

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report

On Behalf of Guangzhou ZhiHua Electronic Technology Co., Ltd

For

Android integrated machine Model No.: AP101, AP102, AP108, AP116, AP133, AP140, AP156, AP210, AP121, AP150, AP220, ZKAIO1000, ZKAIO1500, ZKAIO2000, ZKAIO3000, ZKH200

FCC ID: 2AW55-AP101

Prepared for : Guangzhou ZhiHua Electronic Technology Co., Ltd 9F, No.40, Jinxiu Road, Economic and Technological Development Disctrict, Guangzhou, China

Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,
Bao'an District, Shenzhen City, China

 Date of Test:
 Jul. 21, 2020 ~ Jul. 27, 2020

 Date of Report:
 Jul. 27, 2020

 Report Number:
 HK2007131938-2E

TEST RESULT CERTIFICATION

Applicant's name	Guangzhou ZhiHua Electronic Technology Co., Ltd
Address:	9F, No.40, Jinxiu Road, Economic and Technological Development Disctrict, Guangzhou, China
	Guangzhou ZhiHua Electronic Technology Co., Ltd
Address:	9F, No.40, Jinxiu Road, Economic and Technological Development Disctrict, Guangzhou, China
Product description	
Trade Mark:	N/A
Product name:	Android integrated machine
	AP101, AP102, AP108, AP116, AP133, AP140, AP156, AP210,
Model and/or type reference :	AP121, AP150, AP220, ZKAIO1000, ZKAIO1500, ZKAIO2000,
	ZKAIO3000, ZKH200
Standards	47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Jul. 21, 2020 ~ Jul. 27, 2020
Date of Issue	Jul. 27, 2020
Test Result	Pass

Prepared by:

Gany Qian

Project Engineer

Reviewed by:

Edan Hu

Project Supervisor

Approved by:

Jason Zhou

Jasou Zhou

Table of Contents

Page

1. S	SUMMARY	5
1.1.	. TEST STANDARDS	5
1.2.		
1.3.		
1.4.		
2. 6	GENERAL INFORMATION	7
2.1.	. Environmental conditions	7
2.2.	. GENERAL DESCRIPTION OF EUT	7
2.3.		
2.4.	. Equipments Used during the Test	9
2.5.	. Related Submittal(s) / Grant (s)	
2.6.	. Modifications	10
2.7.	. DESCRIPTION OF TEST SETUP	10
3. Т	rest conditions and results	
3.1.	. Conducted Emissions Test	11
3.2.	. RADIATED EMISSIONS AND BAND EDGE	14
3.3.	. MAXIMUM PEAK CONDUCTED OUTPUT POWER	25
3.4.	. 20dB Bandwidth	26
3.5	FREQUENCY SEPARATION	30
3.5.	. NUMBER OF HOPPING FREQUENCY	32
3.6.	. TIME OF OCCUPANCY (DWELL TIME)	34
3.7.		
3.8.		
3.9.	. ANTENNA REQUIREMENT	45
4. T	TEST SETUP PHOTOS OF THE EUT	46
5. P	PHOTOS OF THE EUT	

** Modifited History **

Revison	Description	Issued Data	Remark
Revsion 1.0	Initial Test Report Release	Jul. 27, 2020	Jason Zhou

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.215	20dB Bandwidth& 99% Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power PASS	
FCC Part 15.247 (a) (1)	Pseudorandom Frequency Hopping Sequence PASS	
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency& Time of Occupancy PASS	
FCC Part 15.247(a)(1)	Frequency Separation PASS	
FCC Part 15.205/15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Hereafter the best measurement capability for HUAK laboratory is reported:

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	Android integrated machine	
Model/Type reference:	AP101	
Carial Madalı	AP102, AP108, AP116, AP133, AP140, AP156, AP210, AP121, AP150,	
Serial Model:	AP220, ZKAIO1000, ZKAIO1500, ZKAIO2000, ZKAIO3000, ZKH200	
Model Difference:	All model's the function, software and electric circuit are the same, only model named different. Test sample model: AP101	
Power supply:	DC 12V 2A from Adapter with AC100-240V 50/60Hz, 0.6A	
Version:	Supported EDR	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79CH	
Channel separation:	1MHz	
Antenna type:	Internal Antenna	
Antenna gain:	1dBi	
Hardware Version:	V1.1	
Software Version:	V1.0	

Note: For more details, refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels provided to the EUT and Channel 00/39/78 was selected for testing.

Operation Frequency :

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

Note: The line display in grey were the channel selected for testing

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test Items	Worst case	
Conducted Emissions	DH5 High channel	
Radiated Emissions and Band Edge	DH5 Low channel	
Maximum Conducted Output Power	DH5/2DH5/3DH5	
20dB Bandwidth&99% Bandwidth	DH5/2DH5/3DH5	
Frequency Separation	DH5/2DH5/3DH5 Middle channel	
Number of hopping frequency	DH5/2DH5/3DH5	
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel	
Out-of-band Emissions DH5/2DH5/3DH5		

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 26, 2019	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 26, 2019	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 26, 2019	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 26, 2019	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 26, 2019	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 26, 2019	1 Year
10.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Dec. 26, 2019	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 26, 2019	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 26, 2019	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 26, 2019	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 26, 2019	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 26, 2019	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 26, 2019	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year
19.	Power meter	Agilent	E4419B	HKE-085	Dec. 26, 2019	1 Year
20.	High gain antenna	Schwarzbeck	LB-180400 KF	HKE-054	Dec. 26, 2019	1 Year

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules ,RSS Gen and RSS 247 Rules.

2.6. Modifications

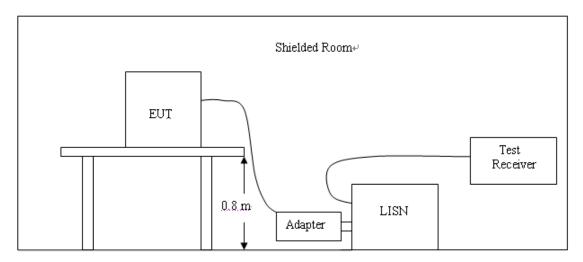
No modifications were implemented to meet testing criteria.

2.7. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and Radiation below 1GHz testing:
AC Plug AC EUT
Operation of EUT during Above1GHz Radiation testing:
EUT
 Adapter information Model: TDX-1202000T Input: AC100-240V, 50-60Hz, 0.6A Output: 12VDC, 2A
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


<u>LIMIT</u>

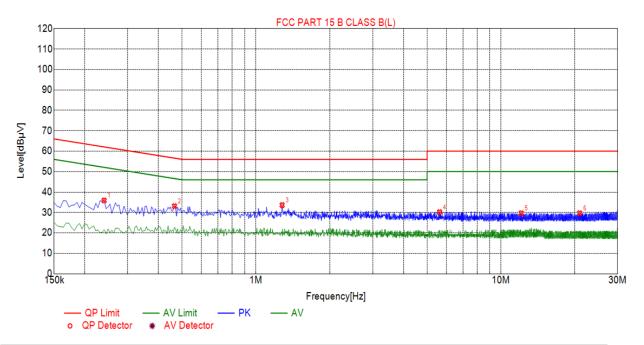
According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark: All modes of GFSK, Pi/4 DQPSK, 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK High Channel was reported as below:

Test Specification: Line

Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	0.2400	35.89	10.03	62.10	26.21	25.86	PK	L			
2	0.4650	33.08	10.04	56.60	23.52	23.04	PK	L			
3	1.2795	33.60	10.09	56.00	22.40	23.51	PK	L			
4	5.6220	30.18	10.25	60.00	29.82	19.93	PK	L			
5	12.1200	29.63	9.99	60.00	30.37	19.64	PK	L			
6	20.9760	29.63	10.13	60.00	30.37	19.50	PK	L			

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Test Specification: Neutral

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

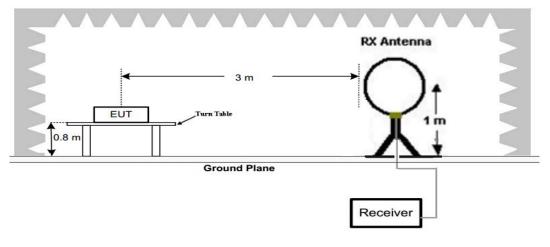
3.2. Radiated Emissions and Band Edge

<u>Limit</u>

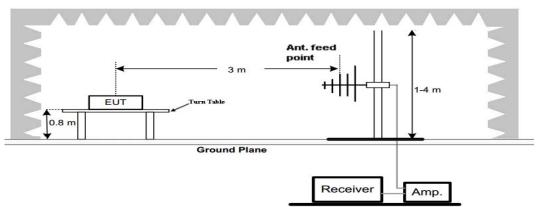
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

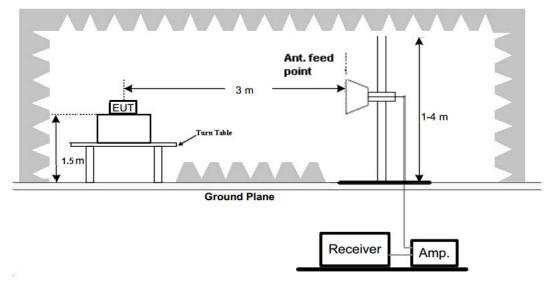

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)			
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)			
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)			
1.705-30	3	20log(30)+ 40log(30/3)	30			
30-88	3	40.0	100			
88-216	3	43.5	150			
216-960	3	46.0	200			
Above 960	3	54.0	500			


Radiated emission limits

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

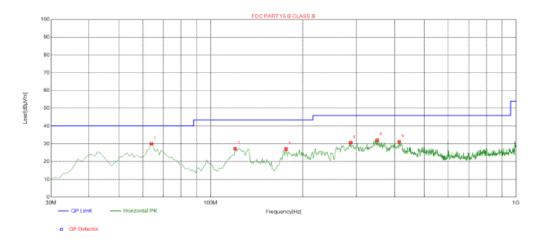


(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

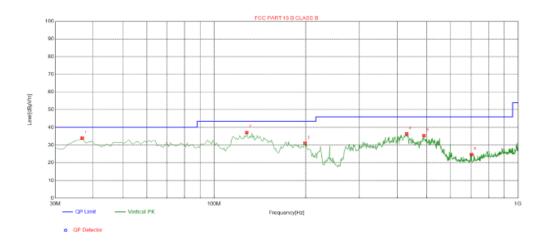
- The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.


TEST RESULTS

Remark:

- 1. Radiated Emission measured at GFSK, $\pi/4$ DQPSK, 8DPSK mode from 9 KHz to 10th harmonic of fundamental and recorded worst case at GFSK DH5 mode.
- There is no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. For below 1GHz testing recorded worst at GFSK DH5 low channel.

Below 1GHz Test Results: Antenna polarity: H



Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delarity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	63.9840	-16.16	46.23	30.07	40.00	9.93	100	360	Horizontal
2	120.3003	-17.14	44.41	27.27	43.50	16.23	100	268	Horizontal
3	176.6166	-17.01	44.11	27.10	43.50	16.40	100	121	Horizontal
4	287.3073	-12.95	43.67	30.72	46.00	15.28	100	358	Horizontal
5	351.3914	-11.64	43.79	32.15	46.00	13.85	100	293	Horizontal
6	414.5045	-10.14	41.28	31.14	46.00	14.86	100	351	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Antenna polarity: V

Suspe	Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	36.7968	-15.57	49.49	33.92	40.00	6.08	100	180	Vertical	
2	128.0681	-18.29	55.43	37.14	43.50	6.36	100	180	Vertical	
3	198.9489	-15.16	46.25	31.09	43.50	12.41	100	281	Vertical	
4	430.0400	-9.85	46.22	36.37	46.00	9.63	100	348	Vertical	
5	490.2402	-8.54	43.92	35.38	46.00	10.62	100	196	Vertical	
6	702.8829	-5.01	29.77	24.76	46.00	21.24	100	228	Vertical	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

For 1GHz to 25GHz

CH Low (2402MHz) Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
55.77	-3.65	52.12	74.00	-21.88	peak
47.36	-3.65	43.71	54.00	-10.29	AVG
57.63	-0.95	56.68	74.00	-17.32	peak
45.06	-0.95	44.11	54.00	-9.89	AVG
	(dBµV) 55.77 47.36 57.63	(dBµV) (dB) 55.77 -3.65 47.36 -3.65 57.63 -0.95	(dBµV) (dB) (dBµV/m) 55.77 -3.65 52.12 47.36 -3.65 43.71 57.63 -0.95 56.68	(dBµV) (dB) (dBµV/m) (dBµV/m) 55.77 -3.65 52.12 74.00 47.36 -3.65 43.71 54.00 57.63 -0.95 56.68 74.00	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµ 55.77 -3.65 52.12 74.00 -21.88 47.36 -3.65 43.71 54.00 -10.29 57.63 -0.95 56.68 74.00 -17.32

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.00	57.25	-3.65	53.60	74.00	-20.40	peak
4804.00	46.37	-3.65	42.72	54.00	-11.28	AVG
7206.00	56.12	-0.95	55.17	74.00	-18.83	peak
7206.00	42.58	-0.95	41.63	54.00	-12.37	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Lo	ss – Pre-amplifier.			

CH Middle (2441MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882.00	57.03	-3.54	53.49	74.00	-20.51	peak		
4882.00	48.77	-3.54	45.23	54.00	-8.77	AVG		
7323.00	56.25	-0.81	55.44	74.00	-18.56	peak		
7323.00	43.17	-0.81	42.36	54.00	-11.64	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882.00	57.29	-3.54	53.75	74.00	-20.25	peak		
4882.00	46.51	-3.54	42.97	54.00	-11.03	AVG		
7323.00	55.03	-0.81	54.22	74.00	-19.78	peak		
7323.00	42.56	-0.81	41.75	54.00	-12.25	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	55.18	-3.43	51.75	74.00	-22.25	peak
4960.00	46.52	-3.43	43.09	54.00	-10.91	AVG
7440.00	56.39	-0.77	55.62	74.00	-18.38	peak
7440.00	41.88	-0.77	41.11	54.00	-12.89	AVG
Remark: Facto	or = Antenna Fac	tor + Cable I o	ss – Pre-amplifier			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	56.77	-3.43	53.34	74.00	-20.66	peak
4960.00	46.59	-3.43	43.16	54.00	-10.84	AVG
7440.00	56.32	-0.77	55.55	74.00	-18.45	peak
7440.00	42.45	-0.77	41.68	54.00	-12.32	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Lo	ss – Pre-amplifier.			

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz ·

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report. (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak

detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7)All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Hopping

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	57.56	-5.81	51.75	74	-22.25	peak		
2310.00	1	-5.81	/	54	/	AVG		
2390.00	55.28	-5.84	49.44	74	-24.56	peak		
2390.00	1	-5.84	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310.00	56.66	-5.81	50.85	74	-23.15	peak	
2310.00	1	-5.81	/	54	/	AVG	
2390.00	55.17	-5.84	49.33	74	-24.67	peak	
2390.00	1	-5.84	/	54	1	AVG	
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2483.50	57.64	-5.81	51.83	74	-22.17	peak		
2483.50	1	-5.81	/	54	1	AVG		
2500.00	55.19	-6.06	49.13	74	-24.87	peak		
2500.00	1	-6.06	/	54	1	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2483.50	56.55	-5.81	50.74	74	-23.26	peak		
2483.50	1	-5.81	1	54	1	AVG		
2500.00	54.89	-6.06	48.83	74	-25.17	peak		
2500.00	1	-6.06	/	54	1	AVG		
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								
Remark: All th	Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.							

NO hopping

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	55.62	-5.81	49.81	74	-24.19	peak		
2310.00	/	-5.81	/	54	/	AVG		
2390.00	54.28	-5.84	48.44	74	-25.56	peak		
2390.00	/	-5.84	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	56.16	-5.81	50.35	74	-23.65	peak		
2310.00	1	-5.81	/	54	/	AVG		
2390.00	55.89	-5.84	50.05	74	-23.95	peak		
2390.00	1	-5.84	/	54	1	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2483.50	56.47	-5.81	50.66	74	-23.34	peak		
2483.50	1	-5.81	/	54	/	AVG		
2500.00	54.86	-6.06	48.8	74	-25.2	peak		
2500.00	1	-6.06	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2483.50	56.05	-5.81	50.24	74	-23.76	peak		
2483.50	1	-5.81	/	54	1	AVG		
2500.00	54.22	-6.06	48.16	74	-25.84	peak		
2500.00	1	-6.06	/	54	1	AVG		
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								
Remark: All th	Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.							

3.3. Maximum Peak Conducted Output Power

<u>Limit</u>

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-1.145		
GFSK	39	-2.648	21.00	Pass
	78	-4.289		
	00	-3.901		
π/4DQPSK	39	-7.794	21.00	Pass
	78	-3.59		
	00	-7.549		
8DPSK	39	-1.145	21.00	Pass
	78	-2.648		

Note: 1.The test results including the cable lose.

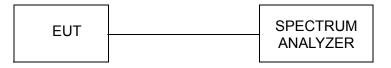
3.4. 20dB Bandwidth

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

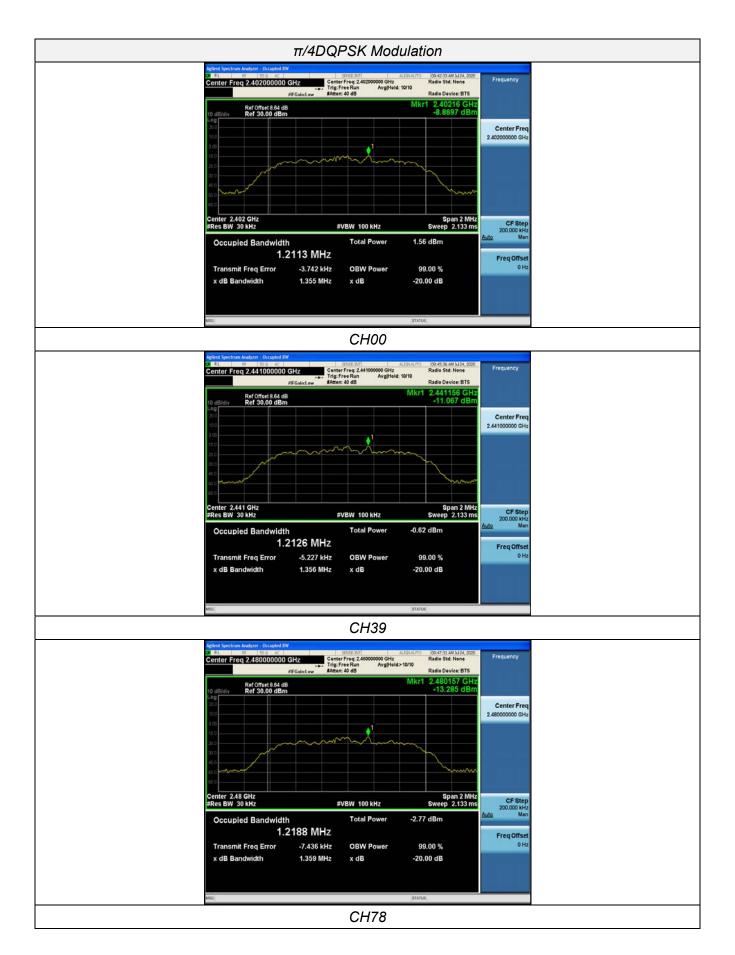
The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

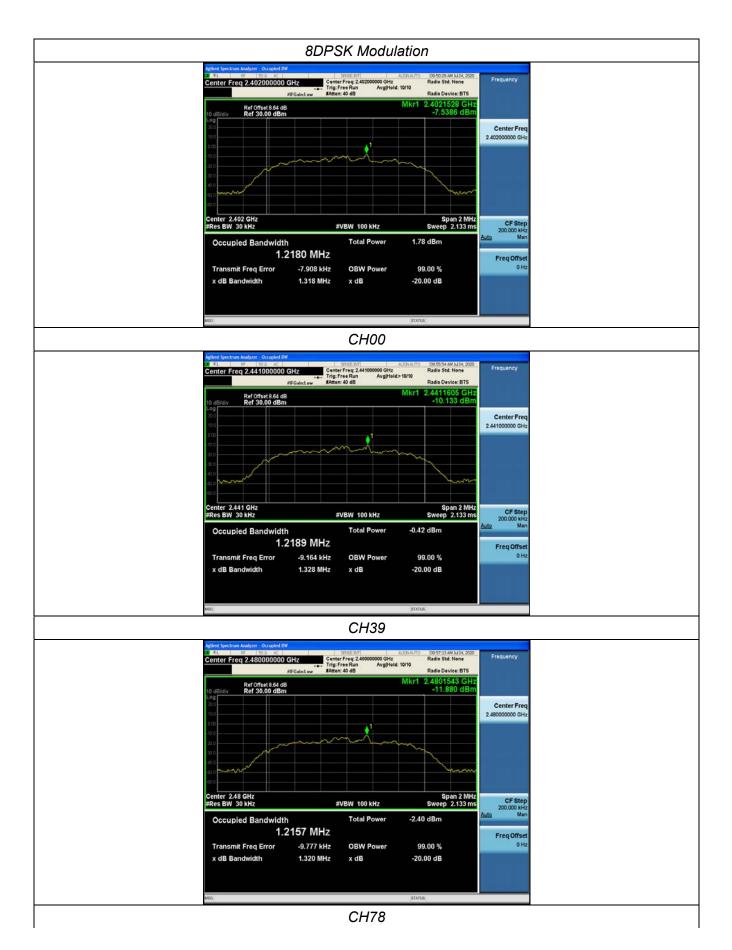
RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

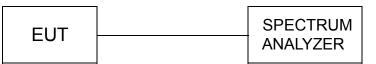
Test Configuration

Test Results


Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	1.012	
GFSK	CH39	0.9783	
	CH78	1.016	
	CH00	1.355	
π/4DQPSK	CH39	1.356	Pass
	CH78	1.359	
	CH00	1.318	
8DPSK	CH39	1.328	
	CH78	1.320	


20dB bandwidth

3.5 Frequency Separation


<u>LIMIT</u>

Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

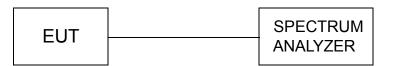
TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	Middle Channel	1.012	2/3*20dB bandwidth	Pass
π/4DQPSK	Middle Channel	1.002	2/3*20dB bandwidth	Pass
8DPSK	Middle Channel	1.002	2/3*20dB bandwidth	Pass

Note: We have tested all mode at high, middle and low channel, and recorded worst case at middle

3.5. Number of hopping frequency


<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

	GFSK Ma	odulation		
Agtent Spectrum Analys 12 R.B. 00 Start Freq 2.40	eer - Swept SA 50 0 AC SENSE:INT 0000000 GHz	ALICHAUTO 10:27:52 AM 3/24, 2020 Avg Type: Log-Pwr TRACE BRACK 10	Frequency	
	PNO: Fast Trig: Free Run IFGain:Low Atten: 22 dB fset 8,64 dB 0.00 dBm	Avg Held>100/100 TVPE oer Mutuation Printing ΔMkr1 78.239 5 MHz -4.166 dB	Auto Tune	
10.0	0.00 dBm	100 05	Center Freq 2.441750000 GHz	
			Start Freq	
-30 0 -40 0 -40 0			2.40000000 GHz	
-60 0 / -70 0			Stop Freq 2.483500000 GHz	
Start 2.40000 GH #Res BW 100 kH	IZ #VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz Auto Man	
1 <u>A2</u> 1 7 (A 2 F 1 7 3 4	 λ) 78:239 5 MHz (Δ) -4.166 dB 2.401 837 0 GHz -1.612 dBm 		Freq Offset 0 Hz	
5 6 7 8 9				
10 11 •		STATUS		
	π/4DQPSK	Modulation		
Aglent Spectrum Analyz U. R. 16 Start Freq 2.40	0000000 GHz PN0: Exet C	ALIXNAUTO 10:26-39 AM 34/24, 2020 Avg Type: Log-Pwr 19ACE 120 CTFC Avg Hold>100/100 TVFE	Frequency	
10 dB/div Ref O	IFGain:Low Atten: 22 dB fset 8,64 dB 0.00 dBm	ΔMkr1 78.239 5 MHz -3.322 dB	Auto Tune	
		102	Center Freq 2.441750000 GHz	
	***************************************	Waranni Warth an Warth and an	Start Freq 2.40000000 GHz	
-40 0 -40 0 -60 0			Stop Freq	
.70.0 Start 2.40000 GF	iz	Stop 2.48350 GHz	2.483500000 GHz	
#Res BW 100 kH	IZ #VBW 300 kHz	Sweep 8.000 ms (1001 pts)	8.350000 MHz Auto Man	
2 F 1 7 3 4 5	2.401 837 0 GHz -8,787 dBm		Freq Offset 0 Hz	
7 8 9 10				
<pre>c MSG</pre>		STATUS		
Agilent Spectrum Analyz 101 RL 115				
Start Freq 2.40		Avg Type: Log-Pwr Avg Hold>100/100	Frequency Auto Tune	
10 dB/div Ref 2	fset 8.64 dB 0.00 dBm	ΔMkr1 78.323 0 MHz -2.818 dB	Center Freq	
	*****	142	2.441750000 GHz	
-200 -200 -400			Start Freq 2.400000000 GHz	
-60 D			Stop Freq 2.483500000 GHz	
Start 2.40000 GH #Res BW 100 kH		Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz	
MRR MODEL TAC SCL 1 022 1 1 7 7 2 F 1 7		ICTION FUNCTION WIDTH FUNCTION VALUE	Auto Man Freq Offset	
4 6 6 7 0			0 Hz	
8 9 10 11		v		
MSG		STATUS		

3.6. Time of Occupancy (Dwell Time)

<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

Test Configuration

FUT	SPECTRUM
LUI	ANALYZER

Test Results

Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
	DH1	0.38	0.122		
GFSK	DH3	1.64	0.262	0.40	Pass
	DH5	2.88	0.307		
π/4DQPSK	2-DH1	0.39	0.125		
	2-DH3	1.64	0.262	0.40	Fail
	2-DH5	2.89	0.308		
	3-DH1	0.39	0.125		
8DQPSK	3-DH3	1.64	0.262	0.40	Fail
	3-DH5	2.89	0.308		

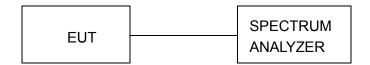
Note:

1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

3.7. Out-of-band Emissions

<u>Limit</u>

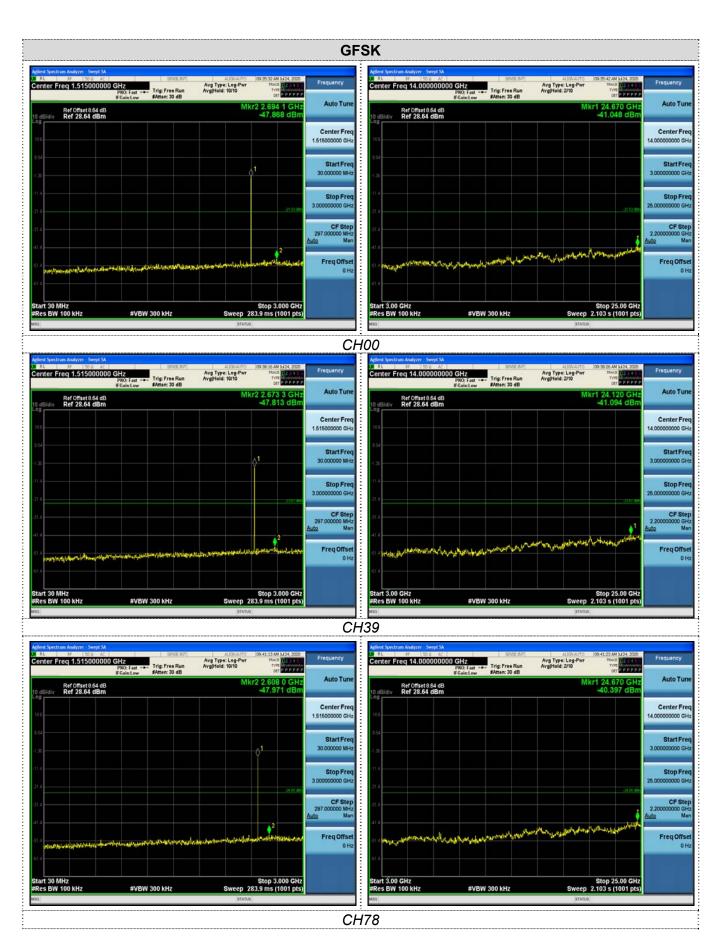

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

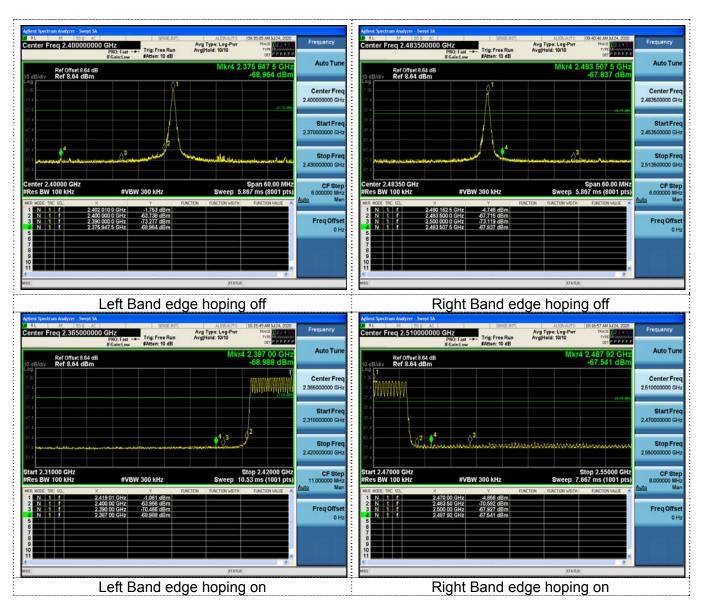
Test Procedure

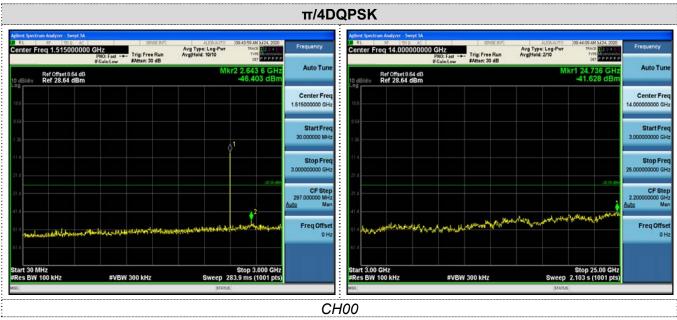
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

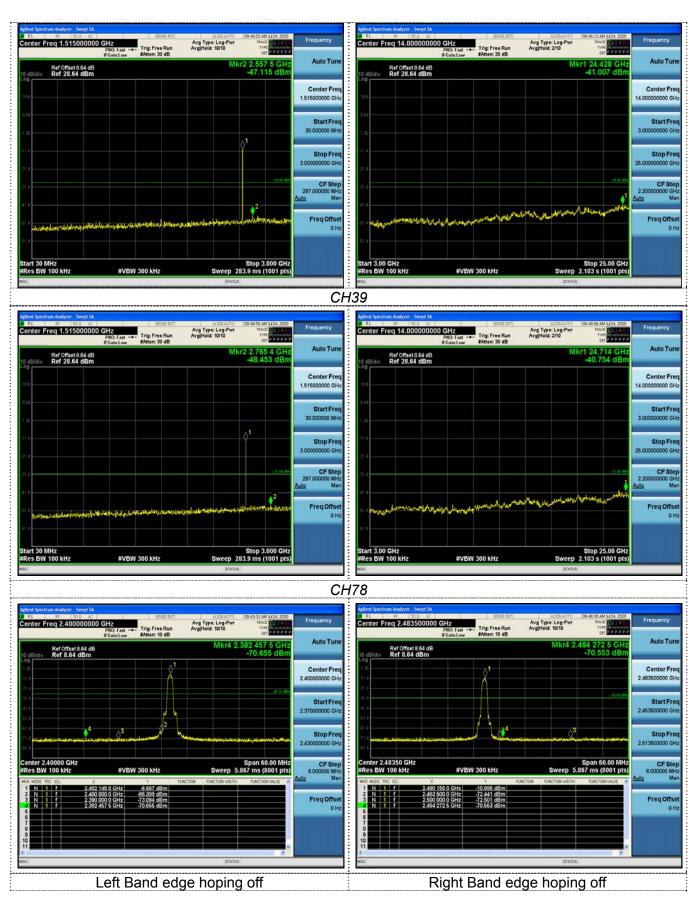
Test Configuration


Test Results

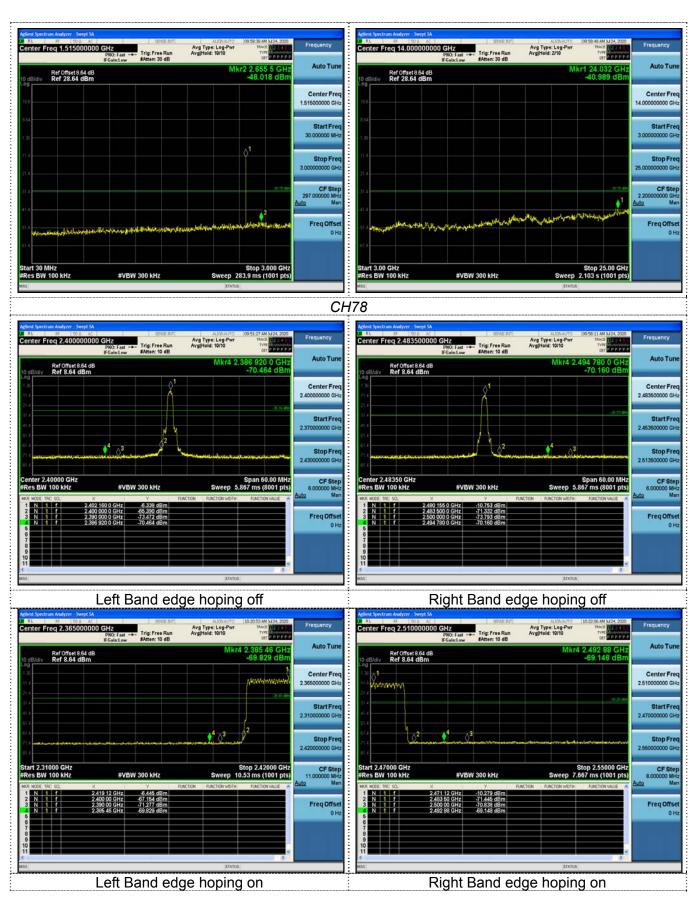
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5 and 2DH5 and 3DH5


Test plot as follows:



Page 41 of 48



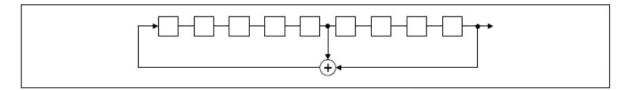
Page 42 of 48

ent Spectrum Analyzer - Swept SA RL BF 50 0 AC nter Freq 2.36500000	SENSE-INT	ALSONAUTO 10-18-20 AM X/24, 2020 Avg Type: Log-Pwr THACE DEB C Avg[Hold: 10/10 TVF CF D P P P	Prequency	Agient Spectrum Analyzer - Swep Car Rt RF 900 Center Freq 2.510000	AC SENSE INT	ALSONAUTO 10:39-39 AM X124, 202 Avg Type: Log-Pwr TAACE DO Avg Hold: 10/10 THE SAME	Prequency
Ref Offset 8.64 dE		Mkr4 2.348 28 GH -69.086 dBn		Ref Offset 8.64		Mkr4 2.488 40 GH -69.403 dB	
9		, and the second	Center Freq 2.36500000 GHz	-1.36 1			Center F 2.510000000
		.2(0) ab		-21.4		-30.54.4	
4			Start Freq 2.31000000 GHz	41.4			Start F 2.470000000
4	4	3 ↓ ²	Stop Freq	-61.4 -71.4		สดสารมักสองและระระกาศสารการให้เสียประการและการหมูม เรราะสิน	Stop F
4			2.420000000 GHz	81.4			2.550000000
art 2.31000 GHz es BW 100 kHz	#VBW 300 kHz	Stop 2.42000 GH Sweep 10.53 ms (1001 pts UNCTION FUNCTION WOTH FUNCTION VALUE	CF Step 11.000000 MHz Auto Man	Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.55000 GF Sweep 7.667 ms (1001 pt sunction value	Z CF S 8.000000 Auto
N I I I I	407 13 GHz 46,631 dBm 400 00 GHz 69,001 dBm 390 00 GHz -71,753 dBm		Freq Offset	1 N 1 7 2 N 1 7 3 N 1 7	2.473 12 GHz -10.535 dBm 2.483 50 GHz -71.059 dBm 2.500 00 GHz -70.401 dBm		FreqOf
N 1 F 3	348 28 GHz -69,096 dBm		0 Hz	4 N 1 1	2.488 40 GHz -69.403 dBm		
				8 9 10			
		3 STATUS		e wsg		STATUS	Ť
	Left Band edg	ge hoping on			Right Band ed	lge hoping on	
			8DP	SK			
ent Spectrum Analyzer - Swept SA RL IF 500 AC	SENSE-INT	AL394AUTO 09-51:56 AM 3/24, 2020 Avg Type: Log-Pwr TRACE 07-51 C	Frequency	Agient Spectrum Analyzer - Swep	AC SENSE-INT	410N.40.TO 09-52-05 AM 3/24, 20 Ave Type: LegPwr TRACE 05207	Frequenc
nter Freq 1.5150000	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	AvgiHold: 10/10 TVPE CET P P P P	Auto Tomo	Center Freq 14.00000	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	AvgiHold: 2/10 TVFE CET PPPP	
Ref Offset 8.64 dB		Mkr2 2.958 4 GH -47.962 dBr		Ref Offset 8.64 10 dB/div Ref 28.64 dE	dB Im	Mkr1 24.714 GH -41.559 dB	22
6			Center Freq 1.51500000 GHz	18.6			Center 14.000000000
4			Start Freq	8.64			Start
6		¢1	30.000000 MHz	-1.36			3.00000000
4			Stop Freq 3.00000000 GHz	-11.4			Stop 8 25.000000000
4			CF Step	-21.4			CFS
4			297.000000 MHz Auto Man	41.4			2.200000000 Auto
white a far a far a far	الاستعادية والمعادية المعادية المعادية	والمعادية والمعالية والمصادية والمصادية والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد	Freq Offset	si a niployta herry harry	And the manufacture of the	with and going and the start of the second start and the second start of the second st	Freq O
4				-51.4			
art 30 MHz	#VBW 300 kHz	Stop 3.000 GH		Start 3.00 GHz #Res BW 100 kHz	#V/BW 200 kHz	Stop 25.00 GF	
es BW 100 kHz	#VBW 300 KHZ	Sweep 283.9 ms (1001 pts		WRGS BW 100 KHZ	#VBW 300 kHz	Sweep 2.103 s (1001 pl status	5)
			CH	00			
ent Spectrum Analyzer - Swept SA RL RF SD Q AC Inter Freq 1.51500000	0 GHz	ALXIVAUTO 09-55:14 AM X/24, 2020 Avg Type: Log-Pwr TRACE 01-51 4 Avg[Hold: 10/10 TVF	Frequency	Aglient Spectrum Analyzer - Swep a RL IF 50 0 Center Freq 14.00000	AC SENSE INT	ALIONAUTO 0955-23 AM Xi24, 202 Avg Type: Log-Pwr TRACE P Avg[Hold: 2/10 TWE	Frequenc
	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	AvgiHold: 10/10 (cf PPPPP) Mkr2 2.643 6 GH	Auto Roma		PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Held: 2/10 (cr PPP)	
Ref Offset 8.64 dB dB/div Ref 28.64 dBm		-48.030 dBr	Center Freq	10 dB/div Ref 28.64 dE	lm	-40.974 dB	
6			1.51500000 GHz	18.6			Center 14.000000000
14			Start Freq 30.000000 MHz	8.64			Start 8 3.000000000
1		Q1		-1.35			
4			Stop Freq 3.00000000 GHz	-21.4			Stop 8 25.000000000
4		-30.07 db	CF Step 297.000000 MHz	.31.4		-38.074	CF 8
4		2	Auto Man	-41.4		المجين مسالة الريد فيرعان والمراد	Auto
	والمروبة والمراجع والمروسة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال	any warder and a stand a	Freq Offset 0 Hz	61.4 Martin and Martin	Angelen Analter and a second	فالمصحبين ومعياني المحاص المتيا يحالهما يعمى ومندا يعمره	Freq Of
				61.4			
4							
art 30 MHz es BW 100 kHz	#VBW 300 kHz	Stop 3.000 GH Sweep 283.9 ms (1001 pts		Start 3.00 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 25.00 GF Sweep 2.103 s (1001 pt	IZ S)

Page 43 of 48

3.8. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

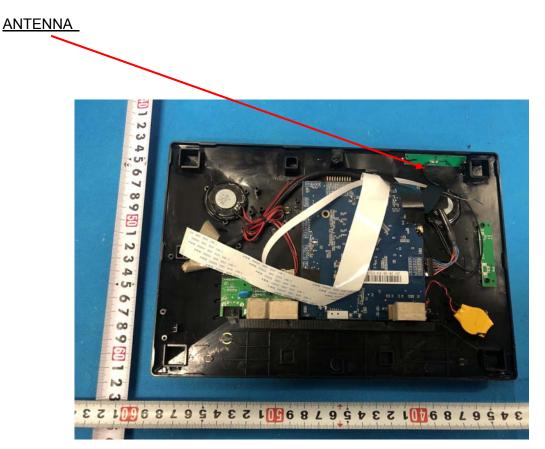
0 2	2	4	6	62 64	78 1	73 75 77
	Т					

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

3.9. ANTENNA REQUIREMENT

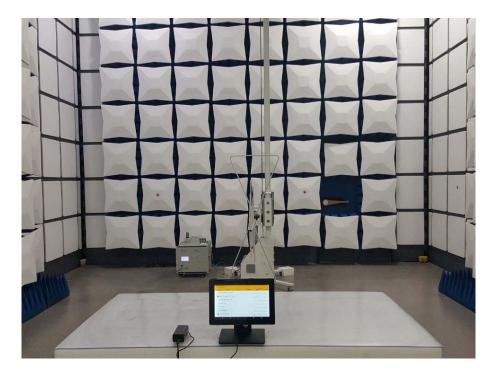
Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is a Internal antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

4. Test Setup Photos of the EUT

5. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

-----End of report-----