

FCC TEST REPORT

Test report
On Behalf of
REXING INC.
For
Dash Camera
Model No.: V3 Basic

FCC ID: 2AW5W-V3BASIC

Prepared For: REXING INC.

264 Quarry Rd., Unit D Milford, Connecticut 06460 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Aug. 13, 2021 ~Aug. 20, 2021

Date of Report: Aug. 20, 2021

Report Number: HK2108132886-E

TEST RESULT CERTIFICATION

Applicant's name	REXING INC.
------------------	-------------

Manufacture's Name..... KA FUNG TECHNOLOGY CO LIMITED

Address . Rm. 202, C5 Building, Hengfeng Industry Park, No.739 Zhoushi

Rd., Hangcheng Subdistrict, Bao'an Dist., Shenzhen China

Report No.: HK2108132886-E

Product description

Trade Mark: REXING

Product name...... Dash Camera

Model and/or type reference :: V3 Basic

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date of Issue...... Aug. 20, 2021

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Lang Rian

Technical Manager

Lacin T

(Eden Hu)

Authorized Signatory:

Jason Muu

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. TEST FACILITY	
	1.3. MEASUREMENT UNCERTAINTY	
2.	EUT DESCRIPTION	
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION OF EUT DURING TESTING	
	2.3. DESCRIPTION OF TEST SETUP	9
3.	ENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	15
	4.4. EMISSION BANDWIDTH	17
	4.5. POWER SPECTRAL DENSITY	23
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	30
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	40
	4.8. ANTENNA REQUIREMENT	66
5.	PHOTOGRAPH OF TEST	67
CAT	BUOTOS OF THE SUT	V TESTING

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Aug. 20, 2021	Jason Zhou
TNG.	ING ING	m/G	3G

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	ltem	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 mg	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

AFICATION

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

(DECOR) (DE	TS. (2005) (2005) (2005) (2005) (2005)
Equipment:	Dash Camera
Model Name:	V3 Basic
Serial No.:	N/A HUME
Model Difference:	N/A
FCC ID:	2AW5W-V3BASIC
Antenna Type:	Internal Antenna
Antenna Gain:	1dBi
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH
Modulation Type:	CCK/OFDM/DBPSK/DAPSK
Power Source:	DC 5V from car charger
Power Rating:	DC 5V from car charger

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Carrier Frequency of Channels

Channel List for 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	-Ca	

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
_{aNG}	CINE OF	04	2427	07	2442		
W	AKTE	05	2432	08	2447	TESTIN	THUAK TE
03	2422	06	2437	09	2452		<u> </u>

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.2. OPERATION OF EUT DURING TESTING

Operating Mode

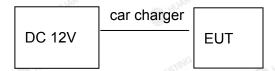
The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TESTING (TESTING)

2.3. DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

Car charger information Model: DC/DC ADAPTER Input: DC12V-24V Output DC 5V, 1.5A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
THIG STATE	Keep the EUT in continuous transmitting

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

ESTING	Mode	e Data rate	
	802.11b	1N	Иbps
13	802.11g	61	/lbps
	802.11n(H20)	6.5	Mbps
M HU	802.11n(H40)	13.5	5Mbps Mbps
			(1)22

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting	
Operation mode.	with modulation	

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipm	ent	Model No.	Serial No.	FCC ID	Trade Name
(_{NC}	-STNG	, I MAKET	ESTING /	HUAK TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

Test Specification

	TING	NG	-TING		
Test Requirement:	FCC Part15 C Section	15.207	HUANTED		
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	HUAKTE	NY TESTING		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep tim	e=auto		
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50		
Test Setup:	Referen 40cm E.U.T AC pov Test table/Insulation plan Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m	EMI Receiver	— AC power		
Test Mode:	Charging + transmitting	g with modulation	n Time		
Test Procedure:	 The E.U.T is connectine impedance state provides a 50ohm/5 measuring equipment. The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	bilization networe 50uH coupling in the ces are also connot solve that provide with 50ohm tendingram of the line are checkinge. In order to fee positions of equal to the coupling of the coupling must be changed.	k (L.I.S.N.). This impedance for the nected to the main is a 500hm/50uH mination. (Please e test setup and ed for maximum ind the maximum uipment and all of ged according to		
Test Result:	N/A	Om.			
	203.	203			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

AFICATION

Test Instruments

AUTHOR 2.1. THE STATE OF THE ST		2000 C)	48530	AUSE 7.1	ARCON .
	Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 09, 2021
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT

Not applicable.

Note: EUT power supply by DC Power, so this test item not applicable.

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 1	15.247 (b)(3)			
Test Method:	KDB 558074	O HUND			
Limit:	30dBm	AK TESTING			
Test Setup:	Power meter	EUT HUAN TESTING			
Test Mode:	Transmitting mode with modulation				
Test Procedure:	FCC KDB 558074 D v05r02. 2. The RF output of EUT meter by RF cable a compensated to the 3. Set to the maximum p EUT transmit continu	 The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results 			
Test Result:	PASS	9			

Test Instruments

"IA"	IAR	· IAI	a sar	a JAN	" IAM
	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 09, 2021
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

TING	TING	TING	TING TIN
TES.	HUAK TES.	TX 802.11b Mode	HUAKTES. HUAKTES.
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	13.15	30
CH06	2437	13.81	30
CH11	2462	14.33	30
		TX 802.11g Mode	
CH01	2412	12.12	30
CH06	2437	12.91	30 11111
CH11	2462	13.26	30
	TESTING	TX 802.11n20 Mode	TESTING
CH01	2412	11.89	30
CH06	2437	13.61 numerical in the second	30
CH11	2462	14.18	30
		TX 802.11n40 Mode	9
CH03	2422	13.26	30
CH06	2437	13.53 KTESTIN	30 HIMFTESTI
CH09	2452	13.68	30

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (a)(2)	W TESTIN	
Test Method:	KDB 558074	● HO	MONTH HOME	
Limit:	>500kHz	AK TESTING	\G	
Test Setup:	Spectrum Analyzer	EUT	MIG HUAKTES THE	
Test Mode:	Transmitting mode with modulation			
Test Procedure:	1. The testing follows FC 15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 l 4. Measure and record t	oce v05r02. bower setting and olously. ent with the spectru (RBW) = 100 kHz BW) = 300 kHz. In the ement. The 6dB backHz.	enable the um analyzer's z. Set the order to make andwidth must	
Test Result:	PASS	Man Hilliam	0 m	

Test Instruments

	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

Toot obennel		6dB Emission	n Bandwidth (MHz)	
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)
Lowest	9.160	16.520	17.640	35.200
Middle	10.080	16.520	17.640	35.440
Highest	10.080	16.480	17.680	35.520
Limit:	S HUAKTES!		>500k	
Test Result:	TAK.	TESTING HUAK TESTI	PASS	THE HUAK TESTING

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

802.11b Modulation

Lowest channel

Middle channel



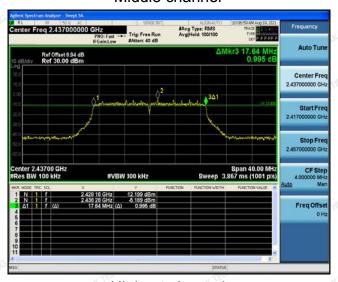
Highest channel

802.11g Modulation

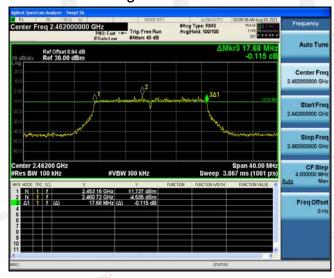

Lowest channel

Middle channel

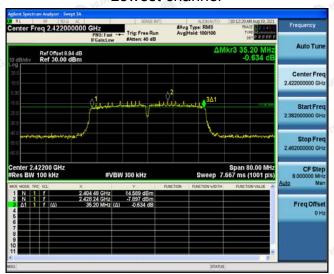
Highest channel

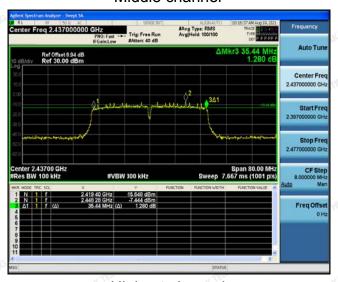


802.11n (HT20) Modulation

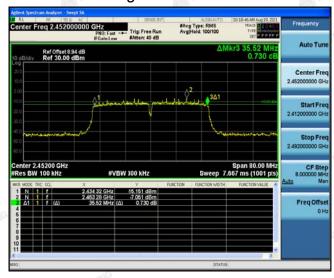

Lowest channel

Middle channel


Highest channel



802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074					
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:	Spectrum Analyzer EUI					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS MARKET MARK					

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

	RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

AFIGATIO,

Test data

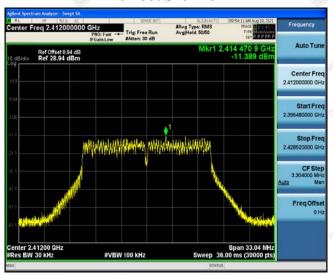
EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-3.22	-13.22
802.11b	Middle	-3	-13 (M)
	Highest	-2.52	-12.52
	Lowest	-11.39	-21.39
802.11g	Middle	-10.59	-20.59
	Highest	-9.63	-19.63
	Lowest	-11.89	-21.89
802.11n(H20)	Middle	-10.41	-20.41
	Highest	-8.65	-18.65
	Lowest	-12.65	-22.65
802.11n(H40)	Middle	-12.54	-22.54
	Highest	-12.19	-22.19
PSD test result (dBm/	3kHz)= PSD test	result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	MAKTER	PASS	-16
211/4- SE11- E	W) A	14- St. 15-	211/2

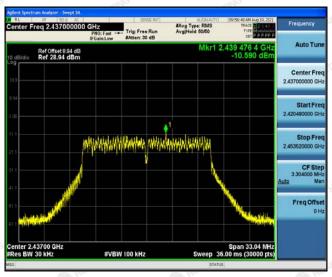
Test plots as follows:

802.11b Modulation

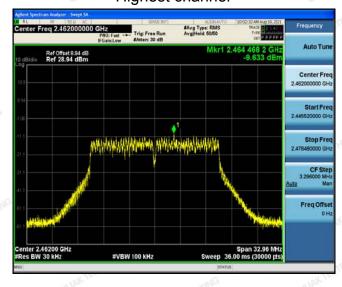
Lowest channel

Middle channel

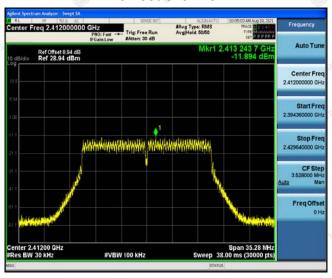

Highest channel



802.11g Modulation

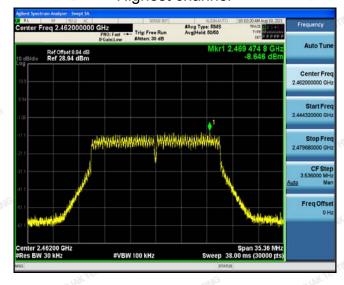

Lowest channel

Middle channel

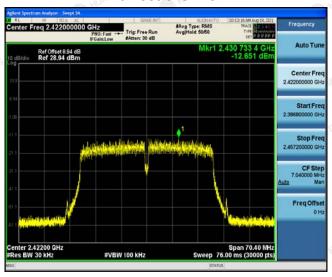

Highest channel

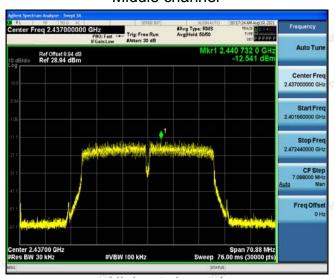


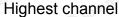
802.11n (HT20) Modulation

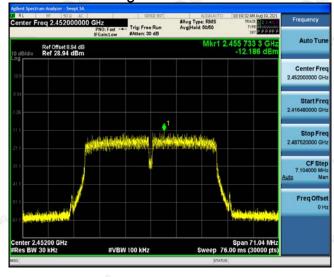

Lowest channel

Middle channel


Highest channel




802.11n (HT40) Modulation


Lowest channel

Middle channel

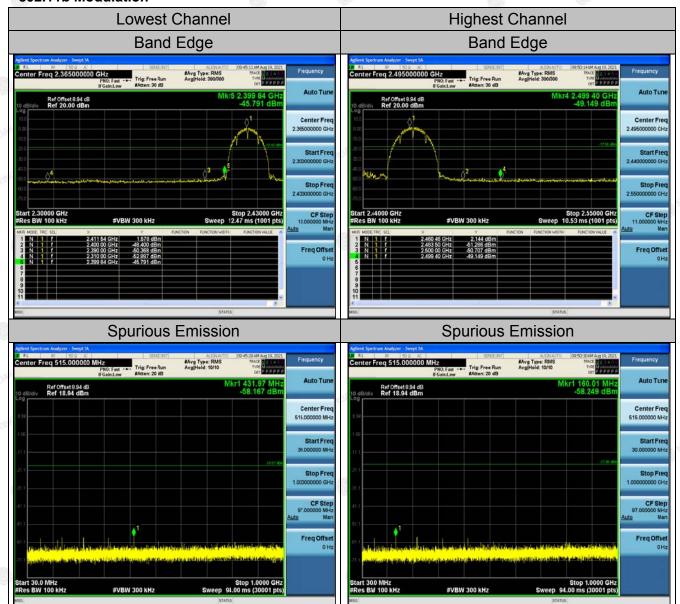
4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded 				
	against the limit line in the operating frequency band.				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

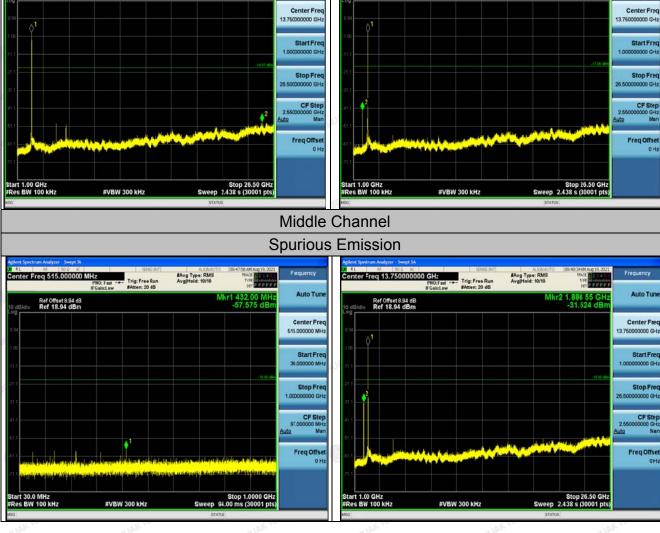
AFICATION

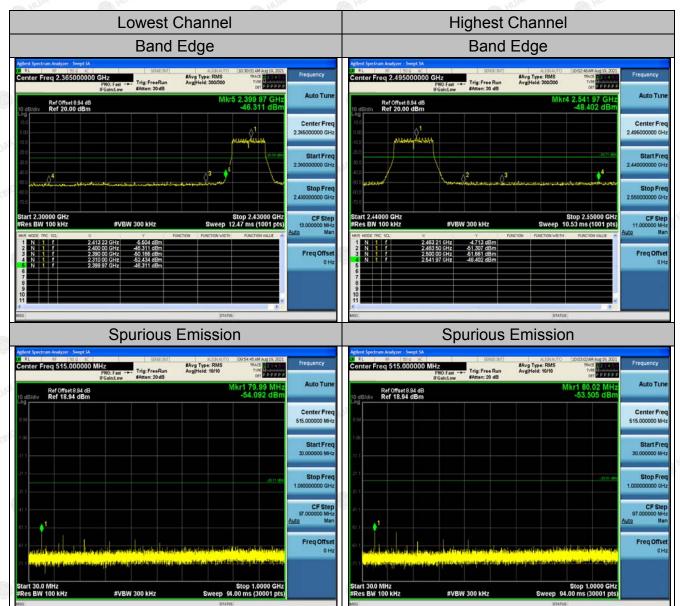

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent (N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806- F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806- 2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120- B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

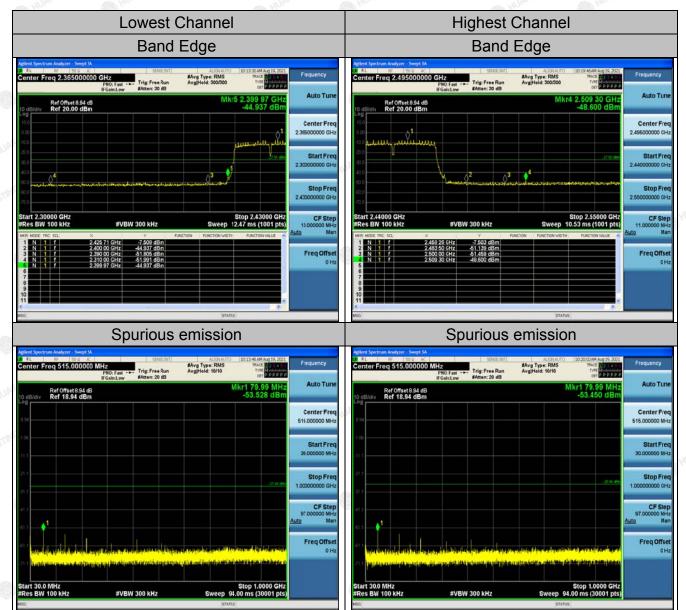

802.11b Modulation

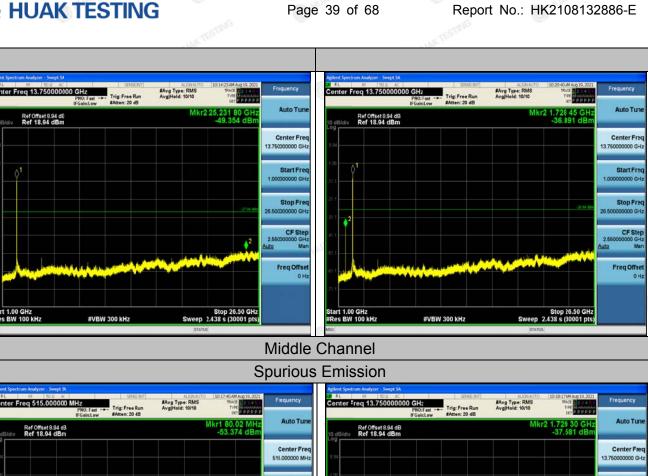

Ref Offset 8.94 dB Ref 18.94 dBm

#Avg Type: RMS Avg[Hold: 10/10

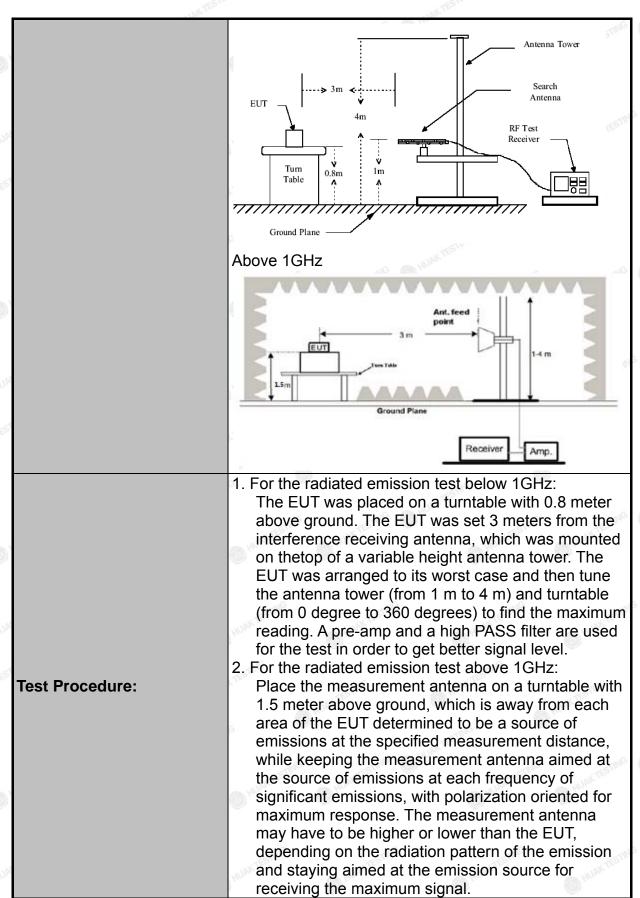
Report No.: HK2108132886-E #Avg Type: RMS Avg[Hold: 10/10 Ref Offset 8.94 dB Ref 18.94 dBm #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 8.94 dB Ref 18.94 dBm

802.11g Modulation


802.11n (HT20) Modulation



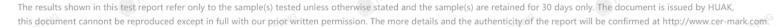
802.11n (HT40) Modulation



4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15	C Sectio	n 15.209	ST	NG STR
Test Method:	ANSI C63.10	0: 2013		HUAKTES	MUANTEL
Frequency Range:	9 kHz to 25 (GHz		TING	
Measurement Distance:	3 m	TESTING		HUAKTES	TESTING
Antenna Polarization:	Horizontal &	Vertical		.6	HUAN
Operation mode:	Transmitting	mode w	ith modula	ation	
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-pea Quasi-pea	ak 200Hz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-pea Peak Peak	ak 120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value
	Frequency 0.009-0.490		Field S (microvol	trength ts/meter)	Average Value Measurement Distance (meters) 300
Limit:	0.490-1.705 1.705-30 30-88		2400/l 24000/ 3	F(KHz)	30 30 30 3
	88-216 216-960 Above 960		15 20 50	00	3 3 3
	Frequency		eld Strength rovolts/meter	(mete	Detector rs)
Limit:	Above 1GHz		500 5000	3	Average Peak
Test setup:	For radiated 30MHz to 10	Gr	— 3 m	RX And Receiv	



The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

CATION.

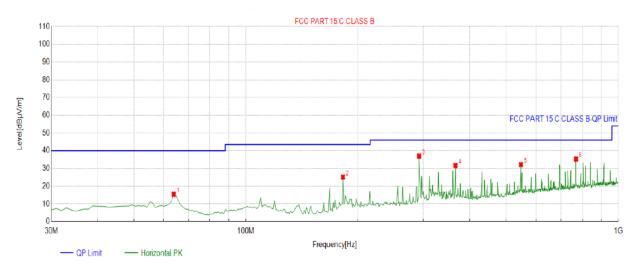
Test results:

PASS

Test Instruments

	Radi	ated Emission	Test Site (96	66)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Receiver	R&S	ESCI-7	HKE-010	Dec. 10, 2020	Dec. 09, 2021	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 10, 2020	Dec. 09, 2021	
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 10, 2020	Dec. 09, 2021	
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 10, 2020	Dec. 09, 2021	
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 10, 2020	Dec. 09, 2021	
Preamplifier	Agilent	83051A	HKE-016	Dec. 10, 2020	Dec. 09, 2021	
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 10, 2020	Dec. 09, 2021	
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021	
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 10, 2020	Dec. 09, 2021	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A	
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 10, 2020	Dec. 09, 2021	
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A	
RF cable	Times	9kHz-1GHz	HKE-117	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal

QP Detector

Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	63.9840	-16.16	31.60	15.44	40.00	24.56	100	7	Horizontal
2	182.4424	-16.65	41.83	25.18	43.50	18.32	100	34	Horizontal
3	292.1622	-12.82	49.77	36.95	46.00	9.05	100	232	Horizontal
4	365.9560	-11.14	42.87	31.73	46.00	14.27	100	213	Horizontal
5	548.4985	-7.00	39.26	32.26	46.00	13.74	100	181	Horizontal
6	768.9089	-3.28	38.62	35.34	46.00	10.66	100	181	Horizontal

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

QP Detector

Suspe	Suspected List										
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	63.9840	-16.16	41.18	25.02	40.00	14.98	100	100	Vertical		
2	119.3293	-16.99	37.53	20.54	43.50	22.96	100	214	Vertical		
3	182.4424	-16.65	46.15	29.50	43.50	14.00	100	60	Vertical		
4	292.1622	-12.82	41.49	28.67	46.00	17.33	100	64	Vertical		
5	365.9560	-11.14	40.93	29.79	46.00	16.21	100	36	Vertical		
6	548.4985	-7.00	40.73	33.73	46.00	12.27	100	191	Vertical		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

5	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	CCTO ^C C	AKTER STING	HIANTE
	HUAKIL-	The Hard	HUNKTE
		₩C	
	JAY TE		ANTES I

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.06	-3.64	52.42	74	-21.58	peak
4824	41.83	-3.64	38.19	54	-15.81	AVG
7236	53.22	-0.95	52.27	74	-21.73	peak
7236	40.67	-0.95	39.72	54	-14.28	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.22	-3.64	52.58	74	-21.42	peak
4824	42.77	-3.64	39.13	54	-14.87	AVG
7236	53.54	-0.95	52.59	74	-21.41	peak
7236	40.73	-0.95	39.78	54	-14.22	AVG

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.34	-3.51	52.83	74	-21.17	peak
4874	45.44	-3.51	41.93	54 NA	-12.07	AVG
7311	53.19	-0.82	52.37	74	-21.63	peak
7311	43.78	-0.82	42.96	54	-11.04	AVG

Vertical:

equency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.94	-3.51	53.43	74	-20.57	peak
4874	46.19	-3.51	42.68	54	-11.32	AVG
7311	51.98	-0.82	51.16	74	-22.84	peak
7311	43.79	-0.82	42.97	54	-11.03	AVG
	4874 4874 7311	4874 56.94 4874 46.19 7311 51.98	4874 56.94 -3.51 4874 46.19 -3.51 7311 51.98 -0.82	4874 56.94 -3.51 53.43 4874 46.19 -3.51 42.68 7311 51.98 -0.82 51.16	4874 56.94 -3.51 53.43 74 4874 46.19 -3.51 42.68 54 7311 51.98 -0.82 51.16 74	4874 56.94 -3.51 53.43 74 -20.57 4874 46.19 -3.51 42.68 54 -11.32 7311 51.98 -0.82 51.16 74 -22.84

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.73	-3.43	52.3	74	-21.7	peak
4924	42.53	-3.43	39.1	54	-14.9	AVG
7386	52.31	-0.75	51.56	74	-22.44	peak
7386	42.08	-0.75	41.33	54	-12.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.29	-3.43	52.86	74	-21.14	peak
4924	42.54	-3.43	39.11	54	-14.89	AVG
7386	53.62	-0.75	52.87	74	-21.13	peak
7386	39.98	-0.75	39.23	54	-14.77	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge lfrequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	55.99	-3.64	52.35	74	-21.65	peak
4824	48.36	-3.64	44.72	54	-9.28	AVG
7236	52.14	-0.95	51.19	74	-22.81	peak
7236	44.79	-0.95	43.84	54	-10.16	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	55.77	-3.64	52.13	74	-21.87	peak
4824	43.89	-3.64	40.25	54	-13.75	AVG
7236	53.08	-0.95	52.13	74	-21.87	peak
7236	41.85	-0.95	40.9	54	-13.1 [©]	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.28	-3.51	52.77	74	-21.23	peak
4874	42.92	-3.51	39.41	54	-14.59	AVG
7311	53.45	-0.82	52.63	74	-21.37	peak
7311	42.35	-0.82	41.53	54	-12.47	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss	– Pre-amplifier.		TESTING	NY TESTING

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
56.34	-3.51	52.83	74	-21.17	peak
44.69	-3.51	41.18	54	-12.82	AVG
52.07	-0.82	51.25	74	-22.75	peak
43.47	-0.82	42.65	54	-11.35	AVG
	(dBµV) 56.34 44.69 52.07	(dBµV) (dB) 56.34 -3.51 44.69 -3.51 52.07 -0.82	(dBμV) (dB) (dBμV/m) 56.34 -3.51 52.83 44.69 -3.51 41.18 52.07 -0.82 51.25	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.34 -3.51 52.83 74 44.69 -3.51 41.18 54 52.07 -0.82 51.25 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.34 -3.51 52.83 74 -21.17 44.69 -3.51 41.18 54 -12.82 52.07 -0.82 51.25 74 -22.75

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	57.75	-3.43	54.32	74	-19.68	peak
4924	41.72	-3.43	38.29	54	-15.71	AVG
7386	53.73	-0.75	52.98	74	-21.02	peak
7386	41.68	-0.75	40.93	54	-13.07	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.64	-3.43	53.21	74	-20.79	peak
4924	46.52	-3.43	43.09	54	-10.91	AVG
7386	51.84	-0.75	51.09	74	-22.91	peak
7386	41.06	-0.75	40.31	54	-13.69	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "E" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
55.87	-3.64	52.23	74	-21.77	peak
41.54	-3.64	37.9	54	-16.1	AVG
53.63	-0.95	52.68	74	-21.32	peak
39.68	-0.95	38.73	54	-15.27	AVG
	(dBµV) 55.87 41.54 53.63	(dBμV) (dB) 55.87 -3.64 41.54 -3.64 53.63 -0.95	(dBμV) (dB) (dBμV/m) 55.87 -3.64 52.23 41.54 -3.64 37.9 53.63 -0.95 52.68	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.87 -3.64 52.23 74 41.54 -3.64 37.9 54 53.63 -0.95 52.68 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.87 -3.64 52.23 74 -21.77 41.54 -3.64 37.9 54 -16.1 53.63 -0.95 52.68 74 -21.32

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
55.74	-3.64	52.1	74	-21.9	peak
43.57	-3.64	39.93	54	-14.07	AVG
52.62	-0.95	51.67	74	-22.33	peak
39.25	-0.95	38.3	54	-15.7	AVG
	(dBµV) 55.74 43.57 52.62	(dBµV) (dB) 55.74 -3.64 43.57 -3.64 52.62 -0.95	(dBμV) (dB) (dBμV/m) 55.74 -3.64 52.1 43.57 -3.64 39.93 52.62 -0.95 51.67	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.74 -3.64 52.1 74 43.57 -3.64 39.93 54 52.62 -0.95 51.67 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.74 -3.64 52.1 74 -21.9 43.57 -3.64 39.93 54 -14.07 52.62 -0.95 51.67 74 -22.33

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.15	-3.51	52.64	74.00	-21.36	peak
4874	44.14	-3.51	40.63	54.00	-13.37	AVG
7311	52.32	-0.82	51.50	74.00	-22.50	peak
7311	42.12	-0.82	41.30	54.00	-12.70	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.92	-3.51	53.41	74.00	-20.59	peak
4874	40.42	-3.51	36.91	54.00	-17.09	AVG
7311	53.24	-0.82	52.42	74.00	-21.58	peak
7311	39.71	-0.82	38.89	54.00	-15.11	AVG

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data aton Ton
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	57.38	-3.43	53.95	74	-20.05	peak
4924	44.67	-3.43	41.24	54	-12.76	AVG
7386	52.8	-0.75	52.05	74	-21.95	peak
7386	41.67	-0.75	40.92	54	-13.08	AVG
Remark: Factor	r = Antenna Factor -	Cable Loss	– Pre-amplifier.	No Din	ESTING	TESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tomo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
4924	56.23	-3.43	52.8	74	-21.2	peak
4924	48.2	-3.43	44.77	54 AM	-9.23	AVG
7386	54.01	-0.75	53.26	74	-20.74	peak
7386	46.64	-0.75	45.89	54	-8.11	AVG
TING	CAU CON		1NG -67	(100)	100	-CTA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

eading Result	Factor	Emission Level	Limits	Margin	Data stan Turk
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
57.23	-3.63	53.6	74	-20.4	peak
41.07	-3.63	37.44	54	-16.56	AVG
52.74	-0.94	51.8	74	-22.2	peak
41.1	-0.94	40.16	54 (155)	-13.84	AVG
	57.23 41.07 52.74	57.23 -3.63 41.07 -3.63 52.74 -0.94	57.23 -3.63 53.6 41.07 -3.63 37.44 52.74 -0.94 51.8	57.23 -3.63 53.6 74 41.07 -3.63 37.44 54 52.74 -0.94 51.8 74	57.23 -3.63 53.6 74 -20.4 41.07 -3.63 37.44 54 -16.56 52.74 -0.94 51.8 74 -22.2

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Torre
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
55.95	-3.63	52.32	74	-21.68	peak
43.02	-3.63	39.39	54	-14.61	AVG
53.09	-0.94	52.15	74	-21.85	peak
39.56	-0.94	38.62	54 AK TES	-15.38	AVG
	(dBµV) 55.95 43.02 53.09	(dBµV) (dB) 55.95 -3.63 43.02 -3.63 53.09 -0.94	(dBμV) (dB) (dBμV/m) 55.95 -3.63 52.32 43.02 -3.63 39.39 53.09 -0.94 52.15	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.95 -3.63 52.32 74 43.02 -3.63 39.39 54 53.09 -0.94 52.15 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.95 -3.63 52.32 74 -21.68 43.02 -3.63 39.39 54 -14.61 53.09 -0.94 52.15 74 -21.85

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

-711/100	Factor	Emission Level	Limits	Margin	Data stan Turk
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.9	-3.51	53.39	74	-20.61	peak
40.39	-3.51	36.88	54	-17.12	AVG
53.15	-0.82	52.33	74	-21.67	peak
39.75	-0.82	38.93	54	-15.07	AVG
	56.9 40.39 53.15	56.9 -3.51 40.39 -3.51 53.15 -0.82	56.9 -3.51 53.39 40.39 -3.51 36.88 53.15 -0.82 52.33	56.9 -3.51 53.39 74 40.39 -3.51 36.88 54 53.15 -0.82 52.33 74	56.9 -3.51 53.39 74 -20.61 40.39 -3.51 36.88 54 -17.12 53.15 -0.82 52.33 74 -21.67

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	 Detector Type
4874	56.42	-3.51	52.91	74	-21.09	peak
4874	41.66	-3.51	38.15	54	-15.85	AVG
7311	53.20	-0.82	52.38	74	-21.62	peak
7311	39.79	-0.82	38.97	54	-15.03	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tima
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	56.36	-3.43	52.93	74	-21.07	peak
4904	42.69	-3.43	39.26	54	-14.74	AVG
7356	53.22	-0.75	52.47	74	-21.53	peak
7356	39.49	-0.75	38.74	54	-15.26	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	– Pre-amplifier.	TING THE WIT		IG -STING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	55.66	-3.43	52.23	74	-21.77	peak
4904	45.84	-3.43	42.41	54	-11.59	AVG
7356	52.52	-0.75	51.77	74	-22.23	peak
7356	42.67	-0.75	41.92	54	-12.08	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

requency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.44	-5.81	49.63	74	-24.37	peak
2310.00	46.25	-5.81	40.44	54	-13.56	AVG
2390.00	53.57	-5.84	47.73	74	-26.27	peak
2390.00	43.46	-5.84	37.62	54	-16.38	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	57.3	-5.81	51.49	74	-22.51	peak
2310.00	45.31	-5.81	39.5	54	-14.5	AVG
2390.00	54.9	-5.84	49.06	74	-24.94	peak
2390.00	43.56	-5.84	37.72	§ 54	-16.28	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.08	-5.81	50.27	74	-23.73	peak
2483.50	44.64	-5.81	38.83	54	-15.17	AVG
2500.00	54.2	-6.06	48.14	74	-25.86	peak
2500.00	41.99	-6.06	35.93	54	-18.07	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.09	-5.81	50.28	74	-23.72	peak
2483.50	45.96	-5.81	40.15	54	-13.85	AVG
2500.00	51.78	-6.06	45.72	74	-28.28	peak
2500.00	43.94	-6.06	37.88	54	-16.12	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.4	-5.81	50.59	74 HUM	-23.41	peak
2310.00	45.94	-5.81	40.13	54	-13.87	AVG
2390.00	53.49	-5.84	47.65	74	-26.35	peak
2390.00	43.12	-5.84	37.28	54	-16.72°	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.06	-5.81	51.25	74	-22.75	peak
2310	47.05	-5.81	41.24	54	-12.76	AVG
2390	53.58	-5.84	47.74	74	-26.26	peak
2390	44.68	-5.84	38.84	54	-15.16	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

AFICATION.

of 68 Report No.: HK2108132886-E

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.95	-5.65	51.3	74	-22.7	peak
2483.50	44.83	-5.65	39.18	54	-14.82	AVG
2500.00	55.09	-5.65	49.44	74	-24.56	peak
2500.00	41.15	-5.65	35.5	54	-18.5	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

- Tilly	-111/2	211/20		la contraction of the contractio	-11/1/2	-11/10
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.56	-5.65	50.91	74	-23.09	peak
2483.50	46.49	-5.65	40.84	54	-13.16	AVG
2500.00	52.64	-5.65	46.99	74	-27.01	peak
2500.00	40.77	-5.65	35.12	54	-18.88	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	Data ata Tura
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.77	-5.81	50.96	74	-23.04	peak
45.64	-5.81	39.83	54	-14.17	AVG
53.89	-5.84	48.05	74	-25.95	peak
44.71	-5.84	38.87	54	-15.13	AVG
	(dBµV) 56.77 45.64 53.89	(dBµV) (dB) 56.77 -5.81 45.64 -5.81 53.89 -5.84	(dBμV) (dB) (dBμV/m) 56.77 -5.81 50.96 45.64 -5.81 39.83 53.89 -5.84 48.05	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.77 -5.81 50.96 74 45.64 -5.81 39.83 54 53.89 -5.84 48.05 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.77 -5.81 50.96 74 -23.04 45.64 -5.81 39.83 54 -14.17 53.89 -5.84 48.05 74 -25.95

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.14	-5.81	49.33	74	-24.67	peak
2310.00	44.82	-5.81	39.01	54	-14.99	AVG
2390.00	52.78	-5.84	46.94	74	-27.06	peak
2390.00	42.21	-5.84	36.37	54	-17.63	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	HUAK TEST
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
55.76	-5.65	50.11	74	-23.89	peak
43.85	-5.65	38.2	54	-15.8	AVG
53.41	-5.65	47.76	74	-26.24	peak
42.39	-5.65	36.74	54	-17.26	AVG
	(dBµV) 55.76 43.85 53.41	(dBµV) (dB) 55.76 -5.65 43.85 -5.65 53.41 -5.65	(dBμV) (dB) (dBμV/m) 55.76 -5.65 50.11 43.85 -5.65 38.2 53.41 -5.65 47.76	(dBμV) (dB) (dBμV/m) (dBμV/m) 55.76 -5.65 50.11 74 43.85 -5.65 38.2 54 53.41 -5.65 47.76 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 55.76 -5.65 50.11 74 -23.89 43.85 -5.65 38.2 54 -15.8 53.41 -5.65 47.76 74 -26.24

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.86	-5.65	51.21	74	-22.79	peak
2483.50	43.43	-5.65	37.78	54	-16.22	AVG
2500.00	53.72	-5.65	48.07	74	-25.93	peak
2500.00	41.82	-5.65	36.17	54	-17.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ata Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.15	-5.81	50.34	74	-23.66	peak
2310.00	ETING /	-5.81	LAKESTING	54	1	AVG
2390.00	63.58	-5.84	57.74	74	-16.26	peak
2390.00	52.74	-5.84	46.9	54	-7.1	AVG
CTIVE	52.74 = Antenna Factor	-61	NG TESTIN	54	-7.1	

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data LAN TESTINE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	58.52	-5.81	52.71	74	-21.29	peak
2310.00	1	-5.81	MAK!	54	1 🚳	AVG
2390.00	63.48	-5.84	57.64	74	-16.36	peak
2390.00	51.03	-5.84	45.19	54	-8.81	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAK TEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.18	-5.65	51.53	74	-22.47	peak
2483.50	1	-5.65	MUN I	54	1 🌑	AVG
2500.00	56.24	-5.65	50.59	74	-23.41	peak
2500.00	AKTES!!	-5.65	MAKTESIA	54	MAK TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Γ			(8)(3)	(853)	1,40		(85(3))
	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.50	56.66	-5.65	51.01	74	-22.99	peak
	2483.50	1 HUAN	-5.65	1	54	1	AVG
	2500.00	55.28	-5.65	49.63	74	-24.37	peak
	2500.00	1	-5.65	· /	54	1	AVG

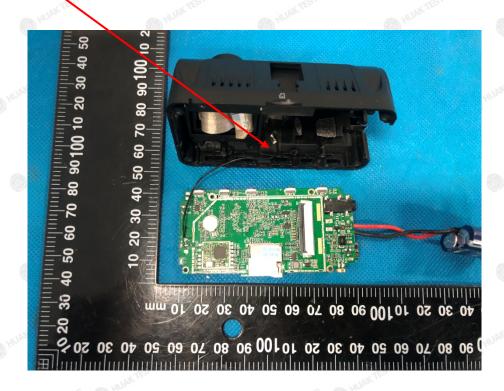
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

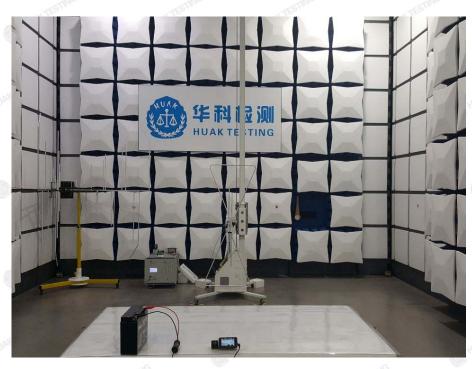

Refer to statement below for compliance.

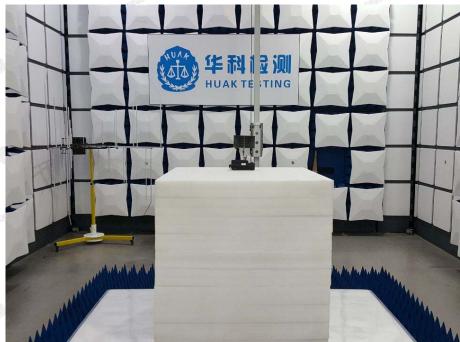
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

WIFI ANTENNA


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5. PHOTOGRAPH OF TEST

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.