

Report No.: TBR-C-202301-0038-4 Page: 1 of 91

Radio Test Report

FCC ID: 2AW68-NE6037

Report No.	1	TBR-C-202301-0038-4
Applicant	22	Shenzhen SDMC Technology Co., Ltd.
Equipment Under Te	st (E	EUT)
EUT Name	;	DOCSIS 3.1 Cable Modem DOCSIS 3.1 EMTA AX6000 DOCSIS 3.1 Cable Modem
Model No.	57	NE6037
Series Model No.	:	NE6037W, NE6037A, NE6037B
Brand Name	3	SDMC
Sample ID	:	202301-0038-4-1#&202301-0038-4-2#
Receipt Date	1	2023-03-01
Test Date	:	2023-03-02 to 2023-07-03
Issue Date	-	2023-07-04
Standards	2	FCC Part 15 Subpart C 15.247
Test Method		ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01
Conclusions	2	PASS
		In the configuration tested, the EUT complied with the standards specified above
Witness Engineer		: Seven Wu Seven Wu
Engineer Supervisor		: fuy tai. : fuy tai.
Engineer Manager		: fuy tài. <u>Ray Lat</u>

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	12
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	14
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Mode	
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	

Report No.: TBR-C-202301-0038-4 Page: 3 of 91

	7.6 Test Data	20
8.	BANDWIDTH TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 Deviation From Test Standard	22
	8.5 EUT Operating Mode	22
	8.6 Test Data	22
9.	RF OUTPUT POWER	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	23
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	23
	9.5 EUT Operating Mode	23
	9.6 Test Data	23
10.	POWER SPECTRAL DENSITY	24
	10.1 Test Standard and Limit	24
	10.2 Test Setup	24
	10.3 Test Procedure	24
	10.4 Deviation From Test Standard	24
	10.5 Antenna Connected Construction	24
	10.6 Test Data	24
11.		
11.	10.6 Test Data	25
11.	10.6 Test Data ANTENNA REQUIREMENT	25
11.	10.6 Test Data ANTENNA REQUIREMENT 11.1 Test Standard and Limit	25 25 25
11.	10.6 Test Data ANTENNA REQUIREMENT 11.1 Test Standard and Limit 11.2 Deviation From Test Standard	25 25 25 25
	10.6 Test Data ANTENNA REQUIREMENT 11.1 Test Standard and Limit 11.2 Deviation From Test Standard 11.3 Antenna Connected Construction	25 25 25 25 25
ATT	10.6 Test Data ANTENNA REQUIREMENT 11.1 Test Standard and Limit 11.2 Deviation From Test Standard 11.3 Antenna Connected Construction	

Revision History

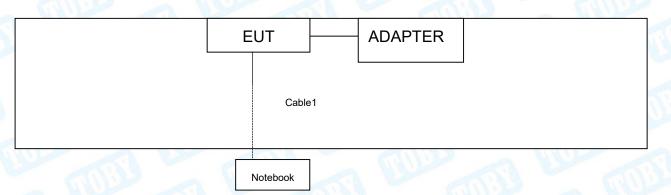
Report No.	Version	Description	Issued Date
TBR-C-202301-0038-4	Rev.01	Initial issue of report	2023-04-10
The state of the s	603		
THE TOP		TOP TO THE	
THE T	000	COLO COLO	MUDY
		THE TRUE	
TUBB		and more	n (1992)
and the second	N U		
BUDDA U		TOP	
A LUNC	3	TODI RUDO	
		TOUS A	

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen SDMC Technology Co., Ltd.			
Address		Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China			
Manufacturer		Shenzhen SDMC Technology Co., Ltd.			
Address	2	Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China			
2 General Descrip	otio	on of EUT (Equipmen	nt Under Test)		
EUT Name	:	DOCSIS 3.1 EMTA	DOCSIS 3.1 Cable Modem DOCSIS 3.1 EMTA AX6000 DOCSIS 3.1 Cable Modem		
Models No.	:	NE6037, NE6037W, N	E6037A, NE6037B		
Model Different		All these models are identical in the same PCB, layout and electrical circuit, And the product has two structures, which are identical except for the network port and IC FU1. One uses 2.5G network port and the other uses 1G network port. And difference is model name and product name.			
		Operation Frequency:	2412MHz~2462MHz		
	5	Number of Channel:	802.11b/g/n(HT20)/ax(HE20): 11 channels 802.11n(HT40)/ax(HE40): 7 channels		
Product Description	:	Antenna Gain:	3.98dBi PCB Antenna 1 4.35dBi PCB Antenna 2 4.16dBi PCB Antenna 3 4.24dBi PCB Antenna 4		
TOPI TOP		Modulation Type:	802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)		
Power Rating	÷	Input: 100-240V~50/60	AC Adapter (Model:F42L1-120350SPAU(FRECOM) Input: 100-240V~50/60Hz 1.4A Output: 12.0V=3.5A 42.0W		
		7.6.1.0.2			
Software Version	-	1.0.1.0.2			

(2)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
 (3)Antenna information from antenna specification.



(4)Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
	1 for 20MHz Bandwi)9 for 40MHz Bandwi				

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

		Equipment Info	rmation	
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
Notebook	Inspiron 5493		DELL	\checkmark
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	NO	NO	1.5M	Accessory

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test(AC Power)		
Final Test Mode	Description	
Mode 1	TX b Mode Channel 01	
F	or Radiated and RF Conducted Test	
Final Test Mode	Description	
Mode 2	TX Mode b Mode Channel 01/06/11	
Mode 3	TX Mode g Mode Channel 01/06/11	
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11	
Mode 5	TX Mode n(HT40) Mode Channel 03/06/09	
Mode 6	TX Mode ax(HE20) Mode Channel 01/06/11	
Mode 7	TX Mode ax(HE40) Mode Channel 03/06/09	
Note: The EUT with different	rent LAN port(1Gbps or 2.5Gbps), Below 1GHz Radiation differences were	
assessed and tested.		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Mode	Data Rate
B Mode-SISO	1Mbps
G Mode-SISO	6Mbps
N(HT20) Mode-MIMO	MCS0
N(HT40) Mode-MIMO	MCS0
AX(HE20) Mode-MIMO	MCS0
AX(HE40) Mode-MIMO	MCS0

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.(3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The

(3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software: <u>INTEL DUT610.60</u>						
	Test Mode:	Continuous	ly transmit	ting		
Mode	Channel	1032	Para	meter		
		Ant.1	Ant.2	Ant.3	Ant.4	
	01	26	26	26	26	
802.11b	06	26	26	26	26	
	11	26	26	26	26	
	01	22	22	22	22	
802.11g	06	22	22	22	22	
	11	22	22	22	22	
CU 33	01		1	8		
802.11n(HT20)	06		1	8		
	11		- 1	8	10	
	03		1	7	MUL	
802.11n(HT40)	06		1	7	Contraction of the second	
	09		1	7		
	01		1	7		
802.11ax(HE20)	06	17				
	11		1	7		
	03			7		
802.11ax(HE40)	06		1	7		
	09	-	1	7		

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	1	±0.95 dB
Power Spectral Density- Conducted	1	±3dB
Occupied Bandwidth	1	±3.8%
Unwanted Emission- Conducted	1	±2.72 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

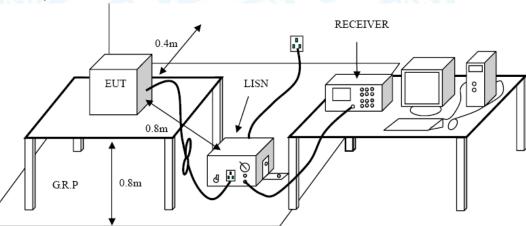
andard Section	Test Item	Test Sample(s)	Judgment
FCC 15.207(a)	Conducted Emission	202301-0038-4-1#	PASS
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202301-0038-4-1#	PASS
FCC 15.203	Antenna Requirement	202301-0038-4-2#	PASS
FCC 15.247(a)(2)	6dB Bandwidth	202301-0038-4-2#	PASS
FCC 15.247(b)(3)	RF Output Power	202301-0038-4-2#	PASS
FCC 15.247(e)	Power Spectral Density	202301-0038-4-2#	PASS
FCC 15.247(d)	Band Edge Measurements	202301-0038-4-2#	PASS
FCC 15.207(a)	Conducted Unwanted Emissions	202301-0038-4-2#	PASS
FCC 15.247(d) FCC 15.205	Emissions in Restricted Bands	202301-0038-4-2#	PASS
	On Time and Duty Cycle	202301-0038-4-2#	1

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Test System	JS1120-3	Tonscend	V3.2.22

4. Test Equipment

Conducted Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emission	Test	-	-	-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 22, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	I Emission		_		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
100	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 01, 2022	Aug. 31, 2023
PE Dower Songer	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 01, 2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 01, 2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 01, 2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A


5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.207
 - 5.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

● Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

● I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from

- 0.15MHz to 30MHz.
- 5.4 Deviation From Test Standard No deviation
- 5.5 EUT Operating Mode Please refer to the description of test mode.
- 5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

Genera	al field strength limits at frequenc	ties Below 30MHz
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolt/meter)**	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30

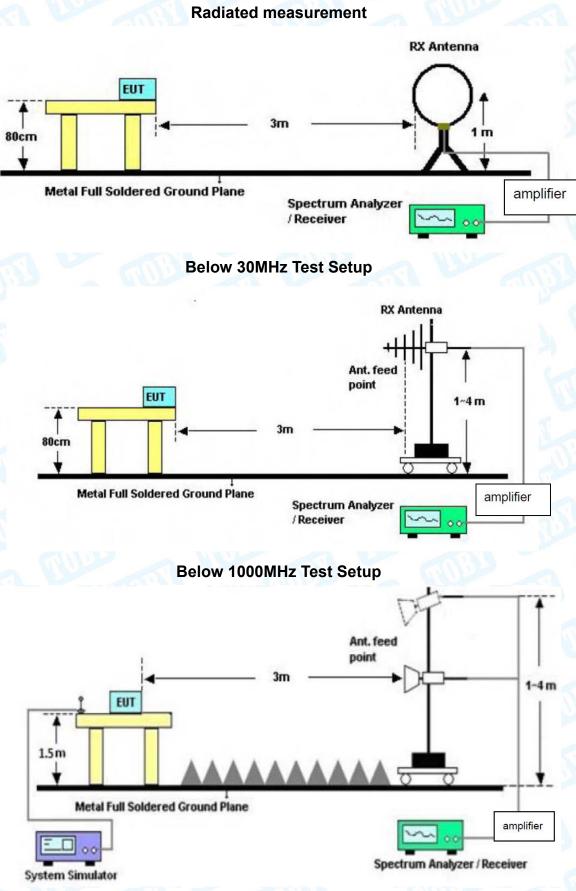
Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field	strength limits at frequenc	ies above 30 MHz
Frequency	Field strength	Measurement Distance
(MHz)	(µV/m at 3 m)	(meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

General field st	rength limits at frequencies A	Above 1000MHz
Frequency	Distance of 3r	n (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

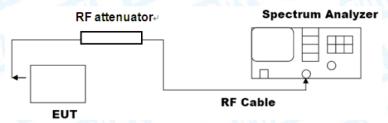
Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Setup



Above 1GHz Test Setup

Report No.: TBR-C-202301-0038-4 Page: 16 of 91

Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

•Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

 h) Use the peak marker function to determine the maximum amplitude level.
 Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

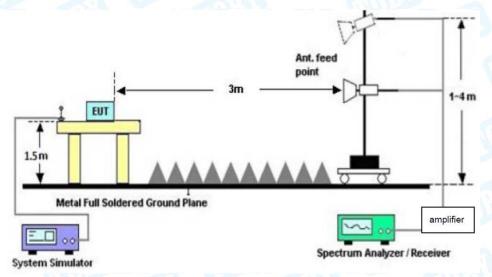
6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

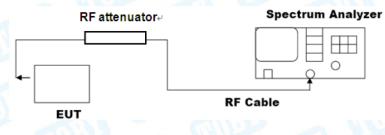
7. Restricted Bands Requirement

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance M	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)
2310 ~2390	-21.20	-41.20
2483.5 ~2500	-21.20	-41.20


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

 ${\leq}30$ MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

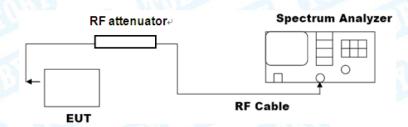
7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

Radiated measurement please refer to the Attachment C inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.



8. Bandwidth Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247(d)
 - 8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth	>=500 KHz	2400~2483.5
(DTS bandwidth)	~=500 KHZ	2400~2403.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

• The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

• The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the

OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.
e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the lower frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

 h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

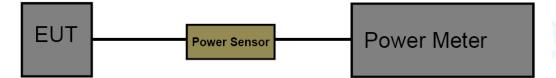
No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.



9. RF Output Power

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247(b)(3)
 - 9.1.2 Test Limit

-	Test Item	Limit	Frequency Range(MHz)
	RF Output Power	not exceed 1 W or 30dBm	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

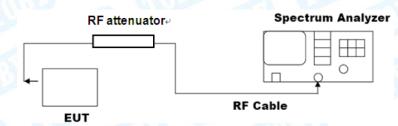
- 9.4 Deviation From Test Standard No deviation
- 9.5 EUT Operating Mode

Please refer to the description of test mode.

9.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Power Spectral Density 10.


- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - RSS 247 5.2(b)

FCC Part 15.247(e)

10.1.2 Test Limit

Test	ltem	Limit	Frequency Range(MHz)
Power Spec	tral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW \geq [3*RBW].
- e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

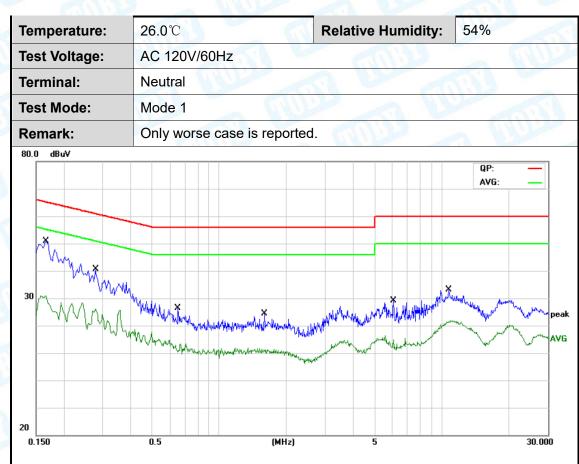
The max. gains of the antenna used for transmitting is 4.35dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type	
Permanent attached antenna	
Unique connector antenna	
Professional installation antenna	

Attachment A-- Conducted Emission Test Data


emperature:	26.0 °	C		Relative Hu	midity:	54%	UIPI .
est Voltage:	AC 1	20V/60Hz				TOR!	5
erminal:	Line		IT I	L'ES		Charles and the	-
est Mode:	Mode	e 1			329	~	Ell's
emark:	Only	worse case	is reporte	d.			
0.0 dBuV							
							1P: —
m.							
30 An	A. ×						
30 March	MMMM	aluah	×		ynumenu	with the party and	Mmmm
W	νήλης 111.1	lautration that the second to the second	estantineter and a second and	sthe fly der sugar Mart		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1 hanna	when have a property of the	Markonner	hadden and a strand and a start of the start	Ma	\sim	
o							
0.150	0.5		(MHz)	5			30.000
0.150		Reading	Correct	Measure-		0.407	30.000
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
0.150 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor	Measure- ment dBuV	Limit dBu∨	dB	Detector
0.150	Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBu∨		Detector QP
0.150 No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor	Measure- ment dBuV	Limit dBu∨ 65.78	dB	Detector
0.150 No. Mk.	Freq. MHz 0.1539	Reading Level dBuV 33.11	Correct Factor dB 11.10	Measure- ment dBuV 44.21	Limit dBuV 65.78 55.78	dB -21.57	Detector QP
0.150 No. Mk. 1 * 2	Freq. MHz 0.1539 0.1539	Reading Level dBu∨ 33.11 15.52	Correct Factor dB 11.10 11.10	Measure- ment dBuV 44.21 26.62	Limit dBuV 65.78 55.78 61.89	dB -21.57 -29.16	Detector QP AVG
0.150 No. Mk. 1 * 2 3	Freq. MHz 0.1539 0.1539 0.2460	Reading Level dBu∨ 33.11 15.52 23.50	Correct Factor dB 11.10 11.10 10.93	Measure- ment dBuV 44.21 26.62 34.43	Limit dBuV 65.78 55.78 61.89 51.89	dB -21.57 -29.16 -27.46	Detector QP AVG QP
0.150 No. Mk. 1 * 2 3 4	Freq. MHz 0.1539 0.1539 0.2460 0.2460	Reading Level dBuV 33.11 15.52 23.50 11.51	Correct Factor dB 11.10 11.10 10.93 10.93	Measure- ment dBuV 44.21 26.62 34.43 22.44	Limit dBuV 65.78 55.78 61.89 51.89 58.77	dB -21.57 -29.16 -27.46 -29.45	Detector QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5	Freq. MHz 0.1539 0.1539 0.2460 0.2460 0.3580	Reading Level dBuV 33.11 15.52 23.50 11.51 15.57	Correct Factor dB 11.10 11.10 10.93 10.93 10.88	Measure- ment dBuV 44.21 26.62 34.43 22.44 26.45	Limit dBuV 65.78 55.78 61.89 51.89 58.77 48.77	dB -21.57 -29.16 -27.46 -29.45 -32.32	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6	Freq. MHz 0.1539 0.1539 0.2460 0.2460 0.3580 0.3580	Reading Level dBuV 33.11 15.52 23.50 11.51 15.57 5.68	Correct Factor dB 11.10 11.10 10.93 10.93 10.88 10.88	Measure- ment dBuV 44.21 26.62 34.43 22.44 26.45 16.56	Limit dBuV 65.78 55.78 61.89 51.89 58.77 48.77 56.00	dB -21.57 -29.16 -27.46 -29.45 -32.32 -32.21	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5 6 7	Freq. MHz 0.1539 0.1539 0.2460 0.2460 0.3580 0.3580 1.3420	Reading Level dBuV 33.11 15.52 23.50 11.51 15.57 5.68 7.01	Correct Factor dB 11.10 11.10 10.93 10.93 10.88 10.88 10.62	Measure- ment dBuV 44.21 26.62 34.43 22.44 26.45 16.56 17.63	Limit dBuV 65.78 55.78 61.89 51.89 58.77 48.77 56.00 46.00	dB -21.57 -29.16 -27.46 -29.45 -32.32 -32.21 -38.37	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6 7 8	Freq. MHz 0.1539 0.1539 0.2460 0.2460 0.3580 0.3580 1.3420 1.3420	Reading Level dBuV 33.11 15.52 23.50 11.51 15.57 5.68 7.01 -0.44	Correct Factor dB 11.10 11.10 10.93 10.93 10.88 10.88 10.62 10.62	Measure- ment dBuV 44.21 26.62 34.43 22.44 26.45 16.56 17.63 10.18	Limit dBuV 65.78 55.78 61.89 51.89 58.77 48.77 56.00 46.00 60.00	dB -21.57 -29.16 -27.46 -29.45 -32.32 -32.21 -38.37 -35.82	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5 6 7 8 9 10	Freq. MHz 0.1539 0.1539 0.2460 0.2460 0.3580 0.3580 1.3420 1.3420 9.9940	Reading Level dBuV 33.11 15.52 23.50 11.51 15.57 5.68 7.01 -0.44 12.48	Correct Factor dB 11.10 11.10 10.93 10.93 10.88 10.88 10.62 10.62 10.62	Measure- ment dBuV 44.21 26.62 34.43 22.44 26.45 16.56 17.63 10.18 22.62	Limit dBuV 65.78 55.78 61.89 51.89 58.77 48.77 56.00 46.00 60.00 50.00	dB -21.57 -29.16 -27.46 -29.45 -32.32 -32.21 -38.37 -35.82 -37.38	Detector QP AVG QP AVG QP AVG QP AVG QP

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1660	33.24	11.03	44.27	65.15	-20.88	QP
2		0.1660	16.44	11.03	27.47	55.15	-27.68	AVG
3		0.2779	22.18	11.00	33.18	60.88	-27.70	QP
4		0.2779	14.07	11.00	25.07	50.88	-25.81	AVG
5		0.6540	7.34	10.89	18.23	56.00	-37.77	QP
6		0.6540	-0.76	10.89	10.13	46.00	-35.87	AVG
7		1.5940	5.13	10.61	15.74	56.00	-40.26	QP
8		1.5940	-0.38	10.61	10.23	46.00	-35.77	AVG
9		6.0700	7.06	10.05	17.11	60.00	-42.89	QP
10		6.0700	1.10	10.05	11.15	50.00	-38.85	AVG
11		10.7340	15.82	10.20	26.02	60.00	-33.98	QP
12		10.7340	10.43	10.20	20.63	50.00	-29.37	AVG
Dama								

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data

----Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	24.3 ℃		Relative Hur	nidity:	45%
Fest Voltage:	AC 120V/60	Hz	WYY	1	
Ant. Pol.	Horizontal	ATTES S		NUP	
est Mode:	Mode 1 (2.5	Gbps)	A DO		MUDD
Remark:	Only worse	case is reported	d.	31	(m)
80.0 dBuV/m					
70					
60					
50				(RF)FCC 15 Margin -6 d	C 3M Radiation
40					<u>ş</u>
	2	3	4	Hau .	he will a month south Marp
30					
	- M	Mun	provide the stand with the	White where where	red and more thank the
		Just Munarman	or the source of	"When we	
20 1 Mymayyan Mary Vina		1 March and	and the second sec		
20 10		1 Marchard	and the second sec		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	46.1779	40.16	-22.66	17.50	40.00	-22.50	peak	Ρ
2	77.8654	57.34	-26.41	30.93	40.00	-9.07	peak	Ρ
3	121.5486	50.00	-23.71	26.29	43.50	-17.21	peak	Ρ
4	214.5143	52.21	-24.20	28.01	43.50	-15.49	peak	Ρ
5 *	343.1800	56.94	-19.64	37.30	46.00	-8.70	peak	Ρ
6	689.5644	48.27	-11.32	36.95	46.00	-9.05	peak	Ρ

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Tempe	erature:	24.3	°C			Relative I	Humidity:	45%		
Test V	oltage:	AC	120V	/60Hz			A B		10	113
Ant. P	ol.	Vert	ical	NY.				TO BI	7	
Test N	lode:	Mod	e 1 (2	2.5Gb	ops)	100		No.	-	50
Rema	rk:	Only	/ wors	se ca	se is reporte	ed.	132		00	3
80.0	dBuV/m									_
70										
60										
50								CC 15C 3M Ra n <mark>6</mark> dB	adiation	d
40								4		
30	~					J	3 X			_{Af} peak
	1	-1V	VW		\$ 	λ.	Mr. Markade	with the street	ullowthenter	
20	sound him	√ "	1 N			Martinen 11.	M			
20	m m	√ ["]		mun	Martinellander	Winder and Market	When the second s			
10		√ ["]		ng mgu	Jacobert Carter M	Muther market	here the second s			
10 0		√ ["]		nd man	normany and	mand				
10		√ ["]		and Langue	renter and the	"White and the				
10 0 -10	0	60.00			AnterNanna (MH		300.00		10	000.000
10 0 -10 -20	• • Freque (MH:	ency	Rea	ading BuV)		Level		Margin	Detector	000.00

NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	E/I
1 *	67.4382	57.97	-24.22	33.75	40.00	-6.25	peak	Р
2	174.4241	50.40	-23.39	27.01	43.50	-16.49	peak	Р
3	438.6554	49.71	-16.94	32.77	46.00	-13.23	peak	Р
4	562.6624	53.08	-13.80	39.28	46.00	-6.72	peak	Ρ
5	689.5644	46.96	-11.32	35.64	46.00	-10.36	peak	Р
6	813.1115	42.90	-8.86	34.04	46.00	-11.96	peak	Ρ

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TBR-C-202301-0038-4 Page: 30 of 91

Temperature:	24.3 ℃	Relative Humidity:	45%				
Fest Voltage:	AC 120V/60Hz	any	AUD A				
Ant. Pol.	Horizontal	AVA					
Fest Mode:	Mode 1 (1Gbps)	(1Gbps)					
Remark:	Only worse case is rep	ported.					
80.0 dBuV/m 70		(RF)FCC Margin-6	5				
0 -10 -20							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	77.8653	59.35	-26.42	32.93	40.00	-7.07	peak	Р
2	121.5485	53.50	-23.71	29.79	43.50	-13.71	peak	Р
3	214.5141	54.21	-24.20	30.01	43.50	-13.49	peak	Р
4	343.1800	57.44	-19.64	37.80	46.00	-8.20	peak	Ρ
5	562.6622	46.75	-13.80	32.95	46.00	-13.05	peak	Р
6	689.5643	49.27	-11.32	37.95	46.00	-8.05	peak	Р

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Tem	perature:	24.3 ℃			Relative	Humidi	ty:	45%	6		
Test	t Voltage:	AC 120	//60Hz	20		and	S		-	<u>all</u>	
Ant.	Pol.	Vertical	010		<u></u>	0	A	32	1		
Fest	t Mode:	Mode 1	(1Gbps)							5	
Ren	nark:	Only wo	rse case	is reporte	ed.			~		V.	2
80.0	dBu¥/m										,
70											
60 50							(RF)FCC Margin -6		Radiation		
40								4	5 X	6 X	
30	- mention			للالماسي	Morri Manpoor Just	And a start of the	Munder	phone where	mullion	A CONTRACTOR	pea
20 10	¥* *	•	mil milling	hand and the second							
o											
-10 -20											
30	0.000	60.00		(MH	z)	300.00				100	0.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	67.4381	57.47	-24.22	33.25	40.00	-6.75	peak	Р
2	205.6750	51.24	-24.63	26.61	43.50	-16.89	peak	Р
3	339.5887	49.74	-19.75	29.99	46.00	-16.01	peak	Р
4 *	562.6622	53.58	-13.80	39.78	46.00	-6.22	peak	Р
5	689.5643	48.96	-11.32	37.64	46.00	-8.36	peak	Р
6	813.1114	43.90	-8.86	35.04	46.00	-10.96	peak	Р

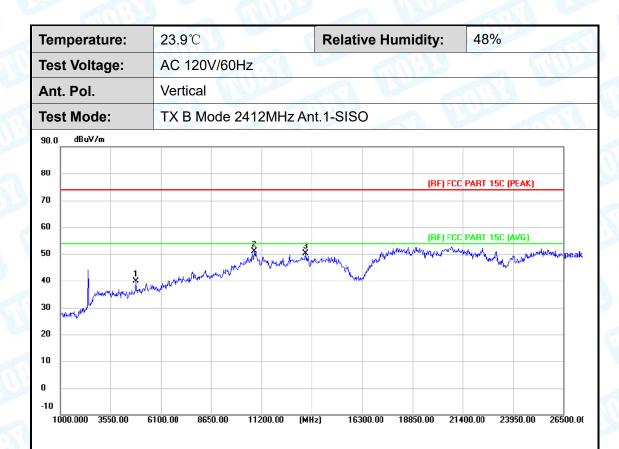
- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Above 1GHz

Tempera	ture:	23.9	°C		~	Relative	Humidity	: 48%	,		
Test Volt	age:	AC ²	120V/6	60Hz	127			12 ho			1
Ant. Pol.		Hori	zontal	U	-	an B	5		00	2	al.
Test Mod	de:	TX E	B Mod	e 2412	MHz A	nt.1-SISC)			11.7	6
90.0 dBuV	7m			1					Ì		
80											
70								(RF) FCC	PART 15C	(PEAK)	
60					_				PART 15C	(AVG)	_
50		1		- and have	Myrum	arman the many	in section and some	manner	alann have been	Annework	Ytmp
40	M. CR. Lunker	hymner	Alloyter	www.ww			Normal States				
Willing and	A . Mar. 18.										
20										_	
10											
0											
-10											

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4825.000	54.80	-9.98	44.82	74.00	-29.18	peak	Р
2 *	10894.000	42.68	8.20	50.88	74.00	-23.12	peak	Р
3	14107.000	39.71	10.16	49.87	74.00	-24.13	peak	Р

Remark:


1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the demission which below the prescribed limit

5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

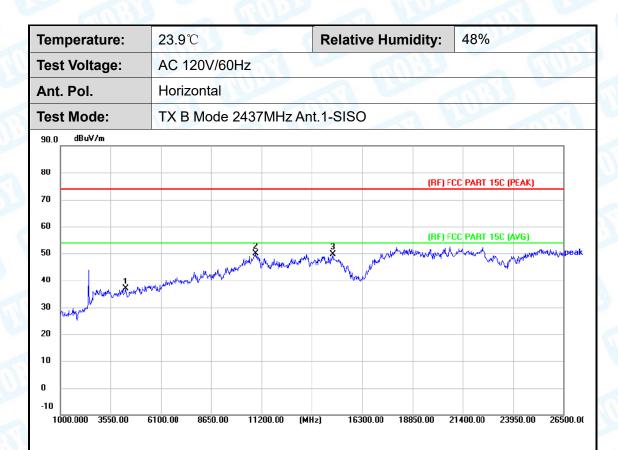
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	4825.000	49.89	-9.98	39.91	74.00	-34.09	peak	Р
2 *	10843.000	42.98	7.96	50.94	74.00	-23.06	peak	Р
3	13418.500	40.00	10.17	50.17	74.00	-23.83	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

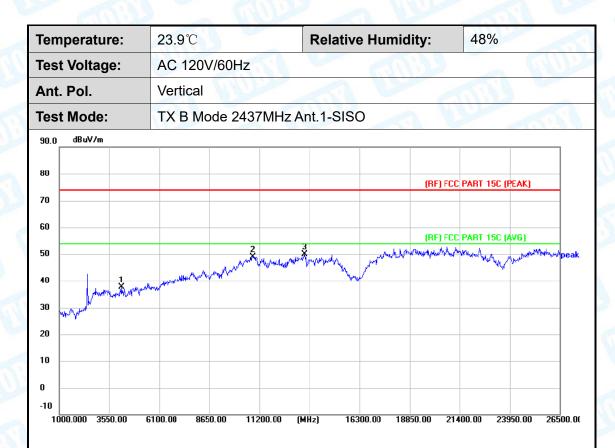
No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4315.000	48.78	-11.84	36.94	74.00	-37.06	peak	Р
2 *	10919.500	41.76	8.21	49.97	74.00	-24.03	peak	Р
3	14821.000	38.84	10.72	49.56	74.00	-24.44	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 35 of 91

No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4187.500	49.69	-12.02	37.67	74.00	-36.33	peak	Р
2	10868.500	40.92	8.07	48.99	74.00	-25.01	peak	Р
3 *	13495.000	39.74	10.11	49.85	74.00	-24.15	peak	Ρ

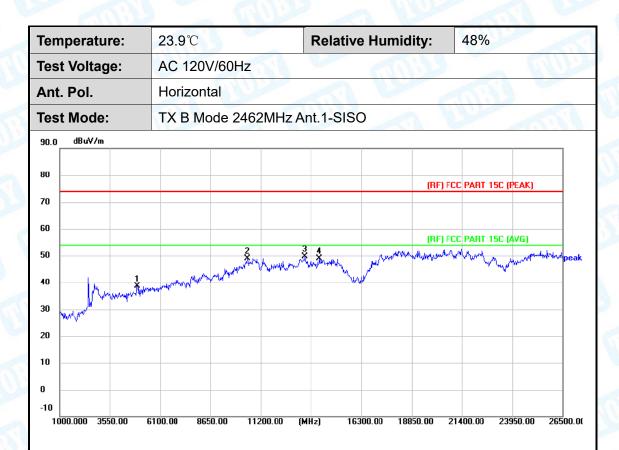
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 36 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4927.000	48.34	-9.76	38.58	74.00	-35.42	peak	Р
2	10537.000	42.52	6.44	48.96	74.00	-25.04	peak	Р
3 *	13418.500	39.56	10.17	49.73	74.00	-24.27	peak	Р
4	14183.500	38.73	10.25	48.98	74.00	-25.02	peak	Р

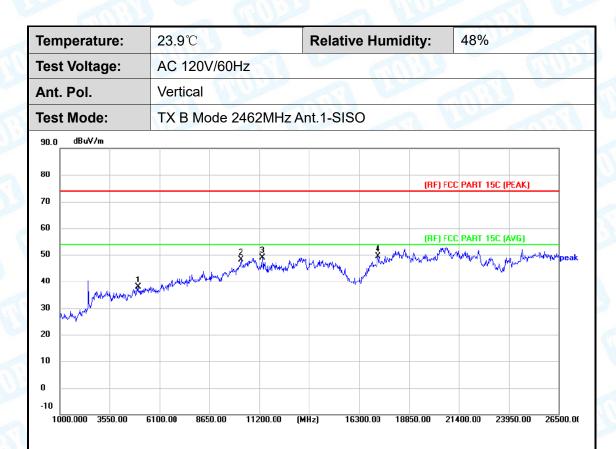
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

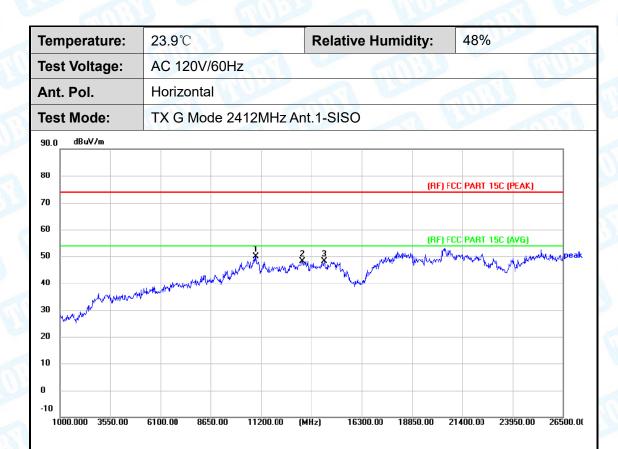
6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 37 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4978.000	47.42	-9.59	37.83	74.00	-36.17	peak	Р
2	10256.500	42.39	5.85	48.24	74.00	-25.76	peak	Р
3	11353.000	40.03	8.92	48.95	74.00	-25.05	peak	Р
4 *	17269.000	35.84	13.65	49.49	74.00	-24.51	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

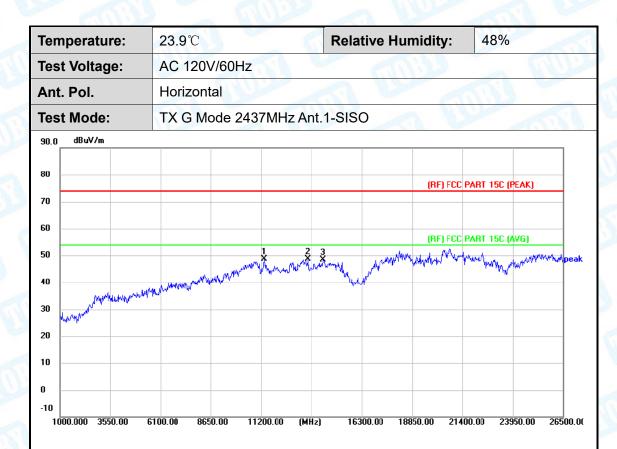
Report No.: TBR-C-202301-0038-4 Page: 38 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10945.000	41.76	8.20	49.96	74.00	-24.04	peak	Р
2	13291.000	38.44	9.79	48.23	74.00	-25.77	peak	Р
3	14413.000	37.28	10.94	48.22	74.00	-25.78	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

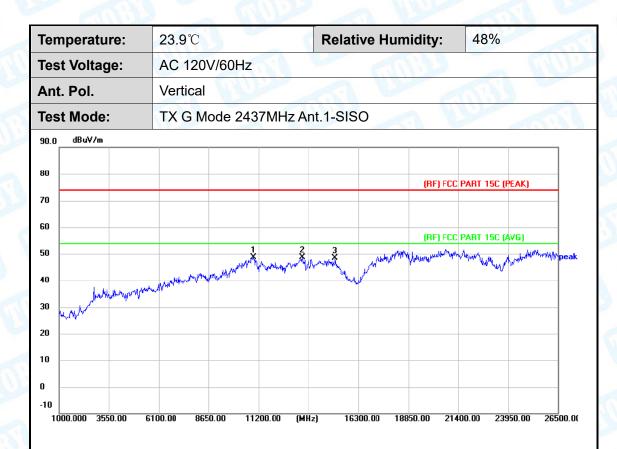
Temperature:	23.9 ℃		Relat	ive Humidity:	48%	
Fest Voltage:	AC 120V/	60Hz		any b		all
Ant. Pol.	Vertical	Vertical		and I		
Fest Mode:	TX G Mod	le 2412MF	z Ant.1-SIS		No.	-
90.0 dBuV/m						
80				(05) 50	C PART 15C (P	EAK)
70						
60				(BF) FC	C PART 15C (A	VG1
50 40 30 700 700 700 700 700 700 700 700 700		1 North Mark	Runner Harring	Munghaman mught have	marin	PW Line down to the population of the population
40 Myntheyler wil	Herberger walk and and	M/~ .		w/		
20						
10						
-10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10715.500	41.58	7.13	48.71	74.00	-25.29	peak	Р
2	13469.500	38.30	10.13	48.43	74.00	-25.57	peak	Р
3 *	14872.000	37.67	11.14	48.81	74.00	-25.19	peak	Р


1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

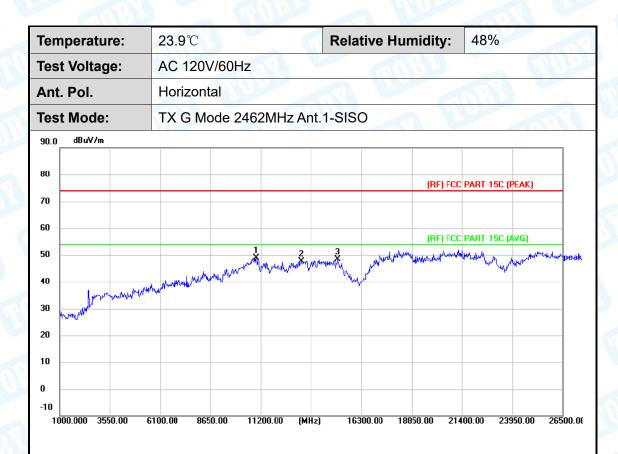

Report No.: TBR-C-202301-0038-4 Page: 40 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11353.000	39.74	8.92	48.66	74.00	-25.34	peak	Р
2	13571.500	38.59	9.98	48.57	74.00	-25.43	peak	Р
3	14336.500	37.88	10.55	48.43	74.00	-25.57	peak	Ρ

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10945.000	40.42	8.20	48.62	74.00	-25.38	peak	Р
2 *	13418.500	38.48	10.17	48.65	74.00	-25.35	peak	Р
3	15101.500	36.68	11.60	48.28	74.00	-25.72	peak	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)


2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

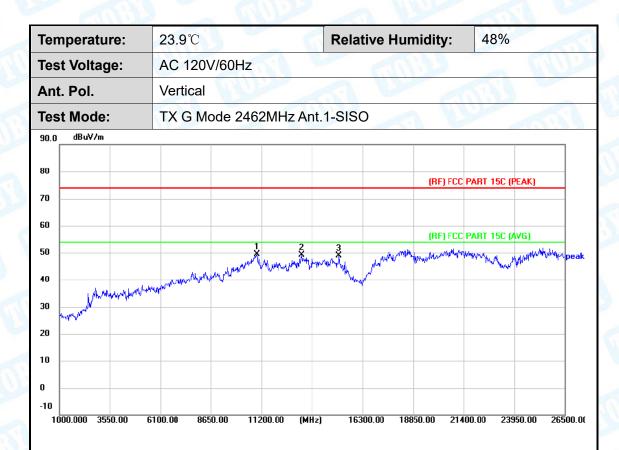
6. The peak value < average limit, So only show the peak value.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10970.500	40.64	8.18	48.82	74.00	-25.18	peak	Ρ
2	13240.000	37.91	9.80	47.71	74.00	-26.29	peak	Р
3	15101.500	36.70	11.60	48.30	74.00	-25.70	peak	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

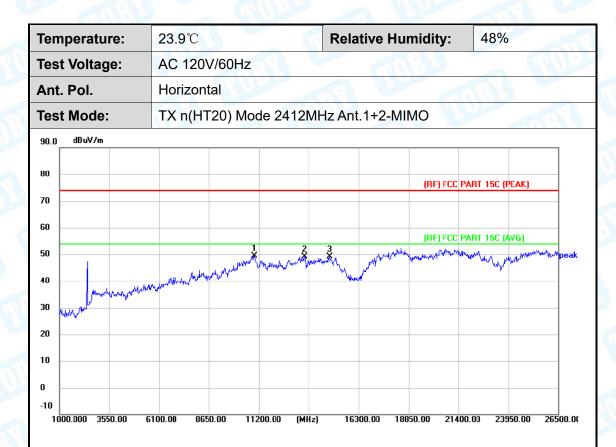
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10970.500	41.10	8.18	49.28	74.00	-24.72	peak	Р
2	13214.500	39.38	9.80	49.18	74.00	-24.82	peak	Р
3	15101.500	37.31	11.60	48.91	74.00	-25.09	peak	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 44 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10970.500	41.20	8.18	49.38	74.00	-24.62	peak	Р
2	13520.500	39.11	10.07	49.18	74.00	-24.82	peak	Р
3	14821.000	38.41	10.72	49.13	74.00	-24.87	peak	Р

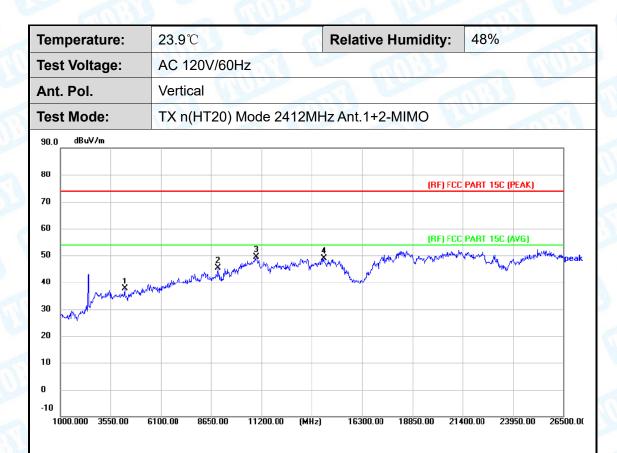
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 45 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4264.000	49.49	-11.94	37.55	74.00	-36.45	peak	Р
2	9007.000	46.07	-0.79	45.28	74.00	-28.72	peak	Р
3 *	10945.000	41.24	8.20	49.44	74.00	-24.56	peak	Р
4	14362.000	38.26	10.73	48.99	74.00	-25.01	peak	Ρ

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

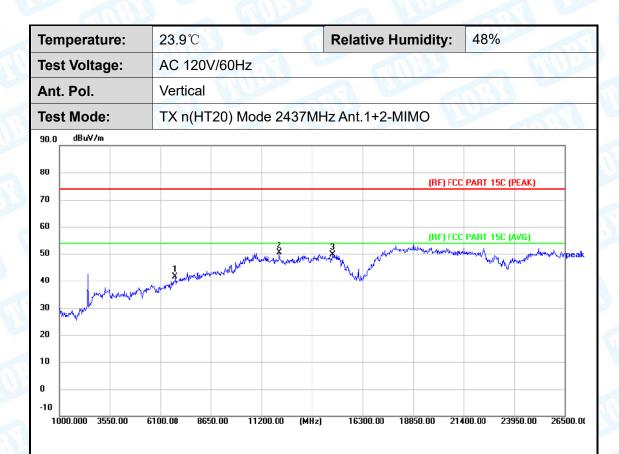
Report No.: TBR-C-202301-0038-4 Page: 46 of 91

Ten	nperature:	23.9℃			Relativ	ve Humio	dity:	48%		
Tes	t Voltage:	AC 120\	//60Hz			ani			12	
4nt	. Pol.	Horizont	ontal							
Tes	t Mode:	TX n(HT	20) Mod	le 2437N	/Hz Ant.	1+2-MIM	0			
90.0	dBuV/m									1
80							(BE) FCC	Part 15C (F	FAKI	
70							()			
60			4	3			(RF) FCC	PART 15C (4	-	
50 40		Kantha Martha	and service and and the the	manderand	with the way	A construction of the second s	weekeer the second s	where	Water an all the	'pe
30	and parameters									
20 10										
D										
-10 10	100.000 3550.00 6	5100.00 865	0.00 112	:00.00 (MH	z) 163				50.00 265	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	5590.000	46.00	-8.39	37.61	74.00	-36.39	peak	Р
2	10894.000	41.95	8.20	50.15	74.00	-23.85	peak	Р
3 *	13342.000	40.59	9.96	50.55	74.00	-23.45	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the demission which below the prescribed limit


5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 47 of 91

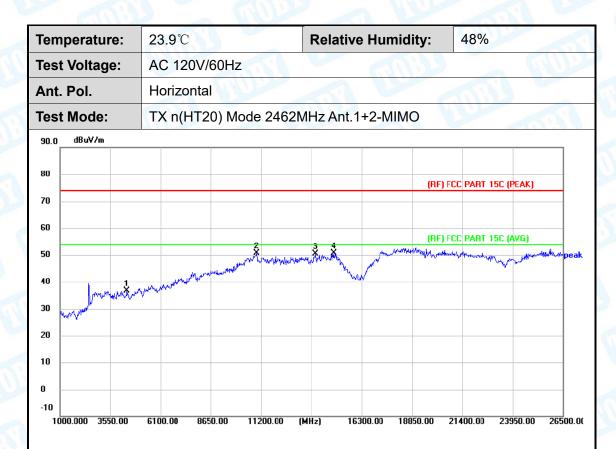
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	6839.500	47.23	-5.72	41.51	74.00	-32.49	peak	Р
2 *	12092.500	41.08	9.37	50.45	74.00	-23.55	peak	Р
3	14770.000	38.89	10.66	49.55	74.00	-24.45	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

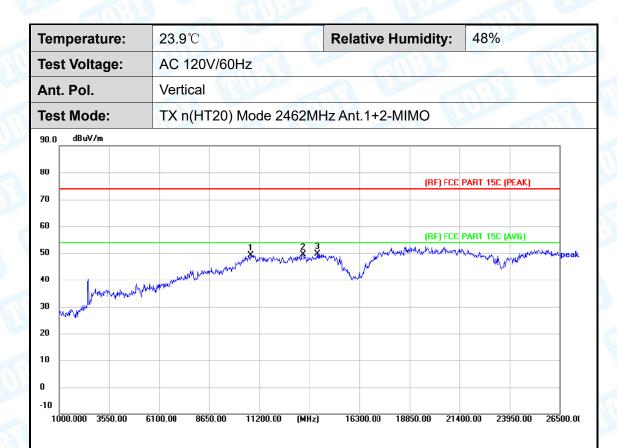
3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 48 of 91



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4391.500	48.02	-11.40	36.62	74.00	-37.38	peak	Р
2 *	10970.500	42.49	8.18	50.67	74.00	-23.33	peak	Р
3	13954.000	39.57	10.70	50.27	74.00	-23.73	peak	Р
4	14872.000	39.46	11.14	50.60	74.00	-23.40	peak	Р

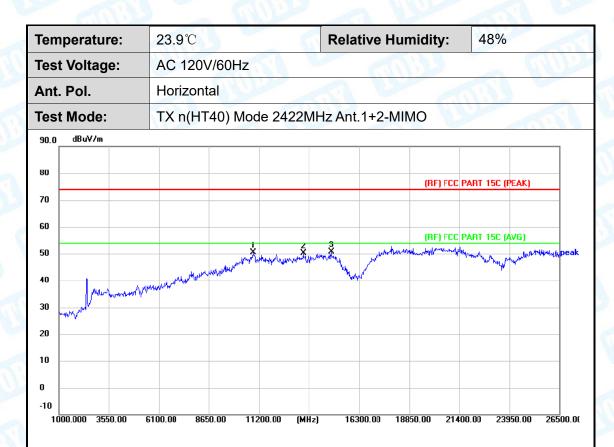
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 49 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10766.500	41.69	7.50	49.19	74.00	-24.81	peak	Р
2	13418.500	39.17	10.17	49.34	74.00	-24.66	peak	Р
3 *	14183.500	39.46	10.25	49.71	74.00	-24.29	peak	Р

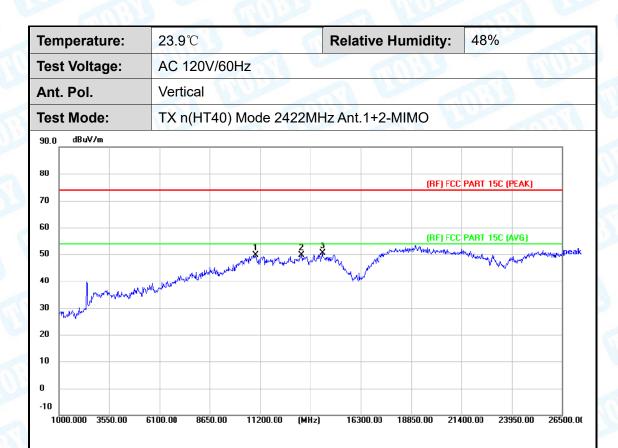
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 50 of 91



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10894.000	42.17	8.20	50.37	74.00	-23.63	peak	Р
2	13444.000	39.96	10.15	50.11	74.00	-23.89	peak	Р
3 *	14872.000	39.39	11.14	50.53	74.00	-23.47	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 51 of 91

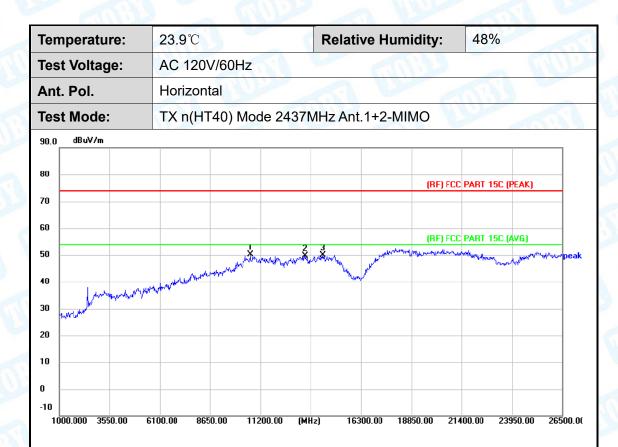
No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10970.500	41.37	8.18	49.55	74.00	-24.45	peak	Р
2	13291.000	39.94	9.79	49.73	74.00	-24.27	peak	Р
3 *	14362.000	39.72	10.73	50.45	74.00	-23.55	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

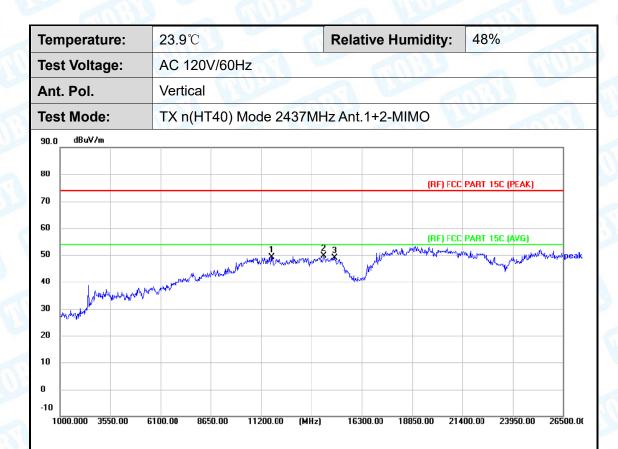
2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

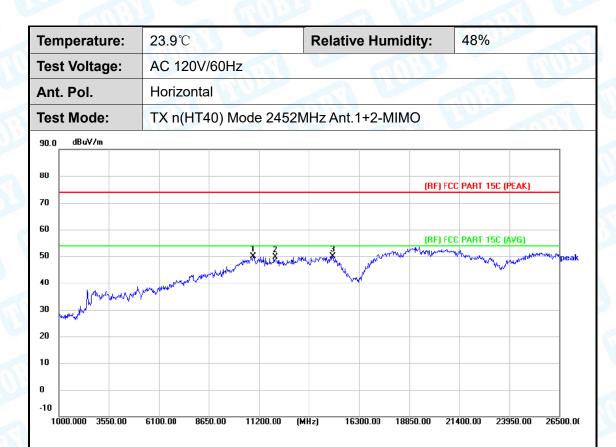
6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 52 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10690.000	43.11	6.96	50.07	74.00	-23.93	peak	Р
2	13444.000	39.60	10.15	49.75	74.00	-24.25	peak	Р
3	14362.000	39.08	10.73	49.81	74.00	-24.19	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

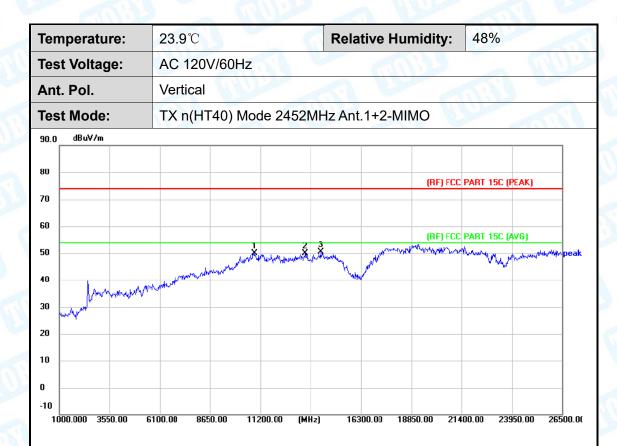
Report No.: TBR-C-202301-0038-4 Page: 53 of 91



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11735.500	40.19	8.87	49.06	74.00	-24.94	peak	Р
2 *	14362.000	38.87	10.73	49.60	74.00	-24.40	peak	Р
3	14923.000	37.63	11.36	48.99	74.00	-25.01	peak	Р

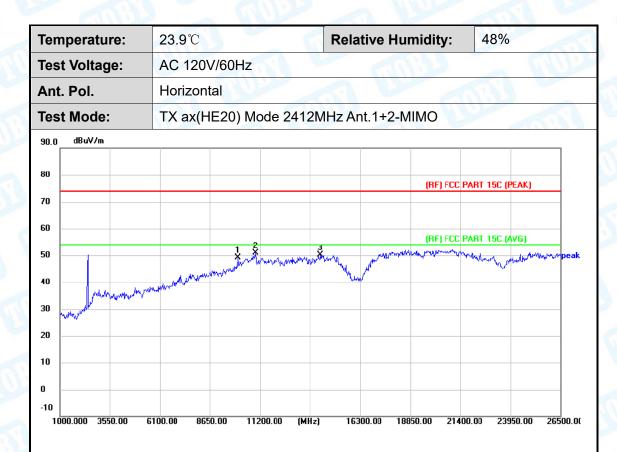
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 54 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10919.500	41.67	8.21	49.88	74.00	-24.12	peak	Р
2	12016.000	40.31	9.23	49.54	74.00	-24.46	peak	Р
3 *	14948.500	38.58	11.37	49.95	74.00	-24.05	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 55 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10894.000	41.67	8.20	49.87	74.00	-24.13	peak	Р
2	13469.500	39.78	10.13	49.91	74.00	-24.09	peak	Р
3 *	14260.000	40.03	10.29	50.32	74.00	-23.68	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 56 of 91

No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10052.500	44.15	5.09	49.24	74.00	-24.76	peak	Р
2 *	10970.500	42.65	8.18	50.83	74.00	-23.17	peak	Р
3	14285.500	39.79	10.30	50.09	74.00	-23.91	peak	Р

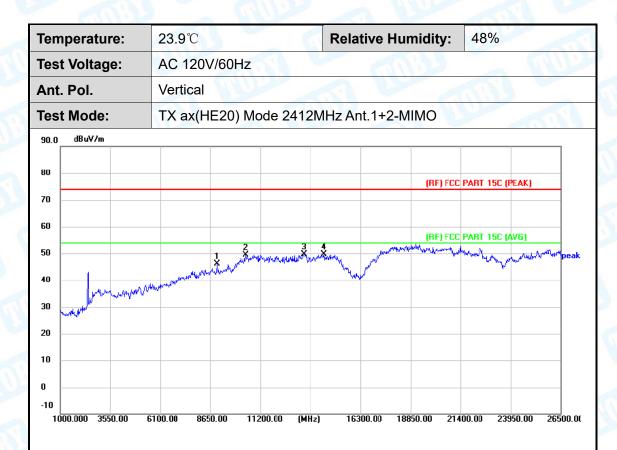
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 57 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	9007.000	46.93	-0.79	46.14	74.00	-27.86	peak	Р
2	10460.500	42.97	6.37	49.34	74.00	-24.66	peak	Р
3 *	13418.500	39.51	10.17	49.68	74.00	-24.32	peak	Р
4	14438.500	38.79	10.86	49.65	74.00	-24.35	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

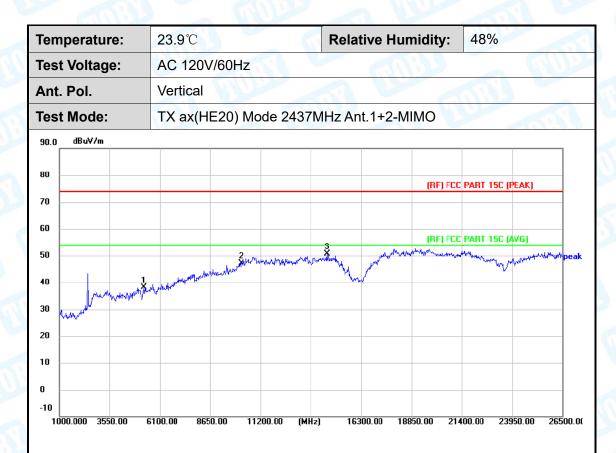
Report No.: TBR-C-202301-0038-4 Page: 58 of 91

Ten	nperature:	23.9℃		. (Relative H	umidity:	48%	
Tes	t Voltage:	AC 120	V/60Hz		6	CUM		(AU
Ant	. Pol.	Horizon	tal			200	(III)	
Tes	t Mode:	TX ax(H	E20) Mod	le 2437N	/Hz Ant.1+	2-MIMO		
90.0	dBuV/m							
80						(BE) FCC	PART 15C (PEA	K1
70						()		
60						(RF) FCC	PART 15C (AVG]
50			in the more than	when when the	Martin martin	and the second second	Mundury Uniters	w/m_hellts
40		manu and both	entiple" "		- The			
30	why wh							
20								
10								
0								
-10								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5003.500	48.36	-9.51	38.85	74.00	-35.15	peak	Р
2	10945.000	41.79	8.20	49.99	74.00	-24.01	peak	Р
3	13928.500	38.81	10.85	49.66	74.00	-24.34	peak	Р
4 *	14387.500	39.59	10.91	50.50	74.00	-23.50	peak	Р

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m) 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected. 5. No report for the demission which below the prescribed limit


5. No report for the emission which below the prescribed limit.

6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 59 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5309.500	47.23	-8.98	38.25	74.00	-35.75	peak	Р
2	10231.000	41.34	5.83	47.17	74.00	-26.83	peak	Р
3 *	14566.000	39.94	10.79	50.73	74.00	-23.27	peak	Р

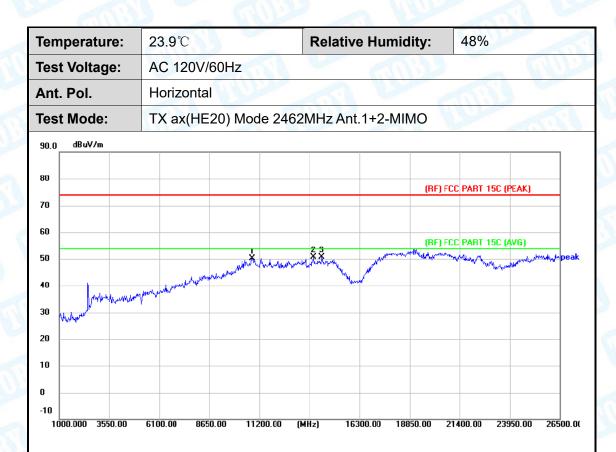
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

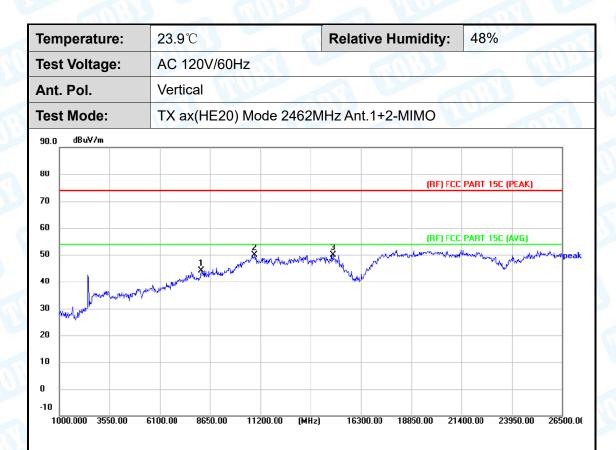
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 60 of 91



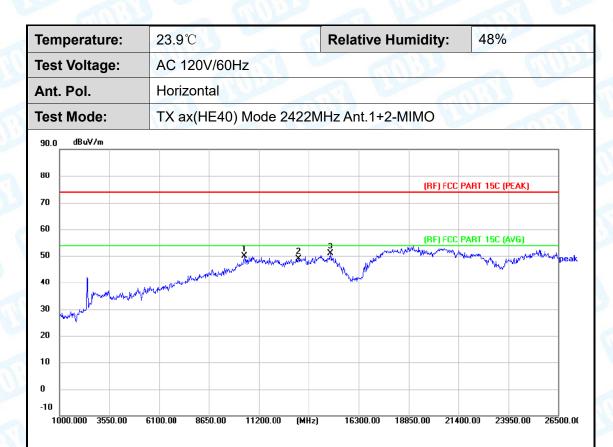
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10843.000	42.18	7.96	50.14	74.00	-23.86	peak	Р
2	13954.000	39.83	10.70	50.53	74.00	-23.47	peak	Р
3 *	14387.500	39.70	10.91	50.61	74.00	-23.39	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 61 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	8191.000	46.41	-2.18	44.23	74.00	-29.77	peak	Р
2	10919.500	41.66	8.21	49.87	74.00	-24.13	peak	Р
3 *	14872.000	38.76	11.14	49.90	74.00	-24.10	peak	Р

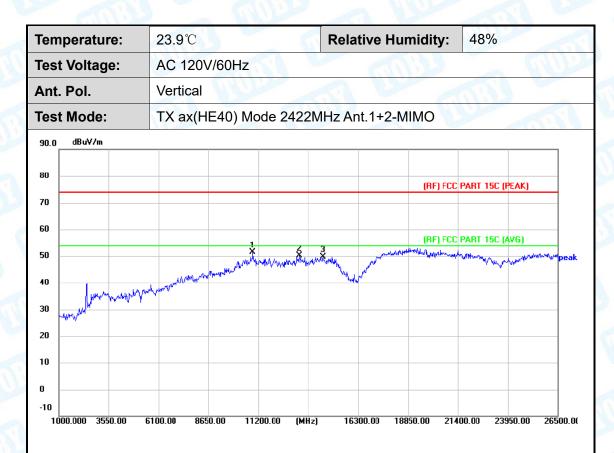
Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 62 of 91



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10460.500	43.52	6.37	49.89	74.00	-24.11	peak	Р
2	13214.500	39.12	9.80	48.92	74.00	-25.08	peak	Р
3 *	14846.500	39.83	10.93	50.76	74.00	-23.24	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 63 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10919.500	43.06	8.21	51.27	74.00	-22.73	peak	Р
2	13291.000	40.39	9.79	50.18	74.00	-23.82	peak	Р
3	14515.000	38.94	10.69	49.63	74.00	-24.37	peak	Ρ

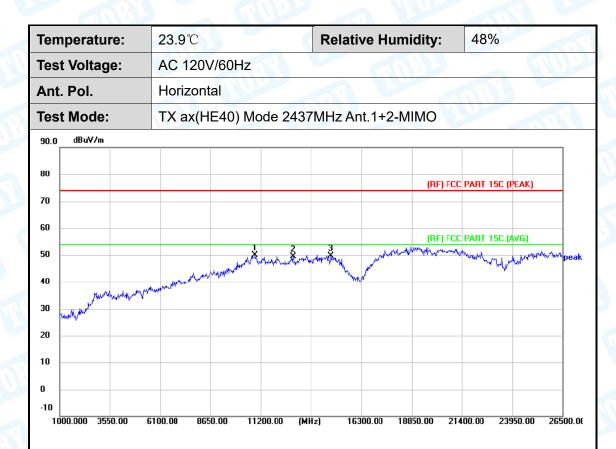
Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

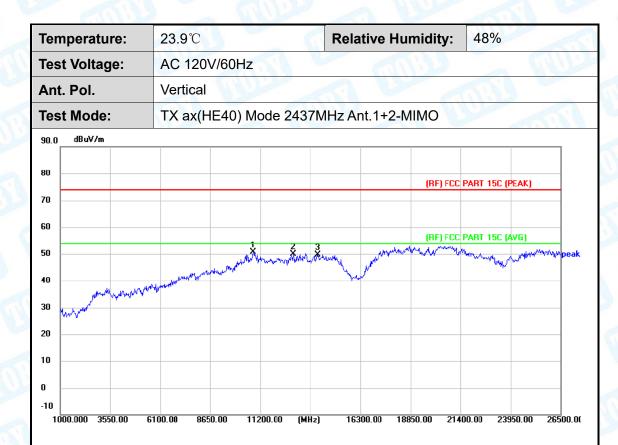
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.


5. No report for the emission which below the prescribed limit.

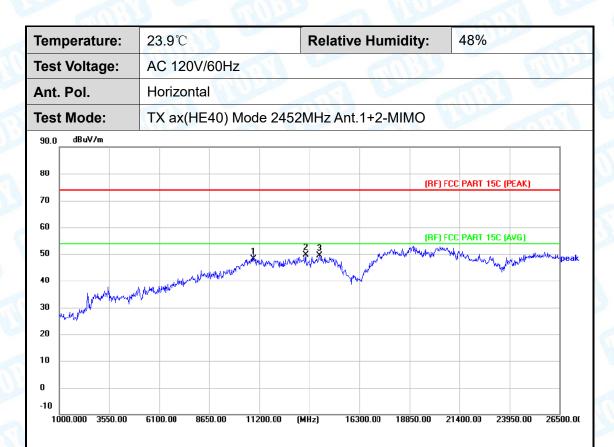
6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 64 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10919.500	41.62	8.21	49.83	74.00	-24.17	peak	Р
2	12832.000	40.08	9.27	49.35	74.00	-24.65	peak	Р
3	14744.500	38.95	10.74	49.69	74.00	-24.31	peak	Р

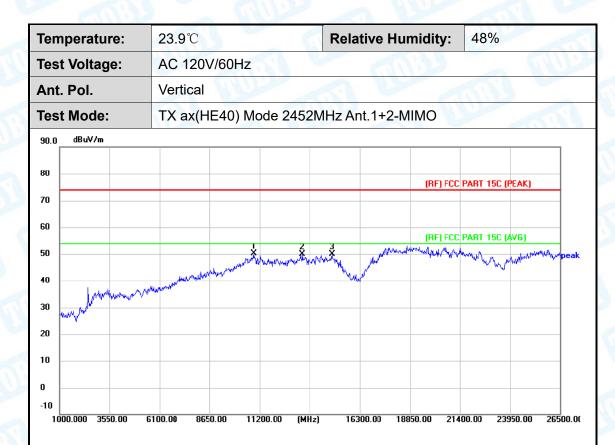
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 65 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10843.000	42.75	7.96	50.71	74.00	-23.29	peak	Р
2	12883.000	40.71	9.09	49.80	74.00	-24.20	peak	Р
3	14132.500	39.50	10.19	49.69	74.00	-24.31	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 66 of 91


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10919.500	39.85	8.21	48.06	74.00	-25.94	peak	Р
2 *	13546.000	39.65	10.02	49.67	74.00	-24.33	peak	Р
3	14285.500	39.08	10.30	49.38	74.00	-24.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Report No.: TBR-C-202301-0038-4 Page: 67 of 91

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10894.000	41.94	8.20	50.14	74.00	-23.86	peak	Р
2	13367.500	39.72	10.06	49.78	74.00	-24.22	peak	Р
3	14872.000	38.66	11.14	49.80	74.00	-24.20	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Attachment C-- Restricted Bands Requirement Test Data

Tempe	rature:	23.	6°C			Re	lati	ve Humidit	y: 46	%	
Test Vo	oltage:	AC	120	//60H	z	102		-	NUP		
Ant. Po	ol.	Но	rizont	al	10		1	199		(IV)	2
Test M	ode:	ΤХ	b Mc	de 24	12MHz An	t.1-SIS	С		20		
Remar	k:	On	y wo	rse ca	ise is repoi	ted.		aV		-	
120.0 di	3uV/m										_
110								Ę			
100								\sim			
90								ļ	Į		
80											
								2.4G Rest	ricted Band-(I	Peak)	
70								A	h		
60				1 X			3	V 2.4G Rest	ricted Band-(AVG)	
50		. And	~	Ìm	mm	mum	× M		- 'w	him	~,ρ
40	and a second second second second second second	× ···									
30 20.0											
2300.00	0 2315.00	2330.00	234	5.00	2360.00 (MI	lz) 23	90.00	2405.00	2420.00	2435.00 2	2450
No.	Frequer (MHz	- 1		iding 8u∀)	Factor (dB/m)			Limit (dBuV/m)	Margin (dB)	Detector	P
1	2345.9			.71	4.66	54.3		74.00	-19.63	peak	
2 *	2345.9			.70	4.66	49.3		54.00	-4.64	AVG	
3	2390.00			.30	4.80	52.1		74.00	-21.90	peak	
4	2390.00	00	40	.20	4.80	45.0	0	54.00	-9.00	AVG	F
											-

Remark:

5

6

2411.300

2411.300

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

106.24

104.55

4.86

4.86

111.10

109.41

peak

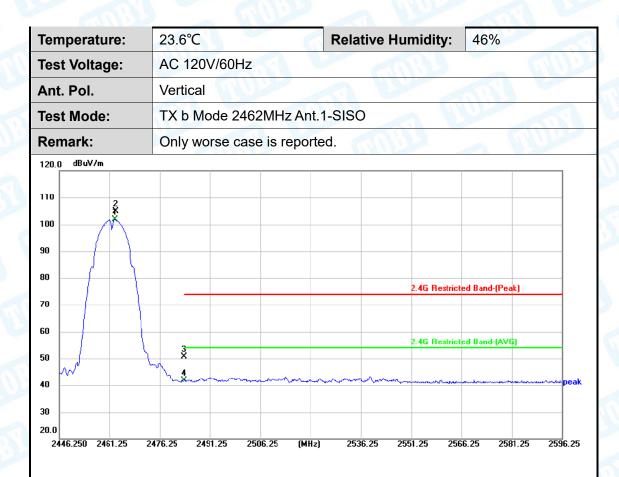
AVG

Temperature:	23.6°C		Relative Humid	ity: 4	6%	
Test Voltage:	AC 120V/60	Hz	an B	5		105
Ant. Pol.	Vertical		ave	-	241	
Test Mode:	TX b Mode 2	412MHz Ant.1-	SISO	ALC:		5
Remark:	Only worse of	case is reported				J. S.
120.0 dBuV/m						
110				6		
100				%		
90						
BO			2.46	Restricted B	and-(Peak)	
70						
60	ż			Restricted	land-(AVG)	
50	2 2				hum	
40						
30						
2300.000 2315.00	2330.00 2345.00	2360.00 (MHz)	2390.00 2405.00	2420.00) 2435.00	2450.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2335.850	45.85	4.63	50.48	74.00	-23.52	peak	Р
2 *	2335.850	37.91	4.63	42.54	54.00	-11.46	AVG	Р
3	2390.000	44.49	4.80	49.29	74.00	-24.71	peak	Р
4	2390.000	36.37	4.80	41.17	54.00	-12.83	AVG	Р
5	2411.150	100.27	4.86	105.13			peak	
6	2411.450	97.55	4.86	102.41			AVG	

Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)


Temperature:	23.6°C	Relative Humidity:	46%					
Fest Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	100						
Test Mode:	TX b Mode 2462M	Hz Ant.1-SISO	U.S.					
Remark:	Only worse case is	reported.	A TUP					
120.0 dBu∀/m								
110 X2 100 90 80 70		2.4G Restrict	ed Band-(Peak)					
50 × 1	h 3	5 2.4G Restrict	cd Band-(AVG)					
40 30 20.0								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2460.950	107.48	5.06	112.54			peak	
2	2463.050	104.50	5.06	109.56			AVG	
3	2483.500	48.84	5.15	53.99	74.00	-20.01	peak	Р
4	2483.500	40.50	5.15	45.65	54.00	-8.35	AVG	Р
5	2538.950	48.53	5.29	53.82	74.00	-20.18	peak	Р
6 *	2538.950	43.19	5.29	48.48	54.00	-5.52	AVG	Р

Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2462.900	96.77	5.06	101.83			AVG	
2	2463.050	99.72	5.06	104.78			peak	
3	2483.500	45.58	5.15	50.73	74.00	-23.27	peak	Р
4 *	2483.500	36.78	5.15	41.93	54.00	-12.07	AVG	Р

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.6°C Relative Humidity: 46%
est Voltage:	AC 120V/60Hz
Ant. Pol.	Horizontal
est Mode:	TX g Mode 2412MHz Ant.1-SISO
Remark:	Only worse case is reported.
120.0 dBu∀/m	
110	3
00	
30	
70	2.4G Restricted Band-[Peak]
50	2.4G Restricted Band (AVG)
50	
0	pe
0.0	
2300.000 2315.00	2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2420.00 2435.00 2450.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	61.00	4.80	65.80	74.00	-8.20	peak	Р
2 *	2390.000	42.45	4.80	47.25	54.00	-6.75	AVG	Р
3	2409.800	101.96	4.85	106.81			peak	
4	2409.950	93.70	4.85	98.55			AVG	

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Femperature:	23.6°C Relative Humidity: 46%	
est Voltage:	AC 120V/60Hz	0
nt. Pol.	Vertical	
est Mode:	TX g Mode 2412MHz Ant.1-SISO	5
Remark:	Only worse case is reported.	12
120.0 dBuV/m		_
110		
100	3	
90		_
80	2.4G Restricted Band-[Peak]	_
70		_
60	L 2.46 Restricted Band-(AVG)	_
50		_
40		pe
30		_
20.0 2300.000 2315.0	0 2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2420.00 2435.00	2450.1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	49.70	4.80	54.50	74.00	-19.50	peak	Р
2 *	2390.000	36.80	4.80	41.60	54.00	-12.40	AVG	Р
3	2410.850	94.48	4.86	99.34			peak	
4	2415.500	86.46	4.88	91.34			AVG	

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

lemperature:	23.6°C		Relative Hu	midity:	46%				
Fest Voltage:	AC 120V/60H	AC 120V/60Hz							
Ant. Pol.	Horizontal	lorizontal							
fest Mode:	TX g Mode 2	462MHz Ant.1	-SISO	a W	V	ANT?			
Remark:	Only worse of	ase is reported	1. <u>(11)</u> .t	9		1 PP			
120.0 dBuV/m									
110 1 100 2 90 80 70 60	3×			2.4G Restrict	ted Band-(Peak)				
50	4			2.4G Restrict	ted Band-(AVG)				
40		***************************************				+h-n-n-pe			
20.0									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2467.850	101.56	5.08	106.64			peak	
2	2468.450	94.27	5.08	99.35			AVG	
3	2483.500	58.33	5.15	63.48	74.00	-10.52	peak	Р
4 *	2483.500	43.84	5.15	48.99	54.00	-5.01	AVG	Р
5	2559.950	45.79	5.34	51.13	74.00	-22.87	peak	Р
6	2559.950	38.58	5.34	43.92	54.00	-10.08	AVG	Р

Temperature:	23.6°C	Relative Humidity:	46%					
est Voltage:	AC 120V/60Hz	AC 120V/60Hz						
nt. Pol.	Vertical							
est Mode:	TX g Mode 2462	MHz Ant.1-SISO						
Remark:	Only worse case	is reported.	- 61012					
20.0 dBuV/m								
10								
00 2								
0								
0		2.4G Restricter	d Dand (Dank)					
0			u Danu-(Feak)					
o 📝 🚽	3							
0	×	2.4G Restricte	d Band-(AVG)					
0	*	an the second and the						
0								
0.0								

No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2456.750	87.63	5.04	92.67			AVG	
2	2459.900	95.55	5.05	100.60			peak	
3	2483.500	51.35	5.15	56.50	74.00	-17.50	peak	Р
4 *	2483.500	38.82	5.15	43.97	54.00	-10.03	AVG	Р

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.6°C	Relative Humidity:	46%
Fest Voltage:	AC 120V/60Hz	COB!	
Ant. Pol.	Horizontal	AU	191
fest Mode:	TX n(HT20) Mode	2412MHz Ant.1+2-MIMO	U.S.
Remark:	Only worse case is	reported.	- mur
20.0 dBuV/m			
10		3	
00			
0		2.4G Restricte	ed Band-(Peak)
0			
;0		2.4G Restricto	ed Band (AVG)
0	and a second and a s		De
0			
20.0 2300.000 2315.00	2330.00 2345.00 2360.00	0 (MHz) 2390.00 2405.00 242(0.00 2435.00 2450.1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	54.25	4.80	59.05	74.00	-14.95	peak	Р
2 *	2390.000	41.78	4.80	46.58	54.00	-7.42	AVG	Р
3	2415.950	105.41	4.88	110.29			peak	
4	2417.450	98.31	4.88	103.19			AVG	

- Remark: 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.6°C Relative Humidity: 46%
Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Fest Mode:	TX n(HT20) Mode 2412MHz Ant.1+2-MIMO
Remark:	Only worse case is reported.
120.0 dBuV/m	
110	
100	* * · · · · · · · · · · · · · · · · · ·
90	
30	2.4G Restricted Band-(Peak)
70	
60	2.4G Restricted Band-(AVG)
50	2
40	per
30	
20.0 2300.000 2315.00	2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2420.00 2435.00 2450.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	52.50	4.80	57.30	74.00	-16.70	peak	Р
2 *	2390.000	38.49	4.80	43.29	54.00	-10.71	AVG	Р
3	2410.250	91.39	4.85	96.24			AVG	
4	2412.500	99.66	4.87	104.53			peak	

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Cemperature:	23.6°C	Relative Humidity:	46%					
fest Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	A						
fest Mode:	TX n(HT20) Mod	e 2462MHz Ant.1+2-MIMO						
Remark:	Only worse case	is reported.						
20.0 dBuV/m								
1 ×								
10 2								
00								
0								
0	_	2.4G Restricte						
o /			a Bana-(reak)					
0	3 X	5						
	*	2.4G Resting to	d Band-(AVG)					
0								
0								
0								
20.0								


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2465.900	108.17	5.08	113.25			peak	
2	2466.950	98.91	5.08	103.99			AVG	
3	2483.500	58.56	5.15	63.71	74.00	-10.29	peak	Р
4	2483.500	46.46	5.15	51.61	54.00	-2.39	AVG	Р
5	2559.950	51.98	5.34	57.32	74.00	-16.68	peak	Р
6 *	2560.100	47.59	5.34	52.93	54.00	-1.07	AVG	Р

Temperature	:	23.6°C			F	Relative	Humidit	/: 46	%	
Test Voltage	:	AC 120	V/60H	łz	0	e	(B)			101
Ant. Pol.		Vertical	(A)	UPP	-		1900	-		
Test Mode:		TX n(H	T20) N	Mode 24	62MHz	Ant.1+2	-MIMO	ALL A		1
Remark:		Only wo	orse c	ase is re	eported.	100	13.2			J.
120.0 dBuV/m										
110 100 90 70	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-					2.46 Re	stricted Bar	nd-(Peak)	
60 50 40		ž.					2.4G R	estricted Bar	nd-(AVG)	pe
30 20.0 2442.500 2457.	50 2	2472.50 2	487.50	2502.50	(MHz)	2532.50	2547.50	2562.50	2577.50	2592.5

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2459.450	98.45	5.05	103.50			peak	
2	2466.800	90.01	5.08	95.09			AVG	
3	2483.500	46.94	5.15	52.09	74.00	-21.91	peak	Р
4	2483.500	39.53	5.15	44.68	54.00	-9.32	AVG	Р
5	2559.950	45.90	5.34	51.24	74.00	-22.76	peak	Р
6 *	2559.950	41.93	5.34	47.27	54.00	-6.73	AVG	Ρ

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	52.82	4.80	57.62	74.00	-16.38	peak	Р
2 *	2390.000	42.94	4.80	47.74	54.00	-6.26	AVG	Р
3	2426.350	94.28	4.92	99.20			AVG	
4	2428.300	102.84	4.94	107.78			peak	

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.6°C	Relative Humidity:46%
Test Voltage:	AC 120V/60Hz	TOBLE OUL
Ant. Pol.	Vertical	
Test Mode:	TX n(HT40) Mode 242	22MHz Ant.1+2-MIMO
Remark:	Only worse case is re	ported.
120.0 dBuV/m		
110		
100		3
90		*
30		2.4G Restricted Band-(Peak)
70		
50		1 2.4G Restricted Band-(AVG)
50		2.4G Heatricted Band (AVG)
40		
30		
20.0		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	47.54	4.80	52.34	74.00	-21.66	peak	Р
2 *	2390.000	37.07	4.80	41.87	54.00	-12.13	AVG	Р
3	2420.200	94.45	4.90	99.35			peak	
4	2420.350	86.44	4.90	91.34			AVG	

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Cemperature:	23.6°C	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT40) Mode	2452MHz Ant.1+2-MIMO	U.S.
Remark:	Only worse case is	s reported.	A TUP
120.0 dBuV/m			
110			
	~m_		
80			
70		2.4G Restricte	d Band-(Peak)
60	š		5 d Band-(AVG) &
50			
40			manamanan (p
30			
20.0			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2436.700	94.58	4.97	99.55			AVG	
2	2457.700	102.54	5.04	107.58			peak	
3	2483.500	56.07	5.15	61.22	74.00	-12.78	peak	Р
4	2483.500	45.27	5.15	50.42	54.00	-3.58	AVG	Р
5	2559.850	51.54	5.34	56.88	74.00	-17.12	peak	Р
6 *	2560.000	47.40	5.34	52.74	54.00	-1.26	AVG	Р

Temperature:	23.6°C		Relative Humid	ity: 46%			
Fest Voltage:	AC 120V	/60Hz		5 6			
Ant. Pol.	Vertical	nu	200				
Test Mode:	TX n(HT4	0) Mode 2452	2MHz Ant.1+2-MIMO	TUU	5		
Remark:	Only wors	nly worse case is reported.					
120.0 dBuV/m					_		
110							
100	1 X				_		
90	2						
80	ų ~		2.4G	Restricted Band-(Peak)	_		
70							
60			2.46	Restricted Band-(AVG) 5	_		
50		3 X 4					
40			man management and a second		pe		
30							
20.0 2419.750 2434.75	2449.75 2464	.75 2479.75 (MHz) 2509.75 2524.75	2539.75 2554.75	2569.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2447.350	92.89	5.00	97.89			peak	
2	2456.950	85.34	5.04	90.38			AVG	
3	2483.500	47.25	5.15	52.40	74.00	-21.60	peak	Р
4	2483.500	38.96	5.15	44.11	54.00	-9.89	AVG	Р
5	2560.000	47.87	5.34	53.21	74.00	-20.79	peak	Р
6 *	2560.150	41.46	5.34	46.80	54.00	-7.20	AVG	Р

Temperature:	23.6°C	Relative Humidity:	46%
Fest Voltage:	AC 120V/60Hz	- BU	
Ant. Pol.	Horizontal	101	
Fest Mode:	TX ax(HE20) Mode	2412MHz Ant.1+2-MIMO	
Remark:	Only worse case is	reported.	000
20.0 dBuV/m			
			3 X
			4 ×
100			$\frown \frown \frown$
90			
80		2.4G Restricte	ed Band-(Peak)
70			/ \
60		1×	d Band-(AVG)
50		2	sd Band-(AVG)
40	mound man and a second	man and the second s	
20			
30 20.0			
2279.250 2294.25	2309.25 2324.25 2339.25	(MHz) 2369.25 2384.25 239	9.25 2414.25 2429

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	56.83	4.80	61.63	74.00	-12.37	peak	Р
2 *	2390.000	44.43	4.80	49.23	54.00	-4.77	AVG	Р
3	2417.550	108.38	4.88	113.26			peak	
4	2417.700	98.04	4.88	102.92			AVG	

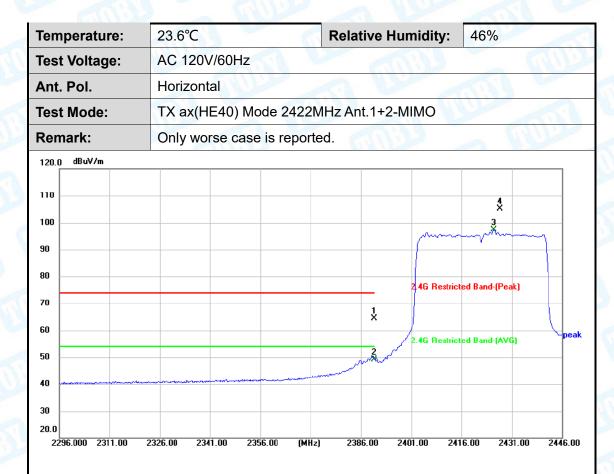
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Cemperature:	23.6°C	Relative Hu	midity:	46%	
fest Voltage:	AC 120V/60Hz		CB)		10h
Ant. Pol.	Vertical	10			
est Mode:	TX ax(HE20) Mo	de 2412MHz Ant.1+2-N	ЛІМО		5
Remark:	Only worse case	is reported.	9		U.L.
20.0 dBuV/m			i.		
10					
00				3 X	
				- Å	
0					
			2.4G Restric	ted Band-(Peak)	
			1 2.40 [°] Restric	ed Band-(AVG)	
50			3		p
0 +		an a			
30					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	52.34	4.80	57.14	74.00	-16.86	peak	Р
2 *	2390.000	40.53	4.80	45.33	54.00	-8.67	AVG	Р
3	2410.200	99.90	4.85	104.75			peak	
4	2411.100	91.22	4.86	96.08			AVG	

- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

emperature:	23.6°C Relative Humidity: 46%						
Fest Voltage:	AC 120V/60Hz						
Ant. Pol.	lorizontal						
Test Mode:	TX ax(HE20) Mode 2462MHz Ant.1+2-MIMO						
Remark:	Only worse case is reported.						
120.0 dBu¥/m							
110	2						
	3						
100							
90							
80	2.4G Restricted Band-(Peak)						
70	3						
60	2 45 Bestricted Bible (AV6)						
50							
40							
30							
20.0							


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2464.550	108.27	5.06	113.33			peak	
2	2467.400	97.83	5.08	102.91			AVG	
3	2483.500	57.11	5.15	62.26	74.00	-11.74	peak	Р
4	2483.500	45.89	5.15	51.04	54.00	-2.96	AVG	Р
5	2559.950	51.77	5.34	57.11	74.00	-16.89	peak	Р
6 *	2560.100	47.42	5.34	52.76	54.00	-1.24	AVG	Р

Femperature:	23.6°CRelative Humidity:46%
est Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
est Mode:	TX ax(HE20) Mode 2462MHz Ant.1+2-MIMO
Remark:	Only worse case is reported.
20.0 dBu¥/m	
10	2
00	
0	
0	2.4G Restricted Band-[Peak]
0	
0	3 X 2.4G Restricted B &d (AVG)
0	
0	particular and the second seco
20.0	
2433.500 2448.50	2463.50 2478.50 2493.50 (MHz) 2523.50 2538.50 2553.50 2568.50 2583

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2466.500	90.33	5.08	95.41			peak	
2	2466.500	100.59	5.08	105.67			peak	
3 *	2483.500	52.26	5.15	57.41	74.00	-16.59	peak	Р
4	2483.500	41.15	5.15	46.30	74.00	-27.70	peak	Р
5	2559.950	41.75	5.34	47.09	74.00	-26.91	peak	Р
6	2559.950	48.04	5.34	53.38	74.00	-20.62	peak	Р

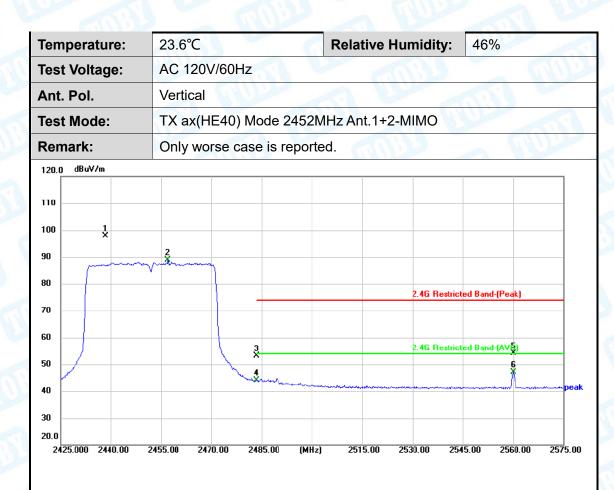
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2390.000	59.50	4.80	64.30	74.00	-9.70	peak	Р
2 *	2390.000	44.40	4.80	49.20	54.00	-4.80	AVG	Ρ
3	2425.750	92.48	4.92	97.40			AVG	
4	2427.400	100.23	4.94	105.17			peak	

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

Temperature:	23.6°CRelative Humidity:46%
Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Test Mode:	TX ax(HE40) Mode 2422MHz Ant.1+2-MIMO
Remark:	Only worse case is reported.
120.0 dBuV/m	
110	
100	<u>6</u>
90	5
80	
70	2.4G Restricted Band-[Peak]
60	
	AG Restricted Band-(AVG)
50	2 to the second se
40	
30 20.0	
20.0 2296.000 2311.00	2326.00 2341.00 2356.00 (MHz) 2386.00 2401.00 2416.00 2431.00 244

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2384.150	51.05	4.77	55.82	74.00	-18.18	peak	Р
2 *	2385.550	39.31	4.78	44.09	54.00	-9.91	AVG	Р
3	2390.000	46.34	4.80	51.14	74.00	-22.86	peak	Р
4	2390.000	37.43	4.80	42.23	54.00	-11.77	AVG	Р
5	2411.350	83.29	4.86	88.15			AVG	
6	2414.800	92.42	4.88	97.30			peak	

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)


Temperature:	23.6°C	Relative Humidity:	46%				
Test Voltage: AC 120V/60Hz							
Ant. Pol. Horizontal							
est Mode:	TX ax(HE40) Mod	de 2452MHz Ant.1+2-MIMO	U ST				
Remark:	Only worse case	is reported.	- GUL				
20.0 dBuV/m							
10 <u>1</u>							
00 ×	2						
0	~ man						
0							
0		2.4G Restric	sted Band-(Peak)				
0	5XX						
0	W. C.	2.4G Rostric	sted Band (AV¥) X				
		- man and a second a second a second a second					
0							
20.0 2425.000 2440.00	2455.00 2470.00 2485.	.00 (MHz) 2515.00 2530.00 25	45.00 2560.00 2575.				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2438.350	101.38	4.97	106.35			peak	
2	2455.600	92.43	5.03	97.46			AVG	
3	2483.500	57.17	5.15	62.32	74.00	-11.68	peak	Р
4	2483.500	46.42	5.15	51.57	54.00	-2.43	AVG	Р
5	2484.400	60.12	5.15	65.27	74.00	-8.73	peak	Р
6 *	2484.400	47.42	5.15	52.57	54.00	-1.43	AVG	Р
7	2560.000	51.00	5.34	56.34	74.00	-17.66	peak	Р
8	2560.000	46.48	5.34	51.82	54.00	-2.18	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2438.350	92.93	4.97	97.90			peak	
2	2456.950	83.96	5.04	89.00			AVG	
3	2483.500	47.92	5.15	53.07	74.00	-20.93	peak	Р
4	2483.500	38.93	5.15	44.08	54.00	-9.92	AVG	Р
5	2560.000	48.79	5.34	54.13	74.00	-19.87	peak	Р
6 *	2560.000	41.68	5.34	47.02	54.00	-6.98	AVG	Р

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

---END OF REPORT-----

