

Hearing Aid Compatibility (HAC) RF Emissions TEST REPORT

Report No: STS2009191H03 Issued for Excellus Communications, LLC 27298 Wetland Road, Suite 101 Harrisburg, SD 57032 USA

Product Name:	4G phone			
Brand Name:	Snapfon			
Model No.:	Snapfon ez4G			
Series Model:	N/A			
FCC ID:	2AW56-EZ4G			
Toot Standard.	ANSI C63.19: 2011			
Test Standard:	FCC 47 CFR Part 20.19			
RF Emission Rating:	М3			
Test Result:	Pass			

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

ShenZhen STS Test Services Co.,Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an-District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name:	Excellus Communications, LLC
Address:	27298 Wetland Road, Suite 101 Harrisburg, SD 57032 USA
Manufacture's Name	Ying Tai Electronics Co., Ltd
Address:	ROOM 803, CHEVALIER HOUSE 45-51 CHATHAM ROAD SOUTH, TSIM SHA TSUI, KOWLOON, HONG KONG
Product description	
Product name:	4G phone
Brand name:	Snapfon
Model name:	Snapfon ez4G
Serial Model :	N/A
Standards	ANSI C63.19:2011 FCC 47 CFR Part 20.19

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	
Date (s) of performance of tests:	05 Oct. 2020
Date of Issue:	07 Oct. 2020
Test Result:	Pass

Testing Engineer :	Aann 13u.
	(Aaron Bu)
Technical Manager :	Sean She
	(Sean she)
Authorized Signatory :	Virtali Not
	(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Т	able	of	Contents	5

1. General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Facility	5
1.4 Test Standards	5
2. System Components	6
2.1 SATIMO System Description	6
2.2 E-Field Probe Specification	6
2.3 Axis Articulated Robot	6
2.4 Universal Device Positioner	7
2.5 Test Equipment List	8
2.6 Measurement Uncertainty	9
3. HAC RF Emission Measurement Evaluation	10
3.1 System Check	10
3.2 Dipole validation	10
3.3 System Validation Results	10
4. Hearing AID Compatibility	11
5. Modulation Interference Factor (MIF)	12
6. HAC Test Procedures	14
7. Test Flowchart Per ANSI-PC63.19 2011	15
8. Schematic Test Configuration	16
9. RF Emissions	17
10 HAC RF Emission Test Results	18
10.1 Conducted Power (Unit: dBm)	18
10.2 M-Rating	18
10.3 E-Field Emission for GSM:	19
11. HAC Test Photographs	27
12. System Validation Results	28
13. Probe Calibration And Dipole Calibration Report	29

1.1 EUT Description

Product Name	4G phone			
Brand Name	Snapfon			
Model Name	Snapfon ez4G			
Series Model	N/A			
Model Difference	N/A			
Hardware Version	G1-MB-V1.1			
Software Version	Snapfon_ez4G_v2.0_20200821_124	19		
Device Type	Portable Device			
EUT Stage	Production Unit			
Frequency Range (TX)	GSM 850: 824.2~848.8MHz PCS1900: 1850.2~1909.8MHz WCDMA Band II: 1852.4~1907.6MHz WCDMA Band IV:1712.4~1752.6 MHz WCDMA Band V: 826.4~846.6MHz WLAN802.11b/g/n(HT20): 2412~2462MHz WLAN802.11b/g/n(HT40): 2422~2452MHz Bluetooth: 2402~ 2480MHz GPS: 1575.42MHz FM: 87.5 MHz to 108 MHz			
Band	E-field dB(V/m) M-Rating			
GSM 850	35.02 M4			
PCS1900	29.81	M4		
WCDMA Band II	32.73	M3		
WCDMA Band IV	33.81 M3			
WCDMA Band V	34.87 M4			
Operating Mode:	GSM: GSM Voice; GPRS; Class 12 WCDMA: RMC, HSDPA, HSUPA Release 6 WLAN: 802.11 b/g/n(HT20) /n(HT40) Bluetooth: 4.2+EDR (GFSK +π/4DQPSK+8DPSK) BLE:GFSK			
Antenna	GSM, WCDMA: PIFA Antenna			
Specification:	BT, WLAN: PIFA Antenna			
SIM Card	Only supports one SIM card			
Battery	Rated Voltage: 3.7V Charge Limit: 4.2V Capacity :1500mAh			

Shenzhen STS Test Services Co., Ltd.

Ambient conditions in the SAR laboratory:

ltems	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Facility

ShenZhen STS Test Services Co.,Ltd.

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC Registration No.: 625569

A2LA Certificate No.: 4338.01

IC Registration No.: 12108A

1.4 Test Standards

No.	Identity	Document Title	
1	FCC 47 CFR Part 20.19	Hearing aid-compatible mobile handsets.	
2	ANSI C63.19:2011	American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids	
3	285076 D01 HAC Guidance v05r01	Equipment authorization Guidance For Hearing Aid Compatibility	

2. System Components

2.1 SATIMO System Description

SATIMO is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. SATIMO uses the latest methodologies and FDTD order to provide a platform which is repeatable with minimum uncertainty.

2.2 E-Field Probe Specification

Device Under Test			
Device Type	COMOHAC E FIELD PROBE		
Manufacturer	Satimo		
Model	SCE		
Serial Number	SN 06/14 EPH42		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7GHz-2.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.214 MΩ		
	Dipole 2: R2=0.213 MΩ		
	Dipole 3: R3=0.204 MΩ		
98 8			

2.3 Axis Articulated Robot

Shenzhen STS Test Services Co., Ltd.

SATIMO utilizes a six articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelop. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot /Controller Manufacturer	KUKA
Number of Axis	Six independently controlled axis
Positioning Repeatability	$<\pm 0.03$ mm
Controller Type	KR C4 compact
Robot Reach	901mm
Communication	RS232 and LAN compatible

2.4 Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes.

2.5 Test Equipment List

Instrument	Manufacture r	Model	S/N	Cal. Date	Cal. Due Date
E-Field Probe	MVG	SCE	SN 06/14 EPH42	2020.07.14	2021.07.13
Reference Validation Dipole 835MHz	MVG	SID835	SN 13/14 DHA55	2020.07.14	2023.07.13
Reference Validation Dipole 1900MHz	MVG	SIDB1900	SN 13/14 DHB59	2020.07.14	2023.07.13
Magnetic Field Simulator	MVG	STMFS	SN 07/14 TMFS24	2020.07.14	2023.07.13
Network Analyzer	Agilent	8753ES	US38432810	2019.10.11	2020.10.10
Multi Meter	Keithley	Multi Meter 2000	4050073	2019.10.11	2020.10.10
Wireless Communication Test Set	R&S	CMW500	117239	2019.10.09	2020.10.08
Power Amplifier	DESAY	ZHL-42W	9638	2019.10.09	2020.10.08
Power Meter	R&S	NRP	100510	2019.10.16	2020.10.15
Power Meter	Agilent	E4418B	GB43312526	2019.10.16	2020.10.15
Power Sensor	R&S	NRP-Z11	101919	2019.10.09	2020.10.08
Power Sensor	Agilent	E9301A	MY41497725	2019.10.09	2020.10.08
Temperature hygrometer	SuWei	SW-108	N/A	2019.10.13	2020.10.12

Shenzhen STS Test Services Co., Ltd.

2.6 Measurement Uncertainty

Measurement Uncertainty of RF Emission Test											
Uncertainty Component	Tol.	Prob.	Dvi	Uncertainty	Uncertainty						
encontainty component	(±dB)	Dst.	5	(dB)	(%)						
Measurement System				-							
RF reflections	0.1	R	√3	0.06							
Field Probe conv. Factor	0.4	R	√3	0.23							
Field Probe anisotropy	0.25	R	√3	0.14							
Positioning accuracy	0.1	R	√3	0.12							
Probe cable placement	0.2	R	√3	0.06							
System repeatability	0.2	R	√3	0.12							
EUT repeatability	0.4	Ν	1	0.40							
Combined Standard Uncertainty		Ν	1	0.52							
Expanded uncertainty		NI	k_2	1.02	12.65						
(95% CONFIDENCE INTERVAL)		IN	K=Z	1.05	12.00						
REPORTED Expanded uncertainty		NI	k 0	1.02	12.00						
(confidence level of 95%, k=2)		IN	K=Z	1.03	13.00						

Measurement Uncertainty of T-Coil Test										
Uncertainty Component	Tol.	Prob.	Dy di	Uncertainty	Uncertainty					
Uncertainty Component	$(\pm dB)$	Dst.	DVI	(dB)	(%)					
Measurement System										
RF reflections	0.1	R	√3	0.06						
Acoustic noise	0.1	R	√3	0.06						
Probe coil sensitivity	0.49	R	√3	0.28						
Reference signal level	0.25	R	√3	0.14						
Positioning accuracy	0.4	R	√3	0.23						
Cable loss	0.1	N	2	0.05						
Frequency analyzer	0.15	R	√3	0.09						
System repeatability	0.2	N	1	0.20						
Repeatability of the WD	0.4	Ν	1	0.40						
Combined Standard Uncertainty		Ν	1	0.61						
Expanded uncertainty		N	k_2	1 22	15.05					
(confidence level of 95%, k=2)		IN	K=2	1.22	15.05					
REPORTED Expanded uncertainty		N	k_2	1 20	15.00					
(confidence level of 95%, k=2)		IN	K=Z	1.20	15.00					

3. HAC RF Emission Measurement Evaluation

3.1 System Check

The test setup should be validated when first configured and verified periodically thereafter to ensure proper function. The procedure consists of two parts: dipole validation and determination of probe modulation factor

3.2 Dipole validation

The HAC validation dipole antenna serves as a known source for an electrical and magnetic RF output. Figure 2 shows the setup used for the dipole validation.

1. The dipole antenna was placed in the position normally occupied by the WD.

2. The dipole was energized with a 20 dBm un-modulated continuous-wave signal.

3. The length of the dipole was scanned with both E-field and H-field probes and the maximum value for each scan was recorded.

4. The readings were compared with the values provided by the probe manufacturer and were found to agree within the allowed tolerance of 10%.

Figure 2: Dipole Validation Procedure

The probe is positioned over the illuminated dipole at 10 mm distance from the nearest point on the probe sensor element to the top surface (edge) of the dipole element.

3.3 System Validation Results

Lab Temperature: 23°C, Lab Humidity: 57%.

Date	Calibration Dipole	Frequency (MHz)	Input Power (dBm)	Target Value(V/m)	Measured (V/m)	Deviation (%)
2020/10/05	SN 06/14	850	20	220.4	217.5	-1.32
2020/10/05	EPH42 E-field	1900	20	153.4	151.6	-1.17
2020/10/05 2020/10/05	SN 06/14 EPH42 E-field	850 1900	20 20	220.4 153.4	217.5 151.6	-1.32 -1.17

Note: Deviation=((Measured Result)-(Target Value))/(Target Value)*100%

Shenzhen STS Test Services Co., Ltd.

4. Hearing AID Compatibility

The purpose of the Hearing Aid Compatibility extension is to enable measurements of the near electric and magnetic fields generated by wireless communication devices in the region controlled for use by a hearing aid in accordance with ANSI-C63.19-2011 FCC has granted a request for waiver of the HAC rules in section 20.19 for dual band GSM handsets. The waiver has specific conditions, as stated in the order (FCC 05-166).

The purpose of this standard is to establish categories for hearing aids and for WD (wireless communications devices) that can indicate to health care practitioners and hearing aid users which hearing aids are compatible with which WD, and to provide tests that can be used to assess the electromagnetic characteristics of hearing aids and WD and assign them to these categories. The various parameters required, in order to demonstrate compatibility and accessibility are measured. The design of the standard is such that when a hearing aid and WD achieve one of the categories specified, as measured by the methodology of this standard, the indicated performance is realized.

- In order to provide for the usability of a hearing aid with a WD, several factors must be coordinated:
- a) Radio frequency (RF) measurements of the near-field electric and magnetic fields emitted by a WD to categorize these emissions for correlation with the RF immunity of a hearing aid.
- b) Magnetic field measurements of a WD emitted via the audio transducer associated with the T-coil mode of the hearing aid, for assessment of hearing aid performance.
- c) Measurements with the hearing aid and a simulation of the categorized WD T-coil emissions to assess the hearing aid RF immunity in the T-coil mode.

The WD radio frequency (RF) and audio band emissions are measured.

Hence, the following are measurements made for the WD:

- a) RF E-Field emissions
- c) T-coil mode, magnetic signal strength in the audio band
- d) T-coil mode, magnetic signal and noise articulation index
- e) T-coil mode, magnetic signal frequency response through the audio band

Corresponding to the WD measurements, the hearing aid is measured for:

- a) RF immunity in microphone mode
- b) RF immunity in T-coil mode

5. Modulation Interference Factor (MIF)

The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF) which replaces the need for the Articulation Weighting Factor (AWF) during the evaluation and is applicable to any modulation scheme.

The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63-2007.

Definitions, E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. OPENHAC is therefore using the "indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by probe modulation response (PMR) calibration in order to not overestimate the field reading. The evaluation method or the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is called to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty it may alternatively be determined through analysis and simulation, because it is constraint and characteristic for a communication signal. OPENHAC uses well defined signals for PMR calibration. The MIF of these signals has been determined by simulation and is automatically applied.

MIF values were not tested by a probe or as specified in the standards but are based on analysis provided by SATIMO for all the air interfaces (GSM, WCDMA). The data included in this report are for the worst case operating modes.

Transmission protocol	Modulation interference factor
GSM; full-rate version 2; speech codec/handset	+3.5dB
low	
WCDMA; speech; speech codec low; AMR 12.2	-20.0dB
kb/s	
CDMA; speech; SO3; RC3; full frame rate:	-19.0dB
8kEVRC	
CDMA; speech; SO3; RC1;1/8th frame rate;	+3.3dB
8kEVRC	

A PMR calibrated probe is linearized for the selected waveform over the full dynamic range within the uncertainty.

Specified in its calibration certificate. E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. OPENHAC is therefore using the \indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. The evaluation method for the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is scaled to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty. It may alternatively be determined through analysis and simulation, because it is constant and characteristic for a communication signal. OPENHAC uses well-defined signals for PMR calibration. The MIF of these signals has been determined by simulation and is automatically applied. The MIF measurement uncertainty is estimated as follows, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10

kHz:

0.2 dB for MIF -7 to +5 dB, 0.5 dB for MIF -13 to +11 dB

1 dB for MIF > -20

6. HAC Test Procedures

The following illustrate a typical RF emissions test scan over a wireless communications device:

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. DUT is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The DUT operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.
- 5. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.
- 6. The measurement system measured the field strength at the reference location.
- Measurements at 5 mm increments in the 5 × 5 cm region were performed and recorded. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- 8. The system performed a drift evaluation by measuring the field at the reference location.
- 9. Steps 1 ~ 8 were done for both the E and H-Field measurements.

7. Test Flowchart Per ANSI-PC63.19 2011

Test Instructions

Shenzhen STS Test Services Co., Ltd.

8. Schematic Test Configuration

During HAC test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) was allocated to 128, 190 and 251 respectively in the case of GSM 850MHz, or to 512, 661 and 810 respectively in the case of PCS 1900MHz, or to 4132, 4183 and 4233 respectively in the case of WCDMA 850MHz, or to 9262, 9400 and 9538 respectively in the case of WCDMA 1900MHz. or to 1312, 1413 and 1513 respectively in the case of WCDMA 1700MHz. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

Air-interface	Band (MHz)	Туре	C63.19-2011 Tested	Simultaneous Transmissions Scenarios invoice (Not to be tested)	Reduced power
	850	Voice	Yes	Yes: WIFI or BT	N/A
GSM	1900	Voice	Yes	Yes: WIFI or BT	N/A
	GPRS	Data	N/A	N/A	N/A
	850	Voice	Yes	Yes: WIFI or BT	N/A
	1900	Voice	Yes	Yes: WIFI or BT	N/A
VVCDIVIA	HSDPA	Data	N/A	N/A	N/A
	HSUPA	Data	N/A	N/A	N/A
WIFI	2.4G	Data	N/A	Yes GSM or WCDMA	N/A
BT	2.4G	Data	N/A	Yes GSM or WCDMA	N/A

The volume is at the maximum value, and the backlight of the phone is turned off. The Manufacturer doesn't design HAC mode software on the EUT

Note: The EUT 4G only supports data mode, not 4G voice mode.

Shenzhen STS Test Services Co., Ltd.

9. RF Emissions

Emission Categories	E-field emissions					
	< 960 MHz	> 960 MHz				
Category M1	50 to 55 dB (V/m)	40 to 45 dB (V/m)				
Category M2	45 to 50 dB (V/m)	35 to 40 dB (V/m)				
Category M3	40 to 45 dB (V/m)	30 to 35 dB (V/m)				
Category M4	<40 dB (V/m)	<30 dB (V/m)				

Shenzhen STS Test Services Co., Ltd.

Т

10 HAC RF Emission Test Results

10.1 Conducted Power (Unit: dBm)

Burst Average Power (dBm)										
Band	and GSM 850 PCS 1900									
Channel	128	190	251	512	661	810				
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880	1909.8				
GSM(GMSK, 1-Slot) 32.17 32.32 32.42 29.39 29.24 29.21										

Band	WCDMA Band V		WC	WCDMA Band IV			WCDMA Band II		
Channel	4132	4183	4233	1312	1413	1513	9262	9400	9538
Frequency (MHz)	826.4	836.6	846.6	1712.6	1740.0	1752.4	1852.4	1880.0	1907.6
RMC 12.2Kbps	21.93	21.35	22.39	22.98	22.56	23.84	22.60	22.55	23.19

10.2 M-Rating

Band		GSM 850			PCS 1900	
Channel	128 190 251			512	661	810
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880	1909.8
Result(dB V/m)	34.52	34.94	35.07	29.82	29.67	29.45
M-Rating	M4	M4	M4	M4	M4	M4

Band	WCDMA Band II			WCDMA Band IV			WCDMA Band V		
Channel	9262	9400	9538	1312	1413	1513	4132	4183	4233
Frequency (MHz)	1852.4	1880.0	1907.6	1712.6	1740.0	1752.4	826.4	836.6	846.6
Result(dB V/m)	32.75	32.64	32.57	33.58	33.86	33.42	34.86	34.65	34.65
M-Rating	M3	М3	М3	M3	М3	M3	M4	M4	M4

T

Page 19 of 29

10.3 E-Field Emission for GSM:

Grid 1: 31.92 <mark>Grid 2: 32.74Grid 3</mark>	33. 85	Colors Scale Y (d) (V/n) (4, 47 43, 75 43, 60 (5, 60)	NGC Visualisation Graphical Interface Redicted Intensity 50 - 40 -	Zoos In/Ost
Grid 4: 32.13Grid 5: 33.17Grid 6:	34. 78	4 1.59 4 1.59 4 0.15 3 3.01 7 .99 7 .95 7	30- 20- 10- ⊷ 0- -10- -20-	
Grid 7: 31.42Grid 8: 32.42Grid 9:	32.64	1 2 3 4 5 6 7 8 9	-30- -40- -50 -40 -50 -20 -10 0 10 20 X aaxi (aa) [15 Y aaxi (aa) [5	30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
GSM850	128	824.2	34.78	M4

Grid 1: 32.54 Grid 2: 33.79 Grid	3: 34. 24	Celors Sec 2 (da 0/ 2 (da 0/ 42.00 41.02	NC Virualisation Graphical Interface Badiated Intensity 0) 0) 40-	Zom In/Ont
Grid 4:32.84 Grid 5: 34.06 Grid	6: 34.81			
Grid 7: 32.40 Grid 8: 33.08 Grid	9: 33.24	4 5 7 8 	6 9 40- -50- -50 -i0 -i0 i0 Σ 10 -i0 i0 Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ	20 30 40 50 —
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
GSM850	190	836.4	34.81	M4

Grid 1: 32.51 Grid 2: 33.29 Grid	3: 34.74	Cclors Scal 2 (d) 0/7 45 72 45 72 45 72 45 72	MC Visualisation Graphical Interface Redisted Intensity 40-	Zoos In/Out
Grid 4: 33.20 Grid 5: 34.05 Grid	6: 35.02	1 2 1 2 1 2 1 2 1 2	30- 20- 10- -10- -20- 3	
Grid 7: 32.18 Grid 8: 33.27 Grid	9: 33.15	4 5 7 8 SAVZ C	6 9 -60- -5060 -30 -20 -10 0 10 x neel X mari (m) [15 Y mari (m) [5	20 30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
GSM850	251	848.8	35.02	M4

Grid 1: 27.92 Grid 2: 28.14 Grid Grid 4: 29.47 Grid 5: 29.81 Grid Grid 7: 28.42 Grid 8: 28.47 Grid	 3: 27.61 6: 28.05 9: 27.73 	Calors Scalt X (40 (%n)) 3.95 3.9	BKC Wirealization drophical Interface Subject Intensity Subject Intensity	Zoos La/Ost
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
PCS1900	512	1850.2	29.81	M3

Grid 1: 27.04 Grid 2: 28.12 Grid	3: 27.44	Culars Scal X (40 V/) 30 59 37 50 37 50 37 50	NGC Virualisation Graphical Interface Redicted Intensity 50- 40-	Zoom In/Out
Grid 4: 28.59 Grid 5: 29.67 Grid	6: 28.34	1 2	30- 20- 10- ++ 0- -10- -20- 3 -30-	
Grid 7: 27.88 Grid 8: 28.18 Grid	9: 27.43	4 5 7 8	6 9 -50 -50 -40 -30 -20 -10 0 10 20 x neet (nn) [7 X neet (nn) [5]	30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
PCS1900	661	1880.0	29.67	M4

Grid 1: 26.97 Grid 2: 27.76 Grid	3: 27.78		MC Visualisation Graphical Interface Rediated Totencity	Zoom In/Out
		Colors Sec 2 (38 %) 37.2 36.5 37.2 38.5 37.2 38.5 33.6 35.6 35	ale 50 - 7 5 40 - 40 - 7 5 20 - 7 1 20 - 7 4 20 - 7	
Grid 4: 28.48 Grid 5: 29.65 Grid	6: 28.75	1 0 0 1 0 0 1 2 1 2 1 2	3 10- + 0- + − -10- -20- 3 -30-	
Grid 7: 27.84 Grid 8: 28.46 Grid	9: 27.72	4 5 7 8 5.07	6 9 -40- -50502020202020202020-	30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
PCS1900	810	1909.8	29.65	M4

Grid 1: 30.90 Grid 2: 31.31 Grid	3: 31.92	Colers Scale 2 (3) (70) 2 (3) (70) 2 (19) 0 (5) 0 (5)	MAC Vizualisation Graphical Interface Rediated Intensity 50 - 40 - 30 -	Zoom In/Out
Grid 4: 32.04 Grid 5: 32.73 Grid	6: 32.27	1 1 2 3 1 2 3 1 2 3		
Grid 7: 31.43 Grid 8: 31.62 Grid	9: 31.02	4 5 0 7 8 9 24/8 <u>Cance</u>	40- -50603020i0 0 ib 20 X = act (an) -5 X = act (an) p	30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
WCDMA II	9262	1852.4	32.73	M3

Grid 1: 30.48 Grid 4: 31.60	Grid 2: 31.52 G	rid 3: rid 6:	31. 36 31. 97	Colers Sc. 2 46 0 0 52 0 52 0 52 0 52 0 52 0 52 0 52 0	Bulk State Redicted Intensity State 1 0 - 2 - - 1 0 - 2 - - 1 0 - 2 - - 10 - - 0 - -	Zoon In/Out
Grid 7: 30.72	2 Grid 8: 31.17 G	rid 9:	30.88	1 2 4 5 7 8	$\frac{3}{6} \\ 9 \\ -40 \\ -40 \\ -5$	0 30 40 50
Opera	ation mode	C	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
W	CDMA II		9400	1880.0	32.31	M3

Grid 1: 30.48 Grid 2: 31.52 Grid	3: 31.47	NAC Visualization Graphical Interface Zoom In/Out Redisted Intensity Colors Feals
Grid 4: 31.77 Grid 5: 32.51 Grid	6: 31.78	0.82 30- 0.43
Grid 7: 31.22 Grid 8: 31.47 Grid	9: 30.68	4 5 6 7 8 9 SNVZ Cuncel Cunc
Operation mode	Channel	f(MHz) Maximum value of total field (dB V/m) M-Rating
WCDMA II	9538	1907.6 32.51 M3

					NC Visualization Graphical Interface	
Grid 1: 31.120	Grid 2: 30.67 Gri	d 3:	30. 56	Colors Scal E (AB (V/s 0.95 0.37 -0.21 -0.71	Badisted Intensity 1e 50- 0) 40- 30- 30-	Zoom In/Ont
Grid 4: 32.84 C	G rid 5: 33.50 Gri	d 6:	30. 94	1 - 15 - 8 - 25 - 5 - 3 - 10 - 4 - 68 - 5 - 44 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		
Grid 7: 31.770	G rid 8: 31.48 Gri	d 9:	30. 30	4 5 7 8 SAVZ C	6 9 -60- -50i0 -30 -20 -10 0 10 20 x mach X mach (ma) 75 Y mach (ma) 75	30 40 50
Operat	ion mode	С	hannel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
WC			1312	1712.6	33.50	M3

Ţ

Grid 1: 30.42 Grid 2: 20.17 Grid	3: 30.78	MC Visualisation Graphical Interface Radiated Intensity Zoom In/Out 0.65 40- 0.71 70
Grid 4: 33.72 Grid 5: 33.81 Grid	6: 31.27	1 2 3 1 0
Grid 7: 31.95 Grid 8: 31.32 Grid	9: 30.45	4 5 6 7 8 9 -40- -50- -50- -50 -40 -30 -20 -10 0 10 20 30 40 50 X next (nn) [-5] 7 next (nn) [-5]
Operation mode	Channel	f(MHz) Maximum value of total field (dB V/m) M-Rating
WCDMA IV	1413	1740.0 33.81 M3

				1	/								
Crid 1.	30.86	Crid	9.	20 76	Crid	3.	30 4	2			н	AC Visualization Graphical Interface	Torm Ta/Out
GI I U I.	30.00	91 I U	4.	29.70	GI 10	J.	30.4	: 4		Colors Sca	1e 50-	Radiated Intenzity	
										E (dB (V/	(n)) 40 -		
			-							-0.50 -1.12 -1.12 -0.50	30-		
										-2.33 -2.97 -3.59 -4.20	20-		
Craid A.	<u></u>	Craid	5 .	22 GA	Cruid	6.	21 9	2		-4. 02 -5. 44 -6. 06 -8. 67	10- ⊶ 0-	+	
Gr10 4:	32.20	Gria	b :	33. 04	Grid	0:	51. 2			-7.91	-10-	+	
											-20 -		
										4 5	3 -30-		
										7 8	9		
0	01 76	0	0.	21 07	0	ο.	20.7				-50-1	50 -40 -30 -20 -10 0 10 X	20 30 40 50
Gria (:	31.70	Gria	ð:	31.97	Gr10	9:	30.7	4		SAVE C	ancel	X nazi (nn) -5 Y nazi (nn) -5	_
											-		
	Opera	tion n	nod	е		С	hann	el	f(MHz)	Maxin total f	num value of ield (dB V/m)	M-Rating
	WC	DMA	IV				1513		17	752.4		33.64	M3

T

Grid 1: 31.68 Grid 2: 32.75 Grid	3: 33.98	MC Visualisation Graphical Interface Image: Colors Scale Image: Colors Scale 50 50 5,55 40 3,90 30
Grid 4: 31.84 Grid 5: 33.54 Grid	6: 34.87	1 2 3
Grid 7: 31.14 Grid 8: 31.68 Grid	9: 32.42	4 5 6 7 8 9 -40- -50 -50 -40 -30 -40 i0 20 30 40 50 X next (nn) [5 Y next (nn) [5]
Operation mode	Channel	f(MHz) Maximum value of total field (dB V/m) M-Rating
WCDMA V	4132	826.4 34.87 M4

					HAC Visualisation Graphical Interface	
Grid 1: 32.08	Grid 2: 33.310	Grid 3:	33. 92	Colors Sci E (dB (V	Radiated Intensity ale S0-	Zoom In/Out
				5.23 4.46 3.70 2.93 2.16	40 - 30 -	
				0.63 -0.11 -0.9 -1.6 -2.4 -3.1		
Grid 4: 32.46	Grid 5: 33.72	Grid 6:	34. 79	-3.9 -4.7 -5.4 -6.2		
				1 2	3 -30 -	
				4 5	6 9 -50- -50 -40 -30 -20 -10 0 10 20	30 40 50
Grid 7: 31.87	Grid 8: 32.45(Grid 9:	32.72	SAVE (Image: A marked bit in the second s	
Opera	tion mode	C	hannel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
WC	CDMA V		4183	836.6	34.79	M4

T

	Page	26 of 29	Report No.: STS20	09191H03
Grid 1: 31.96 Grid 2: 32.83 Grid	3: 33.84	Calarry Srall 2 (d) (7/A 5 30 5 430 2 4 2 430 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	NGC Visualisation Graphical Interface Rediated Intensity 50- 30- 30-	Zoon In/Out
Grid 4: 32.36 Grid 5: 33.56 Grid	6: 34.57	0.65 -0.67 -		
Grid 7: 31.85 Grid 8: 32.24 Grid	9: 32.78	4 5 7 8 	6 9 -60- -50- -60 -30 -20 -10 0 10 20 x acel X acel (an) [15 X acel (an) [15 X acel (an) [25	30 40 50
Operation mode	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
WCDMA V	4233	846.6	34.57	M4

Shenzhen STS Test Services Co., Ltd.

E-field

Shenzhen STS Test Services Co., Ltd.

12. System Validation Results

					HAC E-Field 2D Plot					
	#1	#2	#2	1		0.	0	17	34	
	# I 125.495	#∠ 127.052	# 3 92.282		177.0200028 172.8700027 164.5700026 152.1200023	Ū	#1	#2	#3	
	# 4 172.750	#5 176.757	# 6 121.142		139.6700020 127.2200017 114.7700014 102.3200011 89.8700008	17 · (mm) sixe ×	#4	#5	#6	
	#7 133.195	#8 133.841	#9 96.000		77.4200006 64.9700003 52.5200000 40.0699997 27.6199994 45.4202024	34 -	#7	#8	#9	34
V/m				13.1099991 0 17 34 Y (mm)						
Frequency(MHz)		Input power Tai (dBm) (rget Value (dB V/m)	E-Field (dB V/m)	D	Deviation(%)		data	
835	5	20		220.4	217.5		-1.3	2	Oct.0	5.2020

13. Probe Calibration And Dipole Calibration Report The following pages include the probe calibration used to evaluate HAC for the DUT.

Shenzhen STS Test Services Co., Ltd.

A 1/F, Building B, Zhi d, HepingShequ, Fuyong Sub-District, Bao'an District, Sh Tel: +86-755 3688 6288 Fax:+86-755 3688 sapp.com E-mail: sts@stsapp.com