

*FCC PART 15, SUBPART B
TEST REPORT*

*TEST METHOD: ANSI C63.4: 2014
LIMITS: CLASS B*

For

**iBACK Posture Corrector
Model: 1.0**

Prepared for

SMART Solutions, Ltd
Kosareva 15\1 – 65
634012, Tomsk Russia

Prepared by: _____

CARLA ATIZADO

Approved by: _____

JOEY MADLANGBAYAN

COMPATIBLE ELECTRONICS INC.
20621 PASCAL WAY
LAKE FOREST, CA 92630
(949) 587-0400

DATE: OCTOBER 30, 2020

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	18	2	2	2	11	5	40

This report shall not be reproduced, except in full,
without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
1.1 DECISION RULE & RISK	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample Was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration – (Emissions)	9
4.1.1 Photograph of Test Configuration – (Emissions)	9
4.1.2 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 Emissions Test Equipment	12
5.3 Software	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
6.3 Measurement Uncertainty	13
7. TEST PROCEDURES	14
7.1 RF Emissions	14
7.1.1 Conducted Emissions Test	14
7.1.2 Radiated Emissions Test	15
7.1.3 RF Emissions Test Results	16
7.1.4 Sample Calculations	17
8. DEVIATIONS FROM THE TEST PROCEDURES	18
9. CONCLUSIONS	18

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Accreditations
B	Modifications to the EUT
C	Additional Models
D	Diagrams, Charts and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Antenna and Amplifier Gain Factors• Radiated and Conducted Emissions Photos
E	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map and Layout of Test Site
3	High Frequency Test Volume

LIST OF TABLES

TABLE	TITLE
1	Radiated Emissions Results

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the U.S. Government.

Device Tested: iBACK Posture Corrector
Model: 1.0
S/N: 1.0

Product Description: The iBACK is a posture corrector device.
Clock Frequencies: 2400 MHz
Dimensions: 27x27x10 mm

Modifications: The EUT was not modified during the testing in order to comply with the specifications.

Manufacturer: SMART Solutions, Ltd
Kosareva 15\1 – 65
634012, Tomsk Russia

Test Date: October 28, 2020

Test Specifications covered by accreditation:

Emissions requirements

FCC CFR Title 47, Part 15 Subpart B

Test Procedure: ANSI C63.4: 2014.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	The EUT is DC powered; therefore, this test was deemed unnecessary and thus was not performed.
2	Radiated RF Emissions, 30 MHz – 6 GHz.	Complies with the Class B limits of FCC CFR Title 47, Part 15 Subpart B.

1. PURPOSE

This document is a qualification test report based on the Emissions tests performed on the iBACK Posture Corrector Model: 1.0. The Emissions measurements were performed according to the measurement procedure described in ANSI C63.4: 2014. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by the FCC Code of Federal Regulations Title 47, Part 15 Subpart B.

1.1 DECISION RULE & RISK

If a measured value exceeds a specification limit it implies non-compliance. If the value is below a specification limit it implies compliance. Measurement uncertainty of the laboratory is reported with all measurement results but generally not taken into consideration unless a standard, rule or law requires it to be considered.

Qualification test reports are only produced for products that are in compliance with the test requirements, therefore results are always in conformity. Otherwise, an engineering report or just the data is provided to the customer.

When performing a measurement and making a statement of conformity, in or out-of-specification to manufacturer's specifications or Pass/Fail against a requirement, there are two possible outcomes:

- The result is reported as conforming with the specification
- The result is reported as not conforming with the specification

The decision rule is defined below.

When the test result is found to be below the limit but within our measurement uncertainty of the limit, it is our policy that the final acceptance decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be exactly on the specification, it is our policy, in the case of unwanted emissions measurements to consider the result non-compliant, however, the final decision is left to the customer, after discussing the implications and potential risks of the decision.

When the test result is found to be over the specification limit under any condition, it is our policy to consider the result non-compliant.

In terms of uncertainty of measurement, the laboratory is a calibrated and tightly controlled environment and generally exceptionally stable, the measurement uncertainties are evaluated without the consideration of the test sample. When it comes to the test sample however, as most testing is performed on a single sample rather than a sample population, and that sample is often a pre-production representation of the final product, that test sample represents a significantly higher source of measurement uncertainty. We advise our customers of this and that when in doubt (small test to limit margins), they may wish to perform statistical sampling on a population to gain a higher confidence in the results. All lab reported results are that of a single sample in any event.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 20621 Pascal Way Lake Forest, CA 92630.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Smart Solutions Ltd.

Evgeny Genin
Vladimir Vesnin CEO

Compatible Electronics Inc.

Carla Atizado QA Specialist
Tom Szynal Test Engineer
Joey Madlangbayan Safety Manager

2.4 Date Test Sample Was Received

The test sample was received on October 21, 2020. Received as described in product description.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics, Inc.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network
MICR	Magnetic Ink Character Recognition
OCR	Optical Character Recognition
IOT	Image Output Transport
USB	Universal Serial Bus
NCR	No Calibration Required

3. APPLICABLE DOCUMENTS

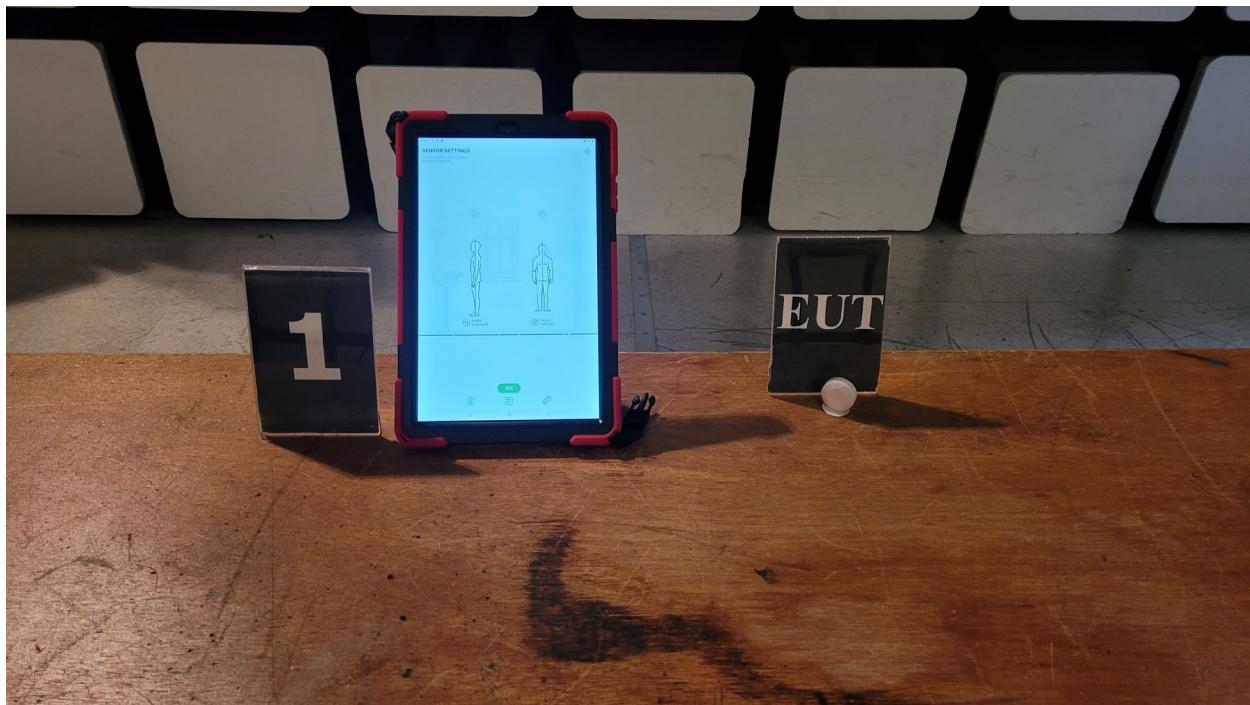
The following documents are referenced or used in the preparation of this test report.

SPEC	TITLE
FCC CFR Title 47,Part 15 Subpart B.	FCC Rules Part 15 - Radio frequency devices (including digital devices). Subpart B – Unintentional Radiators
ANSI C63.4 2014	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

4. DESCRIPTION OF TEST CONFIGURATION**4.1 Description of Test Configuration – (Emissions)**

The EUT was battery powered and tested in a tabletop configuration. A Samsung tablet was used as a wireless accessory to continuously transmit and receive data from the pre-approved radio transmitter module in the EUT.

The final radiated data was taken in this mode of operation. All initial investigations were performed with the EMI Receiver in manual mode scanning the frequency range continuously.


4.1.1 Photograph of Test Configuration – (Emissions)

4.1.2 Cable Construction and Termination

There were no cables used by the EUT.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER/FCC ID
EUT	iBACK Posture Corrector (EUT)	SMART Solutions, Ltd	Model: 1.0	FCC ID: 2AW7K-IBACK1
(Located inside EUT)	Radio transmitter-Preapproved module			FCC ID: 2ALTYIMM-NRF52832
1	Samsung tablet	Samsung	SM-T510	R52N10JTZ1D

5.2 Emissions Test Equipment

INSTRUMENTS USED	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DATE DUE
Thermometer & Hygrometer	Davis	6312C	A120626P010	09/20/2018	9/20/2021
Computer	Dell	Vostro	NONE	NCR	NCR
Receiver, 3Hz – 26.5 GHz	Keysight MXE	N9038A	MY55330012	01/21/2020	1/21/2021
Controller, Mast and Turntable	Sunol Sciences Corporation	SC104V	020808-1	NCR	NCR
Mast, Antenna Positioner	Sunol Sciences Corporation	TWR95.4	020808-3	NCR	NCR
Turntable	Sunol Sciences Corporation	FM2011VS	NONE	NCR	NCR
Antenna, CombiLog	Com-Power	AC-220	10030023	08/23/2019	8/23/2021
Antenna, Horn Active Double Ridge	Com-Power	AHA-118	10050074	07/19/2019	7/19/2021
Pre-amp, Hi-Frequency	Com-Power	PAM-118A	551033	01/15/2020	1/15/2021

5.3 Software

LAB(S)	SOFTWARE TITLE	MANUFACTURER	VERSION
P, R	Measurement and Automation Software	TDK Test Lab	11.24

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5-meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

6.3 Measurement Uncertainty

"Compatible Electronics' U_{lab} value is less than U_{cispr} , thus based on this – compliance is deemed to occur if no measured disturbance exceeds the disturbance limit

$$u_c(y) = \sqrt{\sum_i c_i^2 u^2(x_i)}$$

MEASUREMENT	U_{cispr}	$U_{lab} = 2 u_c(y)$	
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3.4 dB	2.73 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(30 MHz – 1 000 MHz)	6.3 dB	3.24 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(1 GHz – 6 GHz)	5.2 dB	3.23 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(6 GHz – 18 GHz)	5.5 dB	3.23 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(18 GHz – 26 GHz)	N/A	3.50 dB

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

Test results:

The EUT is DC powered; therefore, this test was deemed unnecessary and thus was not performed. Had this test been applicable it would have been performed as described below.

The EMI Receiver was used as a measuring meter. The data was collected with the EMI Receiver in the peak detect mode with the "Max Hold" feature activated. The quasi-peak or average was used only where indicated in the data sheets. A 10-dB attenuation pad was used for the protection of the EMI Receiver input stage, and the EMI Receiver offset was adjusted accordingly to read the actual data measured. The EMI Receiver read the LISN output. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the EMI Receiver span adjusted to 1 MHz.

The final data was collected under program control by the computer in several overlapping sweeps by running the EMI Receiver at a minimum scan rate of 10 seconds per octave.

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used in the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test is listed in the table below.

A Broadband Combilog and Horn Antenna were used as transducers during the measurement. The Combilog Antenna was used from 30 MHz to 1000 MHz and the Horn Antenna was used above 1 GHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The measurement bandwidth and transducer used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
30 MHz to 1 GHz	120 kHz	Combilog Antenna
1-12.5 GHz	1 MHz	Horn Antenna

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 1.0.

7.1.3 RF Emissions Test Results

Table 1.0 RADIATED EMISSION RESULTS
IBACK POSTURE CORRECTOR MODEL: 1.0

FREQUENCY MHz	CORRECTED READING* dBuV/m	SPECIFICATION LIMIT dBuV	DELTA (COR. READING – SPEC. LIMIT) dB
935.50 H	34.97 #	47	-12.03
941.00 V	34.81 #	47	-12.19
922.80 V	34.74 #	47	-12.26
919.20 V	34.60 #	47	-12.40
953.10 H	34.14 #	47	-12.86
30.90 H	24.79 #	40	-15.21

Notes:

- * The complete emissions data is given in Appendix E of this report.
- ** The factors for the antenna and preamplifier gain are attached in Appendix D of this report.
- # Quasi-Peak Reading
- A Average Reading
- H Horizontal
- V Vertical

7.1.4**Sample Calculations**

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. This Corrected Meter Reading is then compared to the specification limit in order to determine compliance with the limits.

Conversion to logarithmic terms: Specification limit (μ V/m) $\log x 20$ = Specification Limit in dBuV/m

To correct for distance when measuring at a distance other than the specification

For measurements below 30 MHz: (Specification distance / test distance) $\log x 40$ = distance factor

For measurements above 30 MHz: (Specification distance / test distance) $\log x 20$ = distance factor

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss.

Corrected Meter Reading = meter reading + F - A + C

where:

F = antenna factor

A = amplifier gain

C = cable loss

The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

8. DEVIATIONS FROM THE TEST PROCEDURES

There were no deviations from the test procedures.

9. CONCLUSIONS

The IBACK POSTURE CORRECTOR MODEL: 1.0 as tested, meets all of the **Class B** specification limits defined by the Code of Federal Regulations Title 47, Part 15, Subpart B.

APPENDIX A***LABORATORY ACCREDITATIONS***

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit

<http://celectronics.com/quality/scope/>

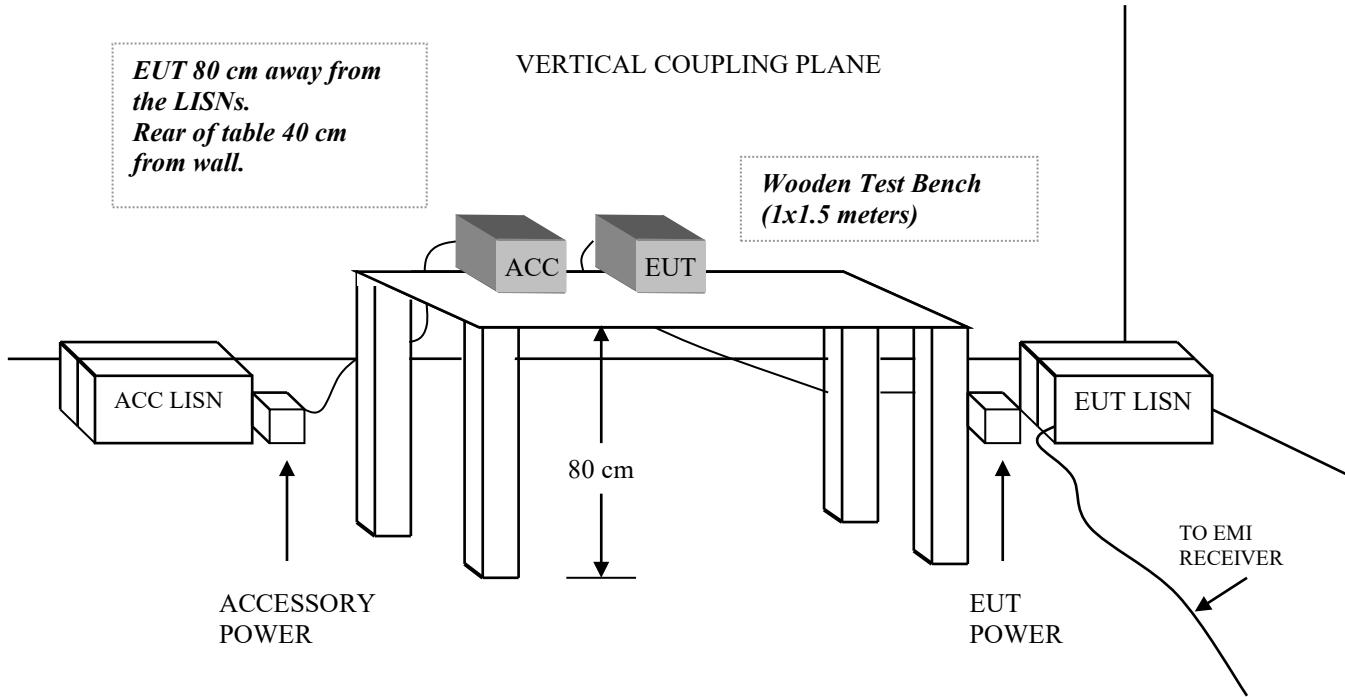
Quote from ISO-ILAC-IAF Communiqué on 17025:

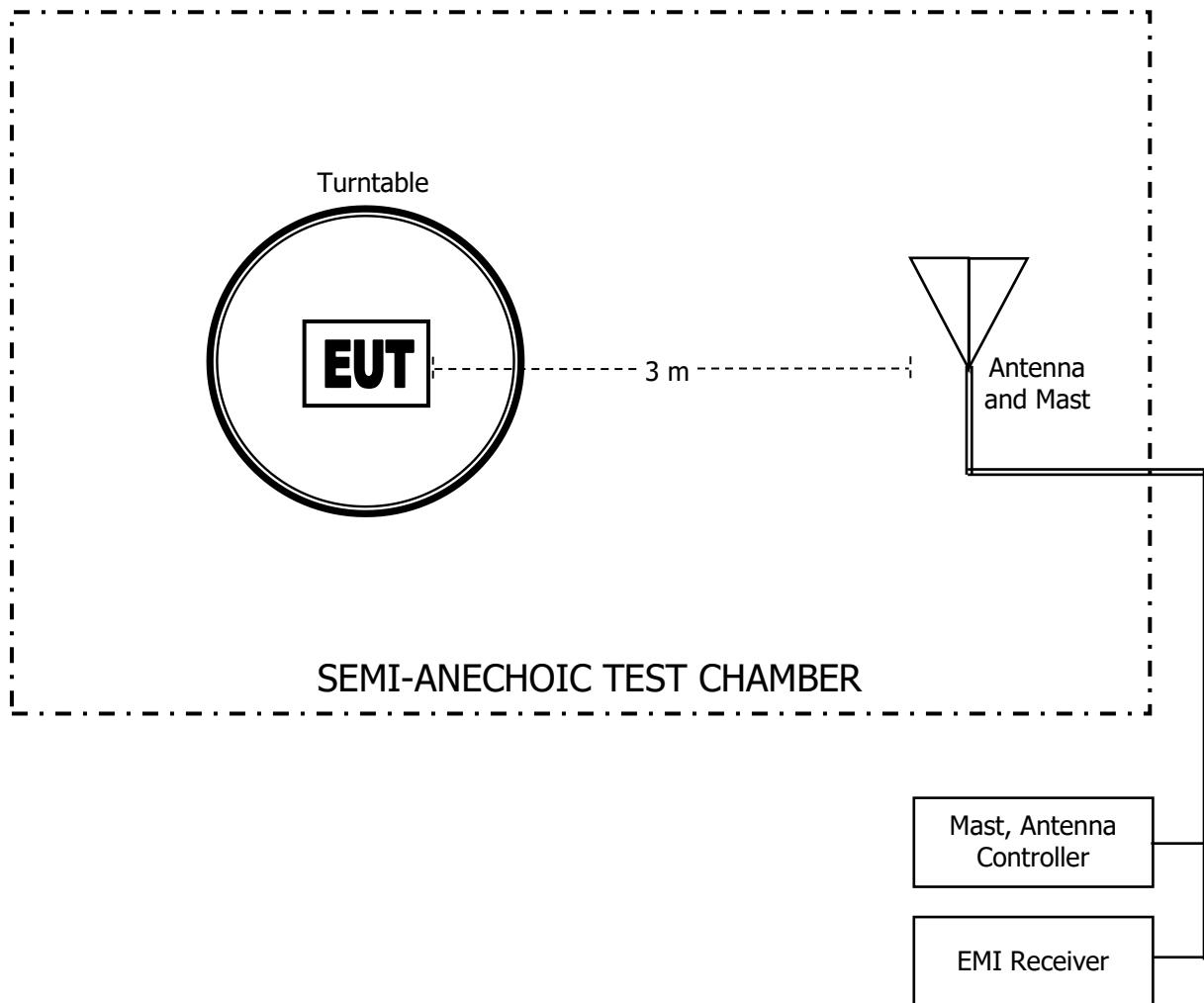
"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

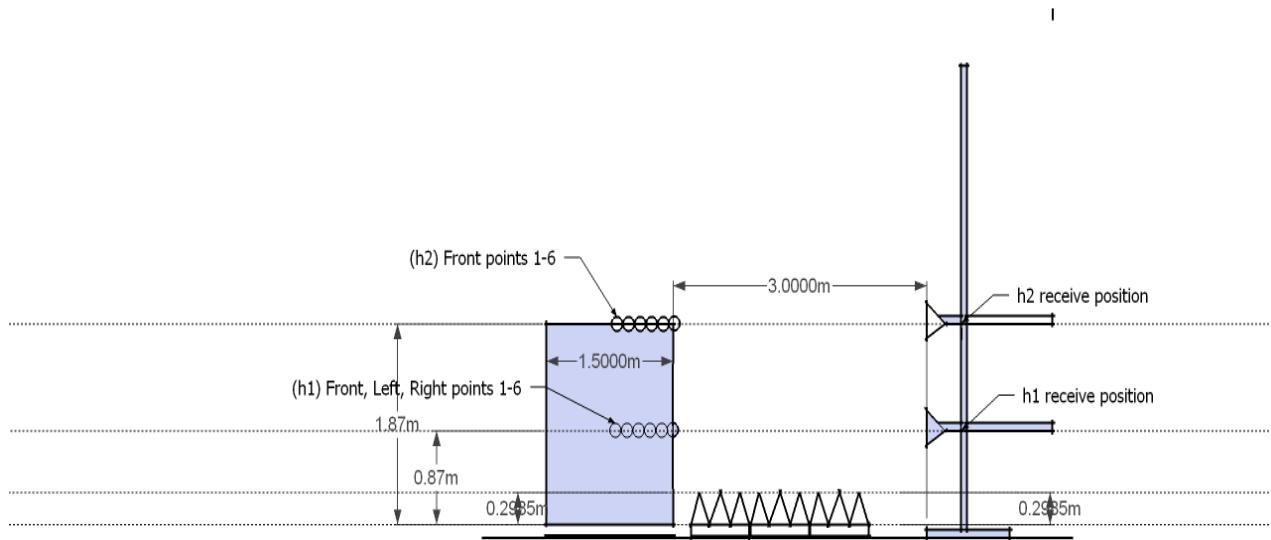
APPENDIX B***MODIFICATIONS TO THE EUT***

MODIFICATIONS TO THE EUT

There were no modifications made to the EUT.


APPENDIX C***ADDITIONAL MODELS***


ADDITIONAL MODELS


Device Tested: Smart Solutions Ltd iBACK Posture Corrector Model: 1.0 S/N: 1.0

No Additional models.

APPENDIX D***DIAGRAMS, CHARTS AND PHOTOS***

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

FIGURE 3: HIGH FREQUENCY TEST VOLUME

Com-Power AC-220
Antenna CombiLog
S/N: 10030023
Calibration Due : 08/23/2021

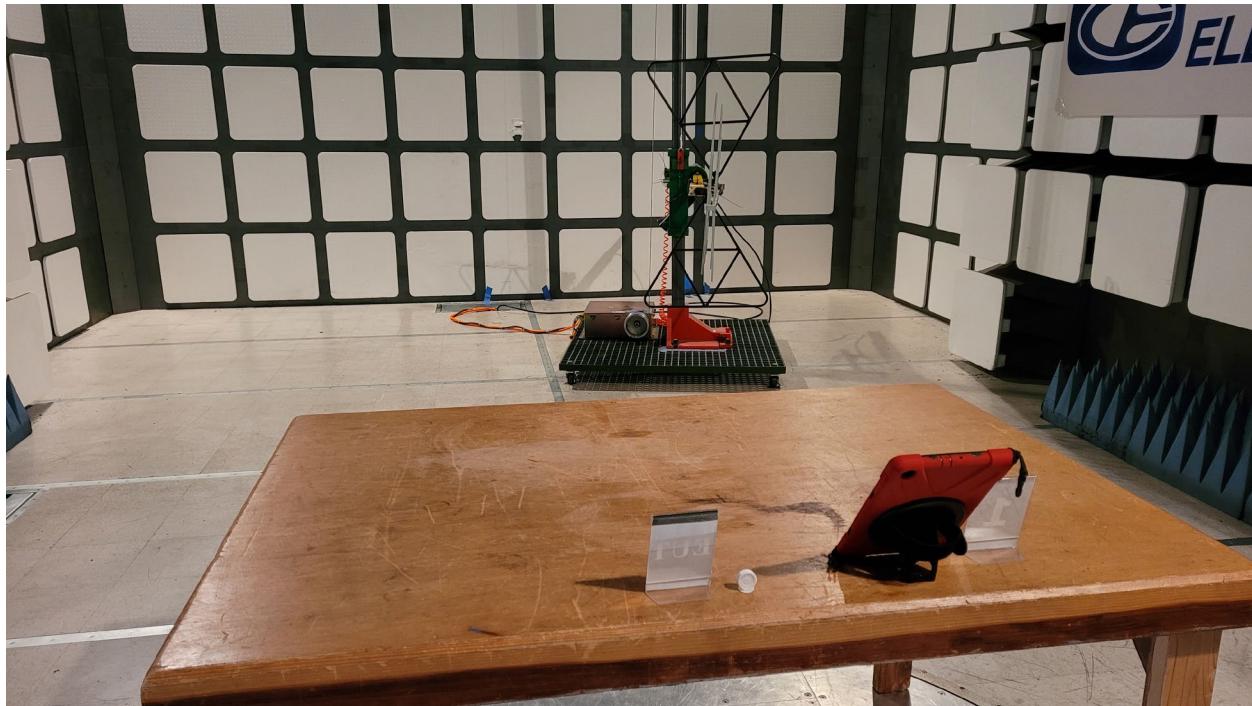
FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	22.5	375	20.8
35	21.4	400	20.6
40	20.5	425	22.1
45	19.8	450	21.3
50	18.7	475	22.7
55	17.1	500	22
60	15.1	525	23.1
65	13.3	550	22.8
70	12	575	23.5
75	11.3	600	24.4
80	11.7	625	23.9
85	12.6	650	24.4
90	13.4	675	24.6
95	14.1	700	24.3
100	14.5	725	25.2
125	16	750	26.1
150	14.6	775	26
175	15.3	800	26.1
200	15.2	825	26.6
225	15.7	850	26.6
250	16.7	875	26.6
275	18.5	900	27.2
300	18.5	925	28.6
325	18.7	950	28.1
350	19.3	975	27.9
375	20.8	1000	27.8

Com-Power AH-118
Horn Antenna
Serial Number: 10050074
Calibration Due: 07/19/2021

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
700	25.84	7500	37.73
750	25.46	8000	38.05
800	24.96	8500	38.29
850	24.51	9000	38.93
900	24.01	9500	39.64
950	23.73	10000	39.12
1000	23.83	10500	39.16
1250	24.81	11000	39.18
1500	25.32	11500	39.85
1750	26.30	12000	40.27
2000	27.94	12500	40.91
2250	28.16	13000	40.50
2500	29.07	13500	40.59
3000	30.07	14000	40.44
3500	30.81	14500	40.62
4000	31.68	15000	43.35
4500	32.64	15500	40.76
5000	33.79	16000	41.61
5500	34.20	16500	40.38
6000	35.24	17000	40.88
6500	35.74	17500	42.79
7000	37.17	18000	43.86

Com-Power PAM-118A
1-18GHz - Preamplifier
S/N:551033
Calibration Due: 01/15/2021

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
500	39.72	6000	41.30
600	39.79	6500	41.26
700	40.15	7000	41.64
800	40.21	7500	42.12
900	39.96	8000	42.05
1000	40.36	8500	41.23
1250	40.62	9000	41.24
1500	40.79	9500	42.67
1750	41.02	10000	42.51
2000	41.33	10500	41.48
2250	41.51	11000	41.26
2500	41.72	11500	41.37
2750	42.00	12000	41.45
3000	42.29	12500	40.97
3250	42.47	13000	40.60
3500	42.58	13500	40.32
3750	42.65	14000	40.44
4000	42.66	14500	40.79
4250	42.51	15000	40.89
4500	42.31	15500	41.36
4750	42.16	16000	41.39
5000	42.01	16500	41.09
5250	41.84	17000	40.37
5500	41.72	17500	39.70
5750	41.53	18000	39.63



FRONT VIEW

Smart Solutions Ltd
iBACK Posture Corrector
Model: 1.0
S/N: 1.0

FCC CLASS B - RADIATED EMISSIONS UNDER 1 GHz

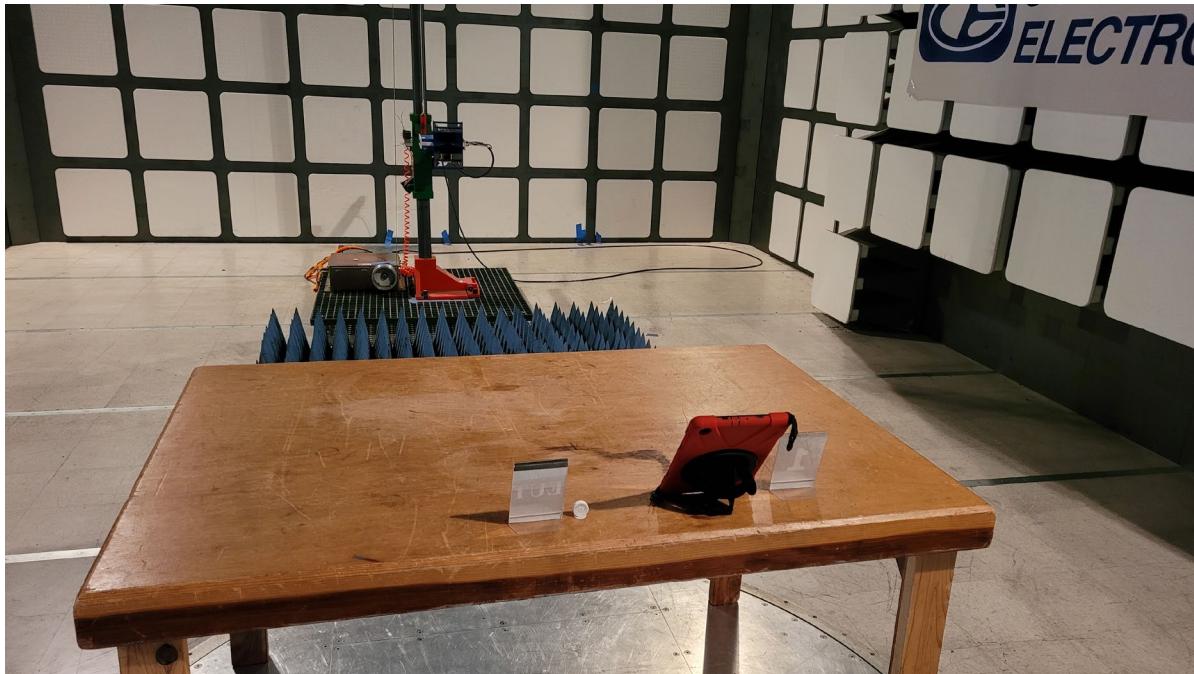
**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

Smart Solutions Ltd
iBACK Posture Corrector
Model: 1.0
S/N: 1.0

FCC CLASS B - RADIATED EMISSIONS UNDER 1 GHz

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**



FRONT VIEW

Smart Solutions Ltd
iBACK Posture Corrector
Model: 1.0
S/N: 1.0

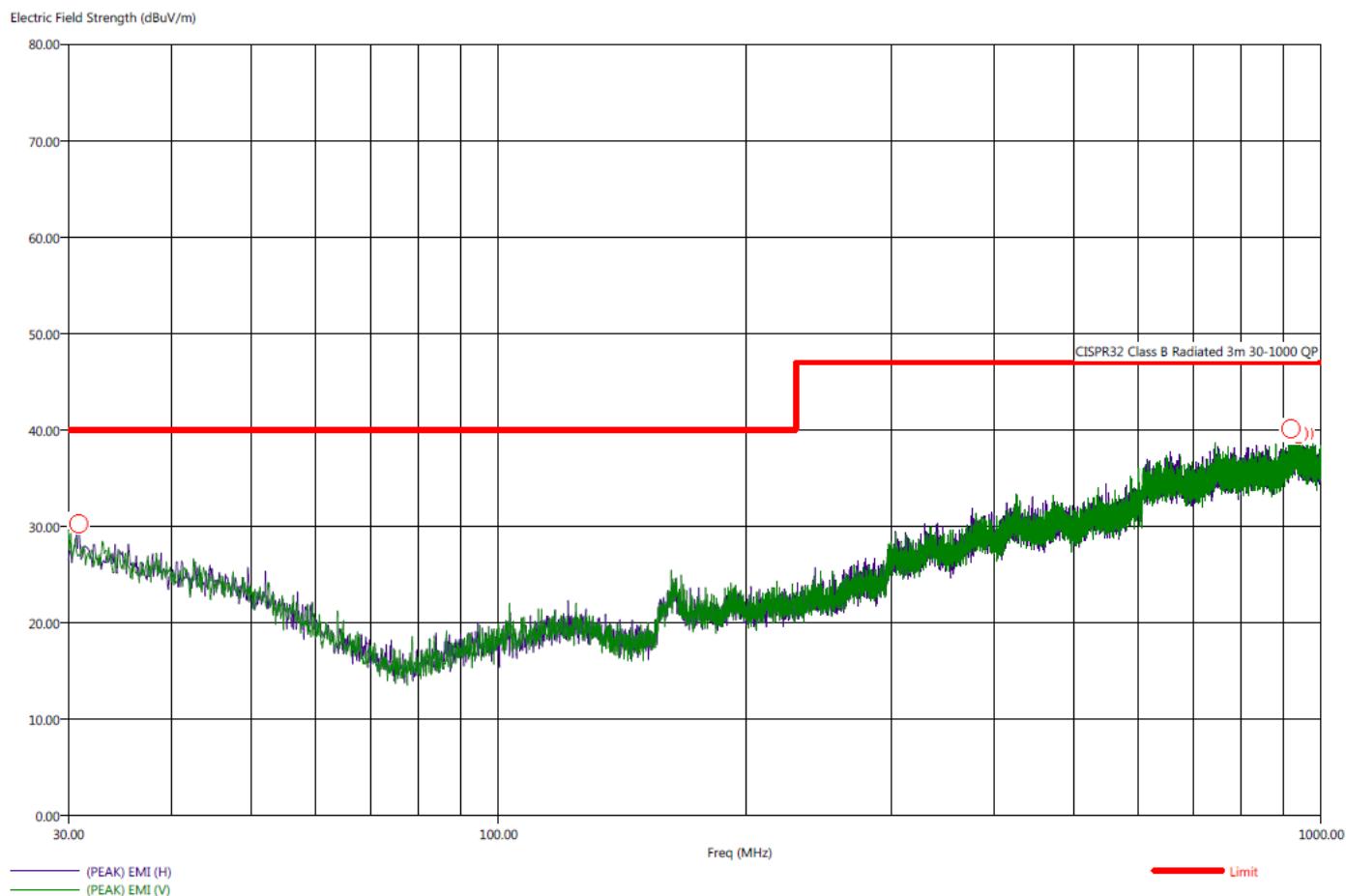
FCC CLASS B - RADIATED EMISSIONS 1-12.5 GHz

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

Smart Solutions Ltd
iBACK Posture Corrector
Model: 1.0
S/N: 1.0

FCC CLASS B - RADIATED EMISSIONS 1-12.5 GHz


**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

APPENDIX E***DATA SHEETS***

Test title: FCC 15 Class B
 File: Radiated Pre-Scan 30-1000 MHz 2.set
 Operator name: Tom Szynal
 EUT type: iBACK Posture Corrector
 EUT condition: EUT is communicating with tablet
 Notes: Company: SMART Solutions Ltd
 Model: 1.0
 Temp: 24
 Hum: 26%

10/28/2020 10:59:37 AM
 Sequence: Preliminary Scan

Compatible Electronics, Inc. FAC-3 (LAB P)

Test title: FCC 15 Class B

10/28/2020 11:19:26 AM

File: Radiated Final-Scan 30-1000 MHz 2.set

Sequence: Final Measurements

Operator name: Tom Szynal

EUT type: iBACK Posture Corrector

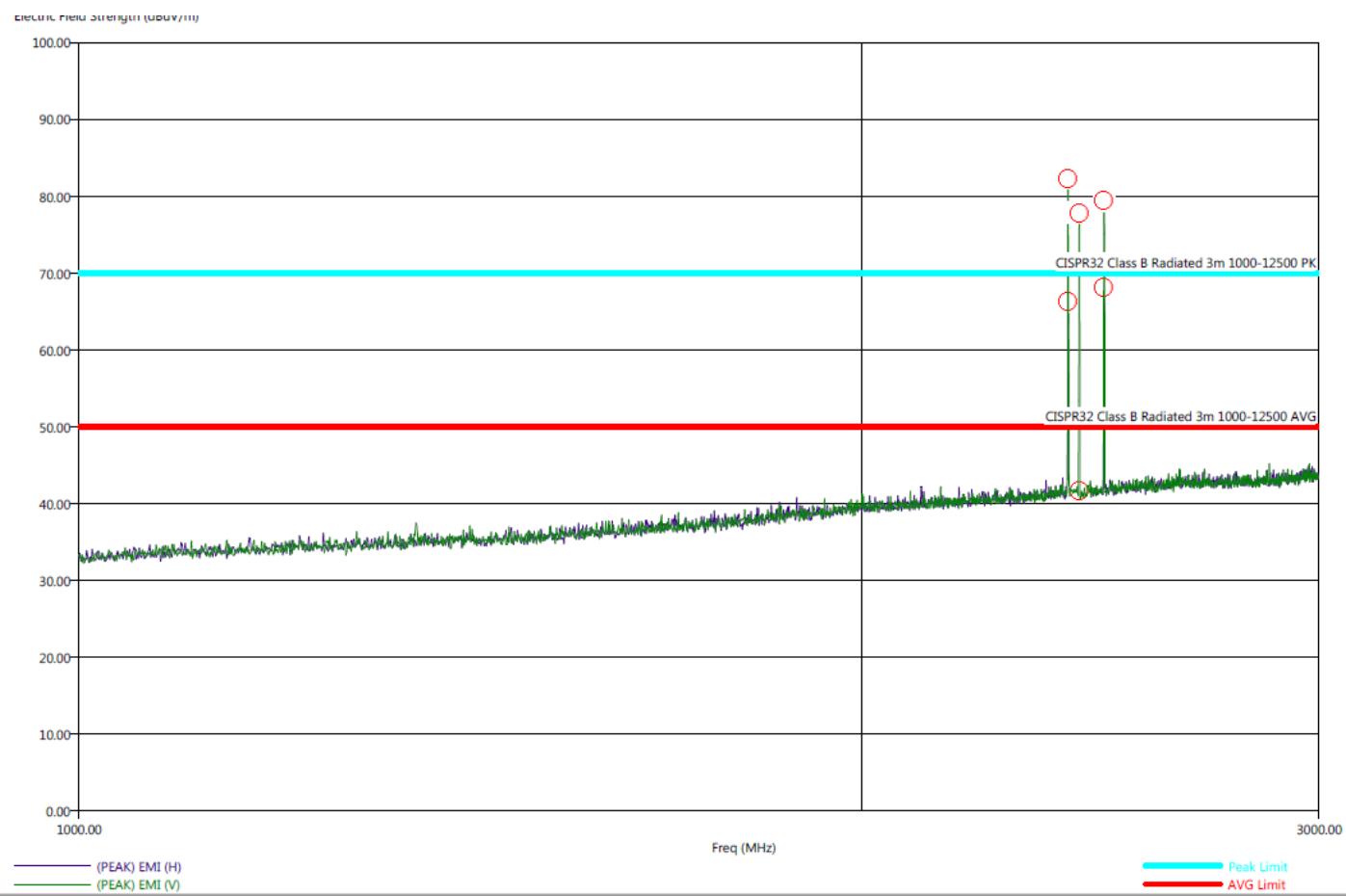
EUT condition: EUT is communicating with tablet

Notes: Company: SMART Solutions Ltd

Model: 1.0

Temp: 24

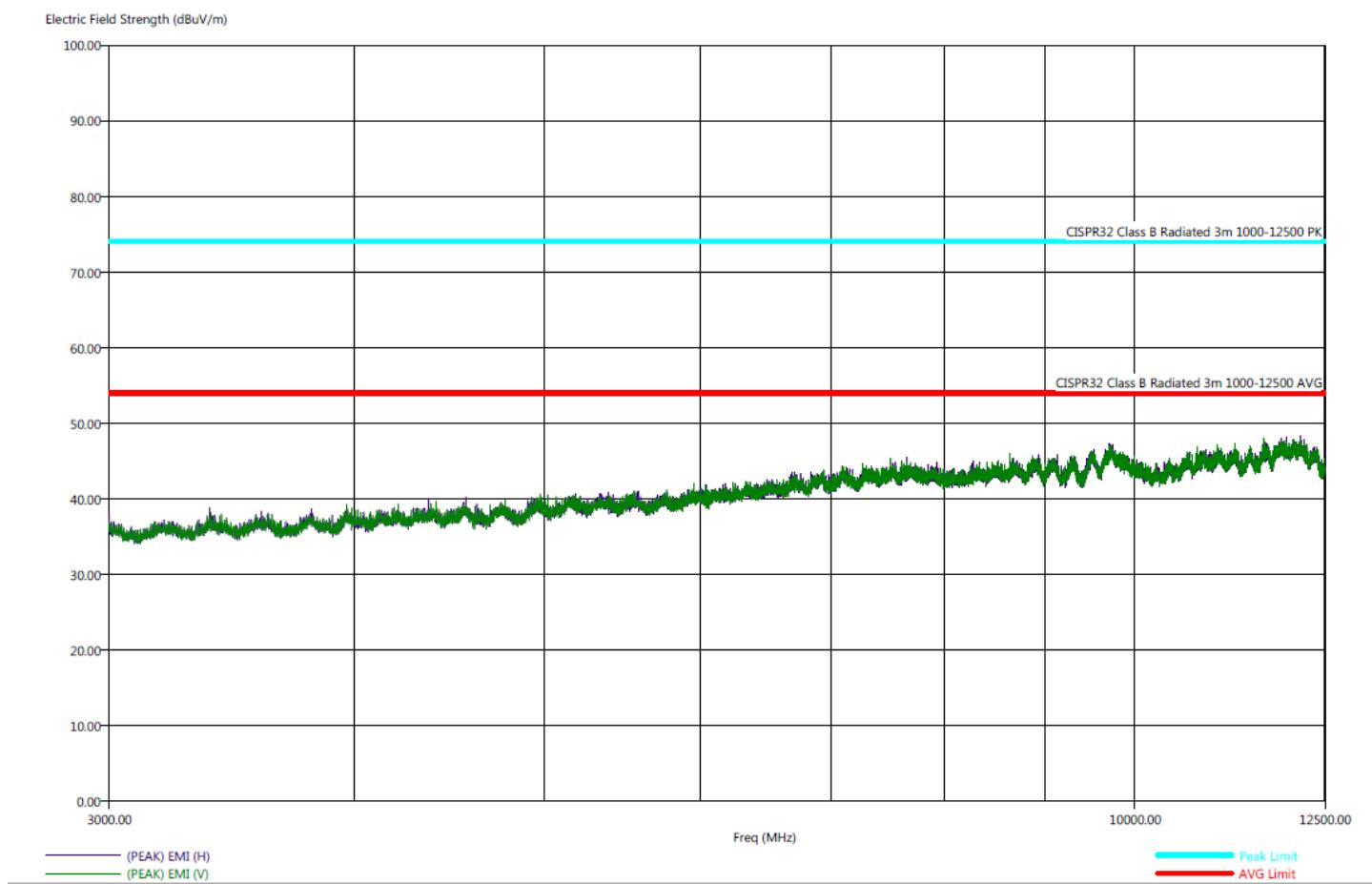
Hum: 26%


Compatible Electronics, Inc. FAC-3 (LAB P)

Freq (MHz)	Pol	(PEAK) EMI (dBuV/m)	(QP) EMI (dBuV/m)	(QP) Margin (dB)	Limit (dBuV/m)	Twr Ht (cm)	Ttbl Ang (deg)	Cable (dB)	Transducer (dB)
30.90	H	31.09	24.79	-15.21	40.00	294.00	115.00	0.39	22.23
919.20	V	39.50	34.60	-12.40	47.00	192.00	107.50	2.82	28.31
922.80	V	39.33	34.74	-12.26	47.00	112.70	87.00	2.83	28.50
935.40	H	39.91	34.97	-12.03	47.00	253.58	76.75	2.89	28.70
941.00	V	39.87	34.81	-12.19	47.00	165.88	4.75	2.91	28.60
953.10	H	39.48	34.14	-12.86	47.00	174.29	357.50	2.94	28.00

Test title: FCC 15 Class B
 File: Radiated Pre-Scan 1-3 GHz FCC.set
 Operator name: Tom Szynal
 EUT type: iBACK Posture Corrector
 EUT condition: EUT is communicating with tablet
 Notes: Company: SMART Solutions Ltd
 Model: 1.0
 Temp: 24
 Hum: 26%

10/28/2020 2:59:38 PM
 Sequence: Preliminary Scan


Compatible Electronics, Inc. FAC-3 (LAB P)

No emissions found from 1 GHz to 3 GHz. Emissions seen are from the pre-approved radio transmitter module that was tested separately.

Test title: FCC 15 Class B
File: Radiated Pre-Scan 3-12.5 GHz FCC.set
Operator name: Tom Szynal
EUT type: iBACK Posture Corrector
EUT condition: EUT is communicating with tablet
Notes: Company: SMART Solutions Ltd
Model: 1.0
Temp: 24
Hum: 26%

10/28/2020 3:37:31 PM
Sequence: Preliminary Scan

Compatible Electronics, Inc. FAC-3 (LAB P)

No emissions found from 3 GHz to 12.5 GHz.