

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website: www.cga-cert.com

Report Template Version: V04
Report Template Revision Date: 2018-07-06

Test Report

Report No.: CQASZ20230300314E-03

Applicant: Shenzhen Xinwu Technology Co., Ltd

Address of Applicant: Floor 5, Building 2, Chungu Science park, Meisheng Huigu Science Park, 83

Dabao Road, Baoan District, Shenzhen, China

Equipment Under Test (EUT):

EUT Name: WIFI Visualizable Smart DoorBell

Model No.: XW133-D9, XW133-D10, XW133-X9, XW133-X10, XW133-U9, XW133-U10,

XW133-P9, XW133-P10

Test Model No.: XW133-D9

Brand Name: N/A

FCC ID: 2AW97-D9

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2023-03-10

Date of Test: 2023-03-10 to 2023-03-20

Date of Issue: 2023-04-13

Test Result : PASS*

*In the configuration tested, the EUT complied with the standards specified above

lewis 2h0u
Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By: (Jack Ai)

TEST I NG TECHNOLOGY
S

华夏准测

APPROVED*

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20230300314E-03

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20230300314E-03	Rev.01	Initial report	2023-04-13

Report No.: CQASZ20230300314E-03

2 Test Summary

Test Item Test Requirement		Test method	Result	
Antonna Baquiroment	47 CFR Part 15, Subpart C Section	ANSI C62 10 (2012)	PASS	
Antenna Requirement	15.203	ANSI C63.10 (2013)		
Conducted Emission	47 CFR Part 15, Subpart C	ANSI C63.10 2013	NI/A	
(150KHz to 30MHz)	Section 15.207	ANSI C03. 10 20 13	N/A	
Field Strength of the	47 CFR Part 15, Subpart C Section	ANCI C62 10 (2012)	PASS	
Fundamental Signal	15.231 (b)	ANSI C63.10 (2013)	PA33	
Spurious Emissions	47 CFR Part 15, Subpart C Section	ANCI C62 10 (2012)	PASS	
Spurious Emissions	15.231 (b)/15.209	ANSI C63.10 (2013)	PASS	
20dB Bandwidth	47 CFR Part 15, Subpart C Section	ANSI C62 10 (2012)	PASS	
2006 Balluwidili	15.231 (c)	ANSI C63.10 (2013)	PASS	
Durall Time	47 CFR Part 15, Subpart C Section	ANSI C62 10 (2012)	DACC	
Dwell Time	15.231 (a)	ANSI C63.10 (2013)	PASS	

Report No.: CQASZ20230300314E-03

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT 5.2 SPURIOUS EMISSIONS 5.2.1 Duty Cycle 5.2.2 Spurious Emissions 5.3 20dB Bandwidth 5.4 DWELL TIME	
6 PHOTOGRAPHS - EUT TEST SETUP	25
6.1 RADIATED SPURIOUS EMISSION	25
7 PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	22

Report No.: CQASZ20230300314E-03

4 General Information

4.1 Client Information

Applicant:	Shenzhen Xinwu Technology Co., Ltd	
Address of Applicant:	Floor 5, Building 2, Chungu Science park, Meisheng Huigu Science	
	Park, 83 Dabao Road, Baoan District, Shenzhen, China	
Manufacturer:	Shenzhen Xinwu Technology Co., Ltd	
Address of Manufacturer:	Floor 5, Building 2, Chungu Science park, Meisheng Huigu Science	
	Park, 83 Dabao Road, Baoan District, Shenzhen, China	
Factory:	Shenzhen Xinwu Technology Co., Ltd	
Address of Factory:	Floor 5, Building 2, Chungu Science park, Meisheng Huigu Science	
	Park, 83 Dabao Road, Baoan District, Shenzhen, China	

4.2 General Description of EUT

Product Name:	WIFI Visualizable Smart DoorBell	
Model No.:	XW133-D9, XW133-D10, XW133-X9, XW133-X10, XW133-U9,	
	XW133-U10, XW133-P9, XW133-P10	
Test Model No.:	XW133-D9	
Trade Mark:	N/A	
Software Version:	XW133-D9-P0_D1.3	
Hardware Version:	XW133-D9-P0_V1.3	
Sample Type:		
Operation Frequency:	433.92MHz	
Channel Numbers:	1	
Modulation Type:	FSK	
Antenna Type:	Internal antenna	
Antenna Gain:	3dBi	
Power Supply:	Dry cell:4*AA DC1.5V battery	

Report No.: CQASZ20230300314E-03

4.3 Test Environment and Mode

Operating Environment:	Operating Environment:		
Radiated Emissions:			
Temperature:	25.4 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1009 mbar		
Radio conducted item test	(RF Conducted test room):		
Temperature:	25.5 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1009 mbar		
Test mode:	Test mode:		
Transmitting mode:	Keep the EUT in transmitting mode with modulation.		

4.4 Description of Support Units

The EUT has been tested independently.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	1	1	/
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	/	1	/

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

Report No.: CQASZ20230300314E-03

4.6 Test Facility

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	5.12dB	(1)
Radiated Emission	Above 1GHz	4.60dB	(1)
Conducted Disturbance	0.15~30MHz	3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.: CQASZ20230300314E-03

4.11 Equipment List

			1	0.11	0.11
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU26	CQA-038	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU40	CQA-075	2022/09/09	2023/09/08
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2022/09/09	2023/09/08
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2022/09/09	2023/09/08
Preamplifier	EMCI	EMC184055SE	CQA-089	2022/09/09	2023/09/08
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2022/09/09	2023/09/08
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2022/09/09	2023/09/08
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2022/09/09	2023/09/08
Antenna Connector	CQA	RFC-01	CQA-080	2022/09/09	2023/09/08
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2022/09/09	2023/09/08
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2022/09/09	2023/09/08
Power meter	R&S	NRVD	CQA-029	2022/09/09	2023/09/08
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2022/09/09	2023/09/08
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
LISN	R&S	ENV216	CQA-003	2022/09/09	2023/09/08
Coaxial cable	CQA	N/A	CQA-C009	2022/09/09	2023/09/08
DC power	KEYSIGHT	E3631A	CQA-028	2022/09/09	2023/09/08

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

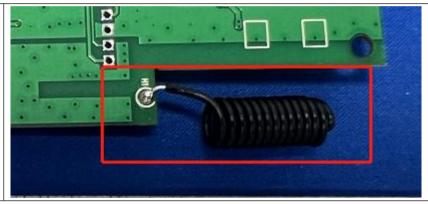
Report No.: CQASZ20230300314E-03

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20230300314E-03

5 Test results and Measurement Data

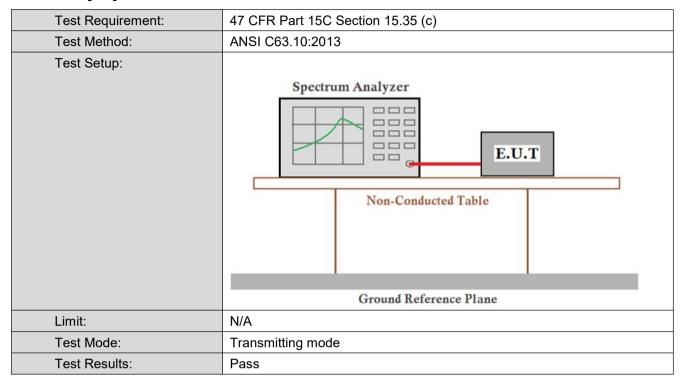

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:



The antenna is internal antenna. The best case gain of the antenna is 3dBi.

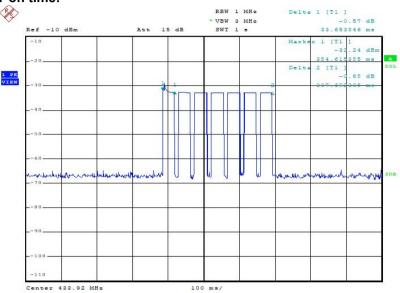
Report No.: CQASZ20230300314E-03

5.2 Spurious Emissions

5.2.1 Duty Cycle

T period	T on time	Duty cycle
(ms)	(ms)	
307.69	235.55	76.55%

Note: T on time=33.65x7=224.35


Duty cycle=T on time / T period 0.0

Report No.: CQASZ20230300314E-03

Test plot as follows:

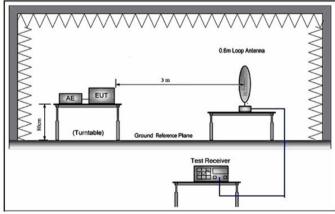
T period and T on time:

Report No.: CQASZ20230300314E-03

5.2.2 Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.231(b) and 15.209							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Det	ector	RBW	,	VBW	Remark	
	0.009MHz-0.090MHz	Pe	eak	10kHz	3	30kHz	Peak	
	0.009MHz-0.090MHz	Ave	rage	10kHz	3	30kHz	Average	
	0.090MHz-0.110MHz	Quas	i-peak	10kHz	3	30kHz	Quasi-pea	k
	0.110MHz-0.490MHz	Pe	eak	10kHz	3	30kHz	Peak	
	0.110MHz-0.490MHz	Ave	rage	10kHz	3	30kHz	Average	
	0.490MHz -30MHz	Quas	i-peak	10kHz	3	30kHz	Quasi-pea	k
	30MHz-1GHz	Quas	i-peak	100 kHz	3	00kHz	Quasi-pea	k
	Above 1GHz	Pe	eak	1MHz	3	3MHz	Peak	
	Above TOTIZ	Pe	eak	1MHz		10Hz	Average	
Limit: (Spurious Emissions)	Frequency		trength lt/meter)	Limit (dBuV/m)	R	emark	Measureme distance (r	
	0.009MHz-0.490MHz	2400/F	(kHz)	-		-	300	
	0.490MHz-1.705MHz	24000/	(kHz)	-		-	30	
	1.705MHz-30MHz	30		-		-	30	
	30MHz-88MHz	10	0	40.0		Quasi- peak	3	
	88MHz-216MHz	15	0	43.5		Quasi- peak	3	
	216MHz-960MHz	20	0	46.0	Quasi- peak		3	
	960MHz-1GHz	50	54.0			Quasi- peak	3	
	Above 1GHz	50	0	54.0	.0 Average		3	
	Note: 15.35(b), Unless emissions	otherwis	e specif	fied, the lim	it oı	n peak	radio freque	ency
	is 20dB above the	maximum	permitte	d average em	nissio	on limit ap	pplicable to t	he
	equipment under to	est. This p	eak limit	applies to the	tota	al peak er	mission level	
	radiated by the dev	rice.						
Limit:	Frequency	/	Limit (c	dBuV/m @3m	1)	Rer	mark	
(Field strength of	433.92MH	7		80.8		Averag	je Value	
the fundamental	433.92MHZ 100.8 Peak Value							
signal)								
Test Procedure:	a. 1) Below 1G: The El the ground at a 3 me degrees to determin 2) Above 1G: The El	eter semi-a e the posit	anechoic ion of the	camber. The e highest radi	tabl atior	e was rot า.	ated 360	

Report No.: CQASZ20230300314E-03


the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The radiation measurements are performed in X, Y, Z axis positioning. And found the Z axis positioning which it is worse case, Only the test worst case mode is recorded in the report.

Test Setup:

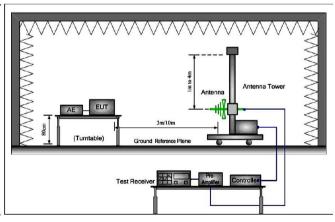


Figure 2. 30MHz to 1GHz

Report No.: CQASZ20230300314E-03

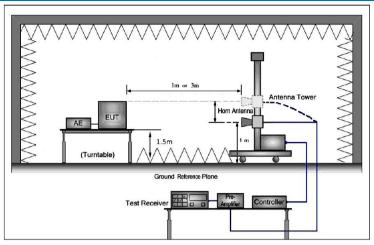


Figure 3. Above 1 GHz

Test Mode:	Transmitting mode
Test Results:	Pass

Report No.: CQASZ20230300314E-03

Measurement Data

5.2.2.1 Field Strength Of The Fundamental Signal

Average value:						
	Average value=Peak value + PDCF					
Calculate Formula: PDCF=20 log(Duty cycle)						
	Duty cycle= T on time / T period					
	T on time =235.55ms					
Test data:	T period =307.69ms					
	PDCF=-2.32					

Antenna polarization: Horizontal									
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
433.92	59.63	16.23	75.86	100.8	-24.94	Peak			
433.92	-	-	73.54	80.8	-7.26	Average			

Antenna polarization: Vertical									
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
433.92	50.33	16.23	66.56	100.8	-34.24	Peak			
433.92	-	-	64.24	80.8	-16.56	Average			

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

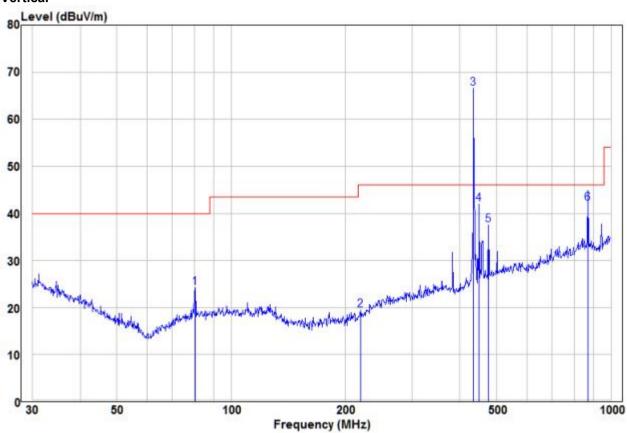
Report No.: CQASZ20230300314E-03

5.2.2.2 Spurious Emissions

9KHz-30MHz

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

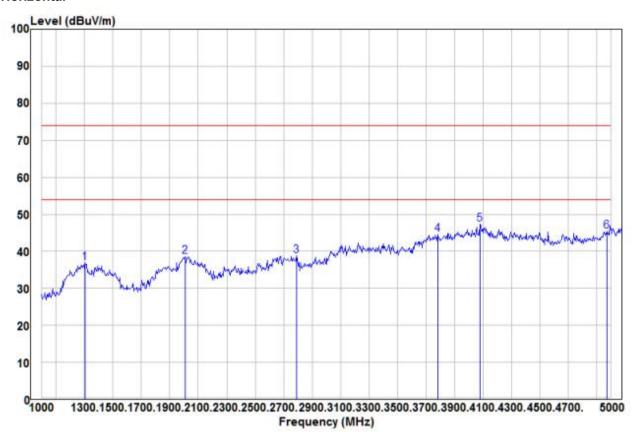
The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.


Below 1GHz (30MHz-1GHz)

Horizontal 80 Level (dBuV/m) 70 60 50 6 40 30 20 10 30 50 100 200 500 1000 Frequency (MHz) Read Limit Over Level Factor Level Line Limit Remark Pol/Phase dB/m dBuV/m dBuV/m MHZ dBuV dB 1 201.39 23.40 8.53 31.93 43.50 -11.57 Peak HORIZONTAL 2 397.63 16.11 15.10 31.21 46.00 -14.79 Peak HORIZONTAL 3 pp 434.07 59.63 16.23 75.86 46.00 29.86 Peak HORIZONTAL 446.41 18.35 16.62 34.97 46.00 -11.03 Peak 4 HORIZONTAL 5 714.17 11.14 21.19 32.33 46.00 -13.67 Peak HORIZONTAL 869.13 18.58 23.97 42.55 46.00 -3.45 Peak HORIZONTAL

Report No.: CQASZ20230300314E-03

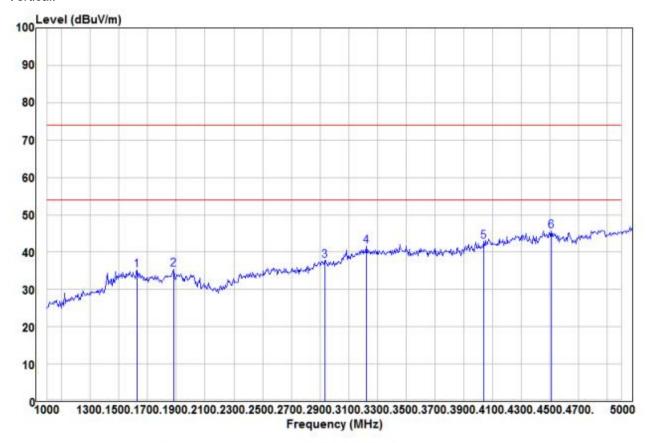
		Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	100	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1		80.36	14.37	9.80	24.17	40.00	-15.83	Peak	VERTICAL
2		219.08	10.36	9.10	19.46	46.00	-26.54	Peak	VERTICAL
3	pp	434.07	50.33	16.23	66.56	46.00	20.56	Peak	VERTICAL
4	1000	449.56	25.33	16.72	42.05	46.00	-3.95	Peak	VERTICAL
5		475.50	20.02	17.52	37.54	46.00	-8.46	Peak	VERTICAL
6	qp	869.13	18.20	23.97	42.17	46.00	-3.83	QP	VERTICAL



Report No.: CQASZ20230300314E-03

Above 1GHz(1GHz-5GHz)

Horizontal



	Freq	Read Level		Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	1305.00	51.54	-14.73	36.81	74.00	-37.19	Peak	HORIZONTAL
2	2010.00	46.18	-7.60	38.58	74.00	-35.42	Peak	HORIZONTAL
3	2790.00	46.67	-7.87	38.80	74.00	-35.20	Peak	HORIZONTAL
4	3785.00	47.15	-2.55	44.60	74.00	-29.40	Peak	HORIZONTAL
5 pp	4080.00	49.00	-1.72	47.28	74.00	-26.72	Peak	HORIZONTAL
6	4975.00	45.78	-0.40	45.38	74.00	-28.62	Peak	HORIZONTAL

Report No.: CQASZ20230300314E-03

Vertical:

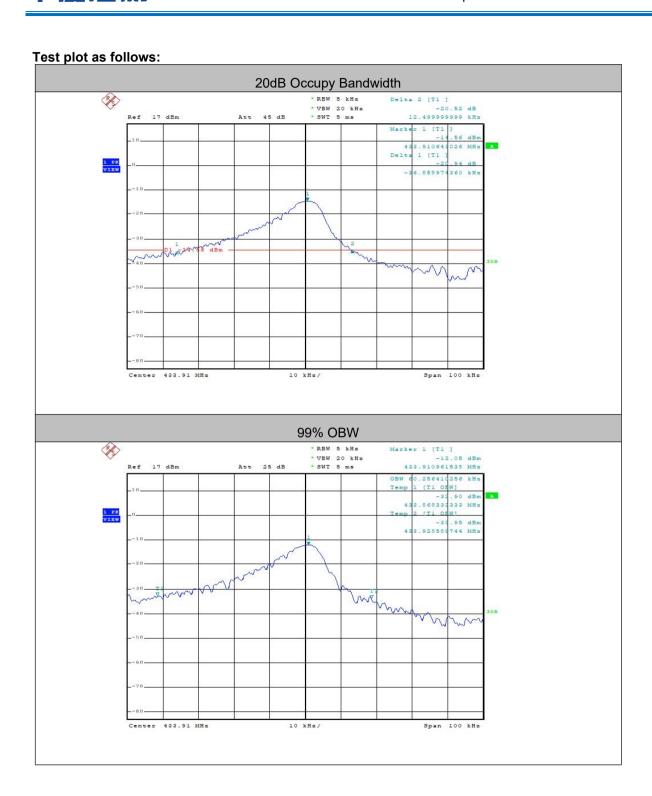
	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	3	
1	1625.00	47.87	-12.77	35.10	74.00	-38.90	Peak	VERTICAL
2	1880.00	43.70	-8.22	35.48	74.00	-38.52	Peak	VERTICAL
3	2935.00	45.03	-7.22	37.81	74.00	-36.19	Peak	VERTICAL
4	3225.00	46.60	-5.02	41.58	74.00	-32.42	Peak	VERTICAL
5	4040.00	44.54	-1.69	42.85	74.00	-31.15	Peak	VERTICAL
6 pp	4515.00	47.76	-2.19	45.57	74.00	-28.43	Peak	VERTICAL

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) The disturbance above 5GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 3) As shown in this section, for frequencies above 1GHz, the field the strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted aver average limits. Specified above by more than 20dB under any condition of modulation. So, only the peak measurements were show in the report.

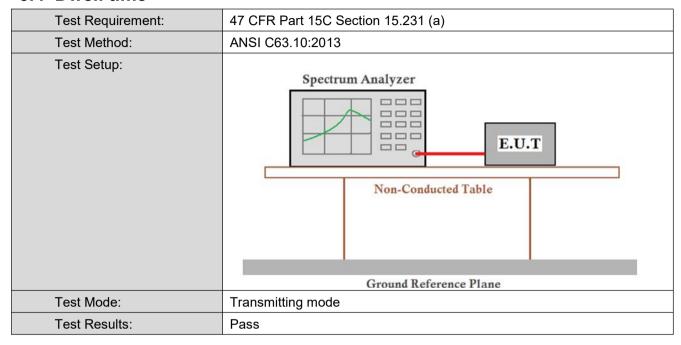
Report No.: CQASZ20230300314E-03

5.3 20dB Bandwidth


47 CFR Part 15C Section 15.231 (c)					
ANSI C63.10:2013					
The bandwidth of the emission shall be no wider than 0.25% of the center					
frequency for devices operating above 70 MHz and below 900 MHz. For					
devices operating above 900 MHz, the emission shall be no wider than					
0.5% of the center frequency. Bandwidth is determined at the points 20					
dB down from the modulated carrier.					
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Transmitting mode					
Pass					

Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results
49.36	1084.8	PASS


Report No.: CQASZ20230300314E-03

Report No.: CQASZ20230300314E-03

5.4 Dwell time

Requirements:

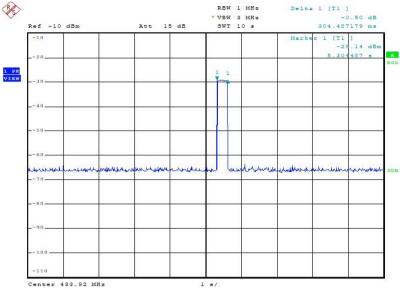
1. Regulation 15.231 (a) The provisions of this Section are restricted to periodic operation within the band 40.66~40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Radio control of toys is not permitted. Continuous transmissions, such as voice or video, and data transmissions are not permitted. The prohibition against data transmissions does not preclude the use of recognition codes. Those codes are used to identify the sensor that is activated or to identify the particular component as being part of the system.

Result:

The EUT is a remote switch without audio or video transmitted.

The EUT meets the requirements of this section.

2. Regulation 15.231 (a1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


Result:

Test item	Limit (MHz)	Results
Transmitting time	≤5S	0.3045S

Report No.: CQASZ20230300314E-03

Test plot as follows:

3. Regulation 15.231 (a2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Result:

The EUT does not have automatic transmission.

4. Regulation15.231 (a3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.

Result:

The EUT does not employ periodic transmission.

5. Regulation 15.231 (a4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

Result:

This section is not applicable to the EUT.

Report No.: CQASZ20230300314E-03

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

Report No.: CQASZ20230300314E-03

Above 1GHz:

Report No.: CQASZ20230300314E-03

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20230300314E-01.

*** END OF REPORT ***