

FCC TEST REPORT

Test report
On Behalf of
REXING INC.
For
Dash Camera
Model No.: V1-4K, V1P

FCC ID: 2AW5W-V1

Prepared For : REXING INC.

264 Quarry Rd., Unit D Milford, Connecticut 06460 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jun. 15, 2021 ~Jun. 23, 2021

Date of Report: Jun. 23, 2021

Report Number: HK2106151878-E

TEST RESULT CERTIFICATION

Applicant's name...... REXING INC.

Manufacture's Name..... KA FUNG TECHNOLOGY CO LIMITED

Address . Rm. 202, C5 Building, Hengfeng Industry Park, No.739 Zhoushi

Rd., Hangcheng Subdistrict, Bao'an Dist., Shenzhen China

Report No.: HK2106151878-E

Product description

Trade Mark: REXING

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Jun. 15, 2021 ~Jun. 23, 2021

Date of Issue...... Jun. 23, 2021

Test Result...... Pass

Testing Engineer

(Gary Qian)

Edon Hu

Gany Qian

Technical Manager

Authorized Signatory:

 $\overline{}$

(Jason Zhou)

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	
	1.2. TEST FACILITY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.	EUT DESCRIPTION	
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION OF EUT DURING TESTING	8
	2.3. DESCRIPTION OF TEST SETUP	9
3.	ENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	18
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	67
5.	PHOTOGRAPH OF TEST	68
60	DUOTOS OF THE FIIT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jun. 23, 2021	Jason Zhou
TING	THE THE	TING TH	G TING

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 mg	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Dash Camera
Model Name:	V1-4K
Serial No.:	V1P
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color, appearance and model named different. Test sample model: V1-4K.
FCC ID:	2AW5W-V1
Antenna Type:	Internal Antenna
Antenna Gain:	1dBi
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH
Modulation Type:	CCK/OFDM/DBPSK/DAPSK
Power Source:	DC 5V from USB
Power Rating:	DC 5V from USB

Carrier Frequency of Channels

	Channel List for 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452	-G		

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	THE STATE	04	2427	07	2442		
m 111	WALE	05	2432	08	2447	TESTI	THUAKTE
03	2422	06	2437	09	2452		<u>((i)</u>

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.2. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

2.3. DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

Adapter information Model: HW-059200CHQ Input: 100-240V, 50-60Hz, 0.5A

Output: 5VDC, 2A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

STING	Mode	TESTING	Data rate	45
6	802.11b	HUAR	1Mbps	HUAR
3	802.11g	TING	6Mbps	
	802.11n(H20)	MK TESS	6.5Mbps	STING
HUAK	802.11n(H40)		13.5Mbps	i de

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
Operation mode:	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	IS I HUAN TESTIN	I STING	I HUM TESTIN	1 STING

Note:

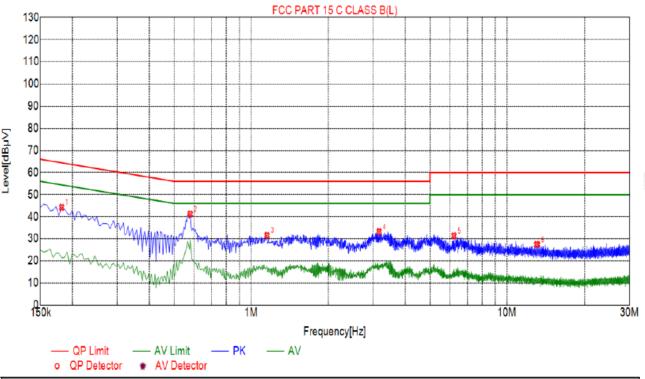
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

Test Specification

TING	TING	ING .	THE THE	
Test Requirement:	FCC Part15 C Section	15.207	HUAKTE	
Test Method:	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	MINKE	AYTESTING	
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto	
	Limit (c	dBuV)		
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	TESTAIG TEST	nuG TEE	TEST	
	Refere	nce Plane		
	40cm	80cm LISN		
	XTES I	Filter	— AC power	
	E.U.T AC pov	wer		
Test Setup:	G	EMI Receiver		
	Test table/Insulation plan			
	Remark			
	Reniaix. E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network			
	Test table height=0.8m			
Test Mode:	Charging + transmitting	g with modulation	Inic STR	
	1. The E.U.T is conne	cted to the main	power through a	
	line impedance stabilization network (L.I.S.N.). This			
	provides a 50ohm/50uH coupling impedance for the			
	200	measuring equipment.		
	2. The peripheral devices are also connected to the main			
		power through a LISN that provides a 50ohm/50uH		
Test Procedure:	coupling impedance		,	
	-61.	refer to the block diagram of the test setup and		
	photographs).			
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum			
	emission, the relativ		•	
	ANSI C63.10: 2013			
Test Result:	PASS	The series and the series are the se		
	TESTING	TESTING		

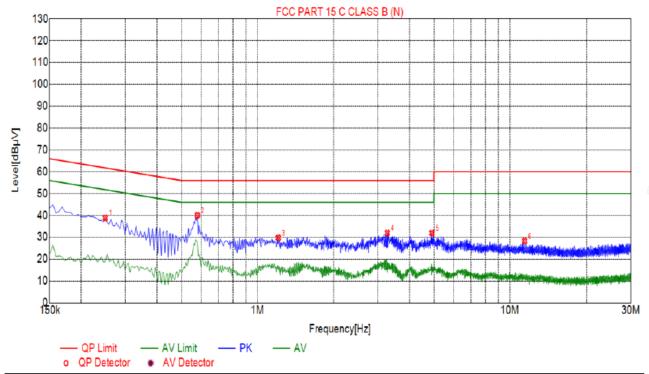

Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 10, 2021		
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 10, 2021		
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 10, 2021		
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT

Test Specification: Line



Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.1815	44.25	20.06	64.42	20.17	24.19	PK	L		
2	0.5775	41.24	20.05	56.00	14.76	21.19	PK	L		
3	1.1535	31.54	20.09	56.00	24.46	11.45	PK	L		
4	3.1650	33.23	20.23	56.00	22.77	13.00	PK	L		
5	6.2070	31.35	20.22	60.00	28.65	11.13	PK	L		
6	13.0650	27.46	19.96	60.00	32.54	7.50	PK	L		

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.2490	38.83	20.04	61.79	22.96	18.79	PK	N		
2	0.5775	40.09	20.05	56.00	15.91	20.04	PK	N		
3	1.2075	29.74	20.09	56.00	26.26	9.65	PK	N		
4	3.2685	31.98	20.23	56.00	24.02	11.75	PK	N		
5	4.9065	31.94	20.26	56.00	24.06	11.68	PK	N		
6	11.4315	28.26	20.00	60.00	31.74	8.26	PK	N		

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	KDB 558074				
Limit:	30dBm				
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report. 				
Test Result:	PASS				

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 10, 2021	
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 10, 2021	
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 10, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 10, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 10, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

TING	TING	TING TING	TING
TES.	HUAKTES.	TX 802.11b Mode	HUAK TES.
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	6.49	30
CH06	2437	6.28	30
CH11	2462	6.25	30
		TX 802.11g Mode	
CH01	2412	6.15	30
CH06	2437	5.94	30
CH11	2462	5.66	30
	TESTING	TX 802.11n20 Mode	TESTING
CH01	2412	6.03	30
CH06	2437	5.81	30
CH11	2462	5.56	30
		TX 802.11n40 Mode	9
CH03	2422	6.22	30
CH06	2437	4.34	30
CH09	2452	5.73	30

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement: FCC Part15 C Section 15.247 (a)(2)						
Test Method:	KDB 558074	O HUM	O HOW			
Limit:	>500kHz	JAKTESTING	Olar			
Test Setup:	Spectrum Analyzer	EUT	HARTESTINE			
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS	O HUNG				

Test Instruments

arm. HO	30.	a HO.	ALL HO.	ALC:	ALL HO.		
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 10, 2021		
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 10, 2021		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 10, 2021		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

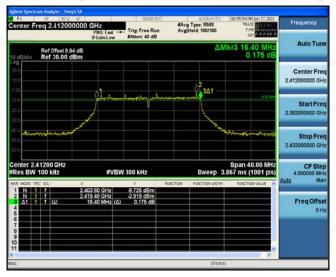
Took observed	6dB Emission Bandwidth (MHz)						
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)			
Lowest	9.64	16.40	16.44	35.84			
Middle	10.12	16.40	16.40	35.44			
Highest	9.60	16.40	17.40	35.20			
Limit:	3 HUAYTES.		>500k	- 6			
Test Result:	- iak	ESTING WAKTEST	PASS	TIME WAY TESTING			

Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel


Highest channel

802.11g Modulation

Lowest channel

Middle channel

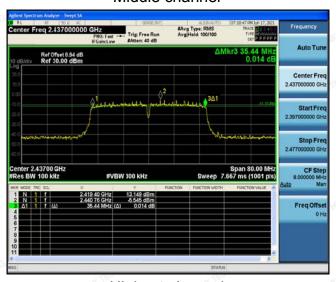
Highest channel

802.11n (HT20) Modulation

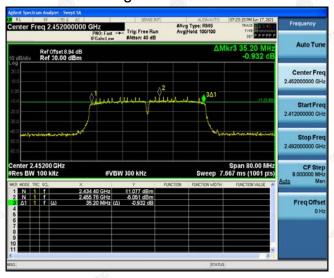

Lowest channel

Middle channel

Highest channel



802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUI
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 10, 2021	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 10, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 10, 2021	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

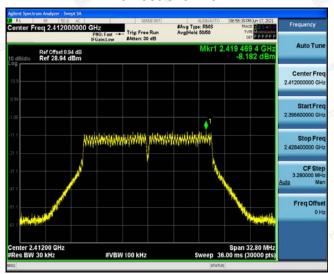
EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-4.25	-14.25
802.11b	Middle	-3.94	-13.94
	Highest	0.03	-9.97
	Lowest	-8.18	-18.18
802.11g	Middle	-7.77	-17.77
	Highest	-6.5	-16.5
	Lowest	-8.66	-18.66
802.11n(H20)	Middle	-7.69	-17.69
	Highest	-6.72	-16.72
	Lowest	-11.02	-21.02
802.11n(H40)	Middle	-11.07	-21.07
	Highest	-10.15	-20.15
PSD test result (dBm/	3kHz)= PSD test	t result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	MAKTE	PASS	-10

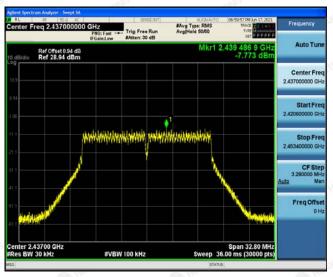
Test plots as follows:

802.11b Modulation

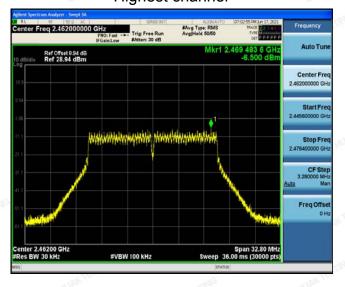
Lowest channel

Middle channel

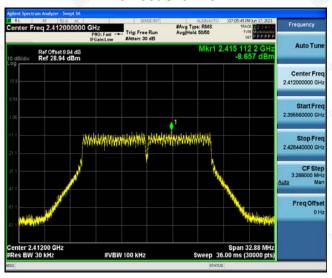

Highest channel

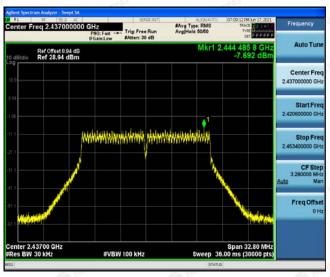


802.11g Modulation

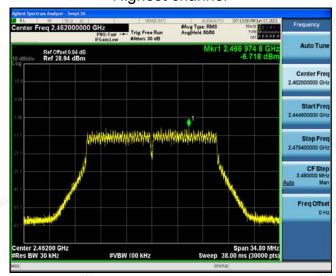

Lowest channel

Middle channel

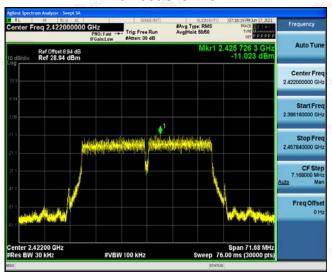

Highest channel



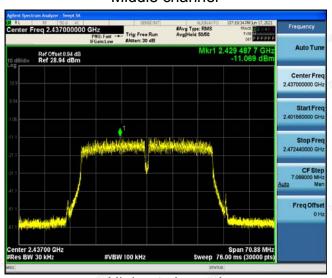
802.11n (HT20) Modulation

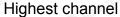

Lowest channel

Middle channel



Highest channel




802.11n (HT40) Modulation

Lowest channel

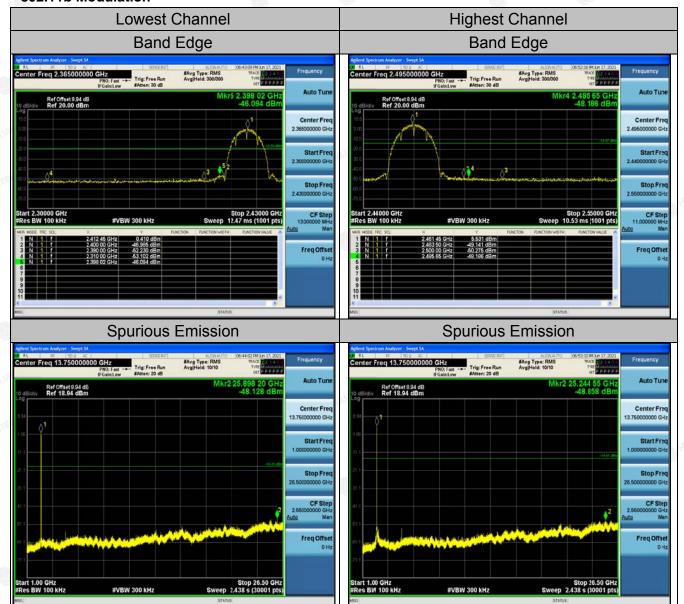
Middle channel

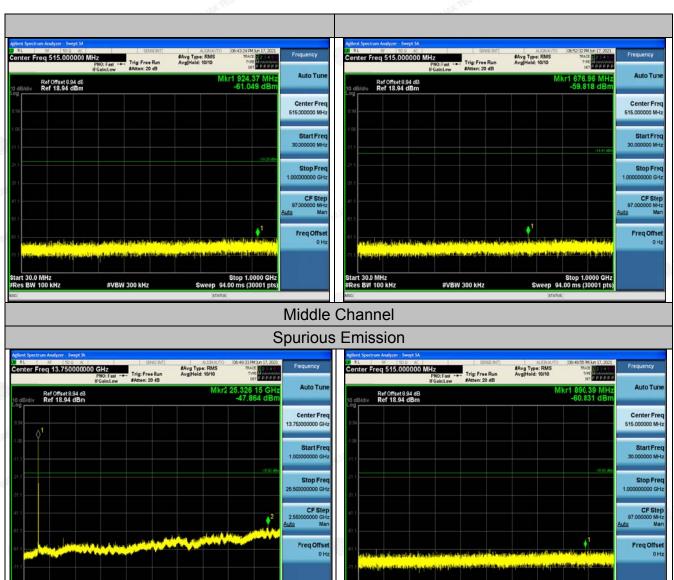
4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

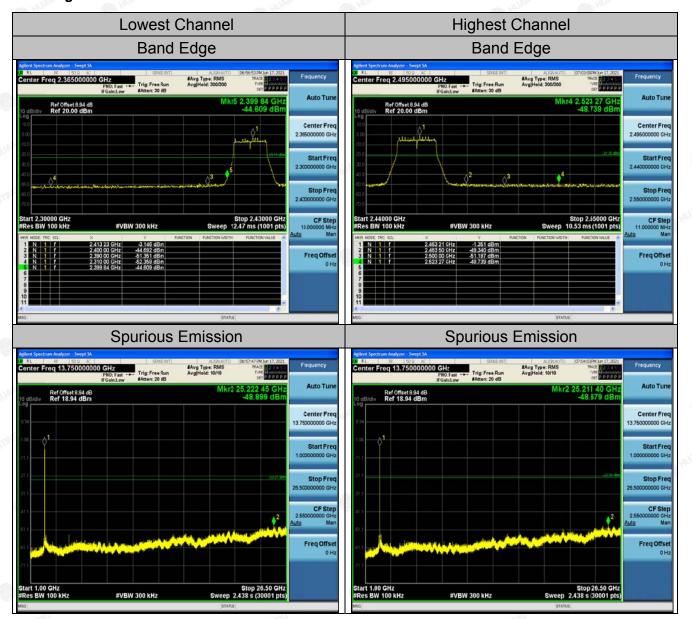
Test Specification

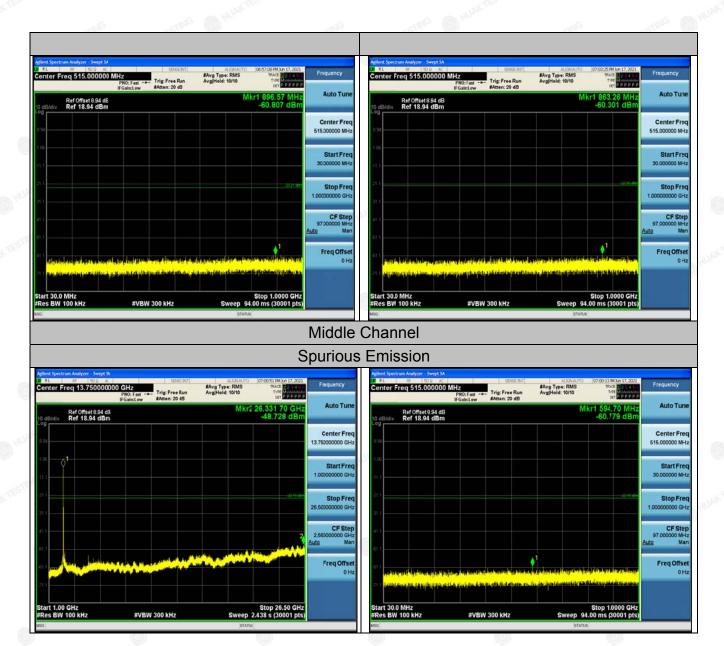
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded 				
	against the limit line in the operating frequency band. PASS				

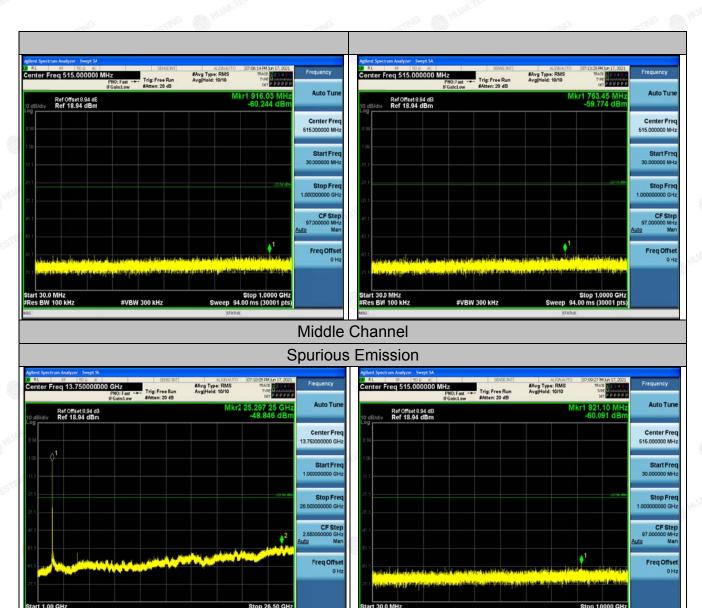
Test Instruments

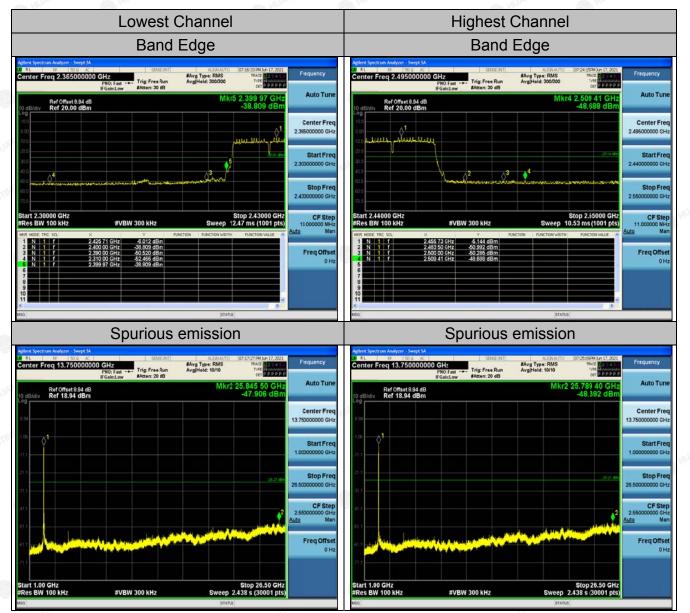

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 10, 2021	
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 10, 2021	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 10, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 10, 2021	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

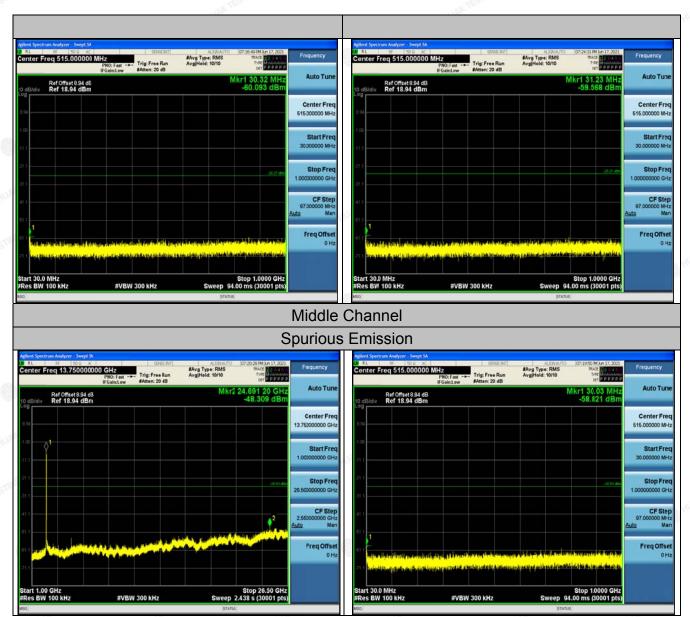

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Test Data


802.11b Modulation


802.11g Modulation




802.11n (HT20) Modulation

802.11n (HT40) Modulation

4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209	TESTI	NG	TESTIN
Test Method:	ANSI C63.10	0: 2013		MINNE .		MI HUANG
Frequency Range:	9 kHz to 25 (GHz		TING		
Measurement Distance:	3 m	TESTING		HUAKTE		TESTING
Antenna Polarization:	Horizontal &	Vertical		.6	0	HOPS
Operation mode:	Transmitting	mode wi	th modula	ation		
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz	Detector Quasi-pea Quasi-pea	ak 200Hz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value	
	30MHz-1GHz Above 1GHz	Quasi-pea Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	P	si-peak Value eak Value erage Value
Limit:	0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96	Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Field (microve)		trength lts/meter) F(KHz) 0 00 00 Measure t	Me Dista	easurement ince (meters) 300 30 30 30 3 3 3 3 3 A Detector Average Peak
Test setup:	For radiated 30MHz to 10	Tun 1	- 3 m	RX Ant)†	AGE THE AGE

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

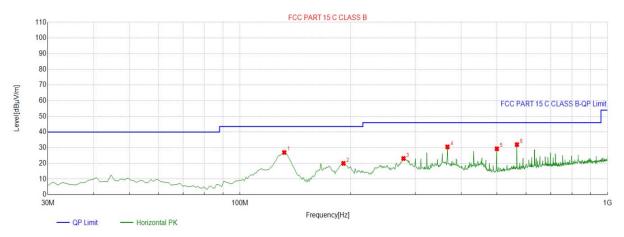
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HUAK TESTING

100		. 100	
	that which maximiz	enna elevation for n restricted to a rang	The naximum ge of heights of
	3. Corrected Reading: Read Level - Prea		Cable Loss +
	4. For measurement by of the EUT measurement lower than the applevel will be reported measurement will detector and reported. Use the following specific sections:	pelow 1GHz, If the election of the lection of the l	tector is 3 dB ak emission emission the quasi-peak
	(1) Span shall wide emission being (2) Set RBW=120 I	enough to fully ca measured;	pture the
	max hold; (3) Set RBW = 1 M	Hz, VBW= 3MHz fo	THUMK TES
	peak measuren 6.For average measur cycle is no less that duty cycle is less the minimum transmiss transmitter is on and power control level	rement: VBW = 10 n 98 percent.VBW a an 98 percent when ion duration over w d is transmitting at	≥ 1/T, when re T is the rhich the its maximum
Test results:	PASS	HUAR	O HUM

Test Instruments

Radiated Emission Test Site (966) Name of Calibration Calibration Serial Manufacturer Model Due **Equipment** Number **Date** Receiver R&S ESCI-7 HKE-010 Dec. 10, 2020 Dec. 10, 2021 Dec. 10, 2021 Spectrum analyzer Agilent N9020A HKE-048 Dec. 10, 2020 R&S FSP40 HKE-025 Dec. 10, 2020 Dec. 10, 2021 Spectrum analyzer Schwarzbeck LB-180400KF HKE-054 Dec. 10, 2020 Dec. 10, 2021 High gain antenna Schwarzbeck **BBV 9743** Preamplifier **HKE-006** Dec. 10, 2020 Dec. 10, 2021 EMC051845S HKE-015 Preamplifier **EMCI** Dec. 10, 2020 Dec. 10, 2021 Preamplifier 83051A Dec. 10, 2020 Agilent HKE-016 Dec. 10, 2021 Loop antenna Schwarzbeck **FMZB 1519 B** HKE-014 Dec. 10, 2020 Dec. 10, 2021 Broadband **VULB 9163** Schwarzbeck HKE-012 Dec. 10, 2020 Dec. 10, 2021 antenna HKE-013 Horn antenna Schwarzbeck 9120D Dec. 10, 2020 Dec. 10, 2021 High pass filter unit Tonscend JS0806-F HKE-055 Dec. 10, 2020 Dec. 10, 2021 Antenna Mast Keleto CC-A-4M N/A N/A N/A Taiwan MF Dec. 10, 2020 Dec. 10, 2021 Position controller MF7802 HKE-011 TS+ Rev Radiated test Tonscend HKE-082 N/A N/A software 2.5.0.0 RF cable 9kHz-1GHz HKE-117 Dec. 10, 2020 Dec. 10, 2021 Times RF cable 1-40G Times HKE-034 Dec. 10, 2020 Dec. 10, 2021 Horn Antenna Schewarzbeck **BBHA 9170** HKE-017 Dec. 10, 2020 Dec. 10, 2021


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

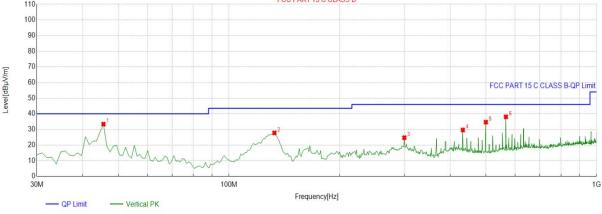
Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal

QP Detector


1	Suspected List										
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity	
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
3	1	131.9520	-18.69	45.67	26.98	43.50	16.52	100	31	Horizontal	
	2	191.1812	-15.90	35.91	20.01	43.50	23.49	100	1	Horizontal	
	3	278.5686	-13.31	36.43	23.12	46.00	22.88	100	357	Horizontal	
	4	366.9269	-11.11	41.63	30.52	46.00	15.48	100	308	Horizontal	
g	5	499.9500	-8.30	37.63	29.33	46.00	16.67	100	276	Horizontal	
8	6	566.9469	-6.49	38.48	31.99	46.00	14.01	100	47	Horizontal	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

FCC PART 15 C CLASS B FCC PART 15 C CLASS B-QP

Report No.: HK2106151878-E

Vertical

Suspe	Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevit		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	45.5355	-13.65	47.02	33.37	40.00	6.63	100	24	Vertical		
2	132.9229	-18.75	46.53	27.78	43.50	15.72	100	230	Vertical		
3	299.9299	-12.74	37.47	24.73	46.00	21.27	100	24	Vertical		
4	432.9530	-9.72	39.36	29.64	46.00	16.36	100	45	Vertical		
5	499.9500	-8.30	42.97	34.67	46.00	11.33	100	29	Vertical		
6	566.9469	-6.49	44.54	38.05	46.00	7.95	100	52	Vertical		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)		
·		<u></u>		
	TING	TING		
G	MAKTES TING	- MAKTES		
- marte-	The state of the s	makite		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.18	-3.64	57.54	74	-16.46	peak
4824	43.98	-3.64	40.34	54	-13.66	AVG
7236	54.22	-0.95	53.27	74	-20.73	peak
7236	41.67	-0.95	40.72	54	-13.28	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
61.87	-3.64	58.23	74	-15.77	peak
44.39	-3.64	40.75	54	-13.25	AVG
55.47	-0.95	54.52	74	-19.48	peak
43.17	-0.95	42.22	54	-11.78	AVG
	(dBµV) 61.87 44.39 55.47	(dBµV) (dB) 61.87 -3.64 44.39 -3.64 55.47 -0.95	(dBμV) (dB) (dBμV/m) 61.87 -3.64 58.23 44.39 -3.64 40.75 55.47 -0.95 54.52	(dBμV) (dB) (dBμV/m) (dBμV/m) 61.87 -3.64 58.23 74 44.39 -3.64 40.75 54 55.47 -0.95 54.52 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 61.87 -3.64 58.23 74 -15.77 44.39 -3.64 40.75 54 -13.25 55.47 -0.95 54.52 74 -19.48

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	63.03	-3.51	59.52	74	-14.48	peak
4874	44.72	-3.51	41.21	54	-12.79	AVG
7311	56.22	-0.82	55.4	74	-18.6	peak
7311	46.47	-0.82	45.65	54	-8.35	AVG
	r = Antenna Factor -	Cable Loss -	Pre-amplifier.		TESTING	KTEST

Vertical:

Frequency	Reading Result	Factor	Emission Level	« Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.74	-3.51	58.23	74	-15.77	peak
4874	47.07	-3.51	43.56	54	-10.44	AVG
7311	57.86	-0.82	57.04	74	-16.96	peak
7311	45.34	-0.82	44.52	54	-9.48	AVG
Destination	r = Antonno Footor	. Oakla Laasiis	Dro omplifior	-	TESTING	NY TESTIN

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	65.37	-3.43	61.94	74	-12.06	peak
924	45.35	-3.43	41.92	54	-12.08	AVG
7386	55.99	-0.75	55.24	74	-18.76	peak
7386	40.33	-0.75	39.58	54	-14.42	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.68	-3.43	57.25	74	-16.75	peak
4924	44.42	-3.43	40.99	54	-13.01	AVG
7386	52.67	-0.75	51.92	74	-22.08	peak
7386	40.97	-0.75	40.22	54	-13.78	AVG

Remark.

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.08	-3.64	56.44	74	-17.56	peak
4824	49.68	-3.64	46.04	54	-7.96	AVG
7236	54.17	-0.95	53.22	74	-20.78	peak
7236	41.12	-0.95	40.17	54	-13.83	AVG
Remark: Factor	r = Antenna Factor +	- Cable Loss	– Pre-amplifier.		AK TESTING	"IAK TES IIII

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.95	-3.64	54.31	74	-19.69	peak
4824	45.19	-3.64	41.55	54	-12.45	AVG
7236	53.63	-0.95	52.68	74	-21.32	peak
7236	41.49	-0.95	40.54	54	-13.46	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.52	-3.51	58.01	74	-15.99	peak
4874	41.41	-3.51	37.9	54	-16.1	AVG
7311	57.34	-0.82	56.52	74	-17.48	peak
7311	44.87	-0.82	44.05	54	-9.95	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	60.03	-3.51	56.52	74	-17.48	peak
4874	45.13	-3.51	41.62	54	-12.38	AVG
7311	53.91	-0.82	53.09	74	-20.91	peak
7311	45.66	-0.82	44.84	54	-9.16	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.53	-3.43	57.1	74	-16.9	peak
4924	45.15	-3.43	41.72	54	-12.28	AVG
7386	54.32	-0.75	53.57	74	-20.43	peak
7386	38.41	-0.75	37.66	54	-16.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	56.99	-3.43	53.56	74	-20.44	peak
4924	46.61	-3.43	43.18	54	-10.82	AVG
7386	55.09	-0.75	54.34	74	-19.66	peak
7386	37.33	-0.75	36.58	54	-17.42	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.55	-3.64	57.91	74	-16.09	peak
4824	42.19	-3.64	38.55	54	-15.45	AVG
7236	50.85	-0.95	49.9	74	-24.1	peak
7236	40.13	-0.95	39.18	54	-14.82	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.48	-3.64	57.84	74	-16.16	peak
4824	45.96	-3.64	42.32	54	-11.68	AVG
7236	56.32	-0.95	55.37	74	-18.63	peak
7236	41.93	-0.95	40.98	54	-13.02	AVG
- STING	r – Antanna Fastar	0 11 1	CTING TESTING	9	-cTING	TESTING

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.39	-3.51	51.88	74.00	-22.12	peak
4874	44.77	-3.51	41.26	54.00	-12.74	AVG
7311	53.93	-0.82	53.11	74.00	-20.89	peak
7311	41.76	-0.82	40.94	54.00	-13.06	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.29	-3.51	54.78	74.00	-19.22	peak
4874	42.73	-3.51	39.22	54.00	-14.78	AVG
7311	52.52	-0.82	51.70	74.00	-22.30	peak
7311	38.68	-0.82	37.86	54.00	-16.14	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	60.68	-3.43	57.25	74	-16.75	peak
4924	45.69	-3.43	42.26	54	-11.74	AVG
7386	55.44	-0.75	54.69	74	-19.31	peak
7386	41.47	-0.75	40.72	54	-13.28	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	– Pre-amplifier	AC D HILAN	anG	-cTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Trina
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	60.57	-3.43	57.14	74	-16.86	peak
4924	44.02	-3.43	40.59	54	-13.41	AVG
7386	55.96	-0.75	55.21	74	-18.79	peak
7386	46.37	-0.75	45.62	54	-8.38	AVG

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tumb
(MHz)	(dBµV)	(dBµV) (dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	61.69	-3.63	58.06	74	-15.94	peak
4844	40.05	-3.63	36.42	54	-17.58	AVG
7266	54.98	-0.94	54.04	74	-19.96	peak
7266	36.44	-0.94	35.5	54	-18.5	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.32	-3.63	54.69	74	-19.31	peak
4844	37.79	-3.63	34.16	54	-19.84	AVG
7266	54.03	-0.94	53.09	74	-20.91	peak
7266	33.28	-0.94	32.34	54	-21.66	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	60.04	-3.51	56.53	74	-17.47	peak
4874	40.25	-3.51	36.74	54	-17.26	AVG
7311	52.33	-0.82	51.51	74	-22.49	peak
7311	34.75	-0.82	33.93	54	-20.07	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Turk
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	56.33	-3.51	52.82	74	-21.18	peak
4874	44.34	-3.51	40.83	54	-13.17	AVG
7311	50.66	-0.82	49.84	74	-24.16	peak
7311	43.07	-0.82	42.25	54	-11.75	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss	– Pre-amplifier.	to Oin	ESTING	TESTING

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ata a Ti wa
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.83	-3.43	55.4	74	-18.6	peak
4904	44.23	-3.43	40.8	54	-13.2	AVG
7356	52.64	-0.75	51.89	74	-22.11	peak
7356	39.08	-0.75	38.33	54	-15.67	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.55	-3.43	55.12	74	-18.88	peak
4904	36.29	-3.43	32.86	54	-21.14	AVG
7356	53.71	-0.75	52.96	74	-21.04	peak
7356	43.89	-0.75	43.14	54	-10.86	AVG

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	53.64	-5.81	47.83	74	-26.17	peak
2310.00	45.05	-5.81	39.24	54	-14.76	AVG
2390.00	57.88	-5.84	52.04	74	-21.96	peak
2390.00	50.05	-5.84	44.21	54	-9.79	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.67	-5.81	49.86	74	-24.14	peak
2310.00	47.28	-5.81	41.47	54	-12.53	AVG
2390.00	63.08	-5.84	57.24	74	-16.76	peak
2390.00	45.52	-5.84	39.68	_s 54	-14.32	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.41	-5.81	50.6	74	-23.4	peak
2483.50	46.15	-5.81	40.34	54	-13.66	AVG
2500.00	54.54	-6.06	48.48	74	-25.52	peak
2500.00	45.46	-6.06	39.4	54	-14.6	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.46	-5.81	49.65	74	-24.35	peak
2483.50	47.04	-5.81	41.23	54	-12.77	AVG
2500.00	54.28	-6.06	48.22	74	-25.78	peak
2500.00	47.56	-6.06	41.5	54	-12.5	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	59.11	-5.81	53.3	74	-20.7	peak
2310.00	45.24	-5.81	39.43	54	-14.57	AVG
2390.00	48.35	-5.84	42.51	74	-31.49	peak
2390.00	44.67	-5.84	38.83	54	-15.17	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	57.06	-5.81	51.25	74	-22.75	peak
2310.00	44.87	-5.81	39.06	54	-14.94	AVG
2390.00	60.37	-5.84	54.53	74	-19.47	peak
2390.00	46.74	-5.84	40.9	54	-13.1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ata Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.32	-5.65	50.67	74	-23.33	peak
2483.50	46.09	-5.65	40.44	54	-13.56	AVG
2500.00	55.65	-5.65	50	74	-24	peak
2500.00	44.22	-5.65	38.57	54	-15.43	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stan Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.66	-5.65	50.01	74	-23.99	peak
2483.50	47.11	-5.65	41.46	54	-12.54	AVG
2500.00	51.77	-5.65	46.12	74	-27.88	peak
2500.00	43.18	-5.65	37.53	54	-16.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.93	-5.81	49.12	74	-24.88	peak
2310.00	46.74	-5.81	40.93	54	-13.07	AVG
2390.00	58.07	-5.84	52.23	74	-21.77	peak
2390.00	49.09	-5.84	43.25	54	-10.75	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	55.88	-5.81	50.07	74	-23.93	peak
2310.00	44.04	-5.81	38.23	54	-15.77	AVG
2390.00	60.79	-5.84	54.95	74	-19.05	peak
2390.00	44.36	-5.84	38.52	54	-15.48	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.82	-5.65	51.17	74	-22.83	peak
2483.50	45.56	-5.65	39.91	54	-14.09	AVG
2500.00	48.85	-5.65	43.2	74	-30.8	peak
2500.00	44.69	-5.65	39.04	54	-14.96	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Dotoctor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.41	-5.65	47.76	74	-26.24	peak
2483.50	44.39	-5.65	38.74	54	-15.26	AVG
2500.00	50.04	-5.65	44.39	74	-29.61	peak
2500.00	43.48	-5.65	37.83	54	-16.17	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Reading Result	Factor	Emission Level	Limits	Margin	Detector Time
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.24	-5.81	52.43	74	-21.57	peak
STING /	-5.81	A ESTING	54	1	AVG
65.34	-5.84	59.5	74	-14.5	peak
51.13	-5.84	45.29	54	-8.71	AVG
	(dBµV) 58.24 / 65.34	(dBµV) (dB) 58.24 -5.81 / -5.81 65.34 -5.84	(dBμV) (dB) (dBμV/m) 58.24 -5.81 52.43 / -5.81 / 65.34 -5.84 59.5	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.24 -5.81 52.43 74 / -5.81 / 54 65.34 -5.84 59.5 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.24 -5.81 52.43 74 -21.57 / -5.81 / 54 / 65.34 -5.84 59.5 74 -14.5

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	58.68	-5.81	52.87	74	-21.13	peak
2310.00	1	-5.81	HUAYTE	54	1	AVG
2390.00	65.32	-5.84	59.48	74	-14.52	peak
2390.00	51.79	-5.84	45.95	54	-8.05	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	AUAK TES I
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.79	-5.65	52.14	74	-21.86	peak
2483.50	1	-5.65	MINN!	54	1 🚳	AVG
2500.00	56.46	-5.65	50.81	74	-23.19	peak
2500.00	JAKTESIN /	-5.65	S ME JUAN TESTA	54	LOK TO THE	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data aton Tona
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	58.96	-5.65	53.31	74	-20.69	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	58.17	-5.65	52.52	74	-21.48	peak
2500.00	1	-5.65	(C)	54	1	AVG

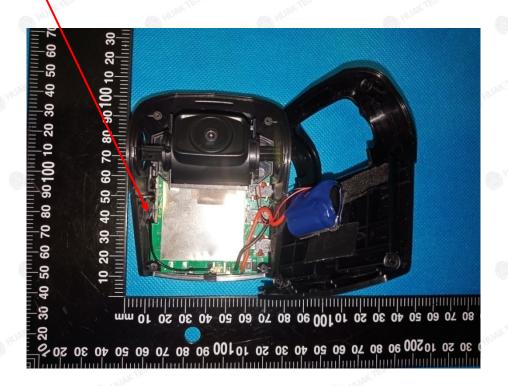
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

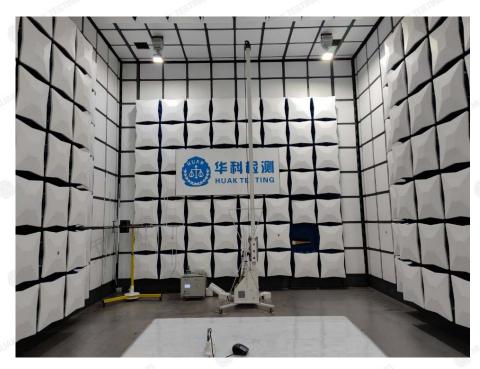
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.


WIFI ANTENNA

5. PHOTOGRAPH OF TEST

Radiated Emissions

Conducted Emission

6. PHOTOS OF THE EUT

Reference to the reporter: ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----