

RF Test Report

EUT : SAGA

MODEL : OV1

BRAND NAME :

APPLICANT : OSOM Products Inc.

Classification Of Test : N/A

Shenzhen NTEK Testing Technology Co., Ltd.

Test Report No.: S22092102103002 Page 2 of 38

		Name: OSOM I	Prod	ucts Inc.			
Applicant		Address: 21701 Stevens Creek Blvd #2270, Cupertino, CA 95015, USA					
		Name: OSOM Products Inc.					
Manufacturer		Address: 2170 950	1 Ste 15, U		Blvd #22	270, Cupertin	o, CA
		Product Name	: SA	GA			
		Model/Type: O	V1				
Equipment Under Test		Brand Name: —					
	Serial NO.: N/A						
Date of Receipt.	2022.09.1	Sample NO.:15-1 Date of Testing 2022.09.13~2022.11.0			2022.11.01		
Test Specificat		tion			Test Result		
FCC Part 15, Subpart F, S RSS-220 Issue 1(2009-03)					PASS		
		The equip	men	t under test v	was foun	d to comply v	vith the
Evaluation of Test R	esult	requirements of the standards applied.					
					I	ssue Date:	2022.11.01
Tested by:		Reviewed by:			Approved by:		
Muhzi Le	ne	Cheny Ji				V	
Mukzi Lee Name Signatu	ıre	Cheng Jiawen Alex Li Name Signature Name Signature		ature			
Other Aspects: NON	E.						
Abbreviations:OK, Pass= pas	sed Fail	= failed N/A= not ap	oplicabl	e EUT= equi	oment, sampl	e(s) under tested	

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of NTEK.

Test Report No.: \$22092102103002

TABLE OF CONTENTS

1	SUIV	AINIARY OF TEST RESULTS	5
	1.1	LIST OF TEST AND MEASUREMENT INSTRUMENTS	e
	1.2	MEASUREMENT UNCERTAINTY	
	1.3	TEST LOCATION	7
2	GEN	IERAL INFORMATION	ç
	2.1	GENERAL PRODUCT INFORMATION	
	2.2	OTHER INFORMATION	
	2.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
	2.4 2.5	GENERAL DESCRIPTION OF APPLIED STANDARDS DESCRIPTION OF SUPPORT UNITS	
3	TEST	T TYPES AND RESULTS	11
	3.1	CONDUCTED EMISSION MEASUREMENT	11
	3.1.	1 Limit	11
	3.1.2	2 Measurement procedure	11
	3.1.3	3 Test setup	11
	3.1.4	4 Test results	12
	3.2	RADIATED EMISSIONS	14
	3.2.	1 Limits-FCC	14
	3.2.2	2 Limits-IC	15
	3.2.3	3 Measurement procedure	16
	3.2.4	4 Test setup	17
	3.2.5	5 Test results	18
	3.3	10db BANDWIDTH	2 3
	3.3.	1 LIMIT -FCC	2 3
	3.3.2	2 LIMIT-IC	2 3
	3.3.3	3 TEST PROCEDURES	2 3
	3.3.4	4 TEST SETUP	2 3
	3.3.5	5 TEST RESULTS	24
	3.4	99% OCCUPIED BANDWIDTH	27
	3.4.	1 LIMIT	27
	3.4.2	2 Measurement procedure	27
	3.4.3	3 TEST SETUP	27
	3.4.4	4 TEST RESULTS	28
	3.5	Maximum Peak Power and Average Emissions	31
	3.5.2	1 LIMITS	31
	3.5.2	2 TEST PROCEDURE	31
	3.5.3	3 TEST SETUP	32
	3.5.4	4 TEST RESULTS	33
	3.6	CEASE TRANSMISSION TIME	34
	3.6.2	1 LIMIT -FCC	34
	3.6.2		
	3.6.3		
	3.6.4		
	3.6.5	5 TEST RESULTS	35
4	PHO	DTOGRAPHS OF TEST SETUP	36
5	рн∩	OTOGRAPHS OF THE EUT	37

Test Report No.: S22092102103002 Page 4 of 38

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
S22092102103002	Original release	2022.11.01

Test Report No.: S22092102103002 Page 5 of 38

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart F (Section 15.519), RSS-Gen , RSS-220						
FCC STANDARD SECTION	IC STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK		
15.207	RSS-Gen Issue 5 8.8	AC Power Conducted Emission	PASS	Meet the requirement of limit.		
15.519(a)(1)	RSS-220 Issue 1 5.3.1(b)	Cease Transmission Time	PASS	Meet the requirement of limit.		
15.503 15.521(e)	RSS-220 Issue 1 2	10dB bandwidth	PASS	Meet the requirement of limit.		
-	RSS-Gen Issue 5 6.7	99 % Bandwidth	PASS	Meet the requirement of limit.		
15.209(a) 15.519(c) 15.519(d) 15.521(b) 15.521(c) 15.521(d) 15.521(h)	RSS-220 Issue 1 3.4 5.3.1(d)(e)(f)	Radiated Emissions	PASS	Meet the requirement of limit.		
15.519(e) 15.519(c) 15.521(a) 15.521(b) 15.521(g)	RSS-220 Issue 1 5.3.1(d)(g)	Maximum Peak Power and Average Emissions	PASS	Meet the requirement of limit.		
15.203	RSS-Gen Issue 5 8.8	Antenna Requirement	PASS	No antenna connector isused		

Test Report No.: S22092102103002 Page 6 of 38

1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Test Equipment	Type/Mode	SERIAL NO.	Equipment No.	Manufacturer	Cal. Due
WIFI & Bluetooth Test System 1					/
Communication Shielded Room 1	4m*3m*3m	CRTDSWKSR443 01	VGDS-0699	CRT	2024/04/24
Spectrum Analyzer	FSV40	101580	DZ-000238-3	R&S	2023/06/05
Comprehensive Test Instrument	CMW270	100304	DZ-000240-1	R&S	2022/12/09
Analog Signal Generator	SMB100A	181858	DZ-000238-2	R&S	2023/06/05
Vector Signal Generator	SGT100A	111661	DZ-000238-1	R&S	2023/06/05
RF Radio Frequency Switch	JS0806-2	19H9080187	`	Tonscend	2023/06/06
Programmable DC Power Supply	E3644A	MY58036222	DZ-000178	KEYSIGHT	2023/04/21
Spectrum Analyzer	FSV40	101580	DZ-000238-3	R&S	2023/06/05
Radiation SpuriousTest System					/
3m Semi-Anechoic Chamber	FACT-4	ST08035	WKNA-0024	ETS	2024/12/12
Spectrum Analyzer	N9010B	MY57470323	DZ-000174	KEYSIGHT	2023/03/02
EMI Test Receiver	N9038A-508	MY532290079	EM-000397	Agilent	2023/03/02
Broadband Antenna	VULB 9163	9163-530	EM-000342	SCHWARZBECK	2023/06/25
Waveguide Horn Antenna	HF906	360306/008	WKNA-0024-8	R&S	2023/03/04
Waveguide Horn Antenna	BBHA9170	00949	DZ-000209-2	SCHWARZBECK	2023/07/31
Preamplifier	BBV 9721	9721-050	DZ-000209-1	SCHWARZBECK	2023/06/05
5G Bandstop Filters	WRCJV12-4900- 5100-5900-6100- 50EE	1	DZ-000186	wı	2022/12/20
Comprehensive tester	CMW500	159000	DZ-000240-2	R&S	2022/12/20
Conducted emission					/
EMI Test Receiver	ESCI	100857	WKNB-0081	R&S	2022-12-08
EMI Test Receiver	ESR3	102394	VGDY-0705	R&S	2023-03-04
LISN	NSLK 8127	8127644	VGDY-0150	SCHWARZBECK	2023-09-04
LISN	NSLK 8128	8128-316	VGDY-0149	SCHWARZBECK	2023-09-04
LISN	NSLK 8129	8129-268	EM-000388	SCHWARZBECK	2023-03-03
Plus Limiter (#1)	VTSD 9561 F-N	00515	VGDY-0808	SCHWARZBECK	2023-03-04
Plus Limiter (#2)	VTSD 9561	9561-F017	VGDY-0152	SCHWARZBECK	2024-09-04
Impedance Stabilization Network	SN T800	27095	WKNE-0195	TESEQ	2023-09-04
Impedance Stabilization Network	NTFM8158	8158-0092	VGDY-0356	SCHWARZBECK	2023-06-07
	NTFM8131	#184	EM-000498	SCHWARZBECK	2023-06-07
Voltage Probe	TK9420	9420-499	VGDY-0128	SCHWARZBECK	2023-03-04
	4901.17.B	22643830	DB-0016	HUBER+SUHNER	2023-09-01
1	GV-798+	151064920001	VGDS-0215	PROMAX	2023-05-30
	GAG-810	EK871591	EM-000309	GW	2022-12-08
	GP1A	001	WKNF-0001	LEINING	2024-08-08

Test Report No.: S22092102103002 Page 7 of 38

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	ITEM	FREQUENCY	UNCERTAINTY	
		9KHz ~ 30MHz	±0.769dB	
	Radiated Spurious	Radiated Spurious 30MHz ~ 1GMHz		±0.877dB
1	Emissions	1GHz ~ 18GHz	±0.777dB	
		18GHz ~ 40GHz	±1.315dB	
2	Conducted Emissions	9kHz~30MHz	±2.66dB	

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

1.3 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab. of Shenzhen NTEK Testing Technology Co., Ltd.

Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District,

Shenzhen 518126 P.R. China

Post Code: 518126 Tel: 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

Test Firm Registration Number: 463705

CN Number: 9270A Wireless Test Site Registration Number: CN1184

Test Report No.: S22092102103002 Page 8 of 38

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	SAGA
BRAND	=
TEST MODEL	OV1
ADDITIONAL MODEL	N/A
FCC ID	2AW49200731A
IC ID	26394-200731A
POWER SUPPLY	DC 3.89 from Battery or USB host unit
MODULATION TYPE	BPM/BPSK
OPERATING FREQUENCY	See section 2.2
NUMBER OF CHANNEL	2
	ANT 1: Patch Antenna, with -2.50dBi gain
ANTENNA TYPE (Note 3)	ANT 2: Patch Antenna, with -5.76dBi gain
	ANT 3: Patch Antenna, with -3.27dBi gain
I/O PORTS	Refer to user's manual
HARDWARE REVISION	MP
SOFTWARE REVISION	SQ3A.220705.126
CABLE SUPPLIED	USB line, 1.2 Meter, Shielded without ferrite

Note:

- For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, NTEK is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion
- 4. EUT photo refer to the report (Report NO.: FCC2022-0064-E).
- According to 15.519(a). antennas mounted on outdoor structures such,. as antennas mounted on the
 outsideof a building or on a telephone pole or any fixed outdoors infrastructure are prohibited for use
 with thisdevice.
- 6. According to 15.521(a), UWB devices may not be employed for the operation of toys. Operation onboard aircraft. a ship or a satellite is prohibited.

Test Report No.: S22092102103002 Page 9 of 38

2.2 OTHER INFORMATION

The EUT only have one channel.

CHANNEL	FREQUENCY (MHz)	CHANNEL	FREQUENCY (MHz)	
5	6489.6	9	7987.2	

2.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on Xaxis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

TEST MODE						
MODE UWB ANT CHANNEL PREAM						
1	1	9	128			
2	2	5	128			
3	3	9	128			

EUT CONFIGURE			APPLICA	ABLE TO	DESCRIPTION			
		RE < 1G	PLC	BW	MP	CTT	DESCRIPTION	
1-6	√	√	V	V	√	√	DC 3.89V from Battery	

Where RE ≥ 1G: Radiated Emission above 1GHz RE < 1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission BW: 10dB Bandwidth measurement

MP: Maximum Peak Power and Average Emissions

CTT: Cease Transmission Time

TEST CONDITION:

ILOI GONDI	11014.			
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY	
RE<1G	23deg. C, 53%RH	DC 3.89V from Battery	Liu Shiwei	
RE≥1G	23deg. C, 53%RH	DC 3.89V from Battery	Liu Shiwei	
PLC	23deg. C, 53%RH	DC 5V from Adapter	Liu Shiwei	
BW	20deg. C, 55%RH	DC 3.89V from Battery	Liu Shiwei	
MP	23deg. C, 53%RH	DC 3.89V from Battery	Liu Shiwei	
CTT	23deg. C, 53%RH	DC 3.89V from Battery	Liu Shiwei	

Test Report No.: S22092102103002 Page 10 of 38

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, SUBPART F, SECTION 15.519 RSS-220 ISSUE 1(2009-03) + A1(2018-07) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

during	uring the tests.								
	Support Equipment								
NO	NO Description Brand		Model No. Serial N		umber	Supplied by			
N/A	A N/A		I/A	N/A	N/A	١	N/A		
			Sı	ipport Cable					
NO	NO Description Quantity Length (Number) (m)		_	Detachable (Yes/ No)	Shielded (Yes/ No)	Cores (Number	Supplied by		
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

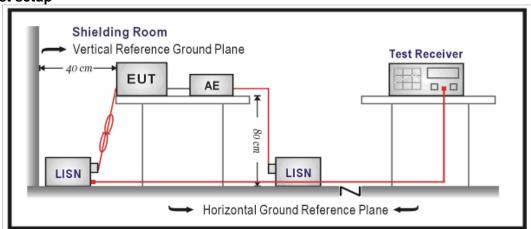
Test Report No.: S22092102103002 Page 11 of 38

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 Limit

Frequency	Conducted Limits(dBμV)				
(MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 [*]			
0.5 - 5	56	46			
5 - 30	60	50			

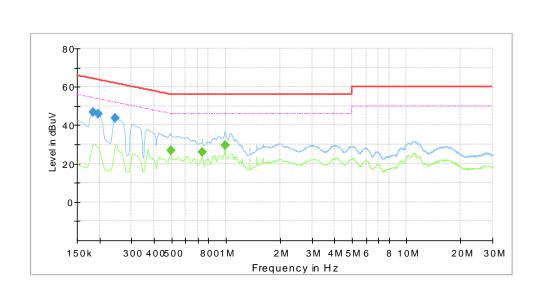

NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.1.2 Measurement procedure

- a. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the Test photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The equipment under test shall be placed on a support of non-metallic material, the height of which shall be 1.5m above the ground,
- b. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- c. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

3.1.3 Test setup

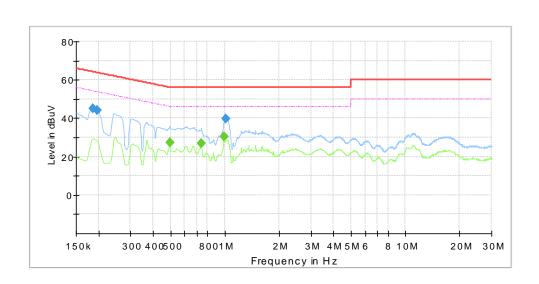


Test Report No.: \$22092102103002

3.1.4 Test results

Test Mode	UWB Link	Frequency Range	150KHz ~ 30MHz
PHASE	Line (L)		

NO	Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr.Factor (dB)
1	0.184	46.8		64.3	17.6	L1	19.5
2	0.197	45.9		63.7	17.8	L1	19.5
3	0.245	43.7		61.9	18.3	L1	19.5
4	0.494		27.0	46.1	19.1	L1	19.5
5	0.742		26.1	46.0	19.9	L1	19.6
6	0.987		29.4	46.0	16.6	L1	19.6


Remark: The emission levels of other frequencies were very low against the limit.

Test Report No.: \$22092102103002

Test Mode	UWB Link	Frequency Range	150KHz ~ 30MHz
PHASE	Line (N)	•	

NO	Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Line	Corr.Factor (dB)
1	0.186	45.0		64.2	19.2	N	19.5
2	0.197	44.3		63.7	19.5	N	19.5
3	0.494		27.2	46.1	18.9	N	19.6
4	0.740		27.1	46.0	18.9	N	19.6
5	0.987		30.3	46.0	15.7	N	19.6
6	1.016	39.9		56.0	16.1	N	19.6

Remark: The emission levels of other frequencies were very low against the limit.

Test Report No.: S22092102103002 Page 14 of 38

3.2 RADIATED EMISSIONS

3.2.1 Limits-FCC

(a) The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (b) The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIRP in dBm
960-1610	-75.3
1610-1990	-63.3
1990-3100	-61.3
3100-10600	-41.3
Above 10600	-61.3

(c) In addition to the radiated emission limits specified in the table in paragraph (a)(b) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164-1240	-85.3
1559-1610	-85.3

Test Report No.: S22092102103002 Page 15 of 38

3.2.2 Limits-IC

(a) Radiated emissions at or below 960 MHz for all subclasses of UWB device shall not exceed the following limits. Measurements of radiated emissions at and below 960 MHz are to be made using a CISPR quasi-peak detector. CISPR measurement bandwidth specifications are to be used.

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	E.i.r.p. (dBmW)
0.009 ~ 0.490	2,400/F (F in kHz)	300	10 log (17.28 / F2) (F in kHz)
0.490 ~ 1.705	24,000/F (F in kHz)	30	10 log (17.28 / F2) (F in kHz)
1.705 ~ 30.0	30	30	-45.7
30 ~ 88	100	3	-55.2
88 ~ 216	150	3	-51.7
216 ~ 960	200	3	-49.2

NOTE:

- 3. The lower limit shall apply at the transition frequencies.
- 4. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (b) Radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

Frequency	E.i.r.p. in a Resolution Bandwidth of 1 MHz			
960-1 610 MHz	-75.3 dBm			
1.61-4.75 GHz	-70.0 dBm			
4.75-10.6 GHz	-41.3 dBm			
Above 10.6 GHz	-61.3 dBm			

(c) In addition to the radiated emission limits specified in the table in paragraph (a)(b) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

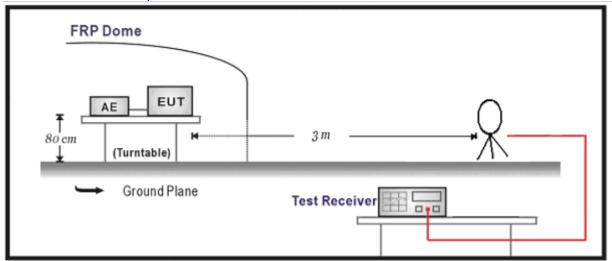
Frequency E.i.r.p. in a Resolution Bandwidth of no less than 1				
1 164-1 240 MHz	-85.3 dBm			
1 559-1 610 MHz	-85.3 dBm			

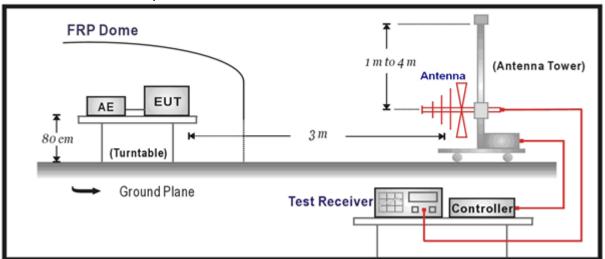
Test Report No.: S22092102103002 Page 16 of 38

3.2.3 Measurement procedure

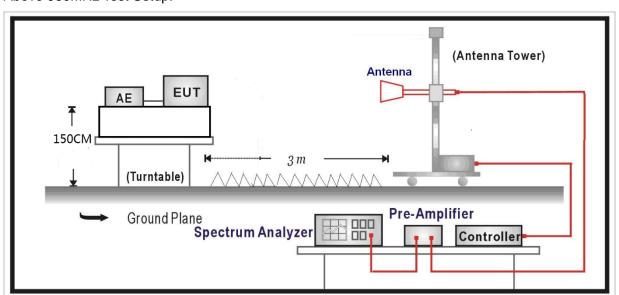
- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

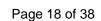
NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.


Test Report No.: \$22092102103002

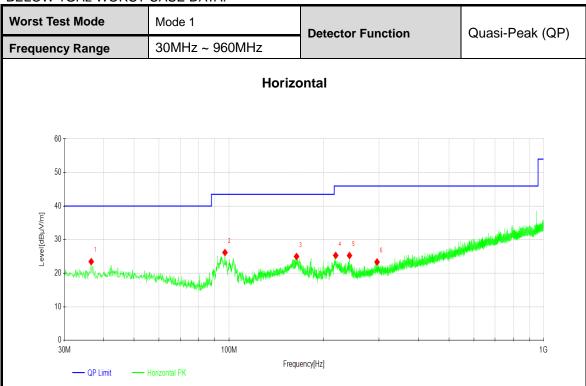
3.2.4 Test setup


Below 30MHz Test Setup:



Below 960MHz Test Setup:

Above 960MHz Test Setup:

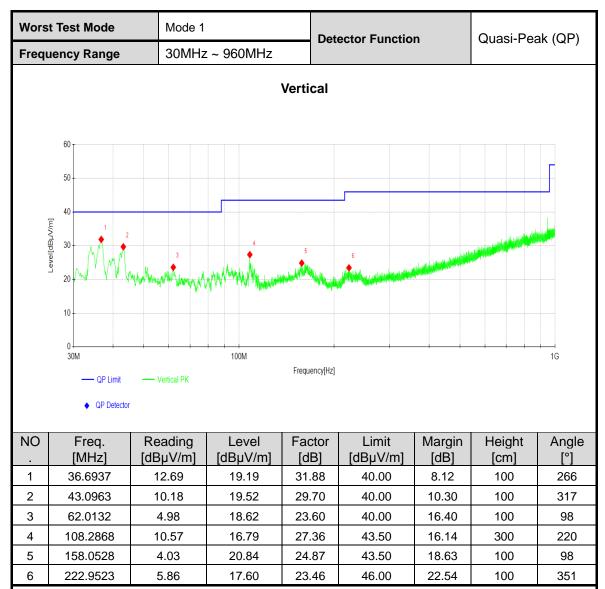


Test Report No.: \$22092102103002

3.2.5 Test results

BELOW 1GHz WORST-CASE DATA:

QP Detector


NO	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	36.4997	4.29	19.16	23.45	40.00	16.55	100	98
2	97.1307	10.06	16.11	26.17	43.50	17.33	300	219
3	163.9704	4.38	20.59	24.97	43.50	18.53	200	241
4	218.3928	7.93	17.37	25.30	46.00	20.70	100	115
5	241.5782	6.86	18.40	25.26	46.00	20.74	100	290
6	295.5156	3.48	19.86	23.34	46.00	22.66	200	309

Remark:1. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).

- 2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. $Margin(dB) = Limit[dB\mu V/m] Level [dB\mu V/m]$
- 4. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 5. 9KHz~30MHz have been test and test data more than 20dB margin.

Test Report No.: S22092102103002 Page 19 of 38

Remark:1. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).

- 2. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. $Margin(dB) = Limit[dB\mu V/m] Level [dB\mu V/m]$
- 4. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 5. 9KHz~30MHz have been test and test data more than 20dB margin.

Test Report No.: S22092102103002 Page 20 of 38

Radiated Emissions above 960 MHz:

Channel	CH 9 ANT1	Frequency	7987.2MHz
Frequency Range	Above 1G		

Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1567.7636	-95.57	-97.22	-85.30	11.92	-1.65	20	Horizontal
2	1177.8804	-95.52	-98.48	-85.30	13.18	-2.96	80	Horizontal
3	1920.2345	-79.94	-78.87	-70.00	8.87	1.07	20	Horizontal
4	2219.9255	-81.06	-76.43	-70.00	6.43	4.63	10	Horizontal
5	3480.6725	-78.36	-72.77	-70.00	2.77	5.59	250	Horizontal
6	23961.6000	-67.10	-82.64	-61.30	21.34	-15.54	200	Horizontal
7	31948.8000	-63.94	-78.87	-61.30	17.57	-14.93	140	Horizontal
8	39936.0000	-64.17	-71.02	-61.30	9.72	-6.85	110	Horizontal

Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1567.5187	-93.17	-95.13	-85.30	9.83	-1.96	20	Vertical
2	1177.3331	-98.85	-102.56	-85.30	17.26	-3.71	20	Vertical
3	1801.3805	-80.11	-79.96	-70.00	9.96	0.15	110	Vertical
4	2314.817	-81.15	-76.46	-70.00	6.46	4.69	180	Vertical
5	3529.2365	-82.35	-75.90	-70.00	5.90	6.45	10	Vertical
6	15974.4000	-89.91	-65.62	-61.30	4.32	24.29	110	Vertical
7	23961.6000	-67.38	-82.79	-61.30	21.49	-15.41	260	Vertical
8	31948.8000	-63.99	-78.60	-61.30	17.30	-14.61	200	Vertical
9	39936.0000	-63.50	-69.93	-61.30	8.63	-6.43	50	Vertical

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

- 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dBµV/m] Level [dBµV/m]

Test Report No.: S22092102103002 Page 21 of 38

Channel	CH 5 ANT2	Frequency	6489.6MHz
Frequency Range	Above 1G		

Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1200.0920	-89.71	-91.70	-85.30	6.40	-1.99	20	Horizontal
2	1584.4643	-94.92	-97.12	-85.30	11.82	-2.20	20	Horizontal
3	1956.977	-80.73	-77.97	-70.00	7.97	2.76	170	Horizontal
4	2433.671	-81.47	-76.35	-70.00	6.35	5.12	240	Horizontal
5	3520.61	-81.76	-76.01	-70.00	6.01	5.75	0	Horizontal
6	12957.2000	-89.74	-68.34	-61.30	7.04	21.40	20	Horizontal
7	19435.8000	-67.77	-88.93	-61.30	27.63	-21.16	170	Horizontal
8	26914.4000	-67.69	-84.83	-61.30	23.53	-17.14	80	Horizontal
9	32393.0000	-60.98	-79.14	-61.30	17.84	-18.16	360	Horizontal

Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1200.0920	-90.51	-94.18	-85.30	8.88	-3.67	140	Vertical
2	1582.0158	-94.29	-95.96	-85.30	10.66	-1.67	20	Vertical
3	1848.347	-80.23	-79.02	-70.00	9.02	1.21	210	Vertical
4	2324.402	-81.36	-76.61	-70.00	6.61	4.75	10	Vertical
5	3326.993	-81.00	-75.07	-70.00	5.07	5.93	210	Vertical
6	12957.2000	-91.18	-69.88	-61.30	8.58	21.30	360	Vertical
7	19435.8000	-67.53	-88.41	-61.30	27.11	-20.88	350	Vertical
8	26914.4000	-68.17	-85.21	-61.30	23.91	-17.04	290	Vertical
9	32393.0000	-61.72	-79.23	-61.30	17.93	-17.51	20	Vertical

Remark: 1. The emission levels of other frequencies were greater than 20dB margin.

- 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).
- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: S22092102103002 Page 22 of 38

Channel	CH 9 ANT3	Frequency	7987.2MHz
Frequency Range	Above 1G		

Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1177.8804	-95.52	-98.48	-85.30	13.18	-2.96	80	Horizontal
2	1601.9200	-94.32	-96.87	-85.30	11.57	-2.55	20	Horizontal
3	1825.6625	-80.76	-81.94	-70.00	11.94	-1.18	10	Horizontal
4	2582.2385	-80.13	-77.16	-70.00	7.16	2.97	90	Horizontal
5	3359.9015	-81.55	-75.85	-70.00	5.85	5.70	230	Horizontal
6	23961.6000	-67.61	-83.15	-61.30	21.85	-15.54	260	Horizontal
7	31948.8000	-64.18	-79.11	-61.30	17.81	-14.93	260	Horizontal
8	39936.0000	-63.98	-70.83	-61.30	9.53	-6.85	360	Horizontal

Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	1227.8680	-98.99	-102.08	-85.30	16.78	-3.09	20	Vertical
2	1598.1350	-95.26	-96.43	-85.30	11.13	-1.17	20	Vertical
3	1801.061	-78.70	-78.55	-70.00	8.55	0.15	180	Vertical
4	2537.828	-80.84	-77.24	-70.00	7.24	3.60	180	Vertical
5	3553.5185	-82.21	-75.39	-70.00	5.39	6.82	110	Vertical
6	23961.6000	-67.51	-82.92	-61.30	21.62	-15.41	350	Vertical
7	31948.8000	-64.20	-78.81	-61.30	17.51	-14.61	320	Vertical
8	39936.0000	-63.95	-70.38	-61.30	9.08	-6.43	320	Vertical

Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB).

- 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 4. Margin(dB) = Limit[dB μ V/m] Level [dB μ V/m]

Test Report No.: S22092102103002 Page 23 of 38

3.3 10dB BANDWIDTH

3.3.1 LIMIT-FCC

FCC 15.503(d) Has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

FCC 15.519(3)(b) The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

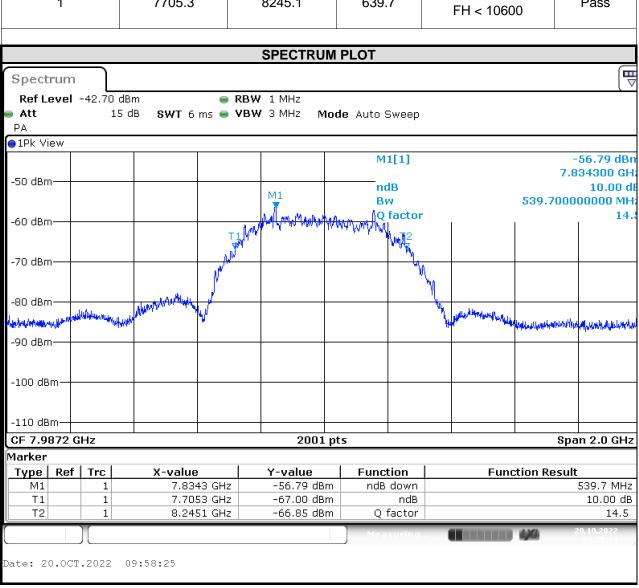
3.3.2 LIMIT -IC

A UWB device is an intentional radiator that has either a -10 dB bandwidth1 of at least 500 MHz or a -10 dB fractional bandwidth2 greater than 0.2. There are eight distinct subclasses of UWB device.

3.3.3 TEST PROCEDURES

- 1. Set the centre frequency of the channel under test
- 2. Set resolution bandwidth (RBW) = 1MHz
- 3. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 10 dB relative to the maximum level measured in the fundamental emission.

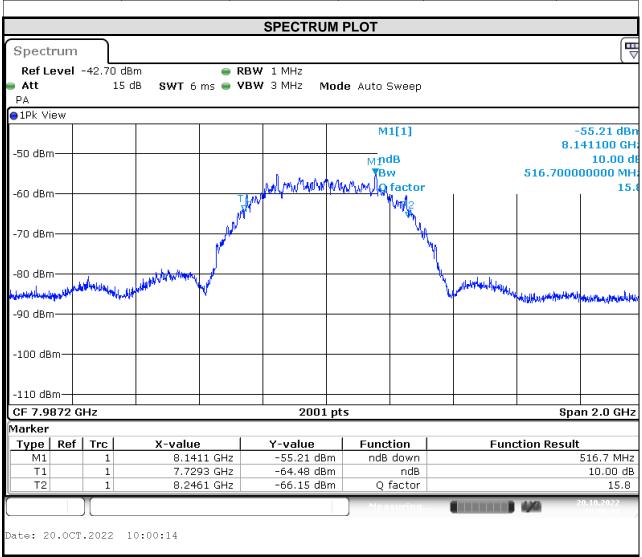
3.3.4 TEST SETUP



3.3.5 TEST RESULTS

Test Report No.: \$22092102103002

Mode	Measured F	requencies	10dB	Limit	Doog/Egil
	FL (MHz)	FH (MHz)	Bandwidth (MHz)	(MHz)	Pass/Fail
1	7705.3	8245.1	639.7	FL > 3100 and FH < 10600	Pass


Test Report No.: S22092102103002 Page 25 of 38

		Measured	Frequencies	10dB	Limit	5 /5 11				
Mode		FL (MHz)	FH (MHz)	Bandwidth (MHz)	(MHz)	Pass/Fail				
2		6231.7	6748.5	516.7	FL > 3100 and FH < 10600	Pass				
SPECTRUM PLOT										
	$\overline{}$		SPECIRUN	N PLOT						
Spectrum						(₩				
Ref Level			RBW 1 MHz							
● Att PA	15	5dB SWT 6 ms (● VBW 3 MHz Mid	o de Auto Sweep						
●1Pk View										
				M1[1]		-54.42 dBr				
-50 dBm						6.643500 GH				
00 92			T HANNON ON TO SHOW AND	MådB	516	10.00 d 700000000 MH				
1			Lagh mhainain	MWWM Whatto	, JIU.,	12.				
-60 dBm			TIM	WHIZ.						
			J/Y'	lo.	ta l					
-70 dBm		 	<i>.</i> /#"		"\					
		الم المساداليدمدورمدر	r		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
-80 dBm	LLANGUA ANGLA	A THE PARTY OF THE				Ann a				
distributed to a probability of the second		1 100			The state of the s	earth all a land and the land and				
-90 dBm						A = 2-1				
-100 dBm										
100 00111										
-110 dBm										
CF 6.4786 G	Hz		2001	pts		Span 2.0 GHz				
Marker Type Ref	l Trc l	¥	1	Function	l Fetia B					
Type Ref M1	1 Irc	X-value 6.6435 GF	Y-value +z -54,42 dBm		Function R	<u>esuit</u> 516.7 MHz				
T1	1	6.2317 GI	Hz -64.76 dBm	n ndB		10.00 dB				
T2	1	6.7485 GI	Hz -63.78 dBm	n Q factor		12.9				
				Measuring	174	20.10.2022				
	,									
Date: 20.0CT	.2022	10:03:22								

Test Report No.: S22092102103002 Page 26 of 38

Mode	Measured F	requencies	10dB Bandwidth	Limit	Pacc/Foil
	FL (MHz)	FH (MHz)	(MHz)	(MHz)	Pass/Fail
3	7729.3	8246.1	516.7	FL > 3100 and FH < 10600	Pass

Version A0

Test Report No.: S22092102103002 Page 27 of 38

3.4 99% OCCUPIED BANDWIDTH

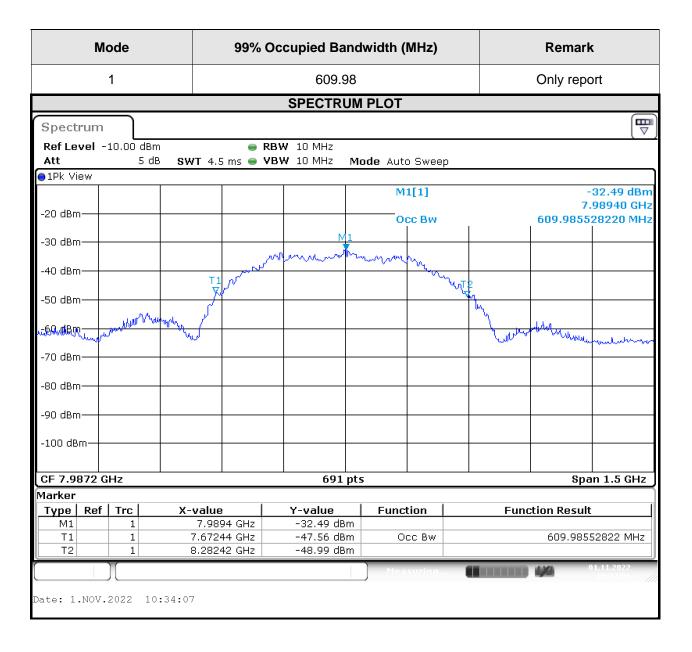
3.4.1 LIMIT

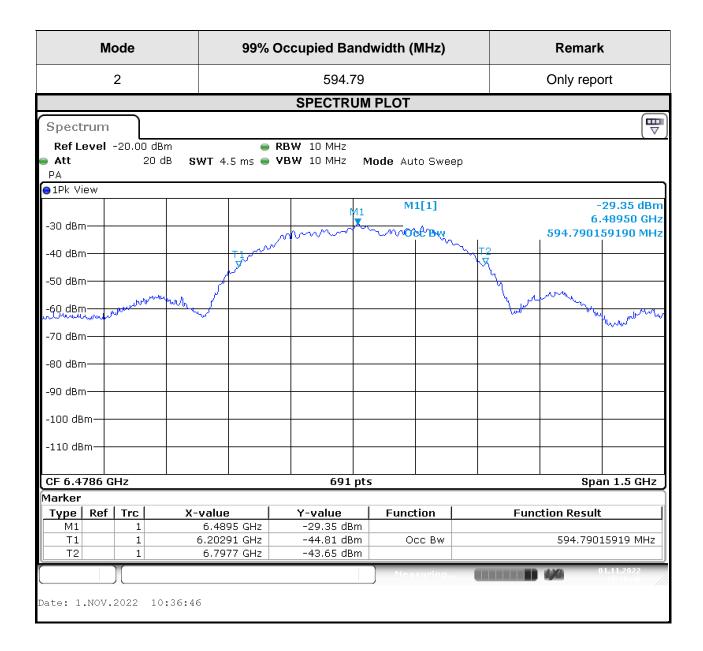
Only report

3.4.2 Measurement procedure

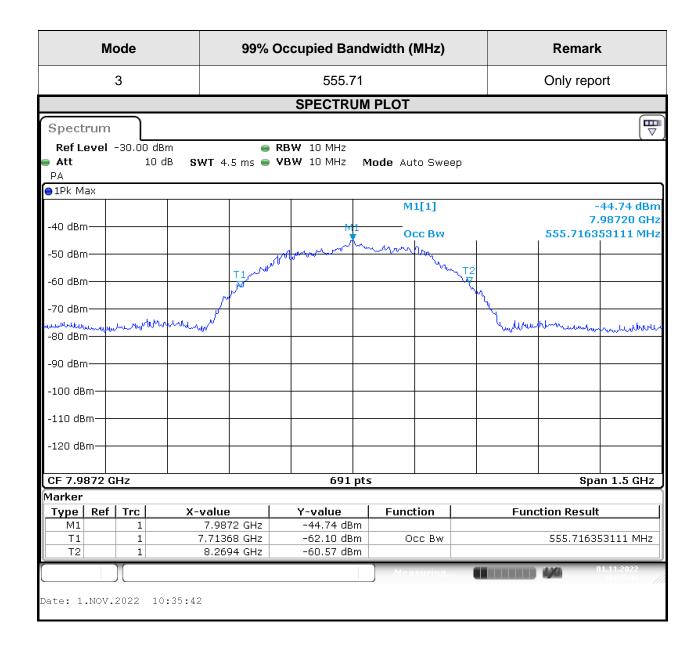
The transmitter antenna output was connected to the spectrum analyzer through an attenuator. The resolution bandwidth shall be set to the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth.

below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.


3.4.3 TEST SETUP


Test Report No.: S22092102103002 Page 28 of 38

3.4.4 TEST RESULTS



Test Report No.: S22092102103002 Page 29 of 38

Test Report No.: S22092102103002 Page 30 of 38

Test Report No.: S22092102103002 Page 31 of 38

3.5 Maximum Peak Power and Average Emissions

3.5.1 LIMITS

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, fM. That limit is 0 dBm EIRP.

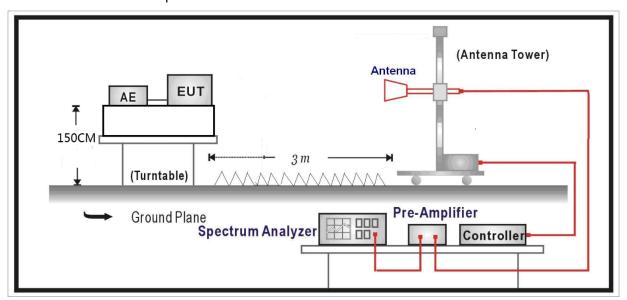
When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs, fM. If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2.

3.5.2 TEST PROCEDURE

- h. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- i. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- j. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- k. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- I. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- m. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- n. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.



Test Report No.: S22092102103002

3.5.3 TEST SETUP

Above 960MHz Test Setup:

Test Report No.: \$22092102103002 Page 33 of 38

3.5.4 TEST RESULTS

Mode	Pol(H/V)	Frequency (MHz)	Maximum Peak Power (dBm/10MHz)	Maximum Peak Power (dBm/50MHz)	Limit (dBm/50MHz)	Pass/Fail
1	Н	7819.0350	-38.92	-24.94	0	Pass
1	V	7868.0250	-33.01	-19.03	0	Pass
2	Н	6334.5750	-36.33	-22.35	0	Pass
2	V	6657.1500	-36.53	-22.55	0	Pass
3	Н	7982.6250	-39.01	-25.03	0	Pass
3	V	7986.3000	-33.13	-19.15	0	Pass

Bandwidth correction factor (BWCF)= 20log(10MHz/50MHz) = -13.98

Maximum Peak Power (dBm/50MHz) = Maximum Peak Power (dBm/10MHz) -BWCF

Mode	Frequency (MHz)	Average Emissions (dBm/MHz)	Limit (dBm/MHz)	Pass/Fail
1	Н	-61.01	-41.3	Pass
1	V	-55.70	-41.3	Pass
2	Н	-62.15	-41.3	Pass
2	V	-60.84	-41.3	Pass
3	Н	-58.99	-41.3	Pass
3	V	-55.14	-41.3	Pass

Test Report No.: S22092102103002 Page 34 of 38

3.6 Cease Transmission Time

3.6.1 **LIMIT-FCC**

The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

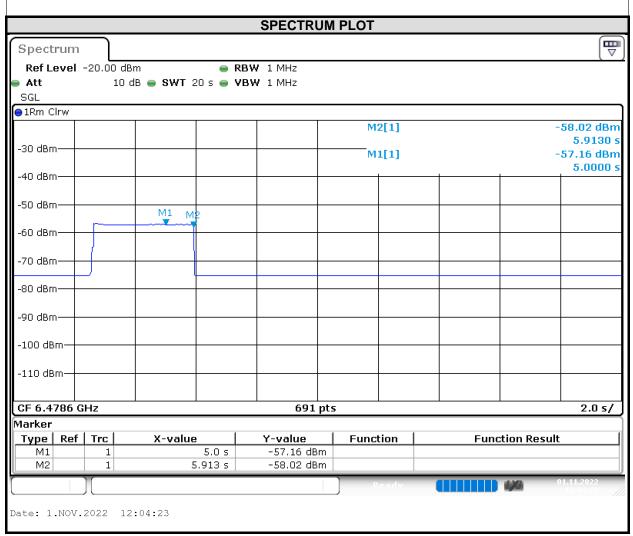
3.6.2 LIMIT-IC

The device is to transmit only when it is sending information to an associated receiver. The device shall cease transmission of information within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB device at least every 10 seconds or the UWB device shall cease transmitting any information other than periodic signals used for the establishment or re-establishment of a communication link with an associated receiver.

3.6.3 TEST PROCEDURES

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer set the center frequency, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the transmission duration was measured and recorded.

3.6.4 TEST SETUP



Test Report No.: S22092102103002 Page 35 of 38

3.6.5 TEST RESULTS

FREQUENCY (MHz)	MEASUREMENT RESULT (sec)	MAXIMUM LIMIT (sec)	PASS/FAIL	
6489.6	0.913	10	PASS	

Note: Release the interference signal at 5s,so

Cease Transmission Time = Mark2-Mark1 = 5.913s - 5.0s = 0.913s

Test Report No.: \$22092102103002 Page 36 of 38

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

Test Report No.: S22092102103002 Page 37 of 38

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos report and Internal Photos).

Test Report No.: S22092102103002 Page 38 of 38

Important

- (1) The test report is valid with the official seal of the laboratory and the signatures of Test engineer, Author and Reviewer simultaneously.
- (2) The test report is invalid if altered.
- (3) Any photocopies or part photocopies in the test report are forbidden without the written permission from the laboratory.
- (4) Objections to the test report must be submitted to the laboratory within 15 days.
- (5) Generally, commission test is responsible for the tested samples only.

Address of the laboratory:

Shenzhen NTEK Testing Technology Co., Ltd.

Address: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street Bao'an District, Shenzhen 518126 P.R. China

Post Code: 518126

Tel: 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn