

FCC TEST REPORT

Report No.: HK2108092765-E

Test report
On Behalf of
REXING INC.
For
Dash Camera
Model No.: S1 Pro

FCC ID: 2AW5W-S1PRO

Prepared for: REXING INC.

264 Quarry Rd., Unit D Milford, Connecticut 06460 United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Aug. 12, 2021 ~ Aug. 19, 2021

Date of Report: Aug. 19, 2021

Report Number: HK2108092765-E

TEST RESULT CERTIFICATION

Applicant's name REXING INC.

Manufacture's Name..... KA FUNG TECHNOLOGY CO LIMITED

Address . Rm202, C5 Building, Hengfeng Industry Park, No.739 Zhoushi

Rd., Hangcheng Subdistrict, Bao'an Dist., Shenzhen China

Report No.: HK2108092765-E

Product description

Trade Mark: REXING

Product name...... Dash Camera

Model and/or type reference .: S1 Pro

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Aug. 12, 2021 ~ Aug. 19, 2021

Date of Issue Aug. 19, 2021

Test Result..... Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

TABLE OF CONTENTS

Report No.: HK2108092765-E

1.	Test Result Summary	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. TEST FACILITY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.	EUT Description	7
	2.1. GENERAL DESCRIPTION OF EUT	7
	2.2. OPERATION OF EUT DURING TESTING	8
	2.3. DESCRIPTION OF TEST SETUP	
3.	enera Information	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	12
4.	Test Results and Measurement Data	13
	4.1. CONDUCTED EMISSION	13
	4.2. TEST RESULT	15
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4 FMISSION BANDWIDTH	18
	4.5. Power Spectral Density	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	30
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	40
	4.8. ANTENNA REQUIREMENT	66
	4.9. PHOTOGRAPH OF TEST	67
	CANAL DUAL OF THE THE STATE OF	L CING

** Modified History **

Report No.: HK2108092765-E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Aug. 19, 2021	Jason Zhou
ING.	THE THE	TNG TN	G ING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1. Test Result Summary

1.1. TEST PROCEDURES AND RESULTS

CFR 47 Section	Result
§15.203	PASS
§15.207	N/A
§15.247 (b)(3)	PASS
§15.247 (a)(2)	PASS
§15.247 (e)	PASS
1§5.247(d)	PASS
§15.205/§15.209	PASS
	§15.203 §15.207 §15.247 (b)(3) §15.247 (a)(2) §15.247 (e) 1§5.247(d)

Note:

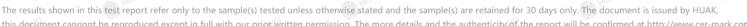
- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China


Report No.: HK2108092765-E

1.3. Measurement Uncertainty
The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5 TESTIN	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

AFICATION

Report No.: HK2108092765-E

2. EUT Description

2.1. GENERAL DESCRIPTION OF EUT

ALL HOUSE	THE HE
Equipment	Dash Camera
Model Name	S1 Pro
Serial No.	N/A O HUM
Model Difference	N/A
FCC ID	2AW5W-S1PRO
Antenna Type	Internal Antenna
Antenna Gain	0dBi
Operation frequency	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz
Number of Channels	802.11b/g/n20: 11CH 802.11n 40: 7CH
Modulation Type	CCK/OFDM/DBPSK/DAPSK
Power Source	DC 5V from car charger
Power Rating	DC 5V from car charger

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Carrier Frequency of Channels

Channel List for 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	.Ca	

Report No.: HK2108092765-E

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
-mG	THE OF	04	2427	07	2442	w	
W	AKTES -	05	2432	08	2447	IN TEST	TO AKTE
03	2422	06	2437	09	2452		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.2. Operation of EUT during testing

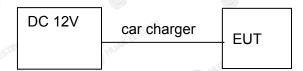
Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

2.3. DESCRIPTION OF TEST SETUP

Operation of EUT during radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is Z position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3. Genera Information

3.1. Test environment and mode

Operating Environment:	(S) (S)	·
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	A TESTING
Test Mode:		
Engineering mode:	Keep the EUT in continuou by select channel and mod value of duty cycle is 98.46	ulations (The

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	IG I HUANTESTI	I STING	I HUMA TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAI

Report No.: HK2108092765-E

4. Test Results and Measurement Data

4.1. Conducted Emission

Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep tim	e=auto		
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (compared to the compared to the compare	dBuV) Average 56 to 46* 46 50		
	Referen	ce Plane	G		
Test Setup:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test Mode:	Charging + transmitting with modulation				
Test Procedure:	 Charging + transmitting with modulation The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test Result:	N/A	O HUAKTE	MUAK IL		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 10, 2020	Dec. 09, 2021
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A

Report No.: HK2108092765-E

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. Test Result

Not applicable

Note: EUT power supply by DC Power, so this test item not applicable

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.3. Maximum Conducted Output Power

Test Specification

Test Requirement:	FCC Part15 C Section 15	5.247 (b)(3)			
Test Method:	KDB 558074	O HUNCO			
Limit:	30dBm	W. E. STING			
Test Setup:	Power meter	EUT HUNKTEST			
Test Mode:	Transmitting mode with n	nodulation			
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss v compensated to the results for each measuremen Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the res in the test report. 				
Test Result:	PASS				

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	
Power meter	Agilent	E4419B	HKE-085	Dec. 10, 2020	Dec. 09, 2021	
Power Sensor	Agilent	E9300A	HKE-086	Dec. 10, 2020	Dec. 09, 2021	
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

		TX 802.11b Mode	
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	11.27 M	30
CH06	2437	11.89	30
CH11	2462	11.75 mg mm ^c 12	30
UAKTESTA	HUARTE	TX 802.11g Mode	HUAKTES IN HUAKTES
CH01	2412	11.40	30
CH06	2437	11.98	30
CH11	2462	12.00	30 Hune 12
NG.		TX 802.11n20 Mode	SING
CH01	2412	10.98	30 TESTING
CH06	2437	11.48	30
CH11	2462	11.92	30
UAK TESTING	HIAN TESTIN	TX 802.11n40 Mode	HUAN TESTING HUAN TESTING
CH03	2422	11.59	30
CH06	2437	11.44	30
CH09	2452	11.73	30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Report No.: HK2108092765-E

4.4. Emission Bandwidth

Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (a)(2)					
Test Method:	KDB 558074	1 HUNE	O HUAR				
Limit:	>500kHz	. AK TESTING	ا				
Test Setup:		· ·	MUNAYTES IN				
	Spectrum Analyzer EUT						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 The testing follows FC 15.247 Meas Guidan Set to the maximum per EUT transmit continuous. Make the measurement resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 kd. Measure and record to the surrous of the surrous follows: 	ice v05r02. bower setting and elections of the spectrum of the	enable the im analyzer's . Set the order to make ndwidth must				
Test Result:	PASS	O HUA	NG ESTIN				

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

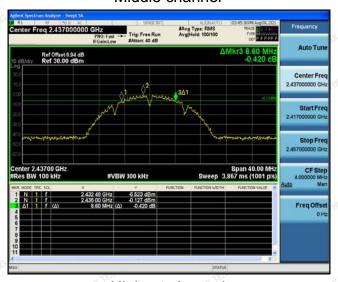
Report No.: HK2108092765-E

Test data

1000	USE /		USEV			
Test channel	6dB Emission Bandwidth (MHz)					
rest charmer	802.11b	802.11g	802.11n(H20)	802.11n(H40)		
Lowest	8.600	16.360	17.360	35.280		
Middle	8.600	16.400	17.640	35.360		
Highest	8.160	16.400	17.360	36.240		
Limit:	>500k					
Test Result:	PASS					

Report No.: HK2108092765-E

Test plots as follows:


802.11b Modulation

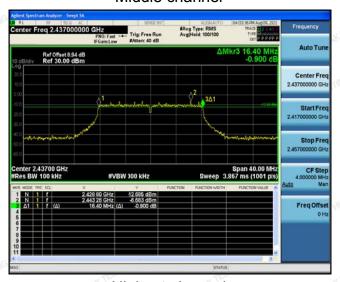
Lowest channel

Report No.: HK2108092765-E

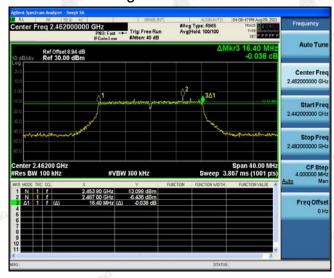
Middle channel

Highest channel

802.11g Modulation


Lowest channel

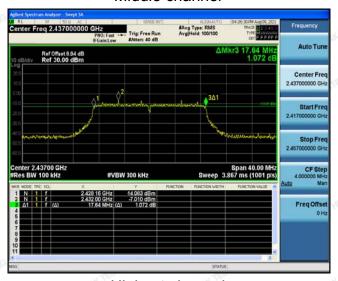
Report No.: HK2108092765-E


IK.

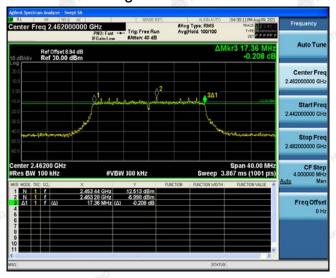
Middle channel

Highest channel



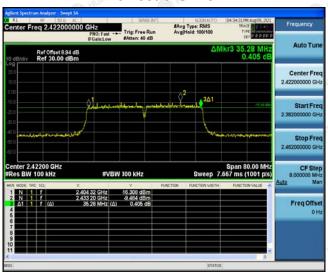

802.11n (HT20) Modulation

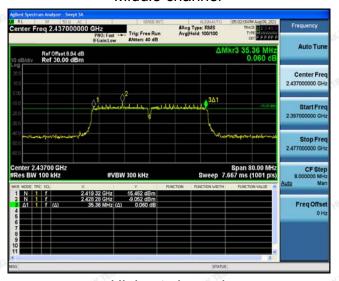
Lowest channel


Report No.: HK2108092765-E

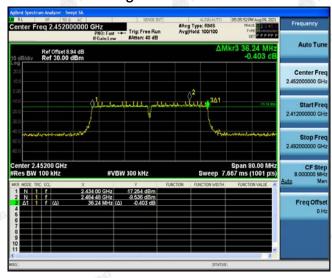
Middle channel

Highest channel




802.11n (HT40) Modulation

Lowest channel


Report No.: HK2108092765-E

Middle channel

Highest channel

4.5. Power Spectral Density

Test Specification

Test Requirement:	FCC Part15 C Section 15	FCC Part15 C Section 15.247 (e)				
Test Method:	KDB 558074	HUAKTES	HUAKTESIA			
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with m	odulation	3			
Test Procedure:	1. The testing follows Meanethod PKPSD of FCO 15.247 Meas Guidance 2. The RF output of EUT vanalyzer by RF cable was compensated to the measurement. 3. Set to the maximum por EUT transmit continuous. 4. Make the measurement resolution bandwidth (kHz. Video bandwidth to at least 1.5 times the second trace averaging of 100 traces. Use the determine the maximum 6. Measure and record the second	C KDB Publication e v05r02 was connected to and attenuator. The results for each ower setting and erously. t with the spectrur RBW): 3 kHz ≤ REVBW ≥ 3 x RBW. The OBW. The power beak marker function power level.	the spectrum e path loss nable the n analyzer's SW ≤ 100 Set the span ole. er a minimum tion to			
Test Result:	PASS	n/G				

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

AFICATION.

Report No.: HK2108092765-E

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-4.78	-14.78
802.11b	Middle	-4.89	-14.89
	Highest	-4.05	-14.05
	Lowest	-11.92	-21.92
802.11g	Middle	-11.01	-21.01
	Highest	-11.19	-21.19
	Lowest	-13.13	-23.13
802.11n(H20)	Middle	-12.02	-22.02
	Highest	-11.91	-21.91
	Lowest	-14.82	-24.82
802.11n(H40)	Middle	-15.29	-25.29
	Highest	-14.85	-24.85
PSD test result (dBm/3	3kHz)= PSD test	result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	TES	PASS	W TESTING

Test plots as follows:

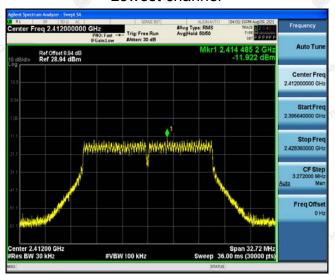
802.11b Modulation

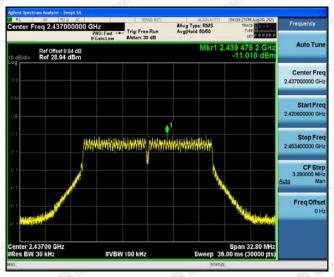
Lowest channel

Report No.: HK2108092765-E

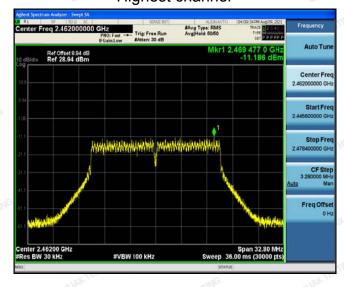
Middle channel

Highest channel



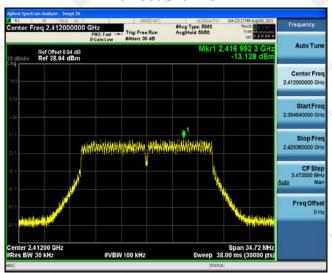

802.11g Modulation

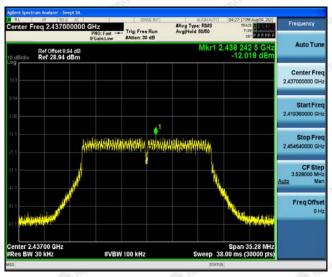
Lowest channel


Report No.: HK2108092765-E

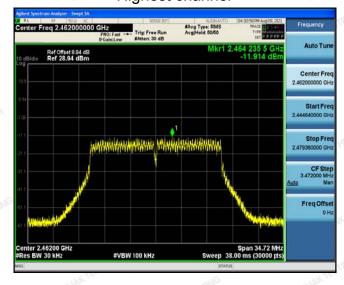
Middle channel

Highest channel



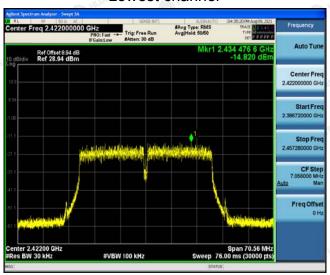

802.11n (HT20) Modulation

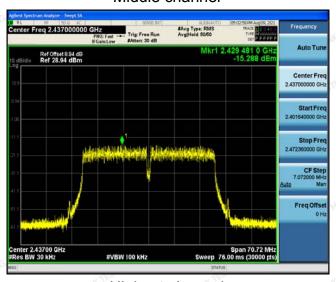
Lowest channel


Report No.: HK2108092765-E

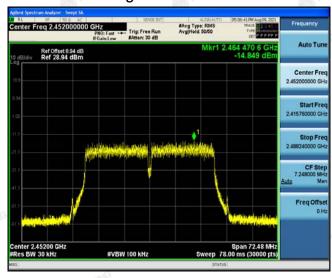
Middle channel

Highest channel




802.11n (HT40) Modulation

Lowest channel


Report No.: HK2108092765-E

Middle channel

Highest channel

4.6. Conducted Band Edge and Spurious Emission Measurement

Test Specification

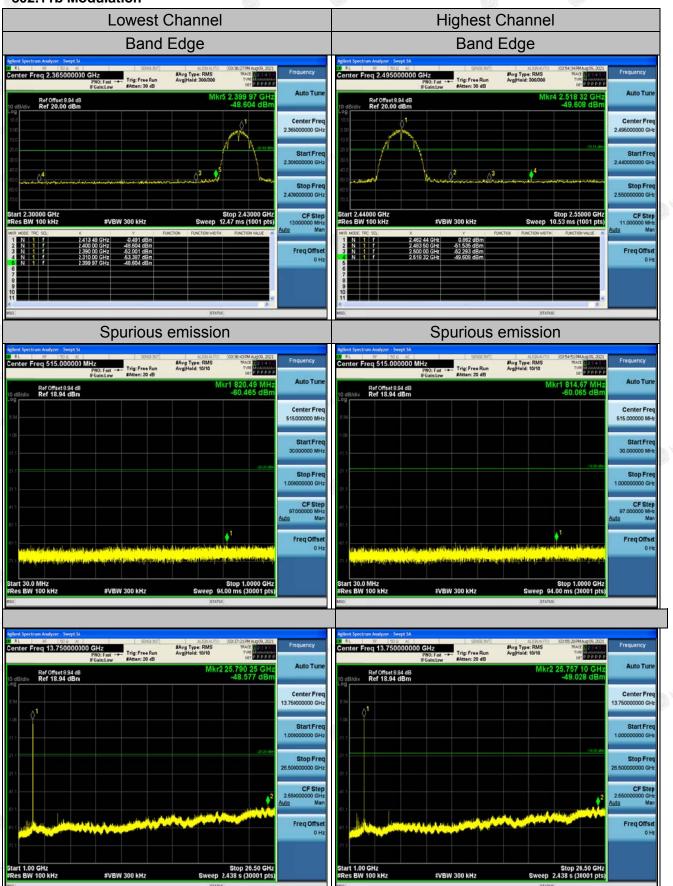
Test Requirement:	FCC Part15 C Section 19	5.247 (d)				
Test Method:	KDB558074	HUAKTES HUAKTES				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).					
Test Setup:						
	Spectrum Analyzer	EUT				
Test Mode:	Transmitting mode with r	modulation				
Test Procedure:	 The RF output of EUT analyzer by RF cable was compensated to measurement. Set to the maximum p EUT transmit continued. Set RBW = 100 kHz, Very Unwanted Emissions bandwidth outside of shall be attenuated by maximum in-band permaximum peak conducted. If the transmitted power limits based or a time interval, the attenuated paragraph shall be 30 15.247(d). Measure and record the against the limit line in the state of the	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 				
Test Result:	PASS					

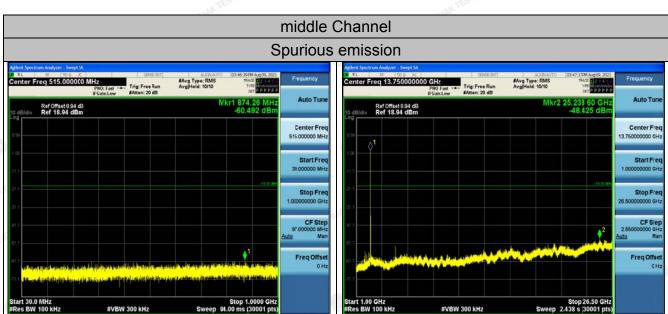
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Report No.: HK2108092765-E

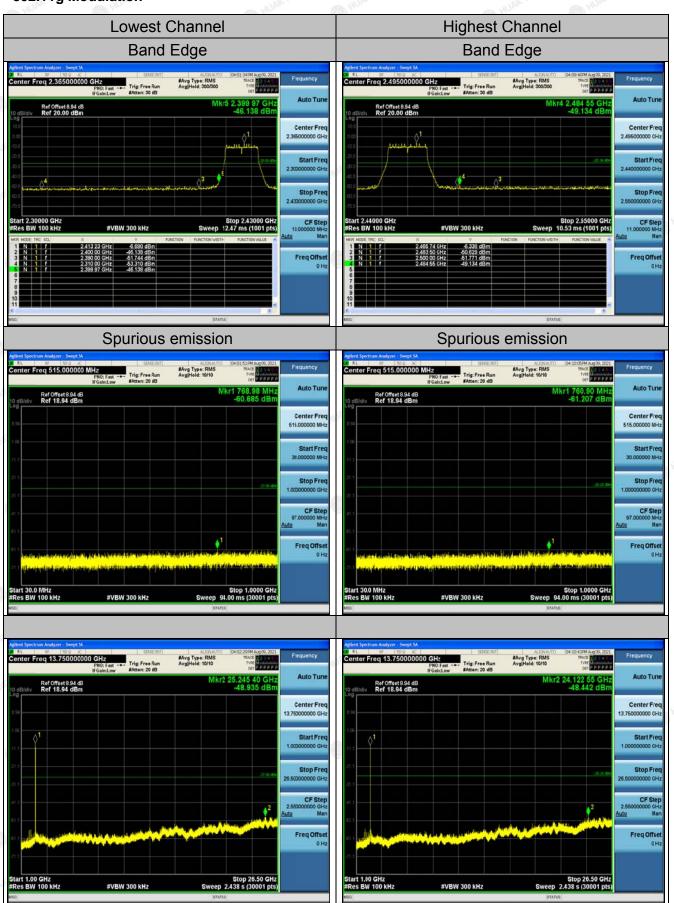
this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

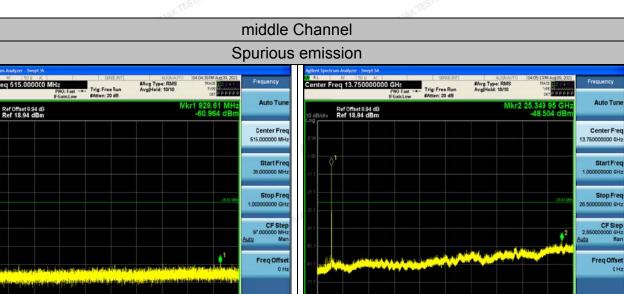
Test Instruments

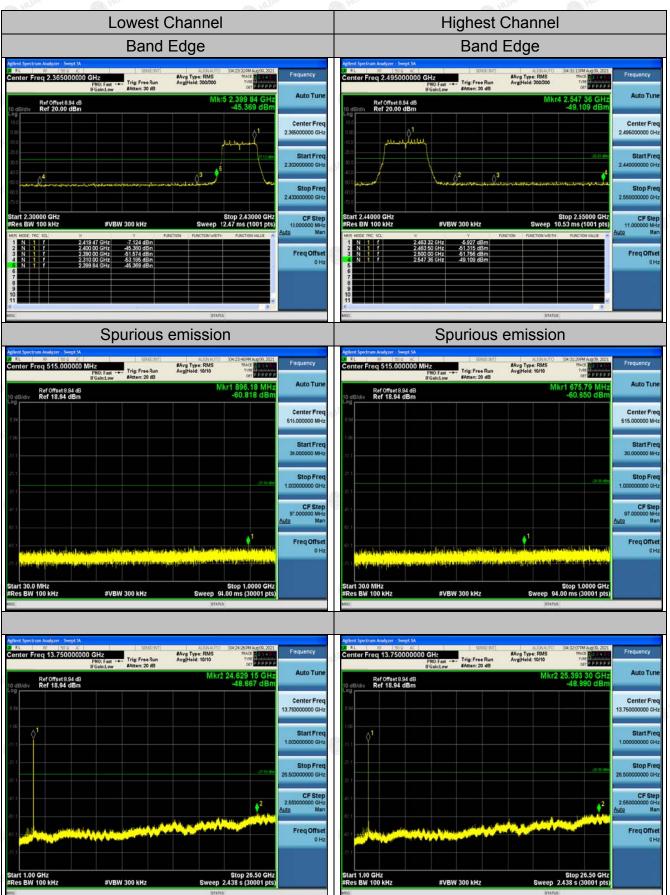

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 10, 2020	Dec. 09, 2021
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 10, 2020	Dec. 09, 2021
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

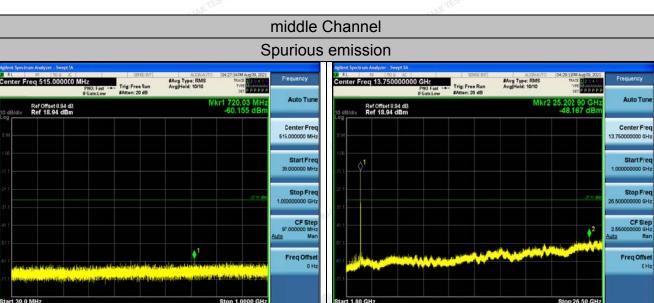

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

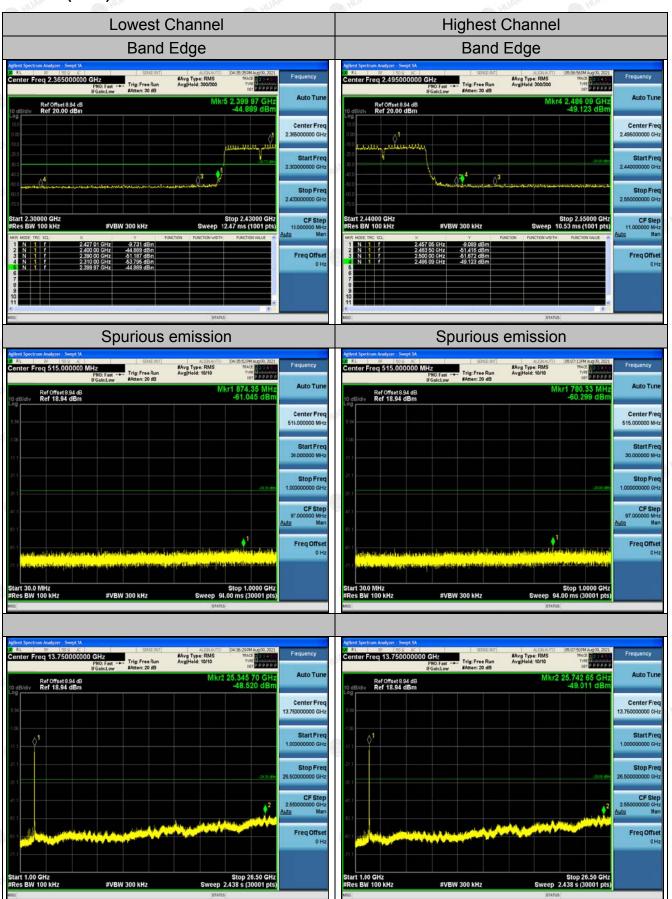

802.11b Modulation

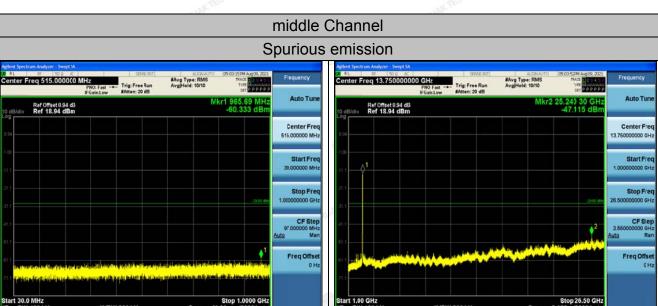



802.11g Modulation



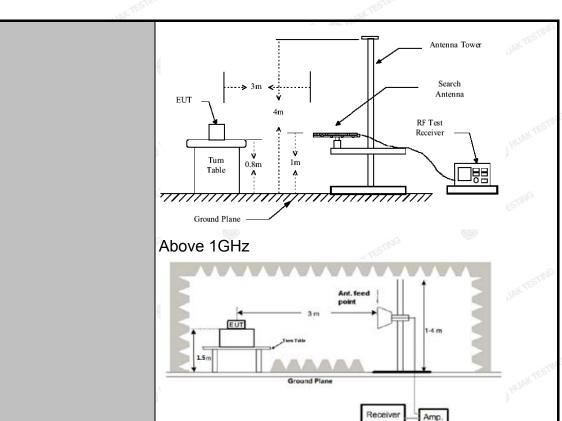
802.11n (HT20) Modulation




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11n (HT40) Modulation

4.7. Radiated Spurious Emission Measurement


Test Specification

Test Requirement:	FCC Part15	C Sectio	n 15.209	-65	NG	ESTIN
Test Method:	ANSI C63.10): 2013		HUANTE		HUAKTE
Frequency Range:	9 kHz to 25 (GHz		STING		
Measurement Distance:	3 m	Y TESTING	<u> </u>	HUAKTE	Y TESTING	
Antenna Polarization:	Horizontal &	Vertical		-G		HOPE
Operation mode:	Transmitting	mode w	ith modul	ation		
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-pea Quasi-pea	ak 200Hz	1000000		Remark si-peak Value si-peak Value
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-pea	ak 120KH	z 300KHz	Qua	si-peak Value
	Above 1GHz	Peak Peak	1MHz	7.50	_	Peak Value erage Value
Limit:	Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960		Field Strength (microvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200 500		Measurement Distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30	
	Frequency Above 1GHz	Fid (mic	eld Strength Distar crovolts/meter) Measure Distar (meter) 3		nce	Detector Average Peak
Test setup:	For radiated	Gi	- 3 m	30MHz	\	HIAL STR

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Procedure:

1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on thetop of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a highPASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

- 1D)	* Fb2.
	 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detectoris 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak;Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement:VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimumtransmission duration over which the transmitter is on and is transmitting at its maximumpower control level for the tested mode of operation.
Test results:	PASS

AFICATION.

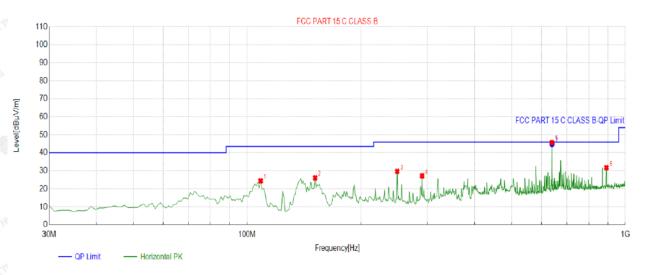
Report No.: HK2108092765-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Instruments

	Rac	liated Emission	Test Site (96	66)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI 7	HKE-010	Dec. 10, 2020	Dec. 09, 2021
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 10, 2020	Dec. 09, 2021
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 10, 2020	Dec. 09, 2021
Preamplifier	Agilent	83051A	HKE-016	Dec. 10, 2020	Dec. 09, 2021
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 10, 2020	Dec. 09, 2021
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 10, 2020	Dec. 09, 2021
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 10, 2020	Dec. 09, 2021
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 10, 2020	Dec. 09, 2021
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Dec. 10, 2020	Dec. 09, 2021
RF cable	Times	1-40G	HKE-034	Dec. 10, 2020	Dec. 09, 2021
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 10, 2020	Dec. 09, 2021

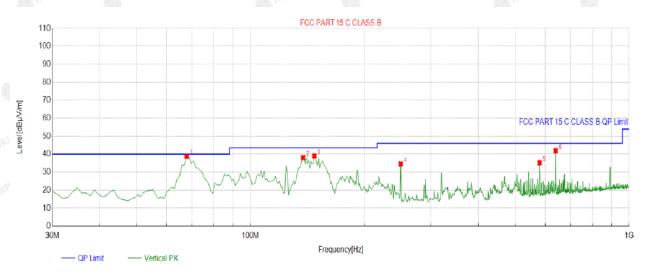

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal


QP Detector

Suspe	cted List								
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	108.6486	-15.43	39.86	24.43	43.50	19.07	100	64	Horizontal
2	151.3714	-18.84	44.96	26.12	43.50	17.38	100	139	Horizontal
3	249.4394	-13.42	43.12	29.70	46.00	16.30	100	285	Horizontal
4	290.2202	-12.84	40.01	27.17	46.00	18.83	100	100	Horizontal
5	639.7698	-5.65	51.35	45.70	46.00	0.30	100	56	Horizontal
6	891.2513	-1.87	33.62	31.75	46.00	14.25	100	92	Horizontal

Q	Final [Data List								
7	NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	640.0101	-5.64	50.47	44.83	46.00	1.17	160	359	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

QP Detector

,	Suspe	cted List								
33	NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	67.8679	-17.13	55.91	38.78	40.00	1.22	100	272	Vertical
(i	2	137.7778	-19.04	57.14	38.10	43.50	5.40	100	237	Vertical
	3	147.4875	-19.00	58.00	39.00	43.50	4.50	100	355	Vertical
	4	249.4394	-13.42	47.99	34.57	46.00	11.43	100	324	Vertical
	5	580.5405	-6.60	41.89	35.29	46.00	10.71	100	48	Vertical
	6	639.7698	-5.65	47.56	41.91	46.00	4.09	100	87	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequ	uency (MHz)	Level	@3m (dBµV/m)	Limit@3	m (dBµV/m)
		9		9	
STING		TESTING		ESTING	
	757NG	HI AK	TSTING	HUAK	TESTING
.60	HUAK		IN HALAK		HUAK

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Above 1GHz

Report No.: HK2108092765-E

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.37	-3.64	55.73	74	-18.27	peak
4824	43.16	-3.64	39.52	54	-14.48	AVG
7236	55.01	-0.95	54.06	74	-19.94	peak
7236	43.34	-0.95	42.39	54	-11.61	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	59.31	-3.64	55.67	74	-18.33	peak
4824	46.28	-3.64	42.64	54	-11.36	AVG
7236	56.92	-0.95	55.97	74	-18.03	peak
7236	43.07	-0.95	42.12	54	-11.88	AVG

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.38	-3.51	56.87	74	-17.13	peak
4874	45.81	-3.51	42.3	54	-11.7	AVG
7311	57.69	-0.82	56.87	74	-17.13	peak
7311	45.32	-0.82	44.5	54	-9.5	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.	lo O HO	TESTING	N TESTI

Vertical:

Frequency		Reading Result	Factor Emission Level		Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
NG.	4874	59.37	-3.51	55.86	74	-18.14	peak
	4874	45.32	-3.51	41.81	54 HUA	-12.19	AVG
	7311	58.17	-0.82	57.35	74	-16.65	peak
	7311	42.35	-0.82	41.53	54	-12.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

HUAK TESTING

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4924	59.38	-3.43	55.95	74	-18.05	peak	
4924	45.98	-3.43	42.55	54	-11.45	AVG	
7386	56.42	-0.75	55.67	74 HUA	-18.33	peak	
7386	42.28	-0.75	41.53	54	-12.47	AVG	

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.37	-3.43	55.94	74	-18.06	peak
4924	45.62	-3.43	42.19	54	-11.81	AVG
7386	55.93	-0.75	55.18	74	-18.82	peak
7386	41.25	-0.75	40.5	54	-13.5	AVG
	•	-Albert	•		do.	•

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes bandedge
- (3) * denotes emission frequency which appearing within the Restricted Bands specified inprovision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHzfor measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

Report No.: HK2108092765-E

LOW CH1 (802.11g Mode)/2412

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.72	-3.64	55.08	74	-18.92	peak
49.37	-3.64	45.73	54	-8.27	AVG
55.38	-0.95	54.43	74	-19.57	peak
42.35	-0.95	41.4	54	-12.6	AVG
	(dBµV) 58.72 49.37 55.38	(dBµV) (dB) 58.72 -3.64 49.37 -3.64 55.38 -0.95	(dBμV) (dB) (dBμV/m) 58.72 -3.64 55.08 49.37 -3.64 45.73 55.38 -0.95 54.43	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.72 -3.64 55.08 74 49.37 -3.64 45.73 54 55.38 -0.95 54.43 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.72 -3.64 55.08 74 -18.92 49.37 -3.64 45.73 54 -8.27 55.38 -0.95 54.43 74 -19.57

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.64	-3.64	55	74	-19	peak
4824	45.31	-3.64	41.67	54	-12.33	AVG
7236	56.28	-0.95	55.33	74	-18.67	peak
7236	42.35	-0.95	41.4	54	-12.6	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.00	-3.51	57.49	74	-16.51	peak
4874	47.74	-3.51	44.23	54	-9.77	AVG
7311	56.98	-0.82	56.16	74	-17.84	peak
7311	45.38	-0.82	44.56	54	-9.44	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.96	-3.51	55.45	74	-18.55	peak
46.35	-3.51	42.84	54	-11.16	AVG
57.74	-0.82	56.92	74	-17.08	peak
45.62	-0.82	44.8	54	-9.2	AVG
	(dBµV) 58.96 46.35 57.74	(dBµV) (dB) 58.96 -3.51 46.35 -3.51 57.74 -0.82	(dBμV) (dB) (dBμV/m) 58.96 -3.51 55.45 46.35 -3.51 42.84 57.74 -0.82 56.92	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.96 -3.51 55.45 74 46.35 -3.51 42.84 54 57.74 -0.82 56.92 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.96 -3.51 55.45 74 -18.55 46.35 -3.51 42.84 54 -11.16 57.74 -0.82 56.92 74 -17.08

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HK2108092765-E

HIGH CH11 (802.11g Mode)/2462

Report No.: HK2108092765-E

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.2	-3.43	56.77	74	-17.23	peak
s ⁽¹⁾⁽⁵⁾ 4924	44.96	-3.43	41.53	54	-12.47	AVG
7386	56.37	-0.75	55.62	74	-18.38	peak
7386	42.12	-0.75	41.37	54	-12.63	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dΒμV/m)	(dB)	Type
4924	57.93	-3.43	54.5	74	-19.5	peak
4924	47.58	-3.43	44.15	54	-9.85	AVG
7386	56.34	-0.75	55.59	74	-18.41	peak
7386	42.35	-0.75	41.6	54	-12.4	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes bandedge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified inprovision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHzfor measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, theAverage Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.64	-3.64	55	74	-19	peak
4824	42.35	-3.64	38.71	54	-15.29	AVG
7236	56.67	-0.95	55.72	74	-18.28	peak
7236	42.15	-0.95	41.2	54	-12.8	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.38	-3.64	56.74	74	-17.26	peak
4824	45.87	-3.64	42.23	54 HUNK	-11.77	AVG
7236	56.32	-0.95	55.37	74	-18.63	peak
7236	42.14	-0.95	41.19	54	-12.81	AVG

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.62	-3.51	55.11	74.00	-18.89	peak
4874	45.76	-3.51	42.25	54.00	-11.75	AVG
7311	56.32	-0.82	55.50	74.00	-18.50	peak
7311	43.08	-0.82	42.26	54.00	-11.74	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss –	Pre-amplifier.		AKTESTING	"IAK TESTIN

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.34	-3.51	54.83	74.00	-19.17	peak
4874	43.25	-3.51	39.74	54.00	-14.26	AVG
7311	57.86	-0.82	57.04	74.00	-16.96	peak
7311	43.16	-0.82	42.34	54.00	-11.66	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: HK2108092765-E

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Reading Result	Factor	Emission Level	Limits	Margin	- Detector Type
z) (dBµV)	(dBµV) (dB) (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
60.38	-3.43	56.95	74	-17.05	peak
45.92	-3.43	42.49	54	-11.51	AVG
55.19	-0.75	54.44	74	-19.56	peak
42.28	-0.75	41.53	54 KTEST	-12.47	AVG
	(dBµV) 60.38 45.92 55.19	(dBµV) (dB) 60.38 -3.43 45.92 -3.43 55.19 -0.75	(dBμV) (dB) (dBμV/m) 60.38 -3.43 56.95 45.92 -3.43 42.49 55.19 -0.75 54.44	(dBμV) (dB) (dBμV/m) (dBμV/m) 60.38 -3.43 56.95 74 45.92 -3.43 42.49 54 55.19 -0.75 54.44 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 60.38 -3.43 56.95 74 -17.05 45.92 -3.43 42.49 54 -11.51 55.19 -0.75 54.44 74 -19.56

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.96	-3.43	55.53	74	-18.47	peak
45.72	-3.43	42.29	54 A	-11.71	AVG
55.14	-0.75	54.39	74	-19.61	peak
46.29	-0.75	45.54	54	-8.46	AVG
	(dBµV) 58.96 45.72 55.14	(dBμV) (dB) 58.96 -3.43 45.72 -3.43 55.14 -0.75	(dBμV) (dB) (dBμV/m) 58.96 -3.43 55.53 45.72 -3.43 42.29 55.14 -0.75 54.39	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 45.72 -3.43 42.29 54 55.14 -0.75 54.39 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.96 -3.43 55.53 74 -18.47 45.72 -3.43 42.29 54 -11.71 55.14 -0.75 54.39 74 -19.61

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

of 68 Report No.: HK2108092765-E

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tawa
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	59.32	-3.63	55.69	74	-18.31	peak
4844	48.37	-3.63	44.74	54	-9.26	AVG
7266	57.14	-0.94	56.2	74	-17.8	peak
7266	45.96	-0.94	45.02	54	-8.98	AVG
Remark: Factor	= Antenna Factor	- Cable Loss	– Pre-amplifier.	MG WILL	STING	TESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.92	-3.63	55.29	74	-18.71	peak
4844	45.32	-3.63	41.69	54	-12.31	AVG
7266	57.14	-0.94	56.2	74	-17.8	peak
7266	42.01	-0.94	41.07	54 AK TEST	-12.93	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	- Pre-amplifier.	Inc C	TESTING	K TESTING

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data eta a Turko
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	59.32	-3.51	55.81	74	-18.19	peak
4874	45.72	-3.51	42.21	54	-11.79	AVG
7311	57.14	-0.82	56.32	74	-17.68	peak
7311	42.35	-0.82	41.53	54 TEST	-12.47	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	– Pre-amplifier.	NG MUNICAL	-m/G	TING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	60.35	-3.51	56.84	74	-17.16	peak
4874	45.72	-3.51	42.21	54	-11.79	AVG
7311	56.20	-0.82	55.38	74	-18.62	peak
7311	45.15	-0.82	44.33	54	-9.67	AVG
	al San H			JG AND THE		a)G

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

VILOTING WIGHT

Report No.: HK2108092765-E

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.41	-3.43	54.98	74	-19.02	peak
4904	43.62	-3.43	40.19	54	-13.81	AVG
7356	56.87	-0.75	56.12	74	-17.88	peak
7356	43.05	-0.75	42.3	54	-11.7	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Turne
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.19	-3.43	54.76	74	-19.24	peak
4904	45.32	-3.43	41.89	54	-12.11	AVG
7356	57.69	-0.75	56.94	74	-17.06	peak
7356	44.02	-0.75	43.27	54	-10.73	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Report No.: HK2108092765-E

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60	-5.81	54.19	74	-19.81	peak
2310.00	45.28	-5.81	39.47	54	-14.53	AVG
2390.00	59.91	-5.84	54.07	74	-19.93	peak
2390.00	45.68	-5.84	39.84	54	-14.16	AVG

rtemark. Factor – Antenna Factor Foable 2005 – Fre-ampli

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.38	-5.81	54.57	74	-19.43	peak
2310.00	47.85	-5.81	42.04	54	-11.96	AVG
2390.00	62.34	-5.84	56.5	74	-17.5	peak
2390.00	47.25	-5.84	41.41	54	-12.59	AVG
JNG _	ING _		NG _ UC A	NG	-mG	-m/G

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Operation Mode: TX CH High (2462MHz)

Horizontal

alla	anlo	lan-	5	NO	-n/G	Olar
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.37	-5.81	54.56	74	-19.44	peak
2483.50	47.93	-5.81	42.12	54	-11.88	AVG
2500.00	60.34	-6.06	54.28	74	-19.72	peak
2500.00	45.19	-6.06	39.13	54	-14.87	AVG
(170)	•	Will Ho	65.50		STATE AND	170)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits 💮	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	61.28	-5.81	55.47	74	-18.53	peak
2483.50	47.58	-5.81	41.77	54	-12.23	AVG
2500.00	61.16	-6.06	55.1	74	-18.9	peak
2500.00	49.65	-6.06	43.59	54	-10.41	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	61.37	-5.81	55.56	74	-18.44	peak
2310.00	46.15	-5.81	40.34	54	-13.66	AVG
2390.00	60.25	-5.84	54.41	74	-19.59	peak
2390.00	46.22	-5.84	40.38	54	-13.62°	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAKTE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	61.79	-5.81	55.98	74 HUNK	-18.02	peak
2310.00	46.35	-5.81	40.54	54	-13.46	AVG
2390.00	61.32	-5.84	55.48	74	-18.52	peak
2390.00	47.58	-5.84	41.74	54	-12.26	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data ata Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.69	-5.65	55.04	74	-18.96	peak
2483.50	45.72	-5.65	40.07	54	-13.93	AVG
2500.00	61.35	-5.65	55.7	74	-18.3	peak
2500.00	44.28	-5.65	38.63	54	-15.37	AVG

Vertical:

Clar	Sla-		110	alC .	Star	Ola,
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	62.38	-5.65	56.73	74	-17.27	peak
2483.50	47.58	-5.65	41.93	54	-12.07	AVG
2500.00	61.35	-5.65	55.7	74 TESTIN	-18.3	peak
2500.00	44.29	-5.65	38.64	54	-15.36	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.82	-5.81	55.01	74	-18.99	peak
2310.00	47.96	-5.81	42.15	54	-11.85	AVG
2390.00	61.34	-5.84	55.5	74	-18.5	peak
2390.00	48.33	-5.84	42.49	54	-11.51	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data at TESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	60.28	-5.81	54.47	74	-19.53	peak
2310.00	46.72	-5.81	40.91	54	-13.09	AVG
2390.00	60.38	-5.84	54.54	74	-19.46	peak
2390.00	46.31	-5.84	40.47	54	-13.53	AVG

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	60.38	-5.65	54.73	74	-19.27	peak
2483.50	47.28	-5.65	41.63	54	-12.37	AVG
2500.00	61.49	-5.65	55.84	74	-18.16	peak
2500.00	47.62	-5.65	41.97	54	-12.03	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	62.38	-5.65	56.73	74	-17.27	peak
2483.50	45.72	-5.65	40.07	54	-13.93	AVG
2500.00	61.33	-5.65	55.68	74	-18.32	peak
2500.00	46.32	-5.65	40.67	54	-13.33	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

160	Factor	Emission Level	Limits	Margin	Datastast
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.72	-5.81	52.91	74	-21.09	peak
	-5.81	N ESTING	54	1	AVG
59.32	-5.84	53.48	74	-20.52	peak
HUALT	-5.84	1	54	1	AVG
	58.72	58.72 -5.81 / -5.81 59.32 -5.84	58.72 -5.81 52.91 / -5.81 / 59.32 -5.84 53.48	58.72 -5.81 52.91 74 / -5.81 / 54 59.32 -5.84 53.48 74	58.72 -5.81 52.91 74 -21.09 / -5.81 / 54 / 59.32 -5.84 53.48 74 -20.52

Report No.: HK2108092765-E

|Remark: Factor = Antenna Factor + Cable Loss – Pre-amplitier.

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.82	-5.81	52.01	74	-21.99	peak
1	-5.81	HUMYTER	54	1	AVG
58.19	-5.84	52.35	74	-21.65	peak
AKTESTING ME	-5.84	ING I NY TESTIN	54	TESTING	AVG
	(dBµV) 57.82	(dBµV) (dB) 57.82 -5.81 / -5.81 58.19 -5.84	(dBμV) (dB) (dBμV/m) 57.82 -5.81 52.01 / -5.81 / 58.19 -5.84 52.35	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.82 -5.81 52.01 74 / -5.81 / 54 58.19 -5.84 52.35 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.82 -5.81 52.01 74 -21.99 / -5.81 / 54 / 58.19 -5.84 52.35 74 -21.65

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	HUAKTESIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.42	-5.65	51.77	74	-22.23	peak
2483.50	1	-5.65	MINN!	54	1 🚳	AVG
2500.00	57.13	-5.65	51.48	74	-22.52	peak
2500.00	WAKTESTIN /	-5.65	S ME - JUAN TESTIN	54	LAK TETING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier

Vertical:

						10	
	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	- Detector Type
510	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.50	58.32	-5.65	52.67	74	-21.33	peak
Ī	2483.50	1	-5.65	1	54	1	AVG
	2500.00	57.14	-5.65	51.49	74	-22.51	peak
1	2500.00	1	-5.65	0 /	54) HO. 1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

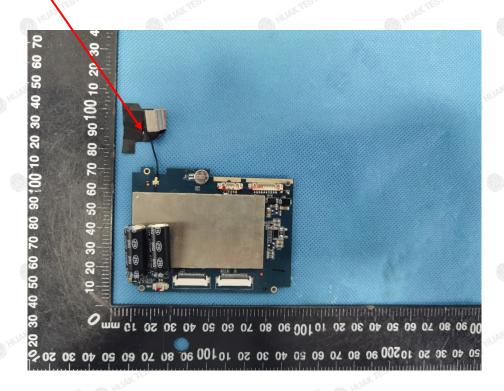
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Report No.: HK2108092765-E

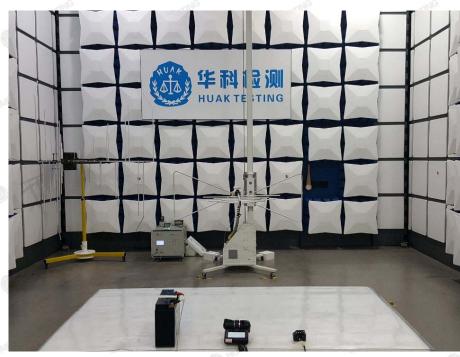

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of astandard antenna jack or electrical connector is prohibited. Further, this requirement does not apply tointentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

WIFI ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.9. PHOTOGRAPH OF TEST

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.10. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

Report No.: HK2108092765-E

--End of test report----