

EMC TEST REPORT

Applicant Quectel Wireless Solutions Co., Ltd

FCC ID XMR202007UC200TGL

Product UMTS/HSPA+ Module

Brand Quectel

Model UC200T-GL, UC200T-GL MINIPCIE

Marketing Quectel UC200T-GL,

Quectel UC200T-GL MINIPCIE

Report No. R2007A0437-E1

Issue Date July 22, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Wei Liu/ Manager

Wei Liu

Approved by: Guangchang Fan/ Director

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

Report No.: R2007A0437-E1

1	Tes	t Laboratory	4
	1.1	Notes of the Test Report	
	1.2.	Test facility	4
	1.3	Testing Location	4
2	Ger	neral Description of Equipment under Test	5
	2.1	Applicant and Manufacturer Information	5
	2.2	General information	5
	2.3	Applied Standards	6
	2.4	Test Mode	
3	Tes	t Case Results	8
	3.1	Radiated Emission	
	3.2	Conducted Emission	13
4	Mai	n Test Instruments	. 17

Summary of measurement results

Number	Test Case	Clause in FCC Rules	Conclusion			
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS			
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS			
Test Date: July 7 2020~ July 19 2020						

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Test Laboratory

Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

TA Technology (Shanghai) Co., Ltd. Company:

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

P. R. China Country:

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant Quectel Wireless Solutions Co., Ltd			
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
т-рриссии сиси сос	Tianlin Road, Minhang District, Shanghai 200233, China		
Manufacturer	Quectel Wireless Solutions Co., Ltd		
No for a farman and discount	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Manufacturer address	Tianlin Road, Minhang District, Shanghai 200233, China		

Report No.: R2007A0437-E1

2.2 General information

applicant.

EUT Description					
Device Type:	Module Device				
Model:	UC200T-GL, UC200T-	GL MINIPCIE			
IMEI:	868817040005702				
HW Version:	R1.0	R1.0			
SW Version:	UC200TGLAAR02A04M16				
Antenna Type: The EUT don't have standard Antenna, The Antenna used for testi report is the after-market accessory (Dipole Antenna)			· ·		
	Band	Tx (MHz)	Rx (MHz)		
	GSM 850	824 ~ 849	869 ~ 894		
Frequency:	GSM 1900	1850 ~ 1910	1930 ~ 1990		
	WCDMA Band II	1850 ~ 1910	1930 ~ 1990		
	WCDMA Band V	824 ~ 849	869 ~ 894		
Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the					

TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 5 of 17

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014)

2.4 Test Mode

Test Mode	
Mode 1:	External Power Supply + PCB Layout + EUT + Receiver

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C~26°C	45%~50%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

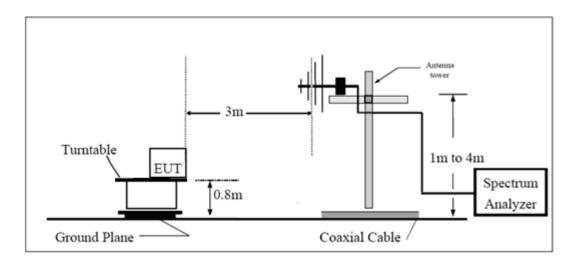
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

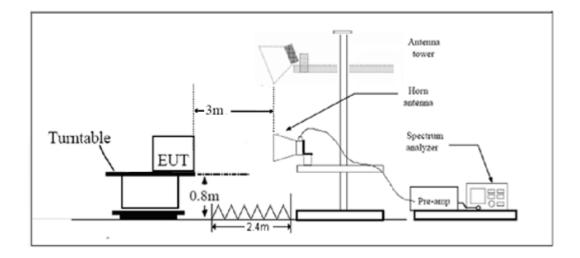
Above 1GHz:

(a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO

(b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of power supply.



Test Setup

Below 1GHz

Above 1GHz

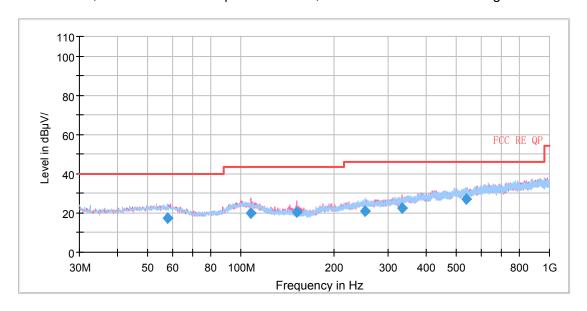
Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

Limits

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

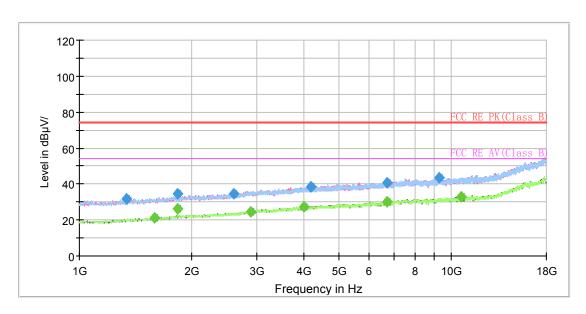

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB
18GHz~26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.



Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
57.886250	17.46	100.0	Н	137.0	-5.6	22.54	40.00
107.605000	19.72	123.0	V	293.0	-4.9	23.78	43.50
152.301250	20.57	100.0	V	331.0	-9.1	22.93	43.50
252.088750	20.88	198.0	Н	336.0	-3.8	25.12	46.00
333.725000	22.30	184.0	V	123.0	-1.9	23.70	46.00
535.728750	26.92	125.0	Н	2.0	2.3	19.08	46.00

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

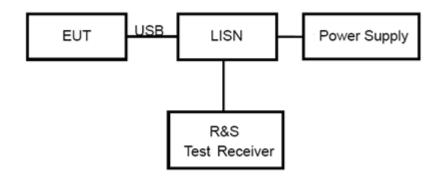
2. Margin = Limit - Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1337.875000	32.09		100.0	V	209.0	-17.0	41.91	74.00
1597.125000		21.02	100.0	Н	53.0	-15.6	32.98	54.00
1839.375000	34.48		100.0	V	141.0	-14.3	39.52	74.00
1839.375000		26.24	100.0	V	141.0	-14.3	27.76	54.00
2604.375000	34.56		100.0	Н	177.0	-10.9	39.44	74.00
2880.625000		24.77	200.0	V	4.0	-9.5	29.23	54.00
4019.625000		27.48	200.0	V	350.0	-5.9	26.52	54.00
4179.000000	38.36		100.0	V	290.0	-5.6	35.64	74.00
6703.500000	40.86		200.0	Н	284.0	-1.2	33.14	74.00
6716.250000		29.91	200.0	Н	249.0	-1.2	24.09	54.00
9281.125000	43.63		100.0	Н	139.0	1.5	30.37	74.00
10647.500000		32.76	200.0	Н	0.0	2.4	21.24	54.00

3.2 Conducted Emission

Ambient condition


Temperature	Relative humidity	Pressure
24°C ~26°C	50%~55%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

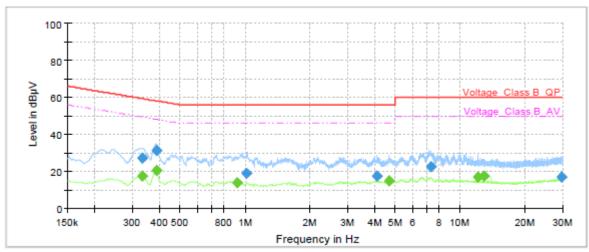
During the test, EUT is connected to a laptop via a USB cable in the case of power supply.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency	Conducted I	₋imits(dBμV)			
(MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 [*]			
0.5 - 5	56	46			
5 - 30	60	50			
* Decreases with the logarithm of the frequency.					


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.33	27.19		59.34	32.15	1000.0	9.000	L1	ON	19
0.33		17.42	49.34	31.92	1000.0	9.000	L1	ON	19
0.39	31.19		58.14	26.95	1000.0	9.000	L1	ON	19
0.39		20.53	48.14	27.61	1000.0	9.000	L1	ON	19
0.92		13.88	46.00	32.12	1000.0	9.000	L1	ON	19
1.02	19.02		56.00	36.98	1000.0	9.000	L1	ON	19
4.12	17.53		56.00	38.47	1000.0	9.000	L1	ON	19
4.67		14.71	46.00	31.29	1000.0	9.000	L1	ON	19
7.35	22.47		60.00	37.53	1000.0	9.000	L1	ON	19
12.07		16.88	50.00	33.12	1000.0	9.000	L1	ON	19
13.00		17.33	50.00	32.67	1000.0	9.000	L1	ON	20
29.83	16.81		60.00	43.19	1000.0	9.000	L1	ON	20

Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz


TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

0-150k Report No.: R2007A0437-E1

20M

30M

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.33	28.83		59.57	30.74	1000.0	9.000	N	ON	19
0.33		18.08	49.45	31.37	1000.0	9.000	N	ON	19
0.38	31.87		58.19	26.32	1000.0	9.000	N	ON	19
0.39		20.92	48.14	27.22	1000.0	9.000	N	ON	19
0.90	21.45		56.00	34.55	1000.0	9.000	N	ON	19
0.92		14.50	46.00	31.50	1000.0	9.000	N	ON	19
2.19	19.51		56.00	36.49	1000.0	9.000	N	ON	19
4.74		14.18	46.00	31.82	1000.0	9.000	N	ON	19
7.28	24.73		60.00	35.27	1000.0	9.000	N	ON	19
10.22		15.38	50.00	34.62	1000.0	9.000	N	ON	19
13.94		14.00	50.00	36.00	1000.0	9.000	N	ON	19
29.41	16.51		60.00	43.49	1000.0	9.000	N	ON	20

2M

Frequency in Hz

3M

4M 5M 6

8 10M

Remark: Correct factor=cable loss + LISN factor

300 400 500

800 1M

N line

Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instruments

Name	Manufacturer	Type	Serial	Calibration	Expiration	
		- 7 0	Number	Date	Time	
Spectrum	R&S	FSV40	15195-01-	2020-05-17	2021-05-16	
Analyzer	Νάο		00	2020-03-17	2021-03-10	
EMI Test	R&S	ESCI	100948	2020-05-17	2021-05-16	
Receiver	κασ	LSGI	100940	2020-03-17		
Trilog Antenna	SCHWARZBECK	VULB 9163	9163-201	2017-11-18	2020-11-17	
Horn Antenna	R&S	HF907	102723	2018-08-11	2021-08-10	
EMI Test	R&S	ESR	101667	2020-05-17	2021-05-16	
Receiver	κασ	ESK	101007	2020-03-17	2021-05-10	
LISN	R&S	ENV216	101171	2018-12-15	2021-12-14	
Bore Sight	ETC	2171D	00050750	,	,	
Antenna mast	ETS	2171B	00058752	/	,	
Test software	EMC32	R&S	9.26.0	1	1	

******END OF REPORT ******