

RADIO TEST REPORT

S T S

Report No.:STS2004277W03

Issued for

4G NET INC

3000 NW 72 AVENUE MIAMI FL 33122

Product Name:	Mobile phone	
Brand Name: UNIQCELL, UNIQ		
Model Name:	odel Name: Q5.5	
Series Model: Q5.5 PRO		
FCC ID: 2AWCN-Q55		
Test Standard:	FCC Part 15.247	

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 44

Report No.: STS2004277W03

TEST RESULT CERTIFICATION

Applicant's Name:	4G NET INC
Address	3000 NW 72 AVENUE MIAMI FL 33122
Manufacture's Name:	METELL TECHNOLOGY CO.,LIMITED
Address	FLAT 1506.15/F LUCKY CTR NO 165-171 WAN CHAI RD WAN CHAI HONG KONG
Product Description	
Product Name:	Mobile phone
Brand Name:	UNIQCELL, UNIQ
Model Name	Q5.5
Series Model	Q5.5 PRO
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of receipt of test item	
Date (s) of performance of tests	
Date of Issue	-
Test Result	Pass

Testing Engineer

(Chris Chen)

Technical Manager 1

he

(Sean she)

Authorized Signatory :

(Vita Li)

Report No.: STS2004277W03

Table of Contents

Page 3 of 44

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 TEST PROCEDURE	15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS	15
3.5 TEST RESULTS	16
4. RADIATED EMISSION MEASUREMENT	18
4.1 RADIATED EMISSION LIMITS	18
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 LIMIT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	31
6. POWER SPECTRAL DENSITY TEST	35
6.1 LIMIT	35
6.2 TEST PROCEDURE	35
6.3 TEST SETUP	35

Page 4 of 44 Report No.: STS2004277W03

Table of Contents

6.4 EUT OPERATION CONDITIONS	35
6.5 TEST RESULTS	36
7. BANDWIDTH TEST	38
7.1 LIMIT	38
7.2 TEST PROCEDURE	38
7.3 TEST SETUP	38
7.4 EUT OPERATION CONDITIONS	38
7.5 TEST RESULTS	39
8. PEAK OUTPUT POWER TEST	41
8.1 LIMIT	41
8.2 TEST PROCEDURE	41
8.3 TEST SETUP	41
8.4 EUT OPERATION CONDITIONS	41
8.5 TEST RESULTS	42
9. ANTENNA REQUIREMENT	43
9.1 STANDARD REQUIREMENT	43
9.2 EUT ANTENNA	43
10. EUT TEST PHOTO	44

Page 5 of 44

Report No.: STS2004277W03

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	12 May 2020	STS2004277W03	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

Ш

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.247 (c)	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted bands of operation PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission PASS				
15.203	Antenna Requirement PASS				

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

Shenzhen STS Test Services Co., Ltd.

Page 7 of 44 Report No.: STS2004277W03

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District,Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±6.7dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±4.43dB
7	Conducted Emission (150KHz-30MHz)	±5dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Mobile phone		
Trade Name	UNIQCELL, UNIQ		
Model Name	Q5.5		
Series Model	Q5.5 PRO		
Model Difference	Only different in moo memory.	del name, brand name, cameras and	
	The EUT is a Mobile	e phone	
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	GFSK	
	Radio Technology:	BLE	
	Bluetooth Version:	4.0	
Product Description	Bluetooth	LE	
	Configuration:		
	Number Of Channel:	40	
	Antenna Designation:	Please refer to the Note 3.	
	Antenna Gain (dBi)	1.53dBi	
Channel List	Please refer to the N	Note 2.	
Adapter	Input: AC 100-240V Output: DC 5V/1000		
Battery	Rated Voltage: 3.7V Charge Limit: 4.2V Capacity: 3250mAh		
Hardware version number	V4.0		
Software version number	UNIQ_CELL_1+16_Q5.5_C8E_2M_20200328-1		
Connecting I/O Port(s)	Please refer to the N	Note 1.	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.								
	Channel List							
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
	00	2402	10	2422	20	2442	30	2462
	01	2404	11	2424	21	2444	31	2464
	02	2406	12	2426	22	2446	32	2466
	03	2408	13	2428	23	2448	33	2468
	04	2410	14	2430	24	2450	34	2470
	05	2412	15	2432	25	2452	35	2472
	06	2414	16	2434	26	2454	36	2474
	07	2416	17	2436	27	2456	37	2476
	08	2418	18	2438	28	2458	38	2478
	09	2420	19	2440	29	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	UNIQCELL, UNIQ	Q5.5	PIFA	N/A	1.53dBi	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 44 Report No.: STS2004277W03

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 Mbps/GFSK
Mode 2	TX CH19(2440MHz)	1 Mbps/GFSK
Mode 3	TX CH39(2480MHz)	1 Mbps/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

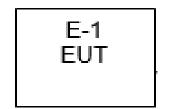
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

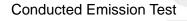
(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.

For AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.


RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
BLE	BLE	GFSK	1.53	Default	Default

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

AC Plug E-2	C-1	E-1
Adap	er	EUT

Shenzhen STS Test Services Co., Ltd.

Page 12 of 44

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Necessary accessories								
Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note				
E-2	Adapter	UNIQCELL, UNIQ	N/A	N/A	N/A				
C-1	DC Cable	N/A	110cm	N/A	N/A				

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in ^rLength₁ column.

2.6 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.07.29	2020.07.28
Signal Analyzer	Agilent	N9020A	MY51110105	2020.03.05	2021.03.04
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2019.10.09	2020.10.08
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2019.10.12	2020.10.11
Pre-Amplifier (18G-40G)	SKET	LNPA_1840-50	SK201810180 1	2019.10.22	2020.10.21
Temperature & Humidity	HH660	Mieo	N/A	2019.10.12	2020.10.11
Turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	E	Z-EMC(Ver.STS	LAB-03A1 RE)	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.07.29	2020.07.28
LISN	R&S	ENV216	101242	2019.10.09	2020.10.08
LISN	EMCO	3810/2NM	23625	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo	N/A	2019.10.12	2020.10.11
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until			
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2019.10.09	2020.10.08			
Signal Analyzer	Agilent	N9020A	MY49100060	2019.10.09	2020.10.08			
Temperature & Humidity	HH660	Mieo	N/A	2019.10.12	2020.10.11			
Test SW	FARAD	LZ-RF /LzRf-3A3						

Page 14 of 44

Report No.: STS2004277W03

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

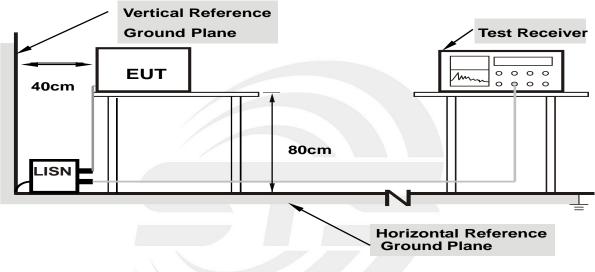
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

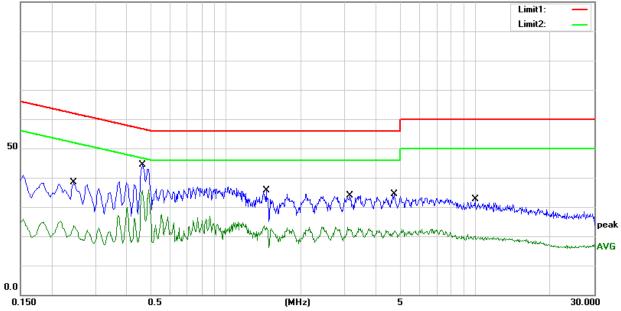
3.3 TEST SETUP

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	23.5(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		


No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.2460	17.97	20.52	38.49	61.89	-23.40	QP
2	0.2460	3.06	20.52	23.58	51.89	-28.31	AVG
3	0.4660	24.01	20.46	44.47	56.58	-12.11	QP
4	0.4660	13.59	20.46	34.05	46.58	-12.53	AVG
5	1.4540	15.41	20.15	35.56	56.00	-20.44	QP
6	1.4540	2.41	20.15	22.56	46.00	-23.44	AVG
7	3.1420	13.81	20.07	33.88	56.00	-22.12	QP
8	3.1420	2.21	20.07	22.28	46.00	-23.72	AVG
9	4.7380	14.25	20.03	34.28	56.00	-21.72	QP
10	4.7380	1.34	20.03	21.37	46.00	-24.63	AVG
11	9.9740	12.76	19.85	32.61	60.00	-27.39	QP
12	9.9740	-1.01	19.85	18.84	50.00	-31.16	AVG

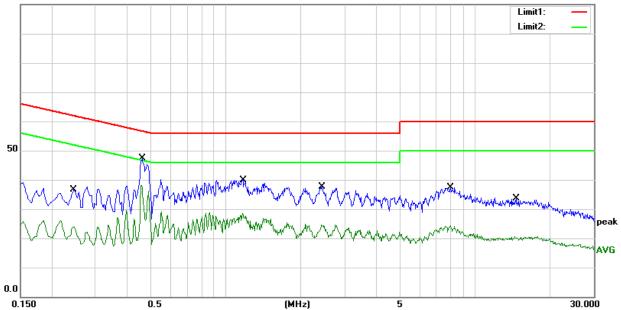
Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit.

100.0 dBu¥

Page 17 of 44 Report No.: STS2004277W03


Temperature:	23.5(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 4		

No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.2460	16.21	20.52	36.73	61.89	-25.16	QP
2	0.2460	3.47	20.52	23.99	51.89	-27.90	AVG
3	0.4620	26.82	20.46	47.28	56.66	-9.38	QP
4	0.4620	13.60	20.46	34.06	46.66	-12.60	AVG
5	1.1780	19.72	20.16	39.88	56.00	-16.12	QP
6	1.1780	7.24	20.16	27.40	46.00	-18.60	AVG
7	2.4420	17.44	20.12	37.56	56.00	-18.44	QP
8	2.4420	4.17	20.12	24.29	46.00	-21.71	AVG
9	8.0020	17.46	19.88	37.34	60.00	-22.66	QP
10	8.0020	4.60	19.88	24.48	50.00	-25.52	AVG
11	14.6340	13.76	19.81	33.57	60.00	-26.43	QP
12	14.6340	0.36	19.81	20.17	50.00	-29.83	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)–Limit.

Shenzhen STS Test Services Co., Ltd.

Page 18 of 44

Report No.: STS2004277W03

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen STS Test Services Co., Ltd.

Page 19 of 44 Report No.: STS2004277W03

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 KHz / 300 KHz

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Stort/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

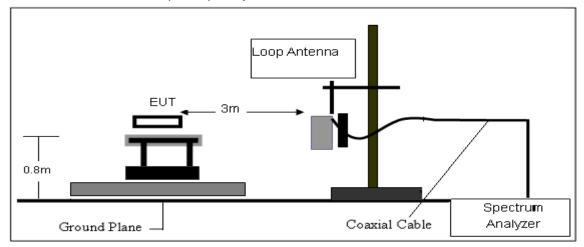
Shenzhen STS Test Services Co., Ltd.

Ш

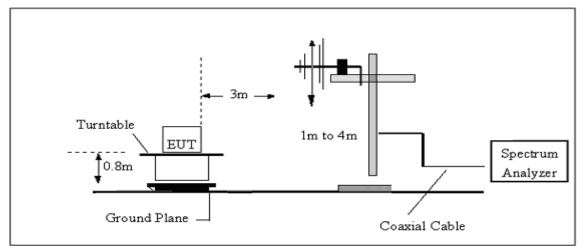
Page 20 of 44 Report No.: STS2004277W03

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

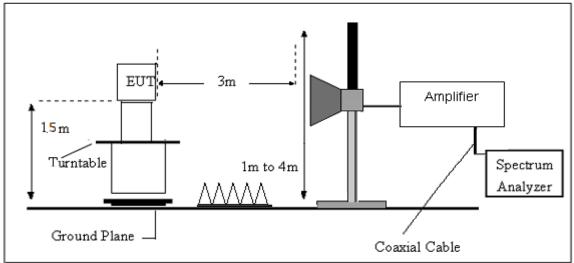
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 FIELD STRENGTH CALCULATION

Shenzhen STS Test Services Co., Ltd.

Page 22 of 44

Report No.: STS2004277W03

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

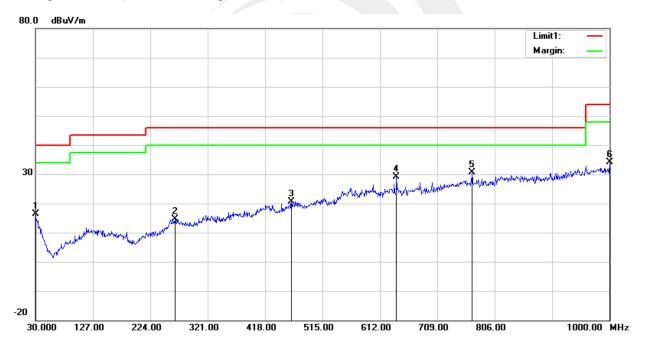
Temperature:	23.4(C)	Relative Humidtity:	59%RH
Test Voltage:	DC 3.7V	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	
				PASS	
				PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

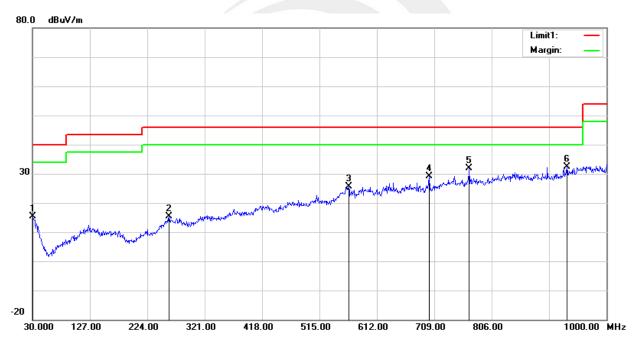
Temperature:	23.4(C)	Relative Humidity:	59%RH			
Test Voltage:	DC 3.7V	Phase:	Horizontal			
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	29.12	-12.85	16.27	40.00	-23.73	QP
2	265.7100	29.53	-14.83	14.70	46.00	-31.30	QP
3	462.6200	30.00	-9.34	20.66	46.00	-25.34	QP
4	640.1300	34.09	-4.84	29.25	46.00	-16.75	QP
5	768.1700	32.89	-2.30	30.59	46.00	-15.41	QP
6	1000.0000	32.10	2.04	34.14	54.00	-19.86	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.


Page 25 of 44 Report No.: STS2004277W03

Temperature:	23.4(C)	Relative Humidity:	59%RH			
Test Voltage:	DC 3.7V	Phase:	Vertical			
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)					

No.	Frequenc y	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	28.75	-13.35	15.40	40.00	-24.60	QP
2	260.8600	30.23	-14.78	15.45	46.00	-30.55	QP
3	564.4700	31.28	-5.54	25.74	46.00	-20.26	QP
4	700.2700	33.29	-4.16	29.13	46.00	-16.87	QP
5	768.1700	34.30	-2.30	32.00	46.00	-14.00	QP
6	933.0700	31.69	0.80	32.49	46.00	-13.51	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.

Page 26 of 44

Report No.: STS2004277W03

(1GHz-25GHz) Spurious emission Requirements

GFSK

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
		•		Low C	hannel (2402	MHz)			• • • •	
3264.65	61.09	44.70	6.70	28.20	-9.80	51.29	74.00	-22.71	PK	Vertical
3264.65	50.04	44.70	6.70	28.20	-9.80	40.24	54.00	-13.76	AV	Vertical
3264.73	61.89	44.70	6.70	28.20	-9.80	52.09	74.00	-21.91	PK	Horizontal
3264.73	50.38	44.70	6.70	28.20	-9.80	40.58	54.00	-13.42	AV	Horizontal
4804.33	58.95	44.20	9.04	31.60	-3.56	55.39	74.00	-18.61	PK	Vertical
4804.33	49.25	44.20	9.04	31.60	-3.56	45.69	54.00	-8.31	AV	Vertical
4804.51	58.55	44.20	9.04	31.60	-3.56	54.99	74.00	-19.01	PK	Horizontal
4804.51	50.57	44.20	9.04	31.60	-3.56	47.01	54.00	-6.99	AV	Horizontal
5359.72	48.98	44.20	9.86	32.00	-2.34	46.64	74.00	-27.36	PK	Vertical
5359.72	39.12	44.20	9.86	32.00	-2.34	36.77	54.00	-17.23	AV	Vertical
5359.67	47.63	44.20	9.86	32.00	-2.34	45.29	74.00	-28.71	PK	Horizontal
5359.67	38.68	44.20	9.86	32.00	-2.34	36.34	54.00	-17.66	AV	Horizontal
7205.71	53.60	43.50	11.40	35.50	3.40	57.00	74.00	-17.00	PK	Vertical
7205.71	44.31	43.50	11.40	35.50	3.40	47.71	54.00	-6.29	AV	Vertical
7205.84	53.75	43.50	11.40	35.50	3.40	57.15	74.00	-16.85	PK	Horizontal
7205.84	44.41	43.50	11.40	35.50	3.40	47.81	54.00	-6.19	AV	Horizontal
		•		Middle	Channel (244	0 MHz)			•	
3264.76	61.58	44.70	6.70	28.20	-9.80	51.78	74.00	-22.22	PK	Vertical
3264.76	51.33	44.70	6.70	28.20	-9.80	41.53	54.00	-12.47	AV	Vertical
3264.70	61.62	44.70	6.70	28.20	-9.80	51.82	74.00	-22.18	PK	Horizontal
3264.70	49.86	44.70	6.70	28.20	-9.80	40.06	54.00	-13.94	AV	Horizontal
4880.54	58.95	44.20	9.04	31.60	-3.56	55.39	74.00	-18.61	PK	Vertical
4880.54	49.94	44.20	9.04	31.60	-3.56	46.38	54.00	-7.62	AV	Vertical
4880.41	59.25	44.20	9.04	31.60	-3.56	55.69	74.00	-18.31	PK	Horizontal
4880.41	50.60	44.20	9.04	31.60	-3.56	47.04	54.00	-6.96	AV	Horizontal
5359.87	49.14	44.20	9.86	32.00	-2.34	46.80	74.00	-27.20	PK	Vertical
5359.87	39.78	44.20	9.86	32.00	-2.34	37.44	54.00	-16.56	AV	Vertical
5359.63	47.72	44.20	9.86	32.00	-2.34	45.37	74.00	-28.63	PK	Horizontal
5359.63	38.52	44.20	9.86	32.00	-2.34	36.18	54.00	-17.82	AV	Horizontal
7320.89	54.92	43.50	11.40	35.50	3.40	58.32	74.00	-15.68	PK	Vertical
7320.89	43.52	43.50	11.40	35.50	3.40	46.92	54.00	-7.08	AV	Vertical
7320.70	54.04	43.50	11.40	35.50	3.40	57.44	74.00	-16.56	PK	Horizontal
7320.70	44.89	43.50	11.40	35.50	3.40	48.29	54.00	-5.71	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Ш

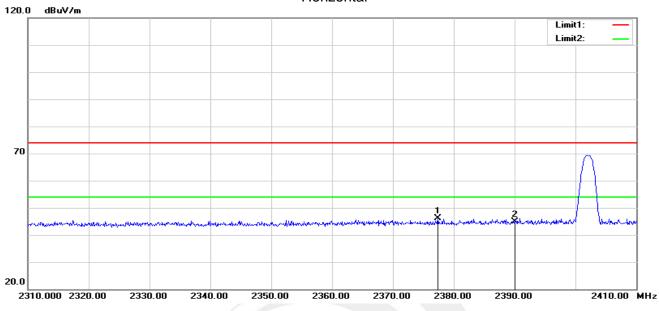
Page 27 of 44Report No.: STS2004277W03

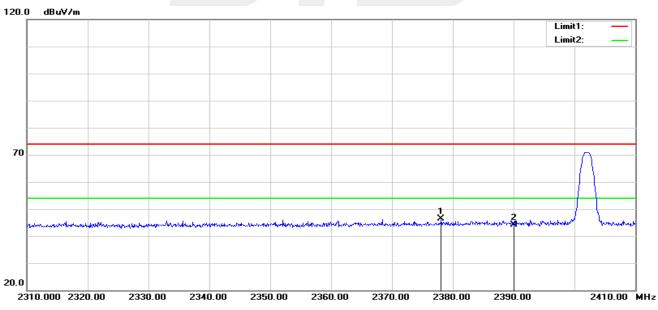
				High C	hannel (248	0 MHz)				
3264.76	62.00	44.70	6.70	28.20	-9.80	52.20	74.00	-21.80	PK	Vertical
3264.76	51.10	44.70	6.70	28.20	-9.80	41.30	54.00	-12.70	AV	Vertical
3264.62	62.21	44.70	6.70	28.20	-9.80	52.41	74.00	-21.59	PK	Horizontal
3264.62	50.37	44.70	6.70	28.20	-9.80	40.57	54.00	-13.43	AV	Horizontal
4960.34	58.58	44.20	9.04	31.60	-3.56	55.02	74.00	-18.98	PK	Vertical
4960.34	49.62	44.20	9.04	31.60	-3.56	46.06	54.00	-7.94	AV	Vertical
4960.39	58.69	44.20	9.04	31.60	-3.56	55.13	74.00	-18.87	PK	Horizontal
4960.39	50.45	44.20	9.04	31.60	-3.56	46.89	54.00	-7.11	AV	Horizontal
5359.79	48.74	44.20	9.86	32.00	-2.34	46.39	74.00	-27.61	PK	Vertical
5359.79	39.84	44.20	9.86	32.00	-2.34	37.50	54.00	-16.50	AV	Vertical
5359.74	48.55	44.20	9.86	32.00	-2.34	46.21	74.00	-27.79	PK	Horizontal
5359.74	38.99	44.20	9.86	32.00	-2.34	36.65	54.00	-17.35	AV	Horizontal
7439.84	53.73	43.50	11.40	35.50	3.40	57.13	74.00	-16.87	PK	Vertical
7439.84	44.21	43.50	11.40	35.50	3.40	47.61	54.00	-6.39	AV	Vertical
7439.85	54.34	43.50	11.40	35.50	3.40	57.74	74.00	-16.26	PK	Horizontal
7439.85	44.12	43.50	11.40	35.50	3.40	47.52	54.00	-6.48	AV	Horizontal

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor


2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

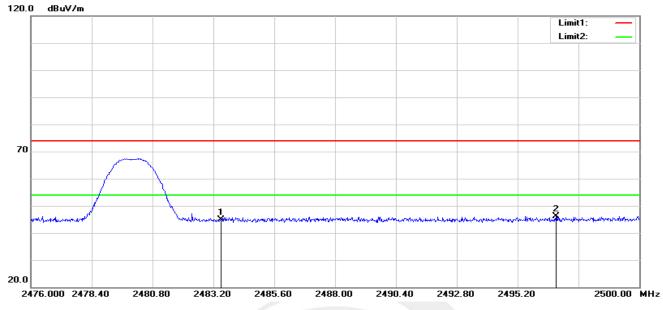


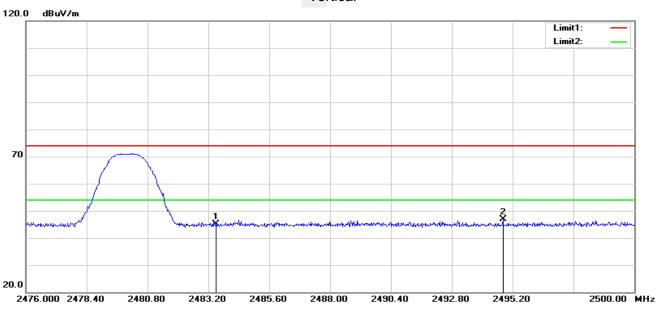
4.6 TEST RESULTS (Restricted Bands Requirements)

GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2377.400	42.05	4.15	46.20	74.00	-27.80	peak
2	2390.000	40.63	4.34	44.97	74.00	-29.03	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.100	42.32	4.17	46.49	74.00	-27.51	peak
2	2390.000	39.71	4.34	44.05	74.00	-29.95	peak


Vertical


Page 29 of 44

Report No.: STS2004277W03

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	40.37	4.60	44.97	74.00	-29.03	peak
2	2496.712	41.54	4.64	46.18	74.00	-27.82	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	40.52	4.60	45.12	74.00	-28.88	peak
2	2494.816	42.14	4.63	46.77	74.00	-27.23	peak

Vertical

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Stort/Stop Eroguopou	Lower Band Edge: 2300 – 2407 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

5.3 TEST SETUP

The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.7V		TX Mode /CH00, CH19, CH39

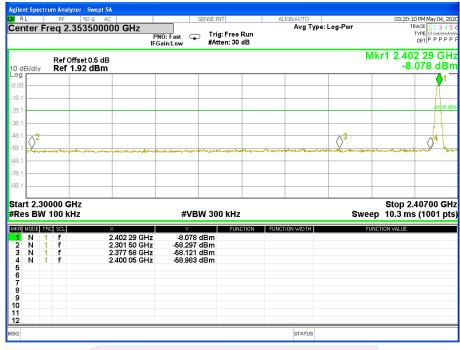
00 CH

RL RF Center Freq 12.	er - Swept SA 50 Ω AC 515000000 GHz	SENSE:INT		ype: Log-Pwr	TRAC	M May 04, 20 26 1 2 3 4 5 26 M WAANAA
		PNO: Fast 😱 Trig: Fre Gain:Low #Atten: \$			D	TPPPP
0 dB/div Ref 1.	set 0.5 dB 80 dBm				Mkr1 2.4 -8.2	.02 GH 00 dBi
og 3.20						
18.2						
8.2						-28.08 d
8.2						
8.2	\Diamond^2 \Diamond^3		Underson and and the state of the	h have been an	man ann	unner
i8.2 million line	where the tothe where	and the second sec	Uptimer inter interaction	· · ·		
8.2						
8.2						
tart 30 MHz					Of a re 0	- 00 0 1
Res BW 100 kHz	Z	#VBW 300 kH	łz	s	weep 2.39 s (5.00 GH 1001 pt
KR MODE TRC SCL	×		UNCTION FUNCTION WIDTH		FUNCTION VALUE	
1 N 1 f 2 N 1 f	2.402 GHz 3.176 GHz	-8.200 dBm -56.014 dBm				
3 N 1 f	5.948 GHz 24.451 GHz	-55.728 dBm -48.259 dBm				
4 N 1 f						
4 N 1 f 5 6						
4 N 1 f 5 6 7						
4 N 1 f 5 6 7 8 9						
4 N 1 f 5 6 7 8						

Shenzhen STS Test Services Co., Ltd.

Ш

19 CH


Spectrum Analyzer - S		SENSE:INT	ALIGN AUTO		03:23:47 PM May 04, 3
ter Freq 12.515			Avg Type:		TRACE 1 2 3 4
	PN	IO: Fast 😱 Trig: Free Ru ain:Low #Atten: 30 dE	in 5		DET P P P
Ref Offset 0 8/div Ref 0.94 (Mk	r1 2.452 G -9.065 dE
1					
					-27.48
					-21.40
2		3			
	and the second and the second se	mannen	mound	and a second and a s	and the second
t 30 MHz s BW 100 kHz	i	#VBW 300 kHz	·	Sween	Stop 25.00 G 2.39 s (1001 p
IODE TRC SCL	×	Y FUNCTI	ON FUNCTION WIDTH	aunotion	· ·
N 1 f N 1 f N 1 f N 1 f	2.452 GHz 3.126 GHz 9.419 GHz 21.704 GHz	-9.065 dBm -55.069 dBm -54.866 dBm -48.377 dBm			

39 CH

RL	RF	50 Ω AC		S	ENSE:INT	ALIGN A				7 PM May 04, 2
enter F	req 1	2.515000	Р	NO: Fast 🖵 Gain:Low	Trig: Free Run #Atten: 30 dB		∖vg Type: Log-I	Pwr		RACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div		Offset 0.5 dB 2.50 dBm							Mkr1 2 -7.	.477 G 505 dE
		1								
5										
5										-26.49
5										
5		^2								
					المراجع المحالية	Mar Mar	managene	مر المراحل المحاسس	when	man and so the
5	North Contraction	Ame lat		A Allow March and a second						
5										
5										
art 30 I es BW		ĸHz		#VBV	V 300 kHz			Swee	Stop p 2.39 s	25.00 G 6 (1001 p
MODE T			×	Y Z SAS	FUNCTION	FUNCTION V	WIDTH	FUNCT	TION VALUE	
N N	1 f 1 f		2.477 GHz 3.276 GHz	-7.505 c -54.525 c						
	1 f 1 f		9.718 GHz 24.625 GHz	-56.366 c						
			24.020 0112	41.101 0	em					
N N N										

For Band edge(it's also the reference level for conducted spurious emission)

00 CH

39 CH

RL RL	rum Ana RF	<mark>lyzer - Swept SA</mark> 50 Ω AC		SENSE:I	UT I	ALIGN AUTO		03:29:00 PM May 04, 2
enter F	req 2	.48750000	P	NO: Fast 🖵 Tri Gain:Low #At	g: Free Run ten: 30 dB	Avg Type:	Log-Pwr	TRACE 1 2 3 4 TYPE M WANN DET P P P P
dB/div		Dffset 0.5 dB 3.51 dBm					Mki	r1 2.480 250 GF -6.493 dB
49		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1					
6.5		/	1					
6.5								-26.49
6.5								
.5			*	<u>^2</u>				
.5	mara	and a stand	have	manning	marken	man maken and and and and and and and and and an	herent	man frank the second
6.5								
i.5								
6.5								
art 2.47 Res BW				#VBW 30	0 kHz		Sweep	Stop 2.50000 G 2.40 ms (1001 p
R MODE T			×	Y	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE
2 N .	1 f 1 f	2.	480 250 GHz 483 500 GHz	-6.493 dBm -60.776 dBm				
	1 f 1 f		487 850 GHz 497 650 GHz	-57.398 dBm -57.965 dBm				
5								
7								
3 9								
3 9 0								
3								

Shenzhen STS Test Services Co., Ltd.

Ш

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH00, CH19, CH39

Fraguanay	Power Density	Limit (dBm/3KHz)	Popult	
Frequency	(dBm/3kHz)		Result	
2402 MHz	-22.838	≤8	PASS	
2440 MHz	-22.239	≤8	PASS	
2480 MHz	-21.334	≤8	PASS	

Shenzhen STS Test Services Co., Ltd.

TX CH19

TX CH39

Shenzhen STS Test Services Co., Ltd.

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH00, CH19, CH39

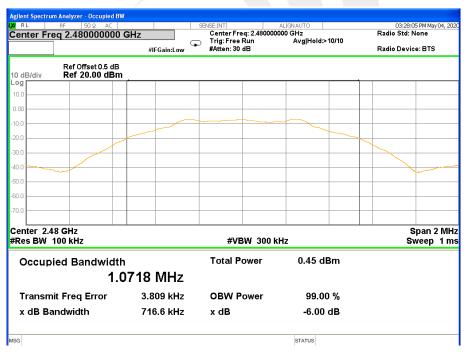
Frequency	6dB Bandwidth (KHz)	Channel Separation (KHz)	Result
2402 MHz	715.900	≥500KHz	PASS
2440 MHz	714.900	≥500KHz	PASS
2480 MHz	716.600	≥500KHz	PASS

TX CH 00

Agilent Spectrum Analyzer - Occupied BW X/ RL RF 50 Q AC		SENSE:INT	ALIGNAUTO	03:19:17 PM May 04, 20
enter Freg 2.402000000	GHz	Center Freq: 2.402000		Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
Ref Offset 0.5 dB 0 dB/div Ref 20.00 dBm				
og				
10.0				
D.00				
10.0				
20.0				
30.0	1			
40.0				
50.0				
50.0				
70.0				
Center 2.402 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 MH Sweep 1 m
Occupied Bandwidth)	Total Power	-1.13 dBm	
1.0	0719 MHz			
Transmit Freq Error	3.828 kHz	OBW Power	99.00 %	
x dB Bandwidth	715.9 kHz	x dB	-6.00 dB	
SG			STATUS	

Ш

MSG


1

TX CH 19

RL	RF 50 Ω AC		SENSE:INT	ALIGNAUTO	03:22:31 PM May 04, 20
enter Fr	eq 2.440000000	GHz	Center Freq: 2.440000		Radio Std: None
	٦.		Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
0 dB/div	Ref Offset 0.5 dB Ref 20.00 dBm				
og					
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
0.0					
enter 2.4 Res BW			#VBW 300 k	Hz	Span 2 MH Sweep 1 m
Occup	ied Bandwidth	1	Total Power	-0.54 dBm	
	1.0	0720 MHz			
Transm	nit Freq Error	4.046 kHz	OBW Power	99.00 %	
	andwidth	714.9 kHz	x dB	-6.00 dB	

TX CH 39

STATUS

Т

Report No.: STS2004277W03

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH00, CH19, CH39

Test Channe	Frequency	Peak Conducted Output Power	Average Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
CH0	2402	-6.17	-8.94	30
CH19	2440	-6.33	-8.81	30
CH39	2480	-5.75	-8.26	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

Duty cycle

Ton	Тр	Duty cycle(%)	Duty factor(dB)
0.402	0.622	64.63%	1.90

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

Report No.: STS2004277W03

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

Shenzhen STS Test Services Co., Ltd.