				
	40 million and a second state of the second st	1 Angle Company and Company	n 2 a fe Brinn daar dag sera an Fristan di Karata d	and a second	and the local ferror of the second
	10 0 -10				
	-20 5.46G	6G	Frequency[Hz]	76	7.25G

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5793.10	-9.28	100.86	91.58	122.20	30.62	PASS	Horizontal	PK

Page 91 of 98

Tset_Engineer				
	Aiden.wang	Test_Date	2024\08\30	C
Remark	١			
(9)				
130				
80 70 60			FOC PM	tišE PK Linit
50 40 30	1 Junior marine	مېرىن ئەرىلەين يەمەلىيە ^{لىرىم} ىزىرىدىنى ^{تىرىمىلىرىلىرىنىيەتكەرلىرىنىيەتكەرلىرىنىيەتكەرلىرىنىيە}	and a state of the	
-10				
-20 5.46G	6G	Frequency[Hz]	76	7.25G

Suspecte	d List			_				_	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5793.10	-9.28	101.30	92.02	122.20	30.18	PASS	Vertical	PK

Page 92 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz	
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30	6
	Remark	١			
Test G					
Test	130				
	120				
	90 80 E 70			FOC Part	SE PKLink
	10	the second second	an alan a sa an	gandenen anggende stress an der Wertilige der anders an der die einer an	At small a fill of the
	30 20 10				
	-10 -20 5.46G				
	5.46G	6G	Frequency[Hz]	76	7.25G
		IPK			
	PK Limit Horizonta PK Detector AV Detector	or			

Suspecte	d List	-			-				
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5769.82	-9.21	98.42	89.21	122.20	32.99	PASS	Horizontal	PK

Page 93 of 98

	Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775MHz
	Tset_Engineer	Aiden.wang	Test_Date	2024\08\30
	Remark	١		
	(P)			
t Grap	130			
	120 110 100			
[wy	90 60 70			FOC PartisE P
Level(dBuMm)	60	Man war and a second and a seco		ىرىنى بىلەرلەرلەر قىرىمىدە بىكە تەرىپىدە بىلەرلەرلەر تەرىپىيى بىلەرلەرلەر تەرىپىي بىلەرلەرلەر بىلەرلەرلەر بىلەر
	30 20 10			
	-10 -20 5 46G	6G		76
			Frequency[Hz]	

Suspecte	d List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
1	5772.51	-9.21	97.44	88.23	122.20	33.97	PASS	Vertical	PK

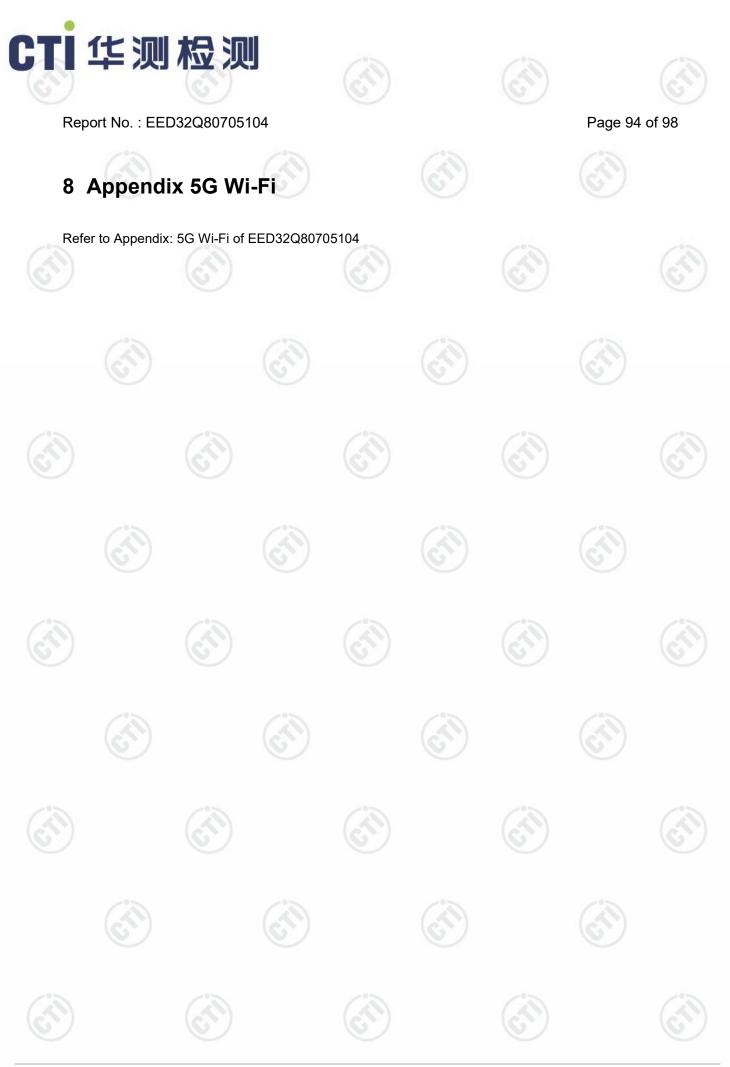
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q80705101 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

