

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202311-0309-42

Page: 1 of 89

Radio Test Report

FCC ID: 2AW68-DV8919

Report No.	: TBR-C-202311-0309-42
Applicant	: Shenzhen SDMC Technology Co., Ltd.
Equipment Under Te	st (EUT)
EUT Name	: K3
Model No.	: DV8919
Series Model No.	
Brand Name	: SDMC
Sample ID	: HC-C-202311-0309-01-01& HC-C-202311-0309-01-02
Receipt Date	: 2023-12-20
Test Date	: 2023-12-20 to 2024-01-31
Issue Date	: 2024-01-31
Standards	: FCC Part 15 Subpart C 15.247
Test Method	: ANSI C63.10: 2013 KDB 558074 D01 15.247 Meas Guidance v05r02
Conclusions	: PASS
	In the configuration tested, the EUT complied with the standards specified above.
Test By	: 24. Hou RECHNOLZEROU : Seventa RECHNOLZEROU
Reviewed By	: Seven Will
Approved By	: WAW SU
	40

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202311-0309-42 Page: 2 of 89

Contents

COL	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT AND TEST SITE	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	12
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Mode	17
	6.6 Test Data	17
7.	RESTRICTED BANDS AND BAND EDGE REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Mode	
	7.6 Test Data	20
8.	BANDWIDTH TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	22
	8.5 EUT Operating Mode	
	8.6 Test Data	22

Report No.: TBR-C-202311-0309-42 Page: 3 of 89

9.	RF OUTPUT POWER	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	23
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	23
	9.5 EUT Operating Mode	23
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	24
	10.1 Test Standard and Limit	24
	10.2 Test Setup	24
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	24
	10.6 Test Data	24
11.	ANTENNA REQUIREMENT	25
	11.1 Test Standard and Limit	25
	11.2 Deviation From Test Standard	25
	11.3 Antenna Connected Construction	25
	11.4 Test Data	25
ATTA	CHMENT ACONDUCTED EMISSION TEST DATA	26
ATTA	CHMENT BUNWANTED EMISSIONS DATA	28
	CHMENT CRESTRICTED BANDS REQUIREMENT TEST DATA	

Report No.: TBR-C-202311-0309-42 Page: 4 of 89

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202311-0309-42	Rev.01	Initial issue of report	2024-01-31
10,000	TO THE		4000
BY TOP			
1000	Or Control		MORE
			133
TODE TO			
1000			MORE
	3	TOBY	TOTAL GOVE
	MODE		

Page: 5 of 89

1. General Information about EUT

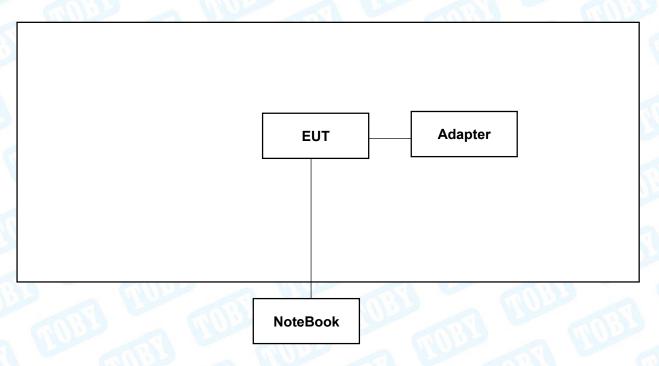
1.1 Client Information

Applicant	est of	Shenzhen SDMC Technology Co., Ltd.	
Address		om 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an I Road, Dalang Community, Xin'an Street, Bao'an District, enzhen, China	
Manufacturer		Shenzhen SDMC Technology Co., Ltd.	
Address		Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	9.	K3				
Models No.	E	DV8919				
Model Different		N/A	N/A			
THUE		Operation Frequency:	2412MHz~2462MHz			
		Number of Channel:	11 channels			
Product Description		Antenna Gain:	3.40dBi FPC Antenna 1 4.18dBi FPC Antenna 2			
	33	Modulation Type:	802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
		Adapter:(SA130-050200U)				
Power Rating		Input: 100-240V~, 50/60Hz 0.4A MAX				
		Output: 5.0V-2.0A				
Software Version	:	N/A	N/A			
Hardware Version		N/A				

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- (3)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



Page: 6 of 89

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information						
Name Model S/N Manufacturer Used "√"						
Notebook	HYLR-WFQ9	AAMFPM1418000165	honour	V		

Page: 7 of 89

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Emission Test(AC POWER)					
Final Test Mode Description					
Mode 1	TX b Mode Channel 01				
Fo	r Radiated and RF Conducted Test				
Final Test Mode	Description				
Mode 2	TX Mode b Mode Channel 01/06/11				
Mode 3	TX Mode g Mode Channel 01/06/11				
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11				
Mode 6	TX Mode ax(HE20) Mode Channel 01/06/11				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK 802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0 802.11ax (HE20) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 89

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test Softwa	re: adb comr	mand			
	Test M	lode: Contir	nuously	transmi	tting	
	WILD F	A HILL	Parameters			
Mode	Data Rate	Channel	SISO		CDD	
			Ant.1	Ant.2	Ant.1	Ant.2
	CCK/ 1Mbps	01	17	17	15	15
802.11b	CCK/ 1Mbps	06	17	18	15	15
	CCK/ 1Mbps	11	17	17	15	15
	OFDM/ 6Mbps	01	15	15	14	14
802.11g	OFDM/ 6Mbps	06	17	18	15	15
The state of the s	OFDM/ 6Mbps	11	17	16	15	15
	MCS 0	01	1	1	14	14
802.11n(HT20)	MCS 0	06	1	1	15	15
Million	MCS 0	11	1	1	15	15
ALTO:	MCS 0	01	1	1	14	14
802.11ax(HE20)	MCS 0	06	1	1	14	14
	MCS 0	11	1	1	14	14

Page: 9 of 89

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202311-0309-42 Page: 10 of 89

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	HC-C-202311-0309-01-02	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	HC-C-202311-0309-01-02	PASS	N/A
FCC 15.203	Antenna Requirement	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	HC-C-202311-0309-01-01	PASS	N/A
1	99% Occupied bandwidth	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.247(b)(3)	RF Output Power and E.I.R.P	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.247(e)	Power Spectral Density	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.207(a)	Conducted Unwanted Emissions	HC-C-202311-0309-01-01	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	HC-C-202311-0309-01-02	PASS	N/A
BU	On Time and Duty Cycle	HC-C-202311-0309-01-02	MARKET STATES	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202311-0309-42 Page: 11 of 89

4. Test Equipment and Test Site

Test Site				
No.	Test Site	Manufacturer	Specification	Used
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	√
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	X
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	√

Conducted Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emission	Test(B Site)				·
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 22, 2023	Feb.22, 2024
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024
W. Carlotte	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 30, 2023	Aug. 29, 2024
DE Damas Canada	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 30, 2023	Aug. 29, 2024
T:13	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

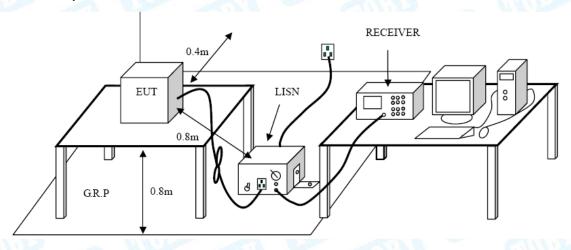
Page: 12 of 89

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Francis	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- •LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

Page: 13 of 89

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 14 of 89

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz			
Frequency (MHz)	Field Strength (µA/m)*	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~30.0	0.08	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

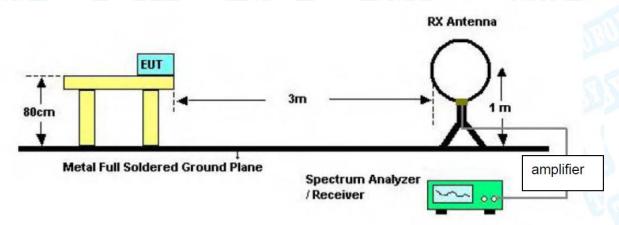
General field	General field strength limits at frequencies above 30 MHz		
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

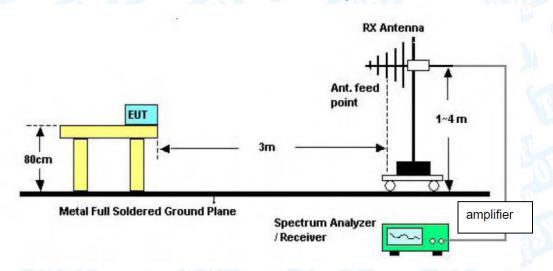
General field strength limits at frequencies Above 1000MHz		
Frequency	Frequency Distance of 3m (dBuV/m)	
(MHz)	Peak	Average
Above 1000	74	54
Mate		

Note:

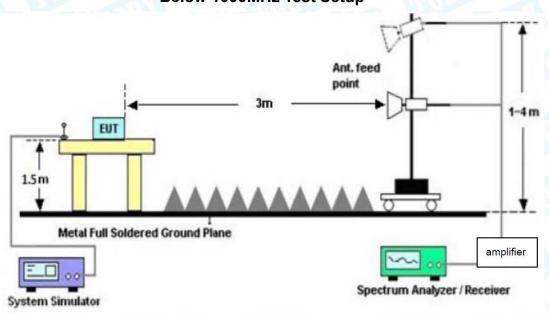
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB.

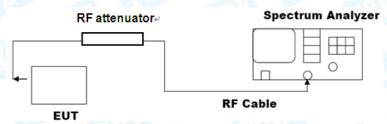

Page: 15 of 89

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup


Above 1GHz Test Setup

Page: 16 of 89

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 17 of 89

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

Page: 18 of 89

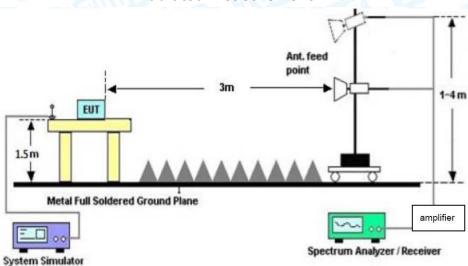
7. Restricted Bands and Band Edge Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

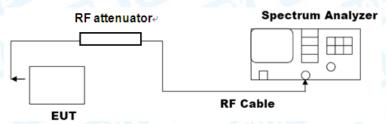

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-21.20	-41.20	
2483.5 ~2500	-21.20	-41.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

Radiated measurement



Page: 19 of 89

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

Page: 20 of 89

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

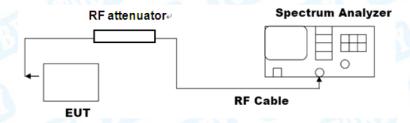
7.6 Test Data

Radiated measurement please refer to the Attachment C inside test report. Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

Page: 21 of 89

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth (DTS bandwidth)	>=500 KHz	2400~2483.5
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

--- DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

● The occupied bandwidth is the frequency bandwidth such that, below its lower and

above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified

Page: 22 of 89

by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

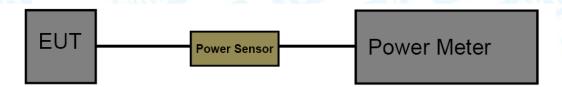
Please refer to the description of test mode.

8.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

Page: 23 of 89

9. RF Output Power


- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	not exceed 1 W or 30dBm	2400~2483.5
E.I.R.P	not exceed 4 W or 36dBm	2400~2463.5

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

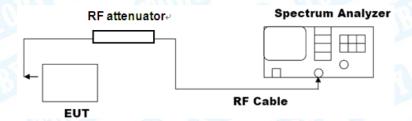
9.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

Page: 24 of 89

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

• The following procedure shall be used if maximum peak conducted output power was

used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Conducted measurement please refer to the Appendix for 2.4G Wi-Fi.

Page: 25 of 89

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The Max. gains of the antenna used for transmitting is 4.18dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.

	Antenna Type	
	Permanent attached antenna	1
5	⊠Unique connector antenna	
33	☐Professional installation antenna	

Page: 26 of 89

Attachment A--Conducted Emission Test Data

Tem	perature:	22.8°0			Relative Hu	ımidity:	46%	ATT I
Test	Voltage:	AC 12	20V/60Hz	11:31:5	- 11		-	
Term	ninal:	Line	1 W		(A) B	6	West	
Test	Mode:	Mode	1	S All		20 6	6	THE WAR
Rem	ark:	Only	worse cas	e is reporte	d. (1)			
90.0	dBuV							
80								
70								
60						(CE)FCC	PART 15C_	QP
50	~3 _{\\\\\\}					(¢E]F¢¢	PART 15C_A	AVG
40	Mary Mary							
30	A Van	manger 1	4				E7	. 901
	2 CM V 4W V	ر گهری _{م ایمال} ال	A grandant report	mentalypoons	man francis and marketing and the	Indiana Laboration	1	1 Deak
20			- Andrews	40m/v^\	MM	Company and the last		AVG
10							1 1111	<u> </u>
-10								
-100	.150	0.5	500	(MH	z) 5.	000		30.000
<u> </u>	=		Reading				0,,,,,,,	
No.		req.	Level	Facto		Limit	Over	
	M	lHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	* 0.10	660	39.74	9.84	49.58	65.16	-15.58	QP
2	0.1	660	23.41	9.84	33.25	55.16	-21.91	AVG
3	0.5	460	24.00	10.09	34.09	56.00	-21.91	QP
4	0.54	460	18.30	10.09	28.39	46.00	-17.61	AVG
5	12.20	620	16.47	10.00	26.47	60.00	-33.53	QP
6	12.2	620	11.25	10.00	21.25	50.00	-28.75	AVG
7	13.0	580	16.06	10.03	26.09	60.00	-33.91	QP
8	13.0	580	10.49	10.03	20.52	50.00	-29.48	AVG
9	27.5	020	17.67	10.36	28.03	60.00	-31.97	QP
10	27.5	020	10.59	10.36	20.95	50.00	-29.05	AVG
11	29.9	260	20.54	10.36	30.90	60.00	-29.10	QP
12	29.9	260	12.66	10.36	23.02	50.00	-26.98	AVG
Rema	ark:							

^{2.} Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Remark:
1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

Report No.: TBR-C-202311-0309-42 Page: 27 of 89

Temp	peratu	re:	2	22.8	3°C			W.			C		Re	lat	tive	Н	um	id	ity	':	46	%	98		
Test '	Voltaç	ge:	1	4C	12	0V/	60F	Ηz	e	A						K				V			6		13
Term	inal:		1	Veι	ıtra	ıl 🌾		N		50	_				87)						K	A			
Test	Mode	•	N	Mod	de	1						14)					ñ					4	A
Rema	ark:		(Onl	y w	ors	e c	ase	is	rep	ort	ed.					A		A			6	T	1	
90.0	dBu	N .				_					_		_					_					1	_	ı
80											\perp							1							
70						_					_		1												
60						_					_		_				(C	EJF	cc	PA	RT 1	5C_	QP		
50	3 X~~3										1						(C	EJF	¢c	PA	RT 1	5C_	AVG		
40	^	_24604	<u></u>		5						1							_							
30	\$ ^~\ 4	Mn		***	<u>~</u>	40/4,00		et de	manu.	hite.	ill.	lia ili						4	\perp	7	21		3	M	2
20		M	VV	L/L/	Д			A T	<u> </u>	<u> </u>	7	hu. Man	la May	7"	at app.	W.	Mear	***	W	₩,	" \	1		Д	peak
10				_		4/444	MAX.	"ווע	7	A PARTY	**	M	h/\s	V	APRIL PROPERTY	UL _A	444	g.e.W	enni	J	"\		/"		AVG
0											_		_									-tib-c		_	
-10 ₀	150				EOC						(MH	l-i			L	001							30). OC) 10
U.	130			U.	.500	,					(mii	12)			Э	.000	J						J	UL	,,,
	N 41					ead		g		orr					sure	e-		im	:1		<u> </u>	- 10			
INO.	Mk.		req	•		_ev			<u> </u>	Fac		<u></u>		ne							O۷				
			ЛHz			dΒι				dB				Bu				Bu			dE		Det		
1	*		620			39.				9.8				9.6							15.7			QF	
2		0.1	620)	2	22.	58			9.8	34		32	2.4	12		5	5.3	36	-2	22.9	94	1	4٧	/G
3		0.2	2140)	(36.4	43			9.8	31		46	3.2	24		6	3.0)5	-1	16.8	31	(QF	>
4		0.2	2140)	2	20.	73			9.8	31		30).5	54		5	3.0)5	-2	22.5	51	,	4٧	/G
5		0.5	5500)	2	25.8	89			9.7	1		35	5.6	30		56	3.0	00	-2	20.4	40	(QF)
6		0.5	5500)	•	17.	06			9.7	1		26	3.7	77		4	3.0	00	-1	19.2	23	,	4٧	/G
7		12.2	2220)	•	18.	79			9.9	94		28	3.7	73		60	0.0	00	-3	31.2	27	(QF	>
8		12.2	2220)		12.0	09			9.9	94		22	2.0)3		5().C	00	-2	27.9	97		4٧	/G
9		25.0)419	9		16.	83		1	0.9	90		27	7.7	73		60).C	00	-3	32.2	27	(QF	>
10		25.0)419	9		12.	17		1	0.9	90		23	3.0)7		5().C	00	-2	26.9	93	,	4٧	/G
11		29.4	1100)	2	22.	05		1	0.5	52		32	2.5	57		60).C	00	-2	27.4	43	(QF	>

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 28 of 89

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

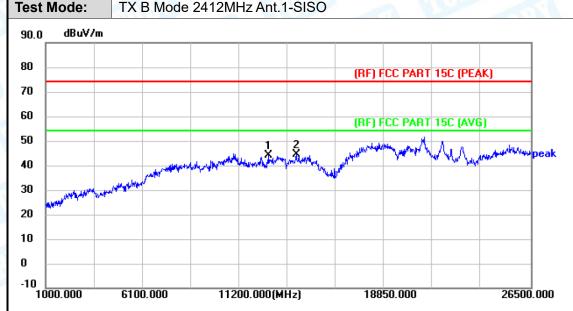
30MHz~1GHz

Temp	oer	ature:	24.8	3℃	an'	Relative	Humidity	: 43	%	1 1
Test	Vol	tage:	AC	120V/60H	z			· e	TO DE	
Ant.	Pol		Hor	izontal		CHIL			T. B. Car	
Test	Мо	de:	Mod	de 1						MAT.
Rem	ark	:	Only	y worse ca	se is report	ed.		6511	1.30	
80.0	_	dBuV/m								_
70										
60										
50							(RF)FCC 15C Margin -6 dB	3M Radia	tion	Ч
40										1
					_	2	34	X	Б X	
30					, Allen	2 Market miller I . I .	M had ad	مساميس و	A CHARLES	Mpeak
20	4.3414	Muchant	A MANAGER AND	Who who should not some	Marketandard	ALAMANT TAN	"II w wat of the	W/V		
10	, ,	4 11-14	Paraller 1	. Address Manage						
0										
-10										-
-20 30). 00 (0	60.	00	(M	Hz)	300.00		100	 0.000
No).		uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1		149.	4857	47.47	-21.05	26.42	43.50	-17.08	peak	Р
2	\neg	169.	5990	50.17	-22.21	27.96	43.50	-15.54	peak	Р
3		287.	9904	51.57	-21.98	29.59	46.00	-16.41	peak	Р
4		303.	5437	49.78	-20.86	28.92	46.00	-17.08	peak	Р
5	*	570.	6100	48.92	-14.28	34.64	46.00	-11.36	peak	Р
6		658.	8362	48.27	-14.32	33.95	46.00	-12.05	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202311-0309-42 Page: 29 of 89

Temper	rature:	24.8	3°C		Relative	Humidity:	43%		
Test Vo	Itage:	AC	120V/60H	Z	Contract of the second			M	N
Ant. Po	ol.	Vert	ical	UDE		Millian		I	
Test Mo	ode:	Mod	le 1		773	- (CUIN		A
Remark	< :	Only	y worse ca	se is report	ed.				
80.0	dBuV/m								_
70									
60						(RF)FCC 15C Margin -6 dB	3M Radiat	ion	
50						Maryin -o ub			
40	1.	2		3				6	1
30	× W		A LONG THE REAL PROPERTY.	3 Mu , *** **	5	Markethall	Jun Ann	6 X	∿pea
20 🏒	lette	100	i/M/Lat. ta. Albut. I	- W	VALUE TO A STATE OF THE STATE O	Mary Law By Tall	M Anthrope And A	* 1	
p	MANAGE CO.	M		N/A.	L. Pallinger	* '			
10	"NAMA"	,		N/"	L. Mallina	*			
l"	"MANA			N/"	yeshlikan				
10				W"	1				
10				W"	,				
10 -10 -		60.1	00	(M	Hz)	300.00		1000).000
10	10				Hz)	300.00			0.000
10		ency	Reading (dBuV)		Hz)		Margin		
10	Freque	ency z)	Reading	Factor	Hz)	300.00 Limit	Margin	1000	
10 0 -10 -20 30.00	Freque	ency z)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	300.00 Limit (dBuV/m)	Margin (dB)	1000	P/F
10 0 -10 -20 30.00 No.	Freque (MH:	ency z) 12 91	Reading (dBuV) 55.54	Factor (dB/m) -23.82	Level (dBuV/m) 31.72	300.00 Limit (dBuV/m) 40.00	Margin (dB)	1000 Detector peak	P/F
10 0 -10 -20 30.00 No.	Freque (MH: 35.25 60.06	ency z) 12 91	Reading (dBuV) 55.54 55.68	Factor (dB/m) -23.82 -24.46	Level (dBuV/m) 31.72 31.22	300.00 Limit (dBuV/m) 40.00 40.00	Margin (dB) -8.28 -8.78	Detector peak peak	P/F P
10 0 -10 -20 30.00	Freque (MH: 35.25 60.06 104.53	ency z) 12 91 361 261	Reading (dBuV) 55.54 55.68 55.45	Factor (dB/m) -23.82 -24.46 -25.97	Level (dBuV/m) 31.72 31.22 29.48	300.00 Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -8.28 -8.78 -14.02	Detector peak peak peak	P/F P P

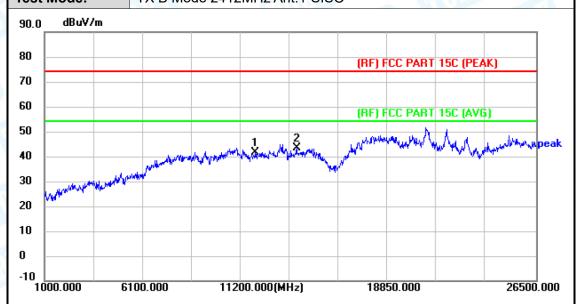

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Page: 30 of 89

Above 1GHz

	Temperature:	24.6℃	Relative Humidity:	53%
	Test Voltage:	AC 120V/60Hz	and it	
	Ant. Pol.	Horizontal		
ı	T 1 B41 -	TV D M I OAAONALL A	1.4.0100	MINITED TO THE PARTY OF THE PAR

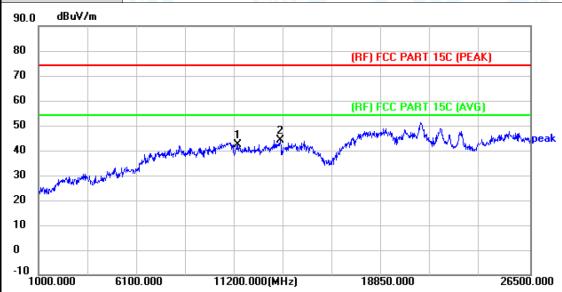
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12730.000	42.26	1.68	43.94	74.00	-30.06	peak	Р
2 *	14183.500	41.49	2.80	44.29	74.00	-29.71	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 31 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	A WOLLD	
Test Mode:	TX B Mode 2412MHz An	t 1-SISO	

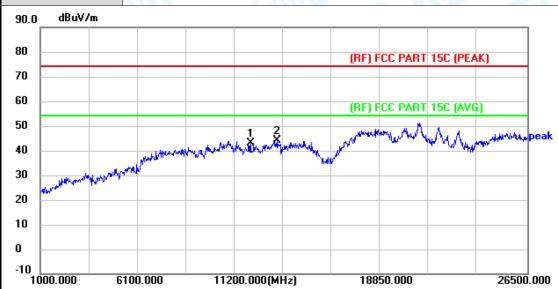
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11939.500	40.18	1.36	41.54	74.00	-32.46	peak	Р
2 *	14081.500	40.74	2.70	43.44	74.00	-30.56	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 32 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz An	t.1-SISO	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11353.000	41.94	0.54	42.48	74.00	-31.52	peak	Р
2 *	13520.500	41.94	2.20	44.14	74.00	-29.86	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

33 of 89 Page:

Temperate	ure:	24.6℃	Relative Humidity:	53%
Test Volta	ge:	AC 120V/60Hz		WW.
Ant. Pol.		Vertical		
Test Mode):	TX B Mode 2437MHz A	nt.1-SISO	

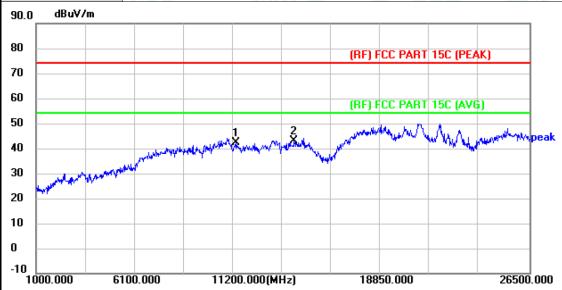
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12016.000	41.63	1.46	43.09	74.00	-30.91	peak	Р
2 *	13418.500	41.89	2.12	44.01	74.00	-29.99	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 34 of 89

Test Voltage: Ant. Pol. Test Mode:	Horizont				1	1999			17			
Test Mode:		al	(164)			AC 120V/60Hz						
	TVDMa				MAG			160	182			
9n n dBuV/m	I V D IVIC	TX B Mode 2462MHz Ant.1-SISO										
30.0												
10 0	and the state of t			APP HOUSE AND	(BF) F	CC PART	15C (PEA	i)	peak			
1000.000	6100.000	100.000 11200.000(h			4Hz) 18850.000			26500.000				

N	1 0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
	1	11633.500	40.46	0.94	41.40	74.00	-32.60	peak	Р
2	2 *	13265.500	41.71	1.98	43.69	74.00	-30.31	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 35 of 89

24.6℃	Relative Humidity:	53%				
AC 120V/60Hz						
Vertical						
TX B Mode 2462MHz Ant.1-SISO						
	AC 120V/60Hz Vertical	AC 120V/60Hz				

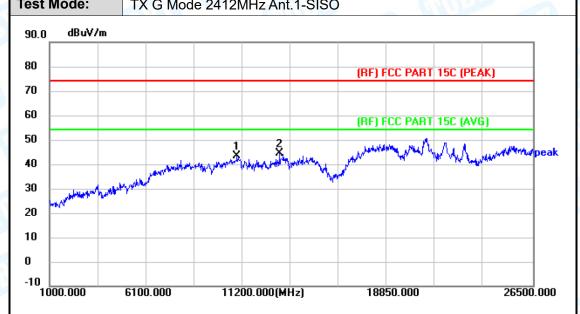
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	11353.000	41.77	0.54	42.31	74.00	-31.69	peak	Р
2 *	14336.500	40.24	2.96	43.20	74.00	-30.80	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 36 of 89

	Temperature:	24.6℃	Relative Humidity:	53%			
١	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal	A VIV				
	Tost Modo:	TV C Mode 2412MHz Apt 1 SISO					

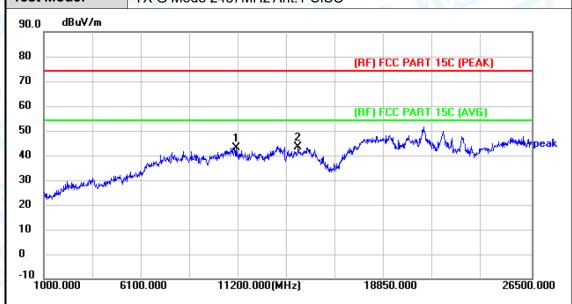
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12322.000	40.22	1.55	41.77	74.00	-32.23	peak	Р
2 *	13240.000	41.79	1.96	43.75	74.00	-30.25	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 37 of 89

Temperature:	24.6℃	Relative Humidity:	53%		
Test Voltage:	AC 120V/60Hz		WW.		
Ant. Pol.	Vertical				
Test Mode:	TV C Mode 2412MHz Apt 1 SISO				

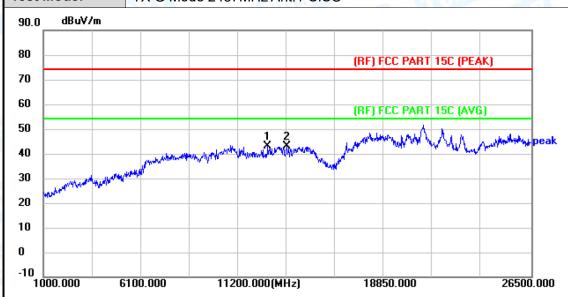
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	10894.000	43.47	-0.19	43.28	74.00	-30.72	peak	Р
2 *	13138.000	42.44	1.88	44.32	74.00	-29.68	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 38 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		WUR.
Ant. Pol.	Horizontal	A MULTINE	
Test Mode:	TX G Mode 2437MHz Ant	1-SISO	

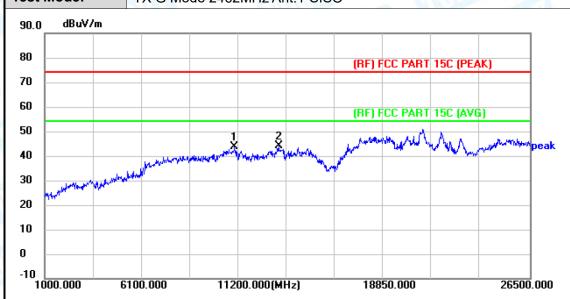
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11072.500	43.03	0.14	43.17	74.00	-30.83	peak	Р
2 *	14285.500	40.32	2.91	43.23	74.00	-30.77	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 39 of 89

Tomporeture	24.6℃	Polotivo Humiditu	53%			
Temperature:	24.0 C	Relative Humidity:	33%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	/ertical				
Test Mode: TX G Mode 2437MHz Ant.1-SISO						

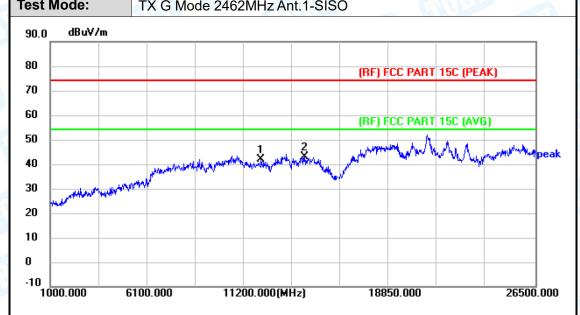
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12730.000	41.35	1.68	43.03	74.00	-30.97	peak	Р
2	13724.500	40.50	2.37	42.87	74.00	-31.13	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 40 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2462MHz Ant	1-SISO	

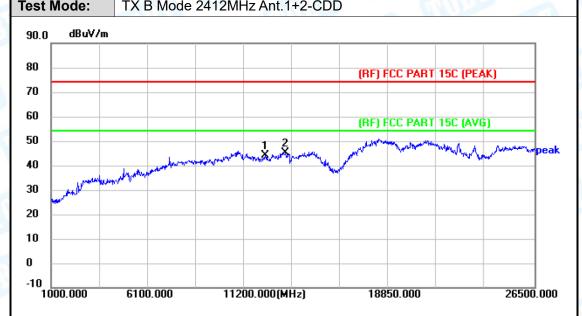
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	10970.500	43.68	-0.02	43.66	74.00	-30.34	peak	Р
2 *	13291.000	42.20	2.00	44.20	74.00	-29.80	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 41 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	A HILL	
Tost Modo:	TV C Mode 2462MHz Ant	1 9190	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12092.500	40.42	1.48	41.90	74.00	-32.10	peak	Р
2 *	14362.000	39.94	3.00	42.94	74.00	-31.06	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

42 of 89 Page:

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Toot Modes	TV D Made 2412MHz A	mt 1.12 CDD	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12322.000	42.43	1.55	43.98	74.00	-30.02	peak	Р
2 *	13367.500	42.95	2.07	45.02	74.00	-28.98	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 43 of 89

emperature:	24.6℃			Relati	ve Hun	idity:	53%		
est Voltage:	AC 120V	//60Hz	A 1	Charles of the Control of the Contro				(m)	
Ant. Pol.	Vertical		1)15)		MAIN	A second		1 6	
est Mode:	TX B Mo	de 2412	2MHz An	t.1+2-C	DD	- G			
90.0 dBuV/m									
30					(BF)	CC PART	15C (PE/	(K)	
70					()	0011111	100 (12.	,	
io					(RF)	CC PART	15C (AVI	3)	
50			Į Ž		and the state of t	the contract of	MARKA . A	January L.	pea
0	Mary Mary Mary Mary Mary Mary Mary Mary	dhe gethy held to proper y	MALAL JOHN	White he will a few ment	/		- W	May"	
60 00 00 00 00 00 00 00 00 00 00 00 00 0									
20									
0									
10 1000.000 6	100.000	110	00.000(MI		100	50.000		26500	

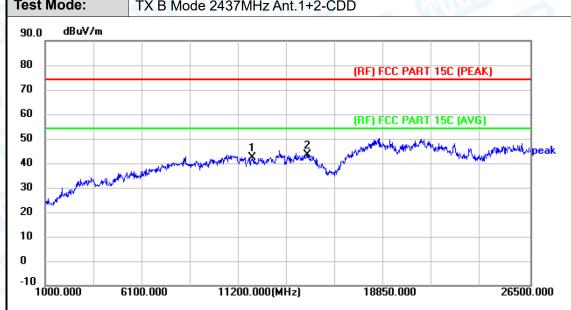
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11353.000	43.58	0.54	44.12	74.00	-29.88	peak	Р
2 *	13546.000	43.00	2.22	45.22	74.00	-28.78	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 44 of 89

Temp	peratur	e:	24.6℃	1 6		Relati	ive Hum	idity:	53%	1	
est	Voltage) :	AC 120\	//60Hz		Care		THE RESERVE			
nt.	Pol.		Horizont	al	1999		11/11/1	J. Santa		V B	
est	Mode:		TX B Mc	ode 2437	7MHz Ar	nt.1+2-C	DD		MU		
90.0	dBu∀⁄	/m									1
80							(DE) E	CC DADT	15C (PEA	ושו	
70							(NF) F	CC FANT	TOC (FEA	ik)	
60											
50									15C (AVE		
30				, hate	1 X	Z X	And Andread Andread	W. Land Law Co. A.	MANAGE AND	Barton Harriston Barton San San San San San San San San San Sa	peak
40	40.00	المراجهان الم	March of September 1988	equily they have	an af heritan from	MANA MANA	Ame Afficia		•		
	and to make the same	Ne T									
20											
10											
0											
-10 10	000.000	61	00.000	112	00.000(MI	Hzì	188	50.000		26500	 nnn

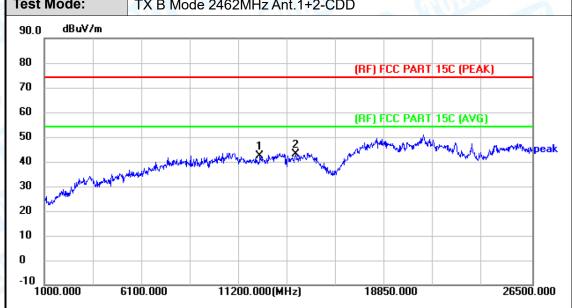
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11429.500	42.16	0.66	42.82	74.00	-31.18	peak	Р
2 *	14081.500	42.29	2.70	44.99	74.00	-29.01	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 45 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		WW.
Ant. Pol.	Vertical		
Tost Mode:	TY R Mode 2/137MHz A	ont 1+2 CDD	

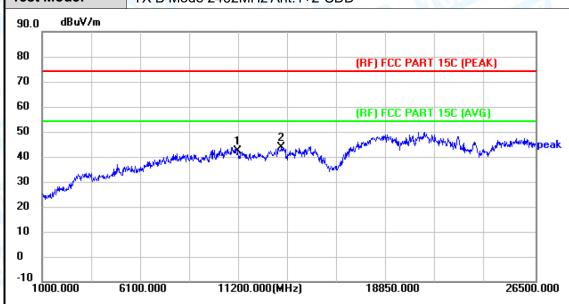
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11863.000	40.95	1.26	42.21	74.00	-31.79	peak	Р
2 *	14795.500	40.11	3.45	43.56	74.00	-30.44	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 46 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz	Contract of the second	ans:
Ant. Pol.	Horizontal	1110	1
Test Mode:	TX B Mode 2462MHz 4	Ant 1+2-CDD	

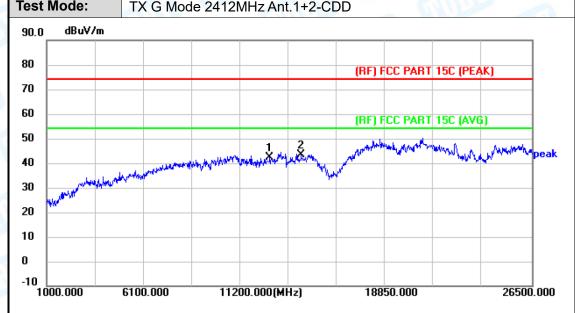
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12271.000	40.63	1.53	42.16	74.00	-31.84	peak	Р
2 *	14132.500	40.27	2.75	43.02	74.00	-30.98	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 47 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		COURT OF THE PARTY
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2462MHz A	ant 1+2-CDD	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11123.500	42.06	0.21	42.27	74.00	-31.73	peak	Р
2 *	13367.500	41.54	2.07	43.61	74.00	-30.39	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 48 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		ans:
Ant. Pol.	Horizontal	THE PARTY OF THE P	
Toot Mode:	TV C Mar de O440MUL A	+ 4 · 0 ODD	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12730.000	40.56	1.68	42.24	74.00	-31.76	peak	Р
2 *	14387.500	40.44	3.02	43.46	74.00	-30.54	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 49 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		WUR.
Ant. Pol.	Vertical		1
Test Mode:	TX G Mode 2412MHz Ant	.1+2-CDD	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10843.000	45.54	-0.31	45.23	74.00	-28.77	peak	Р
2	13214.500	41.77	1.95	43.72	74.00	-30.28	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

20 10 0

-10 1000.000

Report No.: TBR-C-202311-0309-42

26500.000

Page: 50 of 89

Temp	erature:	24.6℃		Rela	tive Hun	nidity:	53%		
Test Voltage:		AC 120V	//60Hz	C. S.		11/1		Cal	M
Ant. Pol.		Horizonta	al		MA DE		40	16	-
Test I	Mode:	TX G Mc	de 2437MHz	Ant.1+2-C	DD		MAR		2
90.0	dBuV/m								
80					(BE) E(C PART	ISC (PEA	KI	
70					(3.7)				
60					(RF) F0	CC PART	15C (AVG	i)	
50			1 X	2	بالاطائد ال	talk of the state of the	1	ula Mare	Ĺ.,
40	Li all	بإدران والمستوراة	* A the property of the contest of	water water	A Marian Company		مراكب المسهد	Walter Brown	peak
30	AND PROPERTY AND PROPERTY AND PARTY								

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	10894.000	46.05	-0.19	45.86	74.00	-28.14	peak	Р
2	13418.500	41.49	2.12	43.61	74.00	-30.39	peak	Р

18850.000

11200.000(MHz)

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

6100.000

- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 51 of 89

Temperature:	24.6℃	1 0	6	Relativ	e Hum	idity:	53%		
Test Voltage:	AC 120V	AC 120V/60Hz					No.		13
Ant. Pol.	Vertical	ann:	33		MAG			600	
Test Mode:	TX G Mo	ode 2437	MHz An	t.1+2-CI	DD		MARK		2
90.0 dBuV/m									
70					(RF) F	CC PART	15C (PEA	ıK)	
50						CC PART			
30	Ayerand Markey Higher	V-agraph Agray	1 military	2 X	والمتعادث المام والمعارض	nda _a giko-i ^{tu} ya	the March	Carling and the Carling and th	peak
20									
0 -10 1000.000	6100.000	1120	00.000(MF	l ₂)	188	50.000		26500	000

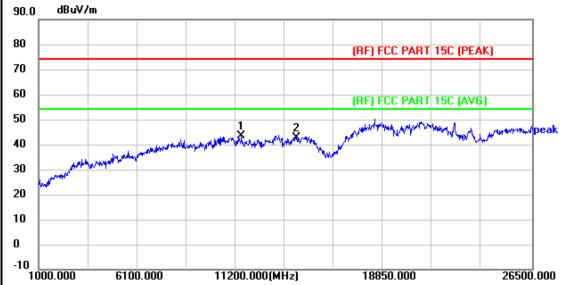
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11786.500	41.25	1.15	42.40	74.00	-31.60	peak	Р
2 *	14107.000	40.56	2.72	43.28	74.00	-30.72	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 52 of 89

Tem	perature	:	24.6℃			Relati	ve Hur	nidity:	53%		
Test	Voltage:		AC 120V	/60Hz	a v	3		01/		mn a	
Ant.	Pol.		Horizonta	al	11.50		WHO.			63	
Test	Mode:		TX G Mo	de 2462	MHz Ant.	1+2-CE	D		Marie		n.
90.0	dBuV/m	1									
80							(RF) F	CC PART	15C (PEA	ik)	
70											
60							(RF) F	CC PART	15C (AV	i)	
50 40			.t.aff.aff.	المراب بمواجدة ها	1 2	, production of the last of th	Mark Mark Land	Mary Mary Mary Mary Mary Mary Mary Mary	South States	alan and hear	peak
30	Markey	A Property September 1999	A STATE OF THE STA		1 2 May 4 4	, Arthur					
20	len.										
10											
0											
-10 10	000.000	61	00.000	112	00.000(MHz	:)	188	50.000		26500	 . 000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12347.500	39.48	1.56	41.04	74.00	-32.96	peak	Р
2 *	13520.500	40.67	2.20	42.87	74.00	-31.13	peak	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
 Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 53 of 89

	497 MA 18 1		
Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		ans:
Ant. Pol.	Vertical		
Test Mode:	TX G Mode 2462Mi	Hz Ant.1+2-CDD	Mary and
90.0 dBuV/m			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	11480.500	42.60	0.73	43.33	74.00	-30.67	peak	Р
2	14311.000	39.78	2.94	42.72	74.00	-31.28	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 54 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX n(HT20) Mode 2	2412MHz Ant.1+2-CDD	
90.0 dBuV/m			
80 70		(RF) FCC PART 1	5C (PEAK)
50		(RF) FCC PART 1	
40 July and M	I the state of the	AND THE RESIDENCE OF THE PARTY	Photograph Mary peak
20			
0			
-10 1000.000 61	100.000 11200.0	000(MHz) 18850.000	26500.000

Level

41.38

44.45

Limit

74.00

74.00

(dBuV/m) (dBuV/m)

Margin

(dB)

-32.62

-29.55

P/F

Ρ

Ρ

Detector

peak

peak

Remark:

No.

1

2 *

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

Frequency

(MHz)

11735.500

14795.500

- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Reading

(dBuV)

40.30

41.00

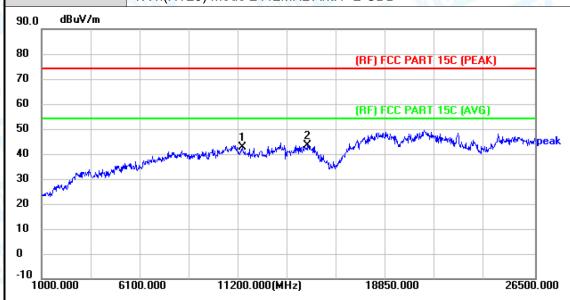
4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.

Factor

(dB/m)

1.08

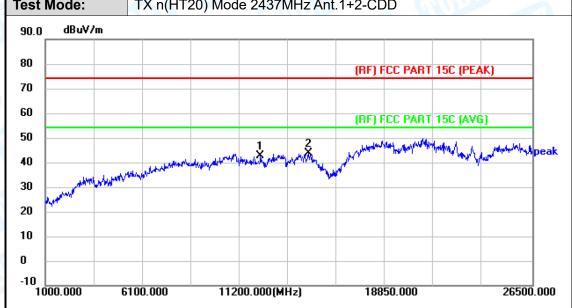
3.45


- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 55 of 89

Temperature:	24.6℃	Relative Humidity:	53%
Test Voltage:	AC 120V/60Hz		WW.
Ant. Pol.	Vertical	A William	
Test Mode:	TX n(HT20) Mode 2412M	Hz Ant.1+2-CDD	

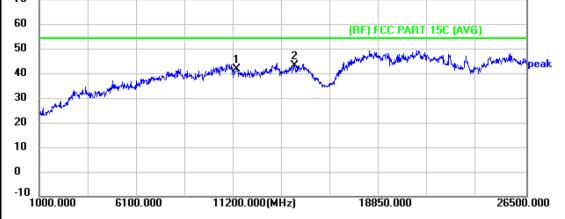
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11378.500	41.93	0.59	42.52	74.00	-31.48	peak	Р
2 *	14744.500	39.95	3.39	43.34	74.00	-30.66	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 56 of 89

Temperature:	24.6℃	Relative Humidity:	53%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	MHz Ant 1+2-CDD						

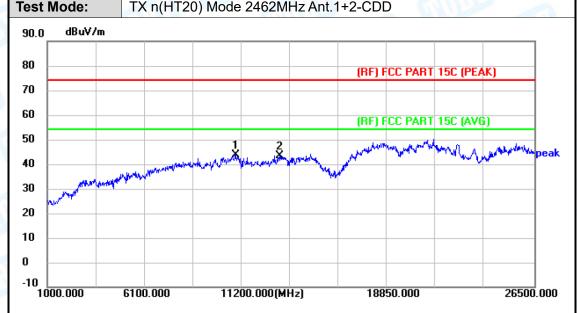
N	10.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
	1	12271.000	41.10	1.53	42.63	74.00	-31.37	peak	Р
2	2 *	14770.000	40.42	3.42	43.84	74.00	-30.16	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 57 of 89

Temperature:	24.6℃	Relative Humidity: 53%
Test Voltage:	AC 120V/60Hz	
Ant. Pol.	Vertical	
Test Mode:	TX n(HT20) Mode	2437MHz Ant.1+2-CDD
90.0 dBuV/m	1	
80		(RF) FCC PART 15C (PEAK)
70		
60		(RF) FCC PART 15C (AVG)
		(III) ICC I MITI 13C (MTQ)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11353.000	41.22	0.54	41.76	74.00	-32.24	peak	Р
2 *	14387.500	40.07	3.02	43.09	74.00	-30.91	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 58 of 89

Temperature:	24.6℃	Relative Humidity:	53%				
Test Voltage:	AC 120V/60Hz	The state of the s					
Ant. Pol.	Horizontal						
Toot Mode:	TV = (LITOO) Mada 04000	ALL- Apt 1.2 CDD					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	10894.000	44.09	-0.19	43.90	74.00	-30.10	peak	Р
2	13189.000	41.49	1.92	43.41	74.00	-30.59	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

