

TEST REPORT

Applicant Name: EASEPAL ENTERPRISES LTD.

Address: 18th Floor,171# East Tapu Road, Siming District Xiamen,China

Report Number: RA221212-60841E-RF

FCC ID: 2AWAKER101A

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Massage Pillow

Model No.: ER101A

Date Received: 2022-12-12

Date of Test: 2022-12-26 to 2022-12-30

Report Date: 2023-01-09

Test Result: Pass*

Prepared and Checked By: Approved By:

Jeff-Jiang Candy. Co

Jeff Jiang Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\u00c4".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIESEQUIPMENT MODIFICATIONS	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	9
BLOCK DIAGRAM OF TEST SETUP	10
SUMMARY OF TEST RESULTS	11
TEST EQUIPMENT LIST	12
FCC §1.1307 (b) & §2.1093 – RF EXPOSURE	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	20
FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	20
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (3) – MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD TEST PROCEDURE	
TEST DATA	

Shenzhen Accurate Technology Co., Ltd.

Report No.: RA221212-60841E-RF

FCC §15.247(e) - POWER SPECTRAL DENSITY	35
APPLICABLE STANDARD	35
TEST PROCEDURE	
TEST DATA	35

DOCUMENT REVISION HISTORY

Revision Number	Revision Number Report Number Description of Revision		Date of Revision
0	RA221212-60841E-RF	Original Report	2023-01-09

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Massage Pillow
Tested Model No.	ER101A
Frequency Range	BLE 1M: 2402~2480MHz
Maximum conducted Peak output power	-4.26dBm
Modulation Technique	GFSK
Antenna Specification*	Internal Antenna: -3.68dBi(provided by the applicant)
Voltage Range	DC5V from USB port or 11.1V from battery
Sample number	RA221212-60841E-RF-S1 (RF Radiated Test) RA221212-60841E-RF-S2 (RF Conducted Test) (Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		5%
RF Fre	equency	$0.082*10^{-7}$
RF output po	wer, conducted	0.73dB
Unwanted Emission, conducted		1.6dB
AC Power Lines Conducted Emissions		2.72dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1℃
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

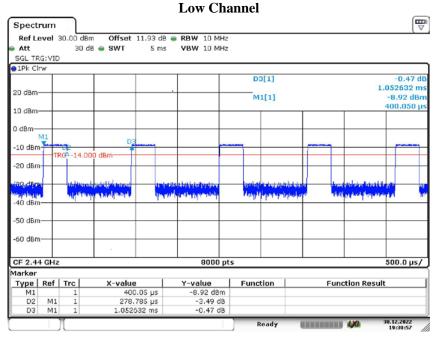
Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
		•••	•••
•••		•••	•••
•••		•••	•••
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

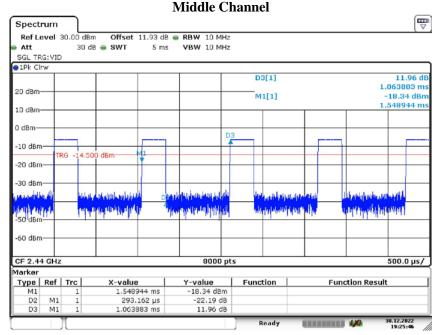
EUT Exercise Software

Software "RF Test_V1.8"* was used during testing and the power level was 3*.

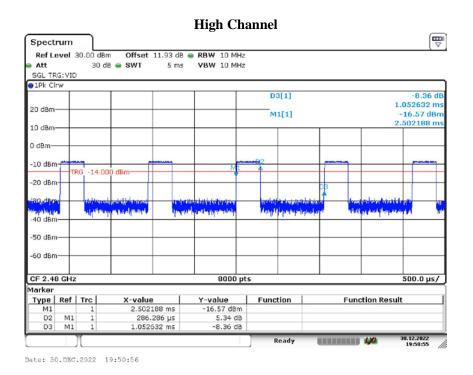
Special Accessories


No special accessory.

Equipment Modifications

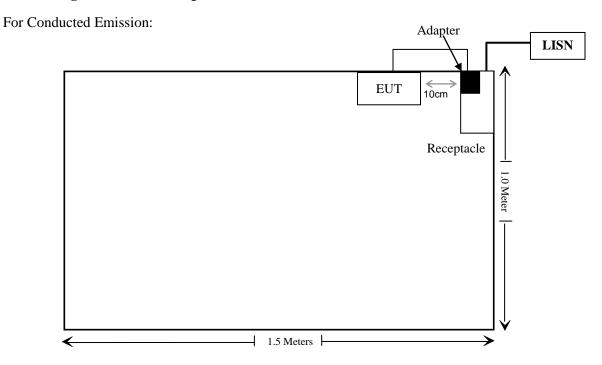

No modification was made to the EUT tested.

Duty Cycle

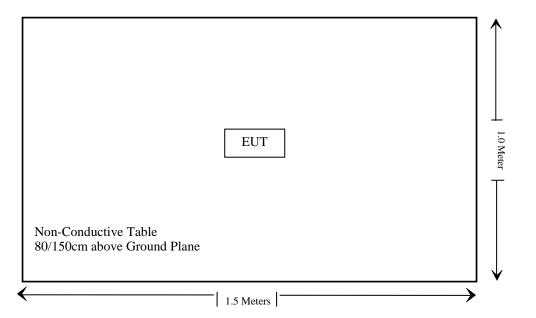

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
		2402	0.28	1.05	26.67
BLE_1M	Ant1	2440	0.29	1.06	27.36
		2480	0.29	1.05	27.62

Date: 30.DEC.2022 19:30:57

Date: 30.DEC.2022 19:25:46


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Hisense	Adapter	HS3108	1D0513220VIE


External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Detachable USB Cable	0.5	EUT	Adapter

Block Diagram of Test Setup

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307(b), §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24		
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06		
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24		
	Conducted E	mission Test Soft	tware: e3 19821b (V9)			
		Radiated Emiss	ions Test				
Rohde & Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2022/11/08	2023/11/07		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24		
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24		
	Radiated Emission Test Software: e3 19821b (V9)						
		RF Conducte	d Test				
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2022/11/25	2023/11/24		
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24		

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) & §2.1093 – RF EXPOSURE

Applicable Standard

Applicable Standard

According to FCC §2.1093 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RA221212-60841E-RF

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

Test Result:

For worst case:

M - J -	Frequency	Maximum Tune-up	1 mW tost Evenution	
Mode	(MHz)	(dBm)	(mW)	1-mW test Exemption
BLE	2402-2480	-4	0.4	Yes

Note: the tune up power was provided by applicant.

Result: Compliant.

Report No.: RA221212-60841E-RF

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

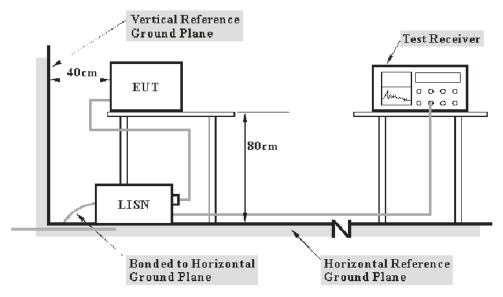
According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is -3.68dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

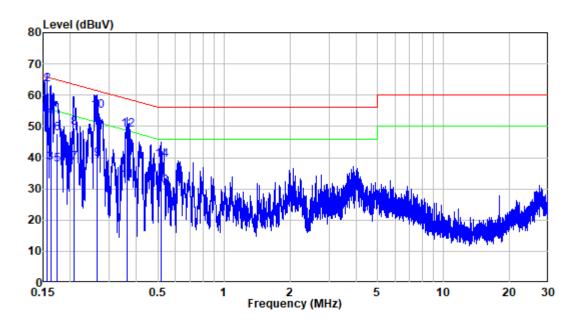
Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

Environmental Conditions


Temperature:	24°C		
Relative Humidity:	47 %		
ATM Pressure:	101.0 kPa		

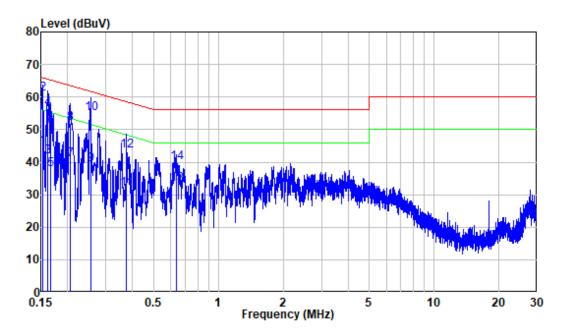
The testing was performed by Chen. Jie on 2022-12-26.

EUT operation mode: Charging

Test Result: Please refer to the below plots:

AC 120V/60 Hz, Line

Site : Shielding Room


Condition: Line

Job No. : RA221212-60841E-RF

Mode : Charging Power : AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBu∨	dB	
1	0.156	9.80	36.87	46.67	55.65	-8.98	Average
2	0.156	9.80	53.64	63.44	65.65	-2.21	QP
3	0.162	9.80	28.51	38.31	55.35	-17.04	Average
4	0.162	9.80	43.15	52.95	65.35	-12.40	QP
5	0.173	9.80	27.85	37.65	54.80	-17.15	Average
6	0.173	9.80	38.00	47.80	64.80	-17.00	QP
7	0.207	9.80	28.63	38.43	53.34	-14.91	Average
8	0.207	9.80	39.79	49.59	63.34	-13.75	QP
9	0.263	9.80	29.69	39.49	51.33	-11.84	Average
10	0.263	9.80	45.26	55.06	61.33	-6.27	QP
11	0.363	9.80	22.79	32.59	48.67	-16.08	Average
12	0.363	9.80	39.16	48.96	58.67	-9.71	QP
13	0.518	9.81	21.09	30.90	46.00	-15.10	Average
14	0.518	9.81	29.41	39.22	56.00	-16.78	QP

AC 120V/60 Hz, Neutral

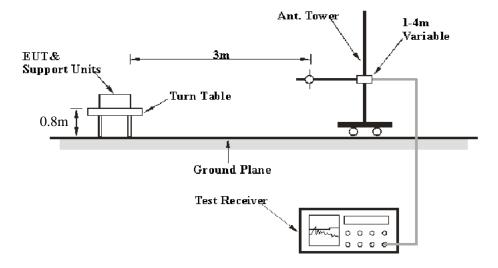
Site : Shielding Room

Condition: Neutral

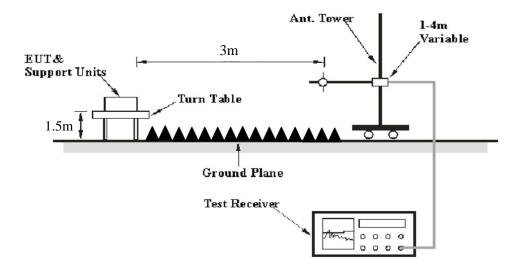
Job No. : RA221212-60841E-RF

Mode : Charging Power : AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.153	9.80	34.97	44.77	55.83	-11.06	Average
2	0.153	9.80	51.11	60.91	65.83	-4.92	QP
3	0.161	9.80	32.00	41.80	55.42	-13.62	Average
4	0.161	9.80	46.66	56.46	65.42	-8.96	QP
5	0.167	9.80	28.02	37.82	55.12	-17.30	Average
6	0.167	9.80	40.88	50.68	65.12	-14.44	QP
7	0.205	9.80	31.05	40.85	53.40	-12.55	Average
8	0.205	9.80	42.16	51.96	63.40	-11.44	QP
9	0.256	9.80	29.44	39.24	51.57	-12.33	Average
10	0.256	9.80	45.12	54.92	61.57	-6.65	QP
11	0.373	9.80	21.90	31.70	48.43	-16.73	Average
12	0.373	9.80	33.78	43.58	58.43	-14.85	QP
13	0.638	9.81	23.35	33.16	46.00	-12.84	Average
14	0.638	9.81	30.01	39.82	56.00	-16.18	QP


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1MHz	10Hz ^{Note1}	/	Ave
	1MHz	>1/T Note2	/	Ave

Note1: for duty cycle≥98% Note2: for duty cycle<98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform QP/Average measurement.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

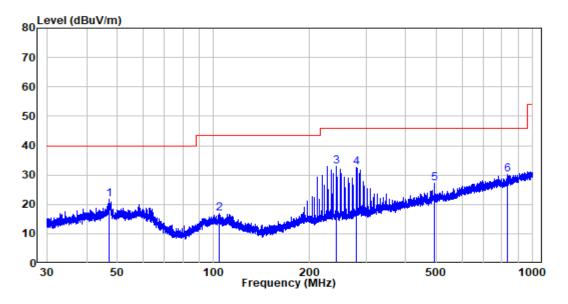
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	24~25 °C
Relative Humidity:	56~57 %
ATM Pressure:	101.0kPa


The testing was performed by Jason Liu from 2022-12-26 to 2022-12-30

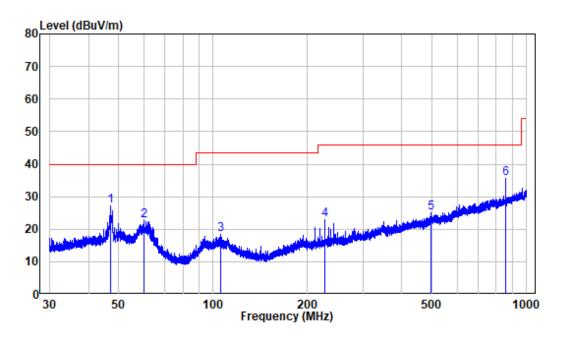
EUT operation mode: Transmitting

Test Result: Please refer to the below plots and table:

Below 1GHz: (worst case Low Channel)

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : RA221212-60841E-RF

Test Mode: BLE

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.015	-10.00	31.75	21.75	40.00	-18.25	Peak
2	104.307	-11.77	28.72	16.95	43.50	-26.55	Peak
3	241.888	-10.78	43.79	33.01	46.00	-12.99	Peak
4	279.656	-9.60	42.33	32.73	46.00	-13.27	Peak
5	491.390	-4.61	31.64	27.03	46.00	-18.97	Peak
6	831.128	0.07	30.19	30.26	46.00	-15.74	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA221212-60841E-RF

Test Mode: BLE

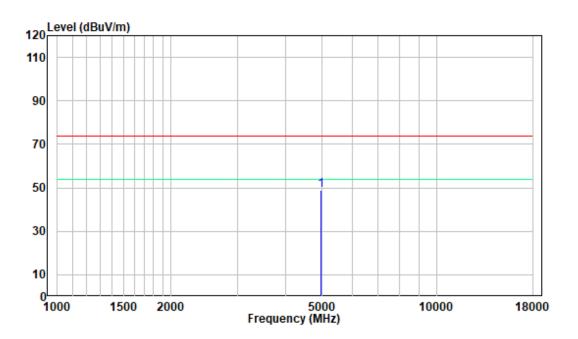
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.057	-10.00	37.10	27.10	40.00	-12.90	Peak
2	60.201	-10.70	33.29	22.59	40.00	-17.41	Peak
3	105.827	-11.91	30.25	18.34	43.50	-25.16	Peak
4	226.695	-11.21	34.13	22.92	46.00	-23.08	Peak
5	496.152	-4.41	29.52	25.11	46.00	-20.89	Peak
6	859.658	0.28	35.39	35.67	46.00	-10.33	Peak

Above 1GHz:

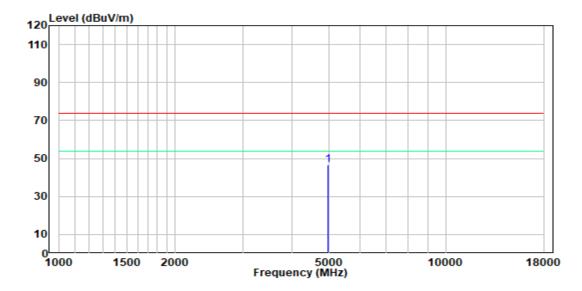
Frequency	Receiver		Turntable	Rx Antenna		Factor	Absolute	Limit	Margin		
(MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)		
	BLE 1M, Low Channel										
2310	47.99	PK	18	2.1	Н	-7.23	40.76	74	-33.24		
2310	51.56	PK	70	2.2	V	-7.23	44.33	74	-29.67		
2390	50.07	PK	114	2.2	Н	-7.21	42.86	74	-31.14		
2390	61.42	PK	53	1.9	V	-7.21	54.21	74	-19.79		
2390	36.57	AV	79	1.6	V	-7.21	29.36	54	-24.64		
4804	48.55	PK	79	1.6	Н	-3.52	45.03	74	-28.97		
4804	49.15	PK	285	1.3	V	-3.52	45.63	74	-28.37		
			BI	LE 1M, Mid	dle Channel						
4880	51.25	PK	121	1.2	Н	-3.38	47.87	74	-26.13		
4880	48.75	PK	141	1.7	V	-3.38	45.37	74	-28.63		
			В	LE 1M, Hig	gh Channel						
2483.5	57.2	PK	95	1.6	Н	-7.2	50	74	-24		
2483.5	62	PK	95	1.6	V	-7.2	54.8	74	-19.2		
2483.5	36.61	AV	227	1.8	V	-7.2	29.41	54	-24.59		
2500	55.15	PK	117	1.8	Н	-7.18	47.97	74	-26.03		
2500	50.35	PK	313	1.0	V	-7.18	43.17	74	-30.83		
4960	51.9	PK	285	1.3	Н	-3.01	48.89	74	-25.11		
4960	49.78	PK	201	1.7	V	-3.01	46.77	74	-27.23		

Note:

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor Absolute Level (Corrected Amplitude) = Factor + Reading

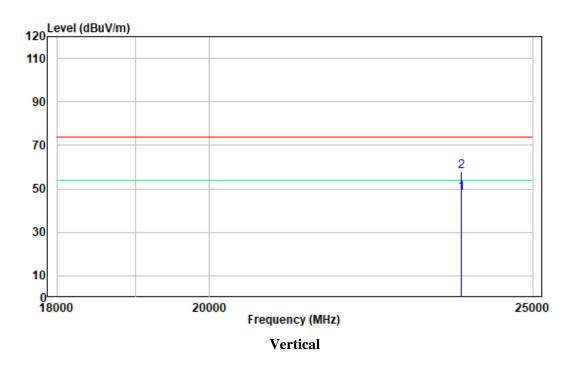

Margin = Absolute Level - Limit
The other spurious emission which is in the noise floor level was not recorded.

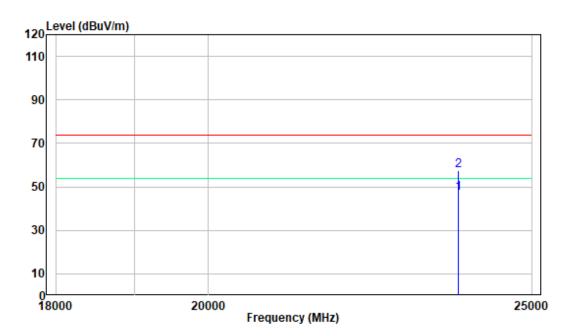
For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

(Worst case High Channel)

Horizontal

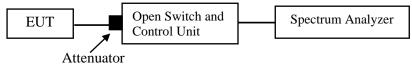

Vertical



18-25GHz: (Pre-Scan plots)

(Worst case High Channel)

Horizontal


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

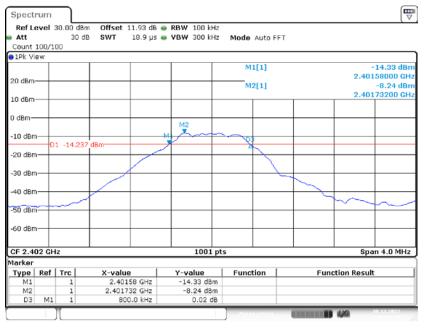
Environmental Conditions

Temperature:	25°C		
Relative Humidity:	52%		
ATM Pressure:	101.0 kPa		

The testing was performed by Jesse Chen on 2022-12-30.

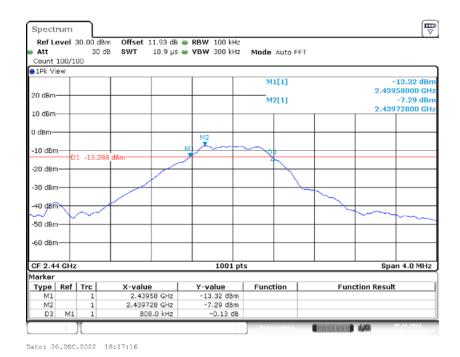
EUT operation mode: Transmitting

Test Result

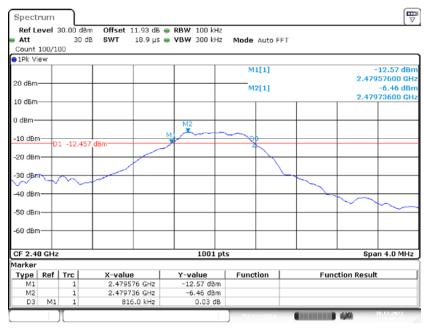

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.800	0.5	PASS
BLE_1M		2440	0.808	0.5	PASS
		2480	0.816	0.5	PASS

Test Mode	Antenna	Channel	OCB[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.159	2401.381	2402.539		PASS
BLE_1M	Ant1	2440	1.175	2439.365	2440.539		PASS
		2480	1.279	2479.261	2480.539		PASS

Please refer to the below plots:


6 dB EMISSION BANDWIDTH

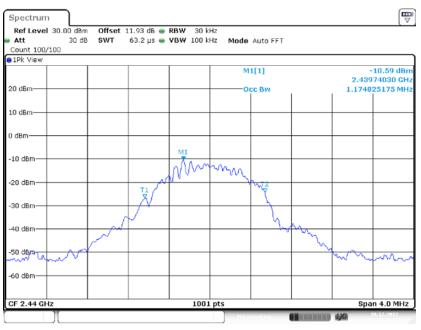
Low Channel



Date: 30.DEC.2022 18:13:55

Middle Channel

High Channel


Date: 30.DEC.2022 18:20:18

OCCUPIED BANDWIDTH

Low Channel

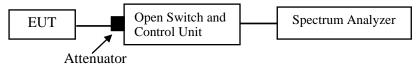


Middle Channel

Date: 30.DEC.2022 18:17:33

High Channel

Date: 30.DEC.2022 18:20:35


FCC §15.247(b) (3) – MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

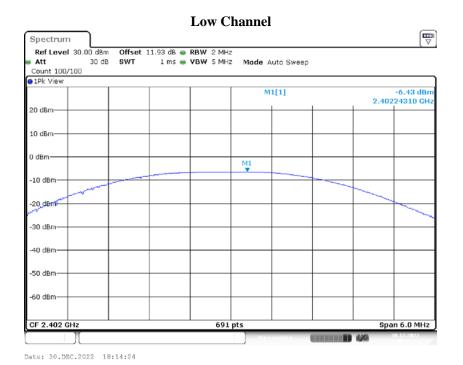
Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

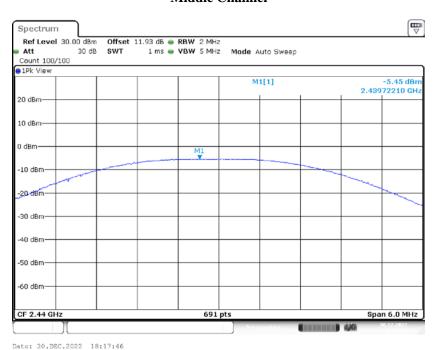
Test Data

Environmental Conditions

Temperature:	25°C	
Relative Humidity:	52%	
ATM Pressure:	101.0 kPa	


The testing was performed by Jesse Chen on 2022-12-30.

EUT operation mode: Transmitting


Test Result

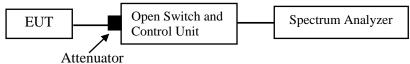
Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	2402	-6.43	<=30	PASS
		2440	-5.45	<=30	PASS
		2480	-4.26	<=30	PASS


Please refer to the below plots:

Middle Channel

High Channel

Date: 30.DEC.2022 18:20:47


FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

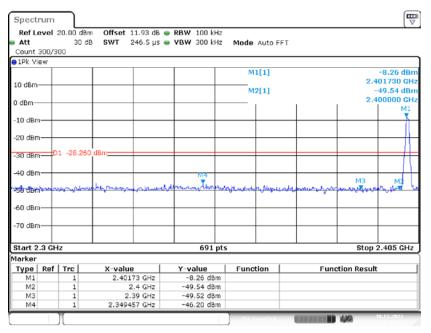
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

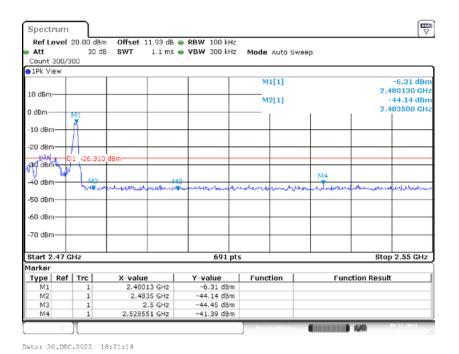
Environmental Conditions

Temperature:	25°C	
Relative Humidity:	52%	
ATM Pressure:	101.0 kPa	


The testing was performed by Jesse Chen on 2022-12-30.

EUT operation mode: Transmitting

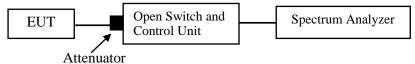
Test Result: Compliant.


Please refer to the below plots:

Low Channel

Date: 30.DEC.2022 18:14:51

High Channel


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

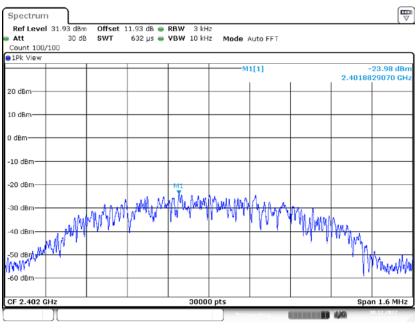
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz< RBW<100 kHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

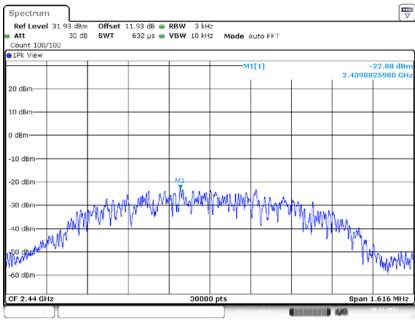
Temperature:	25°C	
Relative Humidity:	52%	
ATM Pressure:	101.0 kPa	

The testing was performed by Jesse Chen on 2022-12-30.

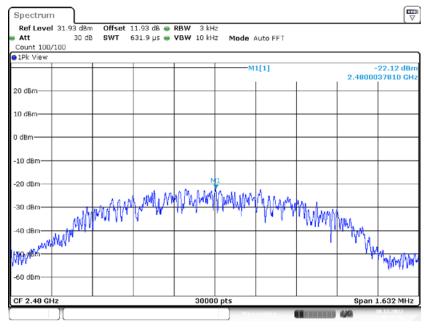

EUT operation mode: Transmitting

Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M Ant1		2402	-23.98	<=8	PASS
	2440	-22.88	<=8	PASS	
		2480	-22.12	<=8	PASS


Please refer to the below plots:

Low Channel



Date: 30.DEC.2022 18:14:36

Middle Channel

High Channel

Date: 30.DEC.2022 18:20:59

***** END OF REPORT *****