

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT

Report No. CTC20231519E02

FCC ID-----: 2AWAA-MS3

Applicant-----: ZHEJIANG DALI TECHNOLOGY CO.,LTD

Manufacturer-----: ZHEJIANG DALI TECHNOLOGY CO.,LTD

Address······ No.639 Binkang Road, Hangzhou, P.R.CHINA, 310053

Product Name······: Thermal Imager

Trade Mark------ /

Model/Type reference······: MS335PS

Listed Model(s) MS315, MS315L, MS325, MS325L, MS325L, MS335,

MS335S, MS335L, MS335P, MS335PL

Jenny Su Biczhang

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...: Jul. 11, 2023

Date of testing...... Jul. 12, 2023 ~ Oct. 09, 2023

Date of issue...... Oct. 10, 2023

Result..... PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

Testing Laboratory Name.....: CTC Laboratories, Inc.

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

Report No.: CTC20231519E02

1. TE	EST SUMMARY	3
1.1.	TEST STANDARDS	
1.2.	REPORT VERSION	
1.3.	TEST DESCRIPTION	
1.4.	Test Facility	
1.5.	Measurement Uncertainty	5
1.6.	Environmental conditions	6
2. GE	ENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	Accessory Equipment Information	8
2.4.	OPERATION STATE	9
2.5.	Measurement Instruments List	10
3. TE	EST ITEM AND RESULTS	12
3.1.	CONDUCTED EMISSION	12
3.2.	RADIATED EMISSION	15
3.3.	BAND EDGE EMISSIONS (RADIATED)	37
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	50
3.5.	DTS BANDWIDTH	64
3.6.	MAXIMUM CONDUCTED OUTPUT POWER	69
3.7.	Power Spectral Density	71
3.8.	Duty Cycle	76
3.9.	Antenna requirement	80

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Oct. 10, 2023	Original

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2						
Test Item	Standard	Section	Result	Test		
rest item	FCC	IC	Result	Engineer		
Antenna Requirement	15.203	/	Pass	Alicia Liu		
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Cecilia Luo		
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Alicia Liu		
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Alicia Liu		
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Alicia Liu		
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Alicia Liu		
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Alicia Liu		
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Alicia Liu		

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Report No.: CTC20231519E02

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

Test Items Measurement Uncertainty Notes DTS Bandwidth ±0.0196% (1) Maximum Conducted Output Power ±0.686 dB (1) Maximum Power Spectral Density Level ±0.743 dB (1) Band-edge Compliance ±1.328 dB (1) 9kHz-1GHz: ±0.746dB Unwanted Emissions In Non-restricted Freq Bands (1) 1GHz-26GHz: ±1.328dB Conducted Emissions 9kHz~30MHz ±3.08 dB (1) Radiated Emissions 30~1000MHz ±4.51 dB (1) Radiated Emissions 1~18GHz ±5.84 dB (1) Radiated Emissions 18~40GHz ±6.12 dB (1)

Report No.: CTC20231519E02

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	ZHEJIANG DALI TECHNOLOGY CO.,LTD
Address:	No.639 Binkang Road, Hangzhou, P.R.CHINA, 310053
Manufacturer:	ZHEJIANG DALI TECHNOLOGY CO.,LTD
Address:	No.639 Binkang Road, Hangzhou, P.R.CHINA, 310053

Report No.: CTC20231519E02

2.2. General Description of EUT

Product Name:	Thermal Imager
Trade Mark:	/
Model/Type reference:	MS335PS
Listed Model(s):	MS315, MS315S, MS315L, MS325, MS325S, MS325L, MS335, MS335S, MS335L, MS335P, MS335PL
Model Different:	All these models are identical in the same PCB, layout and electrical circuit, The only difference is optical lenses.
Power supply:	5Vdc from AC/DC Adapter 3.70Vdc from 3450mAh Li-ion Battery
Adapter Model:	MDY-11-EX Input: 100-240V~ 50/60Hz 0.7A Output: 5Vdc/3A
Hardware version:	/
Software version:	/
Samples No.:	CTC230710-060-S002
WIFI 802.11b/ g/ n(HT20)	
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz
Channel number:	802.11b/g/n(HT20):11channels
Channel separation:	5MHz
Antenna type:	FPC Antenna
Antenna gain:	2.26dBi Max

2.3. Accessory Equipment information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo		
Cable Information					
Name Shielded Type Ferrite Core Length					
/	/	/	/		
Test Software Information					
Name	Versions	/	/		
/	/	/	/		

Report No.: CTC20231519E02

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Report No.: CTC20231519E02

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20)

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	HT-MCS0	

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

RF Test System						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024	
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024	
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023	
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023	
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024	
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023	
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023	
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 16, 2023	
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 16, 2023	
10	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024	
11	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023	
12	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024	
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024	
14	Test Software	Tonscend	JS1120-3	V3.3.38	/	

Radiate	Radiated Emission (3m chamber 2)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024	
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023	
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14 2024	
5	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023	
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023	
7	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023	
8	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024	
9	Test Software	FARA	EZ-EMC	FA-03A2	/	

Radiate	Radiated Emission (3m chamber 3)						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024		
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024		
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023		
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023		
5	Mirowave Broadband	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023		

Page 11 of 80 Report No.: CTC20231519E02

	Amplifier				
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

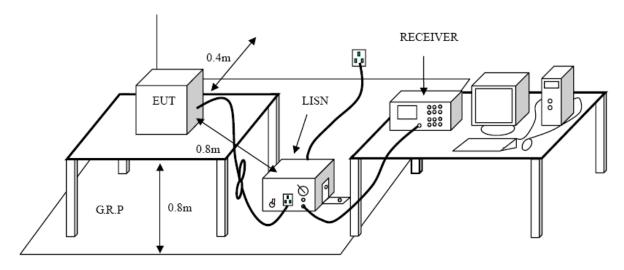
Conduc	eted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three year of the chamber
- 3. The cable loss has calculated in test result which connection between each test instruments.

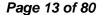
3.TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

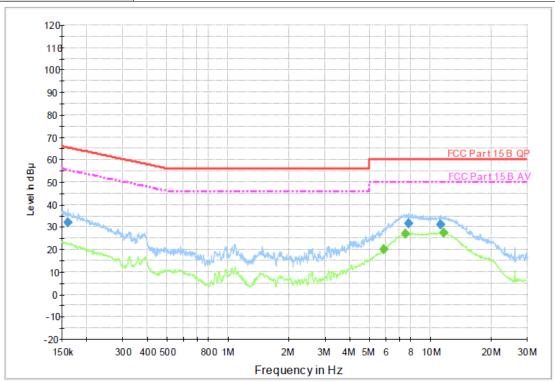
Fraguency range (MHZ)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			


^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


Test Mode:

Please refer to the clause 2.4.

Test Results

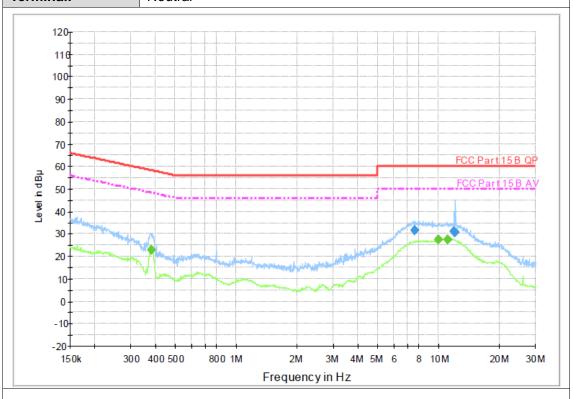
Report No.: CTC20231519E02

Final Measurement Detector 1

Ī	Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
-1	(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
			(ms)						V)	
	0.161180	32.1	1000.00	9.000	On	L1	9.4	33.3	65.4	
	7.744610	31.5	1000.00	9.000	On	L1	9.6	28.5	60.0	
	11.226260	31.1	1000.00	9.000	On	L1	9.7	28.9	60.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
5.879950	20.3	1000.00	9.000	On	L1	9.6	29.7	50.0	
7.501190	27.0	1000.00	9.000	On	L1	9.6	23.0	50.0	
11.544390	27.3	1000.00	9.000	On	L1	9.7	22.7	50.0	


Emission Level= Read Level+ Correct Factor

Test Voltage: AC 120V/60 Hz
Terminal: Neutral

Report No.: CTC20231519E02

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
7.561320	31.6	1000.00	9.000	On	N	9.6	28.4	60.0	
11.871540	31.1	1000.00	9.000	On	N	9.6	28.9	60.0	
12.062630	30.8	1000.00	9.000	On	N	9.6	29.2	60.0	

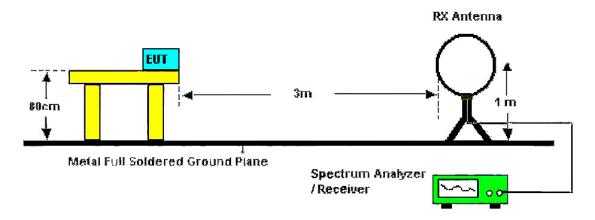
Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.378720	22.9	1000.00	9.000	On	N	9.4	25.5	48.3	
9.959180	27.3	1000.00	9.000	On	N	9.6	22.7	50.0	
11.092620	27.6	1000.00	9.000	On	N	9.6	22.4	50.0	

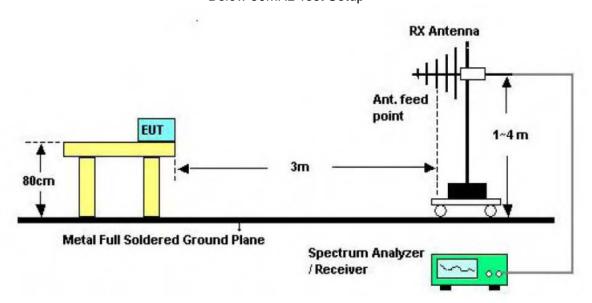
Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

Limit

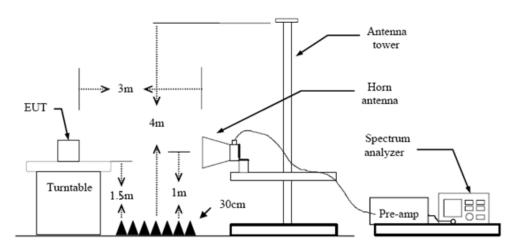

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9:

Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
Above I GHZ	74.00	Peak


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the quidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured
- (2) Below 30 MHz:

9kHz − 150kHz, RBW=200Hz, VBW ≥ RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz − 30MHz, RBW=9kHz, VBW ≥ RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW ≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

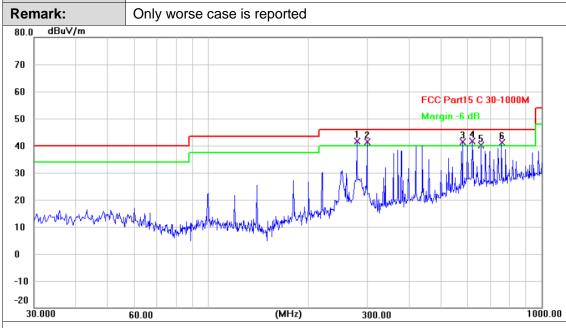
Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS


Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

Ant. Pol. Horizontal

Test Mode: 802.11b Mode 2412MHz

Report No.: CTC20231519E02

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	279.9367	55.62	-13.98	41.64	46.00	-4.36	QP
2!	299.9833	54.85	-13.54	41.31	46.00	-4.69	QP
3 !	579.9900	48.64	-7.19	41.45	46.00	-4.55	QP
4!	620.0833	47.97	-6.46	41.51	46.00	-4.49	QP
5!	659.8533	46.03	-6.00	40.03	46.00	-5.97	QP
6 !	760.0867	45.69	-4.68	41.01	46.00	-4.99	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

1000.00

Ant. Pol. Vertical **Test Mode:** 802.11b Mode 2412MHz Remark: Only worse case is reported dBuV/m 80.0 70 60 FCC Part15 C 30-1000M Margin -6 dB 50 40 30 20 10 0 -10

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	299.9833	52.07	-13.54	38.53	46.00	-7.47	QP
2	380.1700	50.92	-11.56	39.36	46.00	-6.64	QP
3 !	699.9467	47.78	-5.54	42.24	46.00	-3.76	QP
4 *	740.0400	47.81	-4.96	42.85	46.00	-3.15	QP
5 !	780.1332	45.32	-4.40	40.92	46.00	-5.08	QP
6	839.9500	43.31	-3.50	39.81	46.00	-6.19	QP

(MHz)

300.00

Remarks:

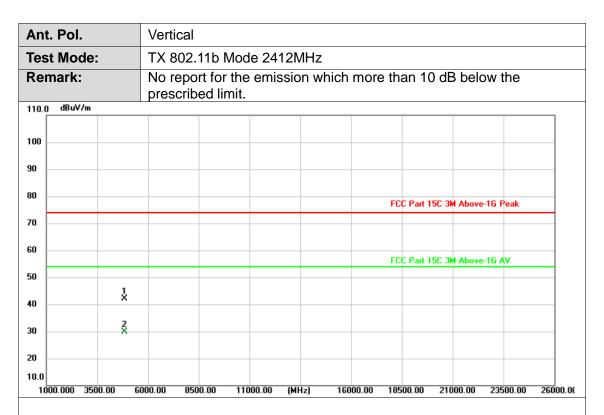
30.000

 $1. Factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ Factor \ (dB) - Pre-amplifier \ Factor$

2.Margin value = Level -Limit value

60.00

Adobe 1GHz


Ant.	Pol.	Horizo	prizontal									
Test	Mode:	TX 802	2.11b M	ode 241	2MHz							
Rem	nark:		ort for t		sion wl	nich more	e than 1	0 dB bel	ow the			
110.0	dBuV/m											
100												
90												
80							FCC Part 1	ISC 3M Abov	e-1G Peak			
70												
60							FCC Part 1	ISC 3M Above	e-1G AV			
50												
40	1 ×											
30	2											
20												
10.0												

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.186	46.11	-3.17	42.94	74.00	-31.06	peak
2 *	4823.746	32.99	-3.17	29.82	54.00	-24.18	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

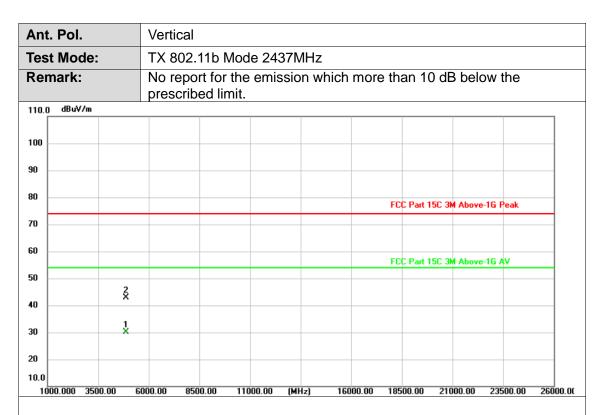
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.614	45.29	-3.17	42.12	74.00	-31.88	peak
2 *	4824.274	32.97	-3.17	29.80	54.00	-24.20	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

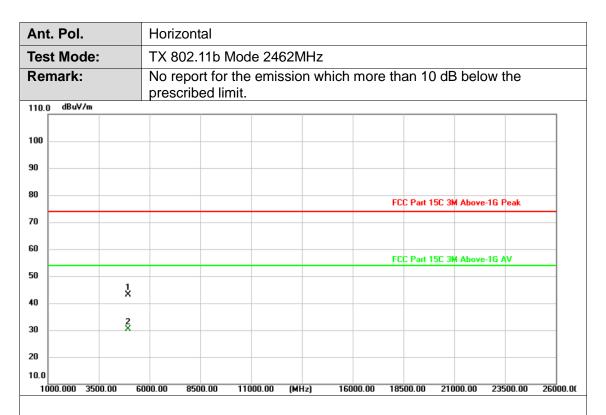
中国国家认证认可监督管理委员会



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.074	45.98	-3.03	42.95	74.00	-31.05	peak
2 *	4873.616	32.96	-3.03	29.93	54.00	-24.07	AVG

Remarks:

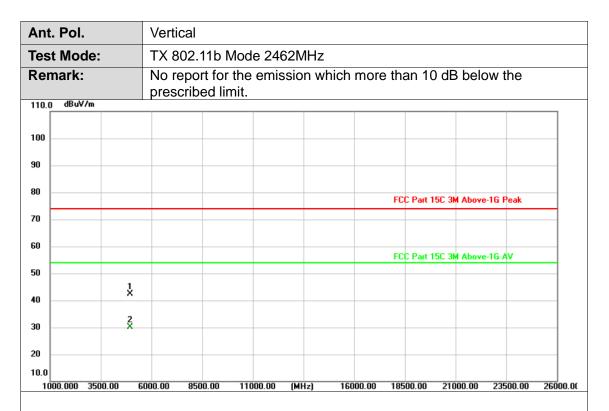
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.276	33.11	-3.03	30.08	54.00	-23.92	AVG
2	4873.908	45.83	-3.03	42.80	74.00	-31.20	peak

Remarks:

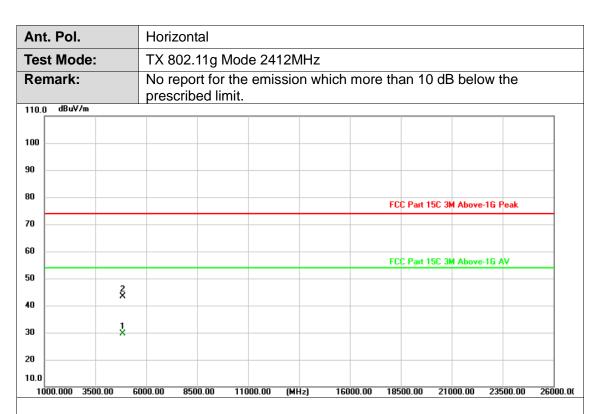
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.366	46.11	-2.91	43.20	74.00	-30.80	peak
2 *	4923.682	33.19	-2.91	30.28	54.00	-23.72	AVG

Remarks:

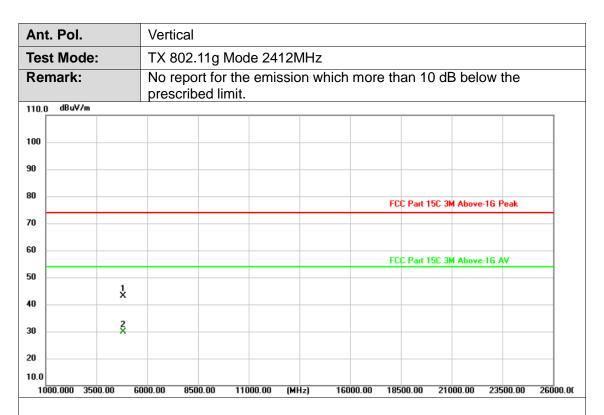
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.096	45.17	-2.91	42.26	74.00	-31.74	peak
2 *	4923.486	33.05	-2.91	30.14	54.00	-23.86	AVG

Remarks:

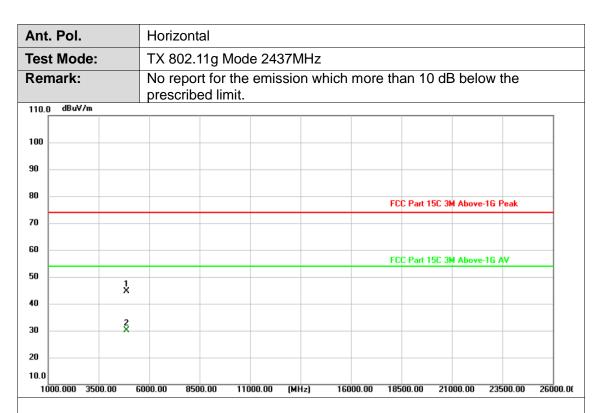
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.196	32.70	-3.17	29.53	54.00	-24.47	AVG
2	4823.632	46.66	-3.17	43.49	74.00	-30.51	peak

Remarks:

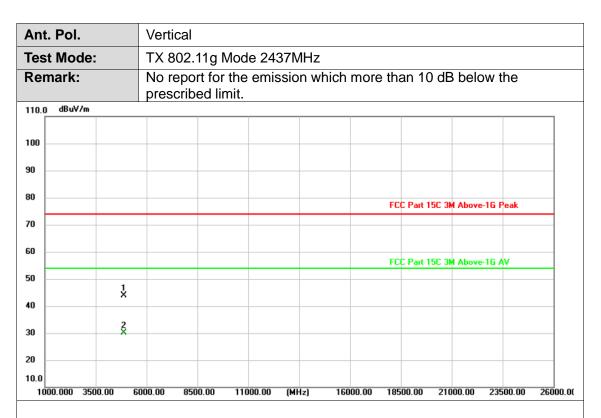
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



IJ								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	4823.732	46.26	-3.17	43.09	74.00	-30.91	peak
	2 *	4823.758	32.93	-3.17	29.76	54.00	-24.24	AVG

Remarks:

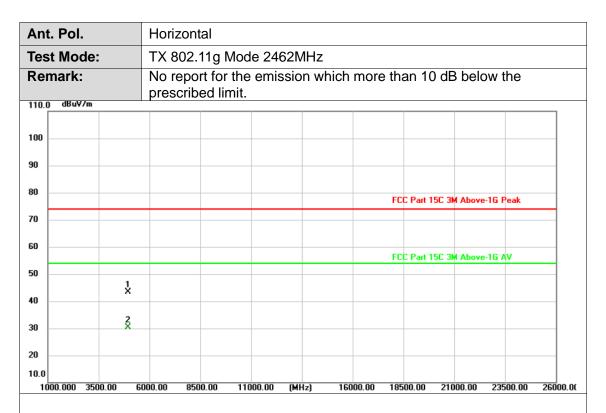
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.218	47.76	-3.03	44.73	74.00	-29.27	peak
2 *	4874.438	33.15	-3.03	30.12	54.00	-23.88	AVG

Remarks:

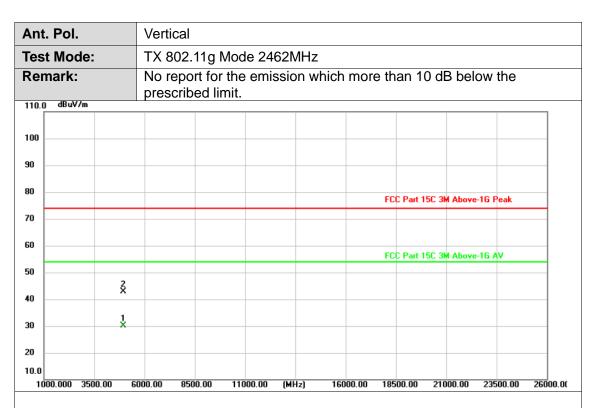
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



- 1								
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	4873.662	46.83	-3.03	43.80	74.00	-30.20	peak
	2 *	4874.102	33.12	-3.03	30.09	54.00	-23.91	AVG

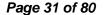
Remarks:

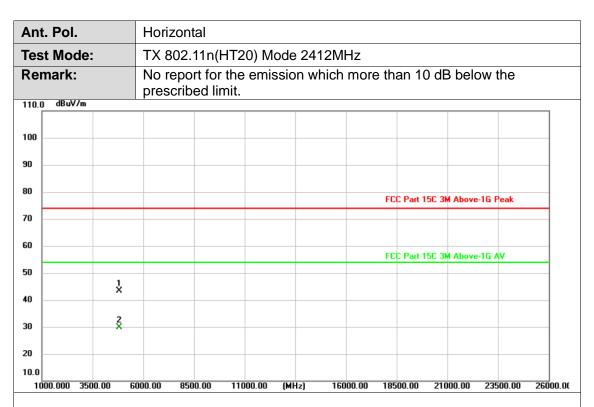
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.580	46.20	-2.91	43.29	74.00	-30.71	peak
2 *	4924.934	33.27	-2.91	30.36	54.00	-23.64	AVG

Remarks:

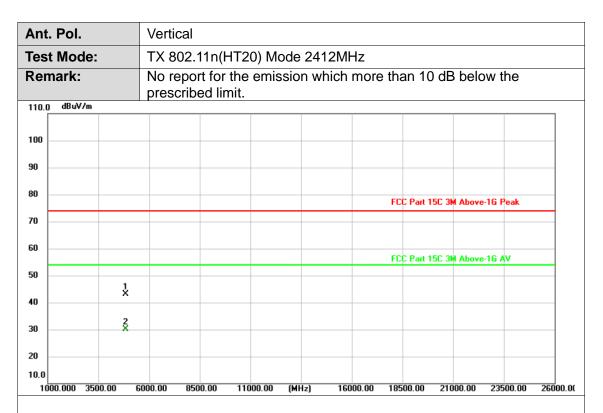
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.012	33.16	-2.91	30.25	54.00	-23.75	AVG
2	4924.340	45.89	-2.91	42.98	74.00	-31.02	peak

Remarks:

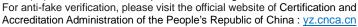
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

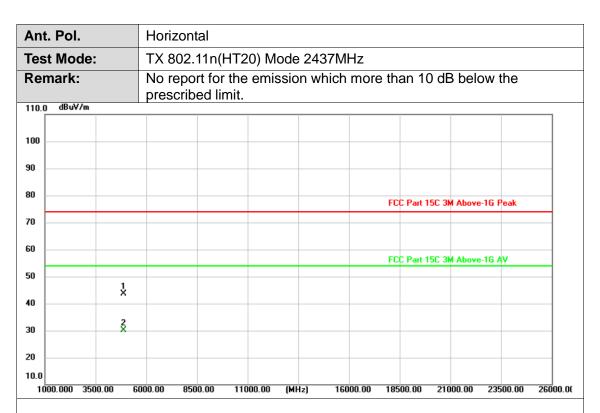


No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	4823.678	46.44	-3.17	43.27	74.00	-30.73	peak
2 *	4824.128	33.03	-3.17	29.86	54.00	-24.14	AVG

Remarks:

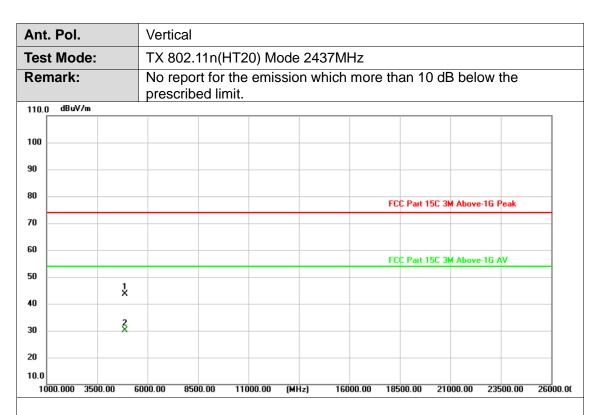
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.912	46.18	-3.17	43.01	74.00	-30.99	peak
2 *	4824.184	33.23	-3.17	30.06	54.00	-23.94	AVG

Remarks:

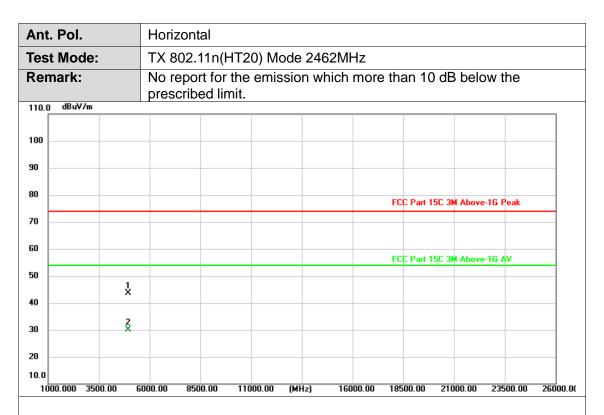
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.808	46.59	-3.03	43.56	74.00	-30.44	peak
2 *	4874.238	33.19	-3.03	30.16	54.00	-23.84	AVG

Remarks:

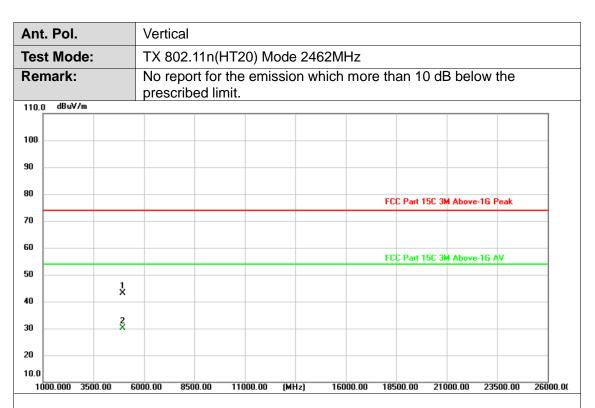
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



l .								_
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
1	4874.264	46.64	-3.03	43.61	74.00	-30.39	peak	
2 *	4874.288	33.09	-3.03	30.06	54.00	-23.94	AVG	Ī

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.070	46.60	-2.91	43.69	74.00	-30.31	peak
2 *	4924.148	33.05	-2.91	30.14	54.00	-23.86	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.846	45.92	-2.91	43.01	74.00	-30.99	peak
2 *	4923.948	33.09	-2.91	30.18	54.00	-23.82	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Report No.: CTC20231519E02

Test Configuration

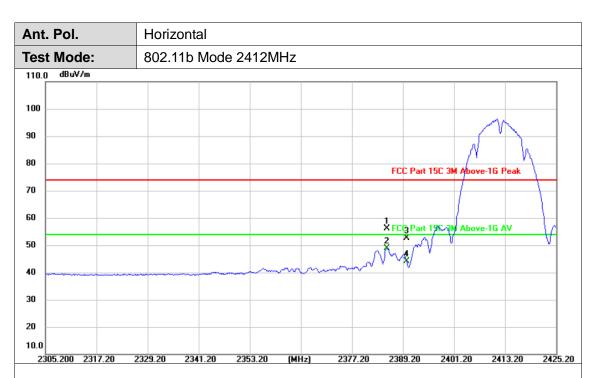
Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

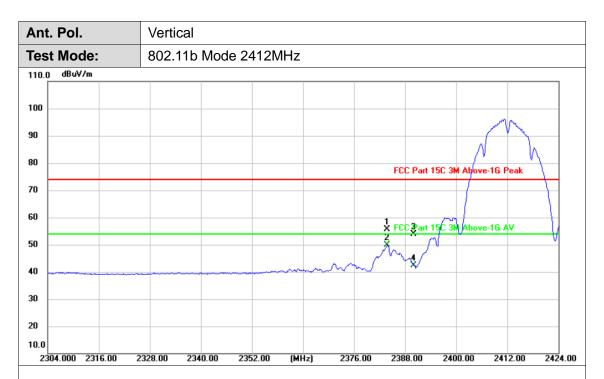
RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.


Test Mode

Please refer to the clause 2.4.

Test Results



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2385.360	25.15	31.06	56.21	74.00	-17.79	peak
2 *	2385.360	17.91	31.06	48.97	54.00	-5.03	AVG
3	2390.000	21.60	31.08	52.68	74.00	-21.32	peak
4	2390.000	12.93	31.08	44.01	54.00	-9.99	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2383.800	24.57	31.05	55.62	74.00	-18.38	peak
2 *	2383.800	18.93	31.05	49.98	54.00	-4.02	AVG
3	2390.000	22.70	31.08	53.78	74.00	-20.22	peak
4	2390.000	11.28	31.08	42.36	54.00	-11.64	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol. Horizontal

Test Mode: 802.11b Mode 2462 MHz

110.0 dBuV/m

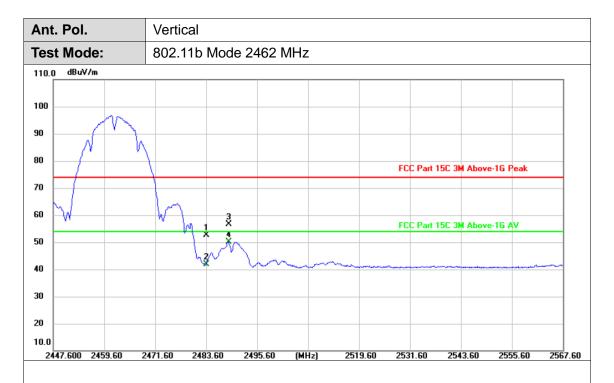
100
90
80
FCC Part 15C 3M Above-16 Peak
70
60
40
30

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	20.23	31.43	51.66	74.00	-22.34	peak
2	2483.500	10.22	31.43	41.65	54.00	-12.35	AVG
3	2490.000	23.98	31.46	55.44	74.00	-18.56	peak
4 *	2490.320	16.81	31.46	48.27	54.00	-5.73	AVG

(MHz)

2519.60

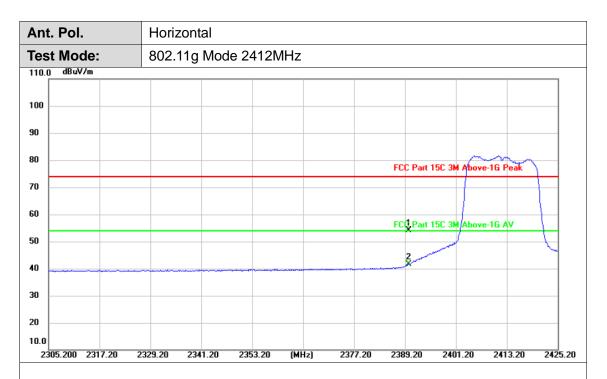
Remarks:


20 10.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2483.60

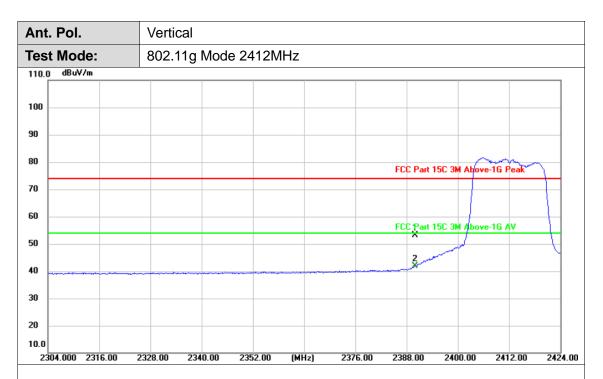
2495.60



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	21.29	31.43	52.72	74.00	-21.28	peak
2	2483.500	10.47	31.43	41.90	54.00	-12.10	AVG
3	2488.800	25.25	31.45	56.70	74.00	-17.30	peak
4 *	2488.880	18.78	31.46	50.24	54.00	-3.76	AVG

Remarks:

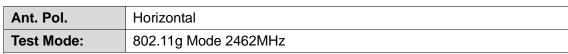
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

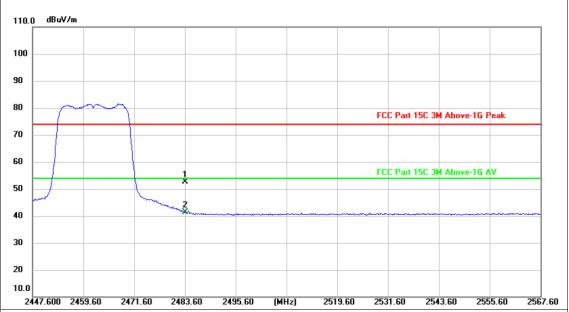


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	23.12	31.08	54.20	74.00	-19.80	peak
2 *	2390.000	10.56	31.08	41.64	54.00	-12.36	AVG

Remarks:

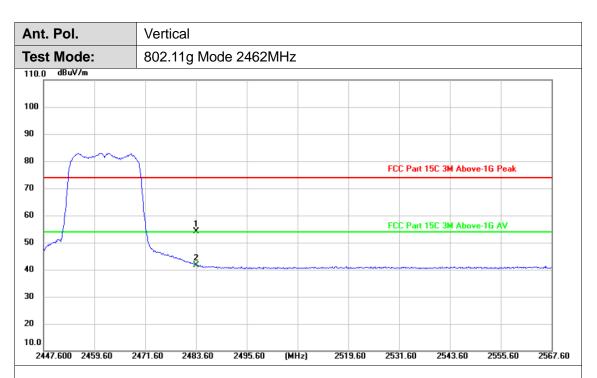
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value




No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	21.97	31.08	53.05	74.00	-20.95	peak
2 *	2390.000	10.92	31.08	42.00	54.00	-12.00	AVG

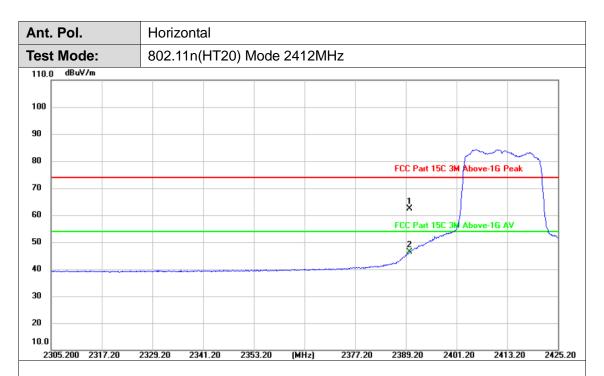
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	21.12	31.43	52.55	74.00	-21.45	peak
2 *	2483.500	9.95	31.43	41.38	54.00	-12.62	AVG

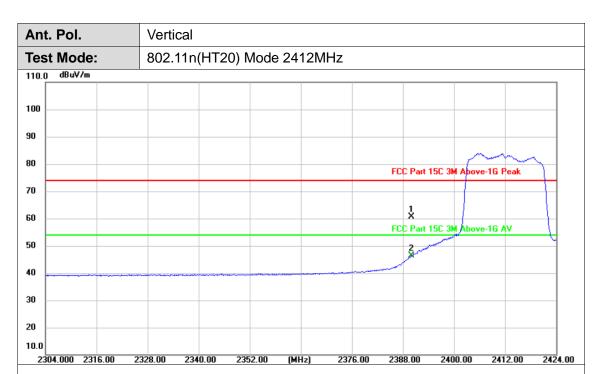
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	22.78	31.43	54.21	74.00	-19.79	peak
2 *	2483.500	10.31	31.43	41.74	54.00	-12.26	AVG

Remarks:

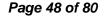
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



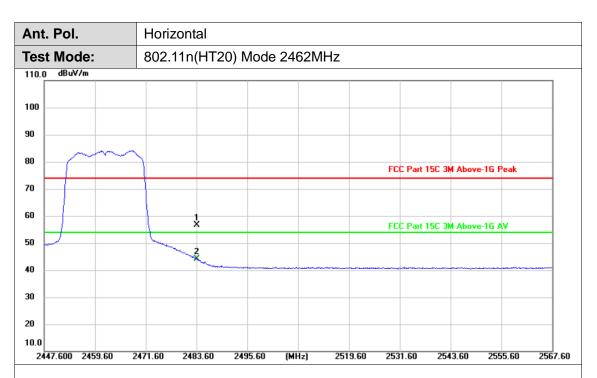
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	31.40	31.08	62.48	74.00	-11.52	peak
2 *	2390.000	15.20	31.08	46.28	54.00	-7.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

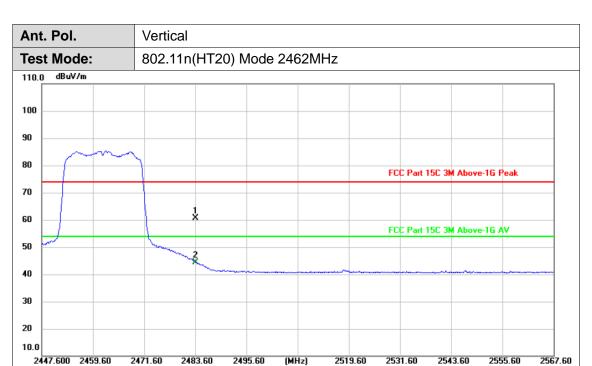

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	29.59	31.08	60.67	74.00	-13.33	peak
2 *	2390.000	15.29	31.08	46.37	54.00	-7.63	AVG

Remarks:


- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Tel.: (86)755-27521059



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	25.12	31.43	56.55	74.00	-17.45	peak
2 *	2483.500	12.66	31.43	44.09	54.00	-9.91	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	29.28	31.43	60.71	74.00	-13.29	peak
2 *	2483.500	12.90	31.43	44.33	54.00	-9.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.4. Band edge and Spurious Emissions (Conducted)

Limit

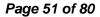
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Report No.: CTC20231519E02

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

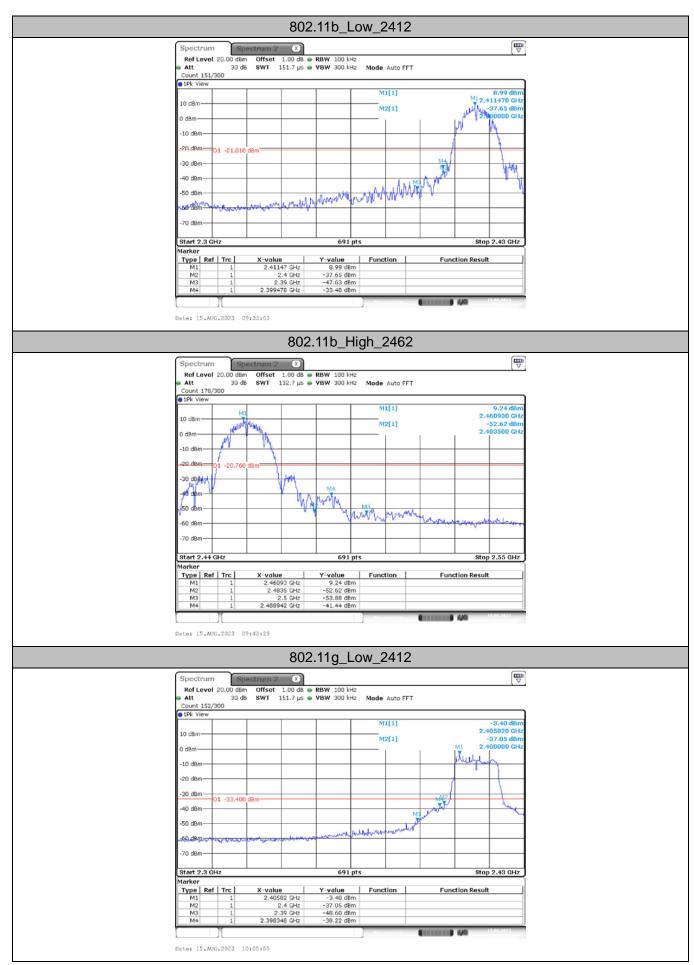

Test Mode

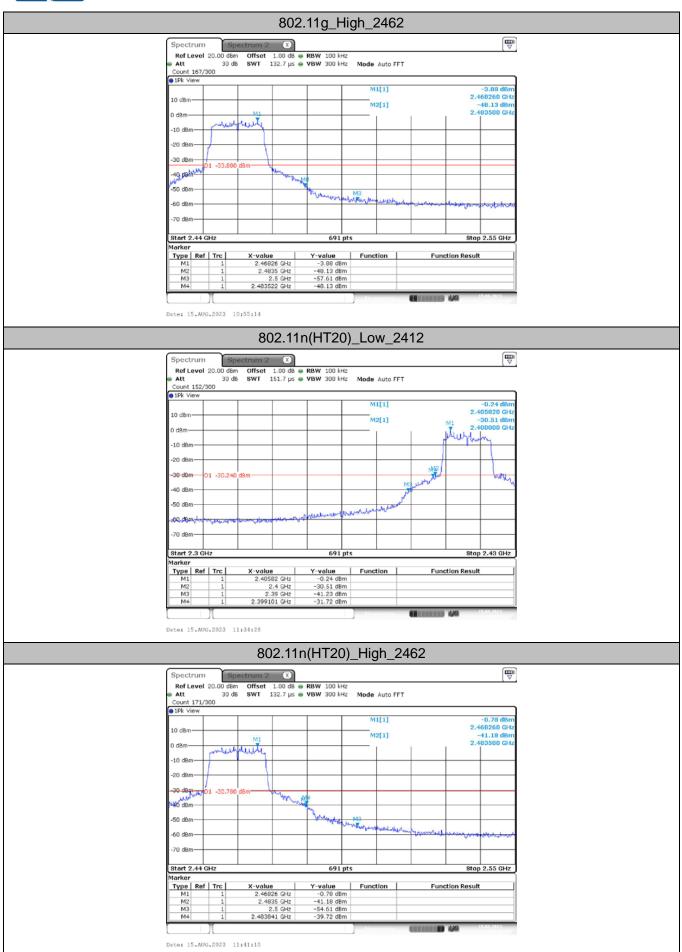
Please refer to the clause 2.4.

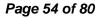
Test Results

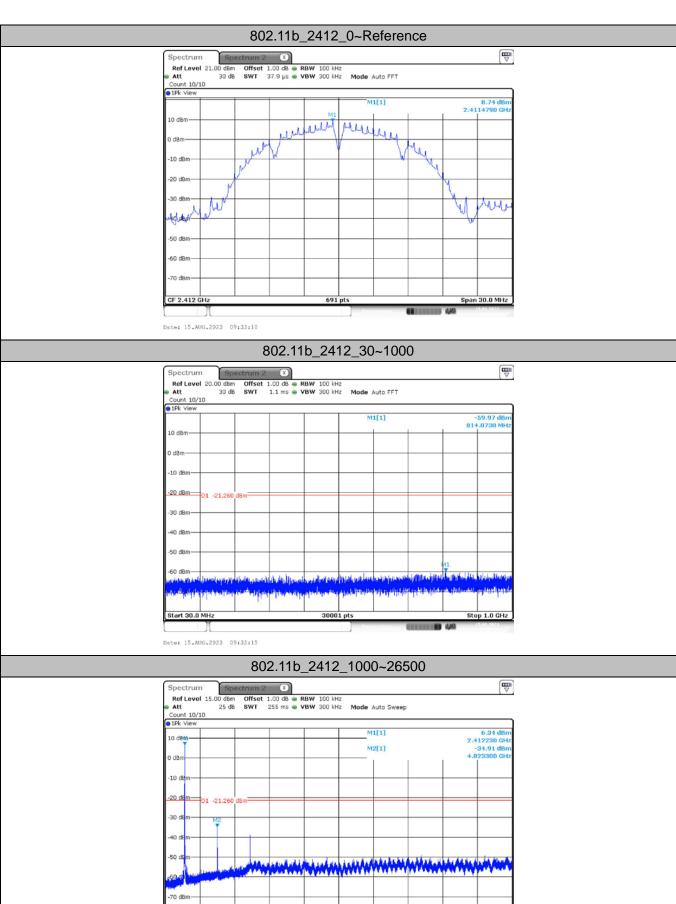
CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



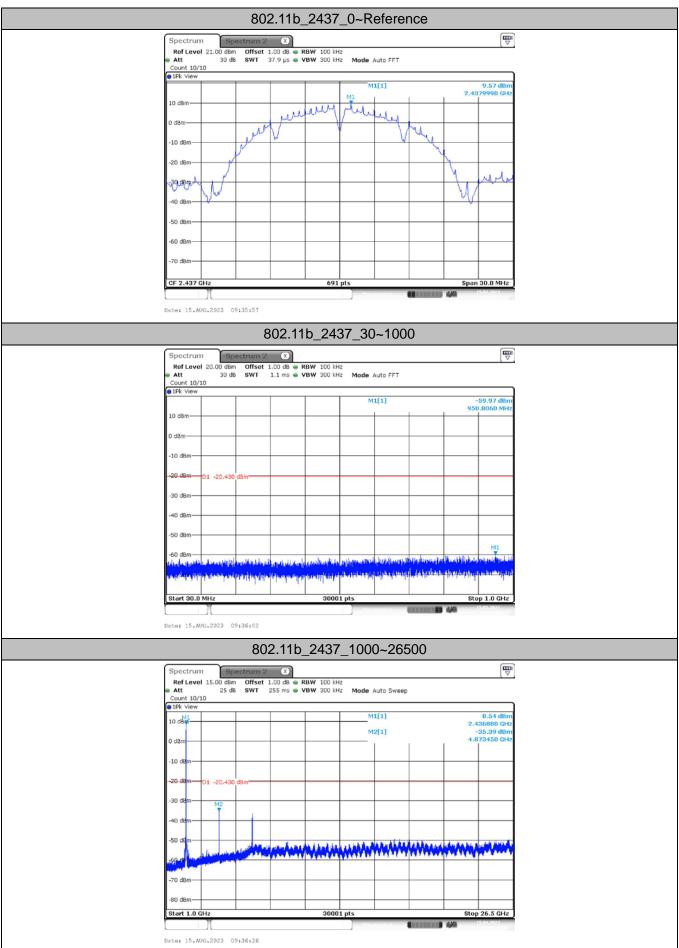

(1) Band edge Conducted Test

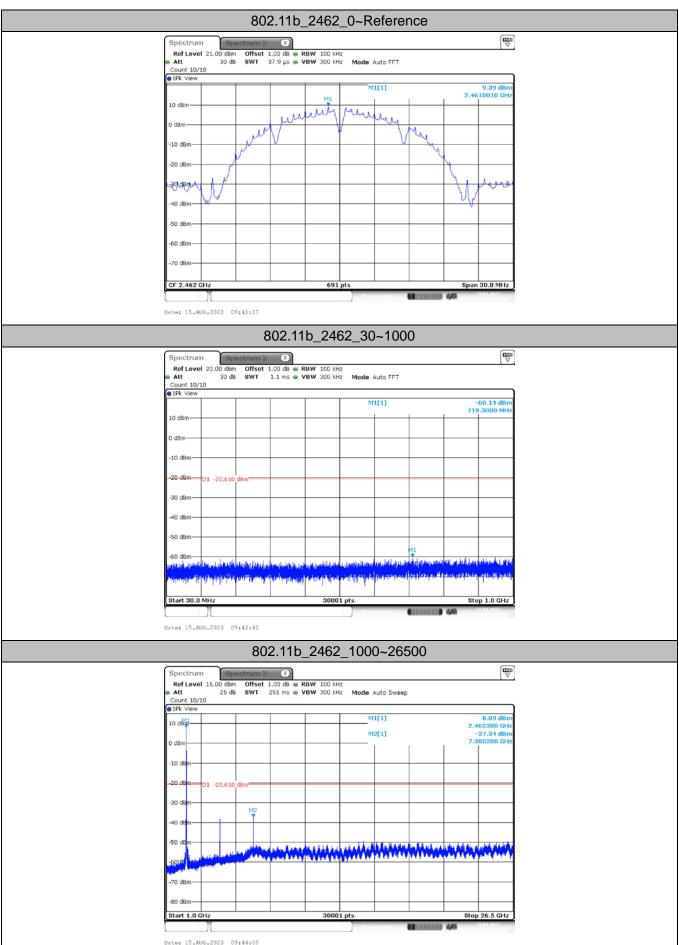

Test Mode	Test Frequency	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
802.11b	2412	8.99	-33.48	≤-21.01	PASS
	2462	9.24	-41.44	≤-20.76	PASS
802.11g	2412	-3.40	-38.22	≤-33.40	PASS
	2462	-3.88	-48.13	≤-33.88	PASS
802.11n(HT20)	2412	-0.24	-31.72	≤-30.24	PASS
	2462	-0.78	-39.72	≤-30.78	PASS



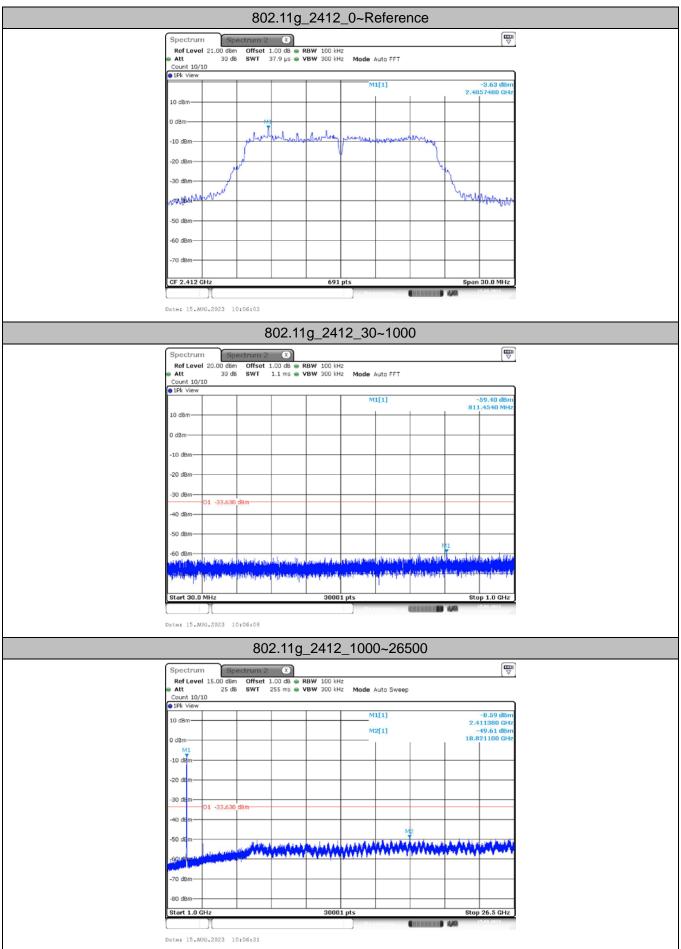
(2) Conducted Spurious Emissions Test

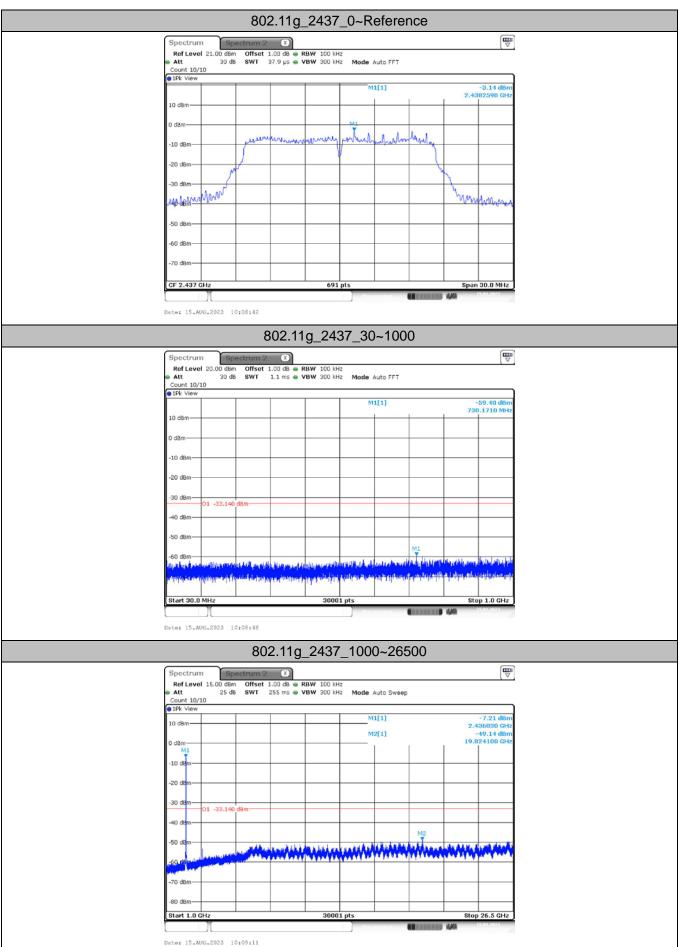
Test Mode	Frequency[MHz]	Freq Range [Mhz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
	2412	Reference	8.74	8.74		PASS
		30~1000	8.74	-59.97	≤-21.26	PASS
		1000~6000	8.74	-34.91	≤-21.26	PASS
		6000~26500	9.57	9.57		PASS
	2437	Reference	9.57	-59.97	≤-20.43	PASS
000 441		30~1000	9.57	-35.39	≤-20.43	PASS
802.11b		1000~6000	9.39	9.39		PASS
		6000~26500	9.39	-60.14	≤-20.61	PASS
		Reference	9.39	-37.34	≤-20.61	PASS
	2462	30~1000	-3.63	-3.63		PASS
		1000~6000	-3.63	-59.4	≤-33.63	PASS
		6000~26500	-3.63	-49.61	≤-33.63	PASS
	2412	Reference	-3.14	-3.14		PASS
		30~1000	-3.14	-59.4	≤-33.14	PASS
		1000~6000	-3.14	-49.14	≤-33.14	PASS
		6000~26500	-2.06	-2.06		PASS
	2437	Reference	-2.06	-59.82	≤-32.06	PASS
902.44~		30~1000	-2.06	-48.94	≤-32.06	PASS
802.11g		1000~6000	-1.33	-1.33		PASS
		6000~26500	-1.33	-60.31	≤-31.33	PASS
	2462	Reference	-1.33	-49.12	≤-31.33	PASS
		30~1000	0.01	0.01		PASS
		1000~6000	0.01	-59.9	≤-29.99	PASS
		6000~26500	0.01	-49.55	≤-29.99	PASS
	2412	Reference	0.98	0.98		PASS
		30~1000	0.98	-60.11	≤-29.02	PASS
		1000~6000	0.98	-49.45	≤-29.02	PASS
		6000~26500	8.74	8.74		PASS
	2437	Reference	8.74	-59.97	≤-21.26	PASS
000 44 × (LIT20)		30~1000	8.74	-34.91	≤-21.26	PASS
802.11n(HT20)		1000~6000	9.57	9.57		PASS
		6000~26500	9.57	-59.97	≤-20.43	PASS
	2462	Reference	9.57	-35.39	≤-20.43	PASS
		30~1000	9.39	9.39		PASS
		1000~6000	9.39	-60.14	≤-20.61	PASS
		6000~26500	9.39	-37.34	≤-20.61	PASS

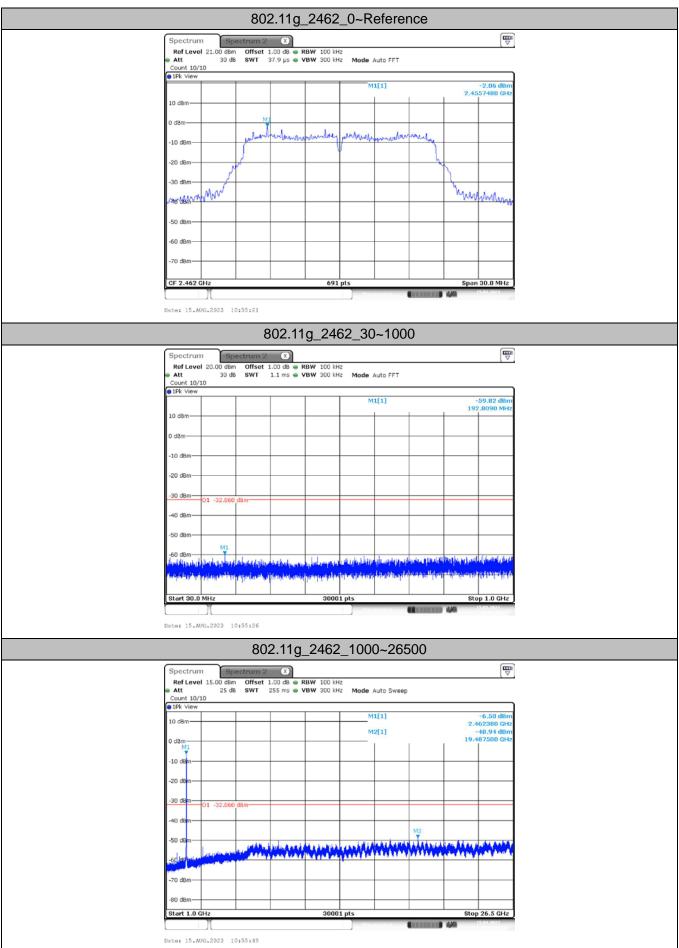


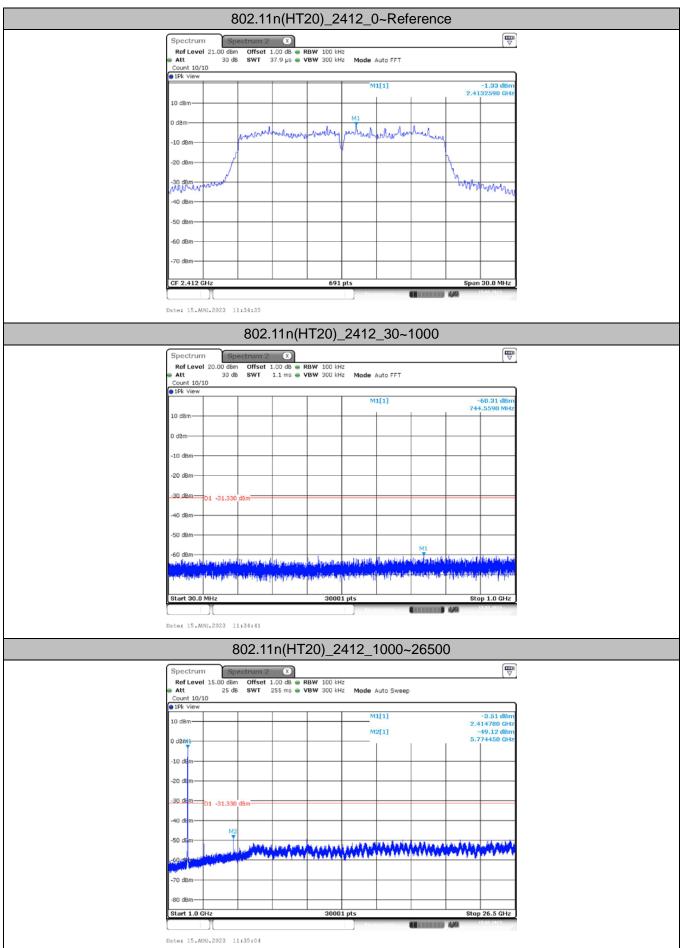

CTC Laboratories, Inc.

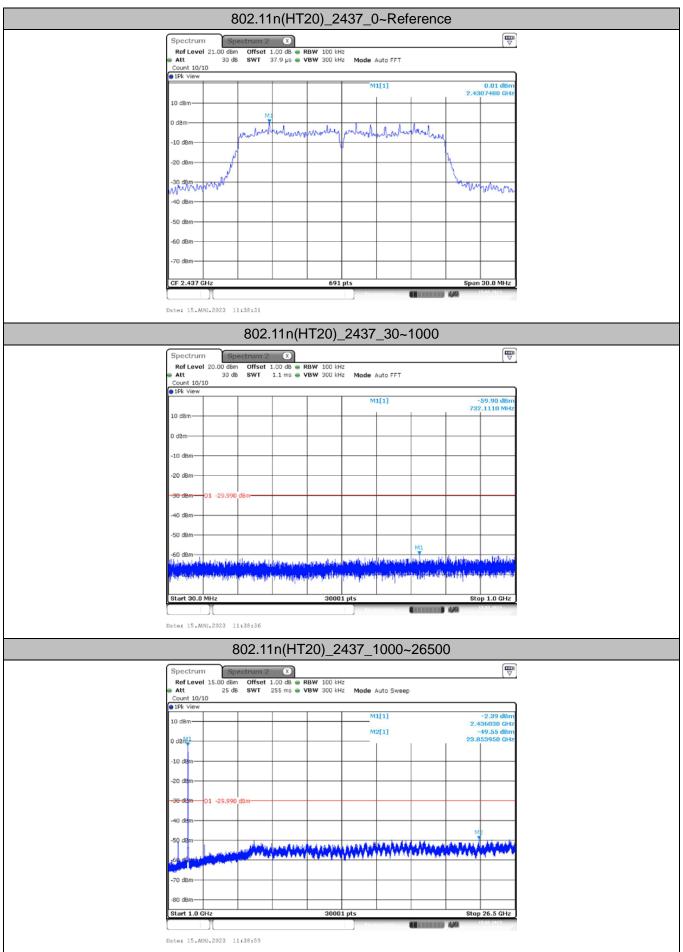
Date: 15.AUG.2023 09:33:38

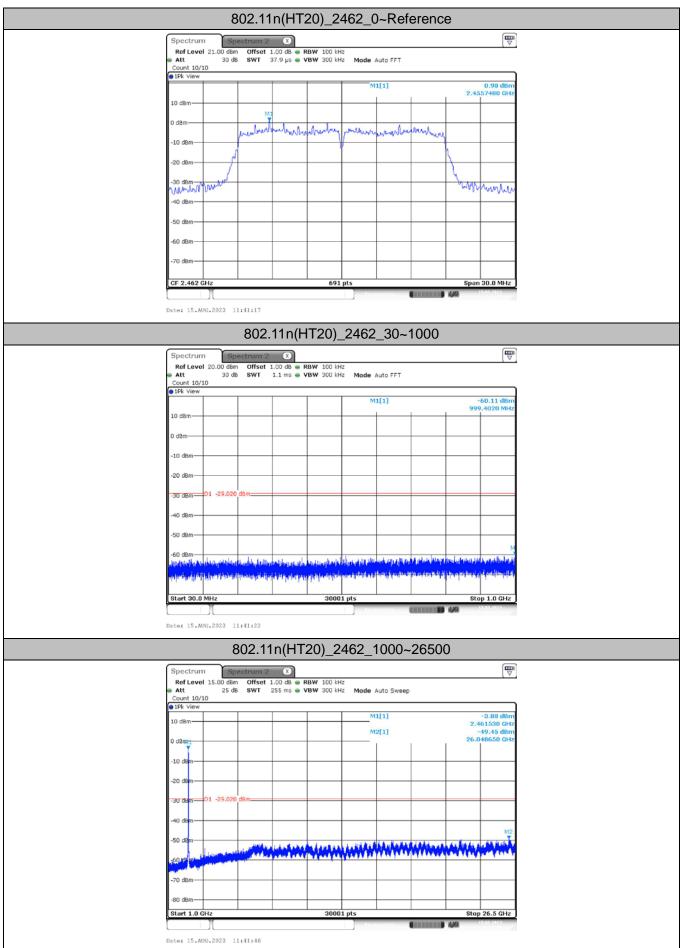




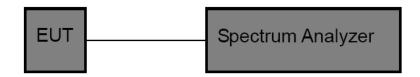








3.5. DTS Bandwidth


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

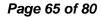
Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Report No.: CTC20231519E02

Test Configuration

Test Procedure

- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.


NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

Test Results

			•	
Test Mode	Channel	DTS BW [MHz]	Limit [MHz]	Verdict
	2412	9.04	>=0.5	PASS
802.11b	2437	9.56	>=0.5	PASS
	2462	9.04	>=0.5	PASS
	2412	16.36	>=0.5	PASS
802.11g	2437	16.36	>=0.5	PASS
	2462	15.68	>=0.5	PASS
	2412	17.68	>=0.5	PASS
802.11n(HT20)	2437	17.56	>=0.5	PASS
	2462	17.60	>=0.5	PASS

Report No.: CTC20231519E02

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>