

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200703804

FCC REPORT

Applicant: Wavee Group Inc.

Address of Applicant: 232 Manning Avenue, Toronto, Ontario, M6J 2K7, Canada

Equipment Under Test (EUT)

Product Name: WAVEE W-1 Electric Toothbrush Speaker System

Model No.: W1BTS

FCC ID: 2AW2XW1BTS

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 13 Jul., 2020

Date of Test: 14 Jul., to 20 Aug., 2020

Date of report issued: 21 Aug., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	21 Aug., 2020	Original

Tested by:	YT Yang	Date: 21 Aug., 2020	21 Aug., 2020
	Test Engineer	_	

Reviewed by:

| Date: 21 Aug., 2020 | Project Engineer | Date: 21 Aug., 2020 | Date: 2020 | Date

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	Ti	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10		
	5.11	TEST INSTRUMENTS LIST	7
6	TE	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TE	EST SETUP PHOTO	17
R	FI	LIT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	Wavee Group Inc.
Address:	232 Manning Avenue, Toronto, Ontario, M6J 2K7, Canada
Manufacturer:	Wavee Group Inc.
Address:	232 Manning Avenue, Toronto, Ontario, M6J 2K7, Canada
Factory:	SHENZHEN YINHONG ELECTRONICS CO., LTD
Address:	2nd floor 2# building Hongzhu Yongqi Techno park, lezhujiao village, xixiang Baoan district, Shenzhen

5.2 General Description of E.U.T.

Product Name:	WAVEE W-1 Electric Toothbrush Speaker System
Model No.:	W1BTS
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2800mAh
AC adapter:	Model: W&T-AD1812B050200UU
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode and test samples plans

Operating mode	Detail description
Charging+Playing mode	Keep the EUT in Charging+Playing mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

Report No: CCISE200703804

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Wavee Group Inc.	electric toothbrush	W1ETB	N/A	N/A

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Unshielding	1.24m	EUT	Adapter

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

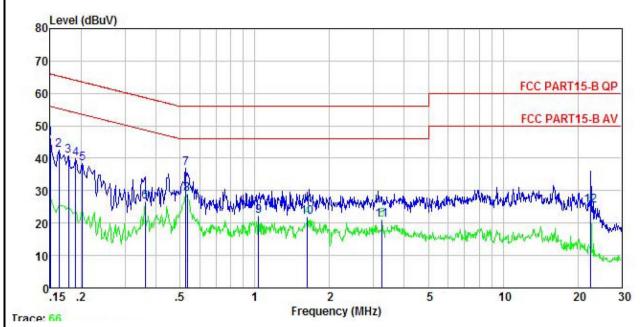
Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
SIII SAC	SAEIVIC	9111 0111 0111	900	07-22-2020	07-21-2023	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LION	Datada Q Cabuuruu	F0110.75	0.4000004/040	07-21-2017	07-20-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2023	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	db	

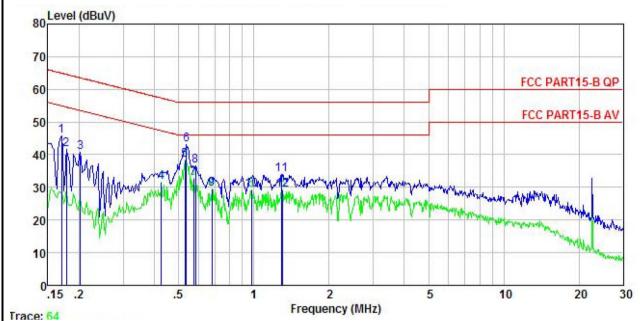
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107							
Test Frequency Range:	150kHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)							
	, , , ,	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	0.5-30	60	50					
	* Decreases with the logarithm	of the frequency.						
Test precedure	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC power						
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 							
Test Instruments:	Refer to section 5.11 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							

Measurement data:

Product name:	WAVEE W-1 Electric Toothbrush Speaker System	Product model:	W1BTS
Test by:	YT	Test mode:	Charging & Playing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level		Cable Loss	Aux Factor		Limit Line		Remark
	MHz	dBu∀	<u>ab</u>	₫B		dBu∀	dBu∀	<u>ab</u>	
1	0.150	35.83	-0.57	10.78	-0.05	45.99	66.00	-20.01	QP
2	0.162	32.49	-0.58	10.77	-0.08	42.60	65.34	-22.74	QP
3	0.178	30.71	-0.58	10.77	-0.12	40.78	64.59	-23.81	QP
4	0.190	29.85	-0.59	10.76	-0.14	39.88	64.02	-24.14	QP
5	0.202	28.33	-0.59	10.76	-0.16	38.34	63.54	-25.20	QP
6	0.361	16.12	-0.51	10.73	0.17	26.51	48.69	-22.18	Average
7	0.527	27.07	-0.45	10.76	-0.36	37.02	56.00	-18.98	QP
8	0.535	19.11	-0.45	10.76	-0.36	29.06	46.00	-16.94	Average
1 2 3 4 5 6 7 8 9	1.037	11.59	-0.61	10.87	0.42	22.27			Average
10	1.628	11.48		10.93		21.78	46.00	-24.22	Average
11	3.258	10.67	-0.42	10.91	-0.16	21.00	46.00	-25.00	Average
12	22.535	14.52	-0.98	10.90					Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	WAVEE W-1 Electric Toothbrush Speaker System	Product model:	W1BTS
Test by:	YT	Test mode:	Charging & Playing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

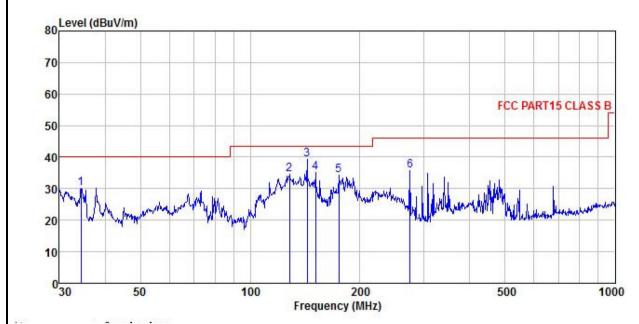
	Freq	Read Level		Cable Loss	Aux Factor		Limit Line		Remark
2	MHz	dBu∜	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBu₹	—dBu∜	<u>ab</u>	
1	0.170	35.75	-0.68	10.77	0.01	45.85	64.94	-19.09	QP
2	0.178	31.41	-0.68	10.77	0.00	41.50	64.59	-23.09	QP
3	0.202	30.53	-0.67	10.76	0.00	40.62	63.54	-22.92	QP
4	0.426	21.48	-0.64	10.73	-0.03	31.54	47.33	-15.79	Average
5	0.529	28.38	-0.65	10.76	0.03	38.52			Average
6	0.538	33.06	-0.65	10.76	0.03	43.20	56.00	-12.80	QP
7	0.573	22.62	-0.65	10.76	0.03	32.76	46.00	-13.24	Average
2 3 4 5 6 7 8 9	0.585	26.55	-0.65	10.76		36.69		-19.31	
9	0.679	19.37	-0.64	10.77	0.04	29.54	46.00	-16.46	Average
10	0.984	18.87	-0.68	10.87	0.08	29.14			Average
11	1.289	23.75	-0.69					-21.93	
12	1.303	18.77	-0.69			29.09			Äverage

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

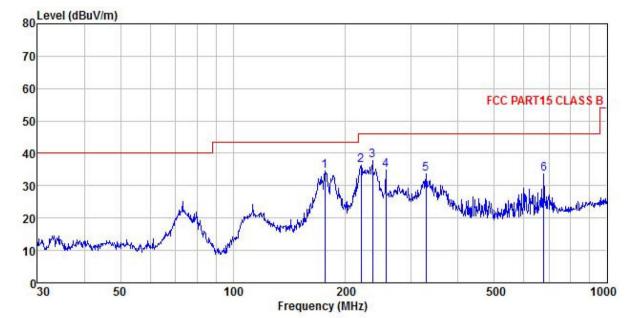
Test Requirement:	FCC Part 15 B Section 15.109								
Test Frequency Range:	30MHz to 6000MI	Hz							
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)				
Receiver setup:	Frequency	Detecto	r	RBW	VBW	Remark			
, , , , , , , , , , , , , , , , , , ,	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz	Peak Value			
	Above 1GHz	RMS		1MHz	3MHz	Average Value			
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark			
	30MHz-88N			40.0		Quasi-peak Value			
	88MHz-216			43.5		Quasi-peak Value			
	216MHz-960			46.0		Quasi-peak Value			
	960MHz-1G	ÞΗΖ		54.0 54.0		Quasi-peak Value			
	Above 1GI	Hz				Average Value			
Test setup:	Below 1GHz> 3m	Below 1GHz Antenna Tower Search Antenna							
	Tum Table 0.8m A Ground Plane — Above 1GHz	lm A	1111						
	Horn Antenna Tower AE EUT Ground Reference Plane Test Receiver Test Receiver Controller								
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 								


	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	WAVEE W-1 Electric Toothbrush Speaker System	Product Model:	W1BTS
Test By:	YT	Test mode:	Charging & Playing mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

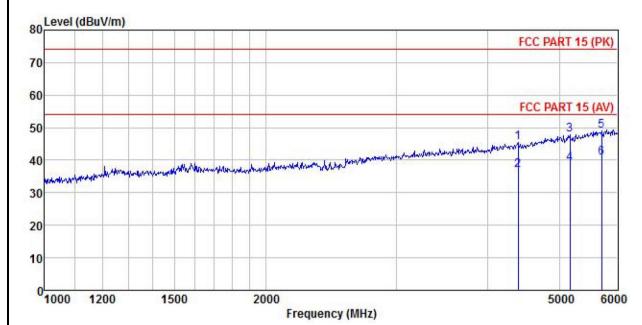

	Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark
=	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1	34.396	47.29	12.51	0.35	0.00	29.95	30.20	40.00	-9.80	QP
1 2 3 4 5 6	128.113	51.54	11.65	0.58	0.00	29.34	34.43	43.50	-9.07	QP
3	143.326	54.10	13.87	0.61	0.00	29.25	39.33	43.50	-4.17	QP
4	151.067	49.43	14.32	0.62	0.00	29.21	35.16	43.50	-8.34	QP
5	175.037	45.65	16.80	0.67	0.00	29.01	34.11	43.50	-9.39	QP
6	274.194	44.81	18.60	0.83	0.00	28.50	35.74	46.00	-10.26	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	WAVEE W-1 Electric Toothbrush Speaker System	Product Model: W1BTS		
Test By:	YT	Test mode:	Charging & Playing mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq		Antenna Factor			Preamp Factor		Limit Line		Remark
=	MHz	dBu₹	<u>dB</u> /m		<u>ab</u>		dBuV/m			
1	176, 269	45.99	16.82	0.67	0.00	29.00	34.48	43.50	-9.02	QP
2	219.845	45.87	18.38	0.74					-9.72	QΡ
2	235.816	47.13	18.45	0.76	0.00	28.62	37.72	46.00	-8.28	QP
4	256.521	43.93	18.53	0.79	0.00	28.53	34.72	46.00	-11.28	QP
5	327.887	42.37	18.76	0.90	0.00	28.51	33.52	46.00	-12.48	QP
6	677.580	40.65	20.33	1.30	0.00	28.72	33.56	46.00	-12.44	QP


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	WAVEE W-1 Electric Toothbrush Speaker System	Product Model:	W1BTS
Test By:	YT	Test mode:	Charging & Playing mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	KeadAntenna Level Factor						Limit	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	4396.627	49.00	29.94	6.06	2.32	41.96	45.36	74.00	-28.64	Peak
2	4396.627	40.63	29.94	6.06	2.32	41.96	36.99	54.00	-17.01	Average
3	5167.289	48.98	31.57	6.71					-26.13	
4	5167.289	40.01	31.57	6.71	2.55	41.94	38.90	54.00	-15.10	Average
5	5706.407	48.72	32.39	7.10	2.72	41.92	49.01	74.00	-24.99	Peak
6	5706.407	40.51	32.39	7.10	2.72	41.92	40.80	54.00	-13.20	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Test By: Test Frequency: Test Voltage:		WAVEE W-1 Electric Toothbrush Speaker System						Product Model:		W1BTS		
		YT	YT 1 GHz ~ 6 GHz							Charging & Playing mode		
		1 GHz										
		AC 120/60Hz						Environment:		Temp: 24°C Huni: 5°		
	105.10											
80	Level (dBuV/n	n)								FCC PART 15 (PK)		
70										FCC PART 1:	(PK)	
70												
60					1					FOO DADT 4	F (A) D	
		+	_							FCC PART 1	5	
50									1	pulpy washing rotes	warend	
40						i auto	Married Marriage	مهيانالعماليطس	whetherwhelp	Particular in the	6	
	and the street of the street of the street	Mayellowshi	the state of the s	and the second	internation of the second	an year way			1			
30							-					
De.												
20												
10												
0	1000 1200	1 12	1500	2	000					5000	6000	
	1000 1200			-		uency (MI	Hz)			0000	0000	
	<u> 22</u> 5		Antenna			Preamp	(6) 2¢	Limit	Over			
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark		
_	MHz	dBu∜	dB/m	₫B	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	₫B		-	
1	4220.584	48.47	29.66	5.93	2.27	41.82	44.51	74.00	-29.49	Peak		
	4220.584	40.79	29.66	5.93	2.27	41.82	36.83	54.00	-17.17	Average		
2 3 4 5	4893.279	49.00	30.96	6.47	2.47		47.06		-26.94	Peak		
4	4893.279	41.03		6.47	2.47			54.00	-14.91	Average		
L	5762.199	48.80	32.41 32.41	7.12 7.12	2.73 2.73				-24.92	Peak Average		
б	5762.199											

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.