

F2 Labs 16740 Peters Road Middlefield, Ohio 44062 United States of America

www.f2labs.com

CERTIFICATION TEST REPORT

Manufacturer: Grektek LLC

943 Willowleaf Way

Potomac, Maryland 20854 USA

Applicant: Same as Above

Product Name: Everbeat

Product Description: We arable device that can record a single lead ECG.

Operating

Voltage/Frequency: Battery-Operated

Model: EVBT1

FCC ID: 2AW2WEVBT1

Testing Commenced: 2020-07-23

Testing Ended: 2020-09-21

Summary of Test Results: In Compliance

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or manufacturer's statement. Any changes to the design or build of this unit subsequent to this

testing may deem it non-compliant.

Standards:

- ❖ FCC Part 15 Subpart C, Section 15.249
- ❖ FCC Part 15 Subpart C, Section 15.215(c) Additional provisions to the general radiated emission limitations
- ❖ FCC Part 15 Subpart A, Section 15.31(e) Measurement Standards

Report Number: F2P24085A-01E Page 1 of 31 Issue Date: 2020-09-21

Model: EVBT1

Evaluation Conducted by:

Julius Chiller, EMC/Wireless Engineer

Jen Schilled

Report Reviewed by:

Ken Littell, Vice President of EMC

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 F2 Labs 8583 Zionsville Road Indianapolis, IN 46268 Ph 317.610.0611

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

Report Number: F2P24085A-01E Page 2 of 31 Issue Date: 2020-09-21

TABLE OF CONTENTS

Section	Title	Page
_		_
1	ADMINISTRATIVE INFORMATION	4
2	SUMMARY OF TEST RESULTS/MODIFICATIONS	7
3	TABLE OF MEASURED RESULTS	8
4	ENGINEERING STATEMENT	9
5	EUT INFORMATION AND DATA	10
6	LIST OF MEASUREMENT INSTRUMENTATION	11
7	OCCUPIED BANDWIDTH	12
8	FIELD STRENGTH OF EMISSIONS	19
9	PHOTOGRAPHS - TEST SETUPS	29

Model: EVBT1

1 ADMINISTRATIVE INFORMATION

1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.2 Measurement Procedure:

All measurements were performed according to the 2013 version of ANSI C63.10 and recommended FCC procedure of measurement of DXT operating under Section 15.249. A list of the measurement equipment can be found in Section 6.

060818

Report Number: F2P24085A-01E Page 4 of 31 Issue Date: 2020-09-21

Model: EVBT1

1.3 Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used, and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data and are expressed with a 95% confidence factor using a coverage factor of k=2. The Uncertainty for a laboratory is referred to as *U*lab. For Radiated and Conducted Emissions, the Expanded Uncertainty is compared to the *U*cispr values to determine if a specific margin is required to deem compliance.

Ulab

Measurement Range	Combined Uncertainty	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	2.54	5.07dB
Radiated Emissions <1 GHz @ 10m	2.55	5.09dB
Radiated Emissions 1 GHz to 2.7 GHz	1.81	3.62dB
Radiated Emissions 2.7 GHz to 18 GHz	1.55	3.10dB
AC Power Line Conducted Emissions, 150kHz to 30 MHz	1.38	2.76dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	1.66	3.32dB

*U*cispr

Measurement Range	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	5.2dB
Radiated Emissions <1 GHz @ 10m	5.2dB
Radiated Emissions 1 GHz to 2.7 GHz	Under Consideration
Radiated Emissions 2.7 GHz to 18 GHz	Under Consideration
AC Power Line Conducted Emissions, 150kHz to 30 MHz	3.6dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	4.0dB

If *U*lab is less than or equal to *U*cispr, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If *U*lab is greater than *U*cispr in table 1, then:

- compliance is deemed to occur if no measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit;
- ullet non-compliance is deemed to occur if any measured disturbance, increased by (Ulab Ucispr), exceeds the disturbance limit.

Note: Only measurements listed in the tables above that relate to tests included in this Test Report are applicable.

Report Number: F2P24085A-01E Page 5 of 31 Issue Date: 2020-09-21

1.4 **Document History:**

Document Number	Description	Issue Date	Approved By
F2P24085A-01E	First Issue	2020-09-21	K. Littell

Page 6 of 31 Report Number: F2P24085A-01E Issue Date: 2020-09-21

Model: EVBT1

2 SUMMARY OF TEST RESULTS

Test Name	Standard(s)	Results
-20dB Occupied Bandwidth	CFR 47 Part 15.215(c)	Complies
Field Strength of Emissions	CFR 47 Part 15.249(a)(d)	Complies
Variation of the Input Power	CFR 47 Part 15.231(e)	Complies*

^{*}Requirements of were met by using new batteries. The device charges by being placed on a charger dock with pads that comes in contact with the pins on the charging dock. The device does not transmit while charging.

Modifications Made to the Equipment	
None	

Report Number: F2P24085A-01E Page 7 of 31 Issue Date: 2020-09-21

3 **TABLE OF MEASURED RESULTS**

Test	Low Channel 2402 MHz	Mid Channel 2440 MHz	High Channel 2480 MHz
Average Field Strength of Fundamental	58.0dBµV/m, 0.794mV/m	58.1dBµV/m, 0.803mV/m	56.2dBµV/m, 0.645mV/m
Average Limit for Fundamental	50 millivolts/meter (93.97 dBµV/m)	50 millivolts/meter (93.97 dBµV/m)	50 millivolts/meter (93.97 dBµV/m)
Peak Field Strength of Fundamental	70.1dBμV/m 3.2 mV/m	70.1dBµV/m 3.2 mV/m	68.9dBµV/m 2.8 mV/m
Peak Limit for Fundamental	113.97 dBμV/m	113.97 dBµV/m	113.97 dBµV/m
-20dB Occupied Bandwidth	1.099 MHz	1.093 MHz	1.111 MHz
99% Occupied Bandwidth	1.040 MHz	1.041 MHz	1.049 MHz

The -20dB bandwidth of the emission shall be contained within the frequency band designated in the rule section under which the equipment is operated.

Page 8 of 31 Report Number: F2P24085A-01E Issue Date: 2020-09-21

Model: EVBT1

4 ENGINEERING STATEMENT

This report has been prepared on behalf of Grektek LLC to provide documentation for the testing described herein. This equipment has been tested and found to comply with part 15.249 of the FCC Rules using ANSI C63.10 2013 standard. The test results found in this test report relate only to the items tested.

Report Number: F2P24085A-01E Page 9 of 31 Issue Date: 2020-09-21

Model: EVBT1

5 EUT INFORMATION AND DATA

5.1 Equipment Under Test:

Product: Everbeat Model: **EVBT1**

Serial No.: 9E432B1D-9D9C-4FC9-B77C-3647E4VF35DE

Firmware: **6.16.18**

Hardware: **B055 Everbeat Watch**

FCC ID: 2AW2WEVBT1

5.2 Trade Name:

Grektek LLC

5.3 Power Supply:

Battery-Operated

5.4 Applicable Rules:

CFR 47, Part 15.249, subpart C

5.5 Equipment Category:

Radio Transmitter-DXT

5.6 Antenna:

Integral Antenna, 0.5dBi Gain

5.7 Accessories:

Device	Manufacturer	Model Number	Serial Number
Laptop	Dell	Latitude 7490	25215332294
Accessory Software/Version:		nRF Conr	nect v3.5.0

5.8 Test Item Condition:

The equipment to be tested was received in good condition.

5.9 Testing Algorithm:

EUT was set up in a normal test mode. Device was continuously transmitting in three different channels (low, mid and high).

060818

Report Number: F2P24085A-01E Page 10 of 31 Issue Date: 2020-09-21

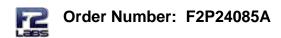
6 LIST OF MEASUREMENT INSTRUMENTATION

Equipment Type	Asset Number	Manufacturer	Model	Serial Number	Calibration Due Date
Shielded Chamber	CL166-E	Albatross Projects	B83117-DF435- T261	US140023	2021-01-03
Temp/Hum. Recorder	CL261	Extech	445814	04	2021-02-12
Receiver	CL151	Rohde & Schwarz	ESU40	100319	2020-10-21
Antenna, JB3 Combination	CL175	Sunol Sciences	JB3	A030315	2020-10-14
Horn Antenna	CL098	Emco	3115	9809-5580	2021-01-31
Pre-Amplifier	CL153	Agilent	83006-69007	MY39500791	2020-09-30
Pre-Amplifier	CL250	Com-Power	PAM-118A	18040011	2021-06-21
Low Loss Cable Set		Pasternack	PE3C0666-252 / PE3C066-50CM	None Spec.	2020-09-30
Amplifier w/Monopole & 18" Loop	CL163- Loop	A.H. Systems, Inc.	EHA-52B	100	2020-09-30
Horn Antenna	CL114	A.H. Systems, Inc.	SAS-572	237	2021-02-04
Pre-Amplifier	CL189	Com-Power	PAM-840A	461303	2021-07-31
Software:	Tile	e Version 3.4.B.3	Software Verified: 2020-09-21		9-21
Software:	EMC	32, Version 8.53.0	Software Verified: 2020-09-21		9-21

Report Number: F2P24085A-01E Page 11 of 31 Issue Date: 2020-09-21

Model: EVBT1

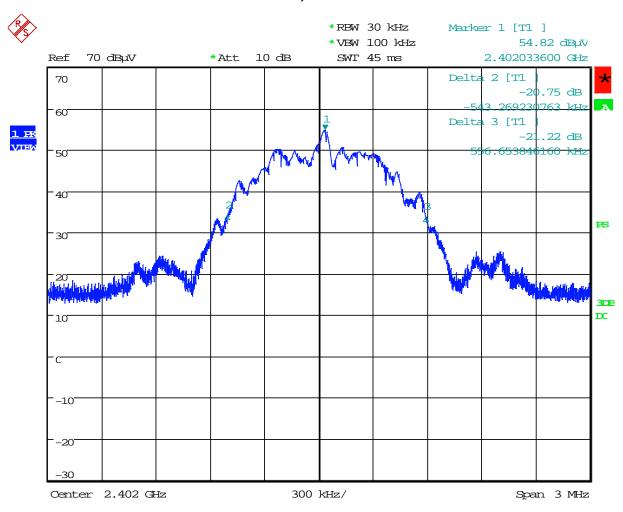
7 FCC PART 15.215(e), OCCUPIED BANDWIDTH


7.1 Requirements:

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the -20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

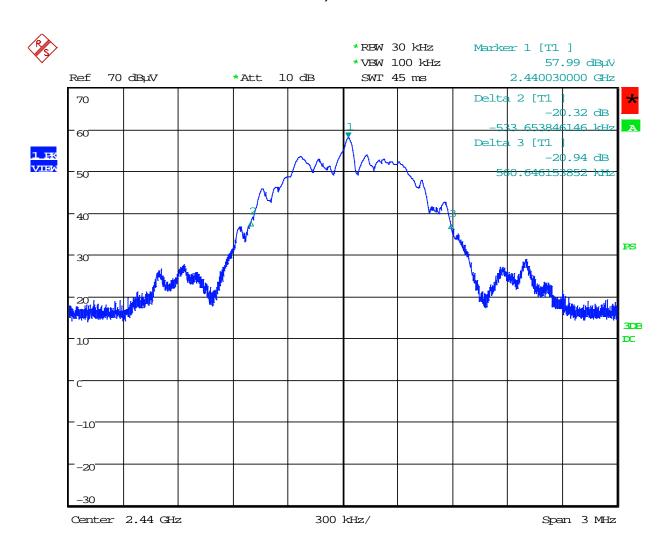
Bandwidth measurements were made at the low (2.402 GHz), mid (2.440 GHz) and upper (2.480 GHz) frequencies. The bandwidth was measured using the analyzer's marker function.

060818


Report Number: F2P24085A-01E Page 12 of 31 Issue Date: 2020-09-21

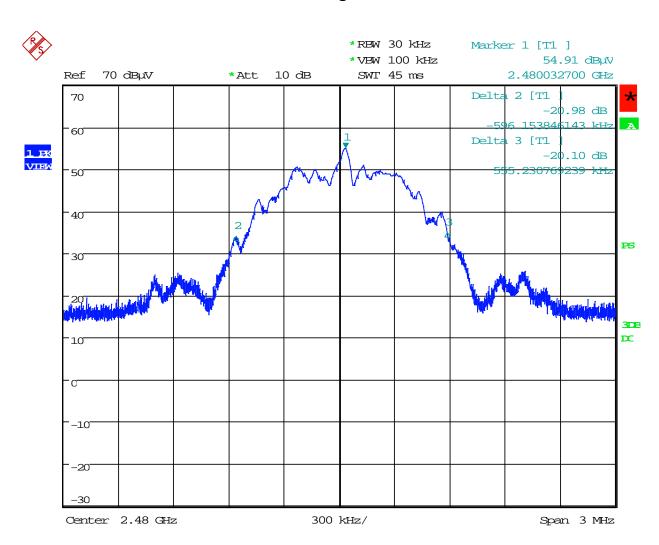
7.2 Occupied Bandwidth Test Data

Test Date(s):	2020-09-21	Test Engineer(s):	J. Chiller
		Air Temperature:	22.3°C
Standards:	CFR 47 Part 15.215(c)	Relative Humidity:	43%


-20dB, Low Channel

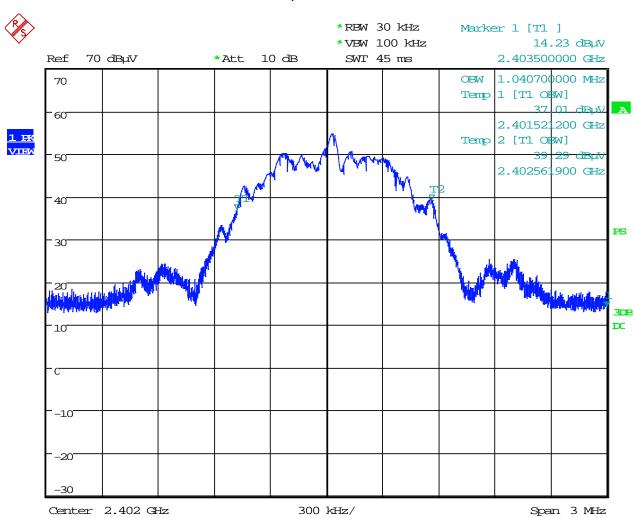
Date: 21.SEP.2020 11:32:50

Report Number: F2P24085A-01E Page 13 of 31 Issue Date: 2020-09-21


-20dB, Mid Channel

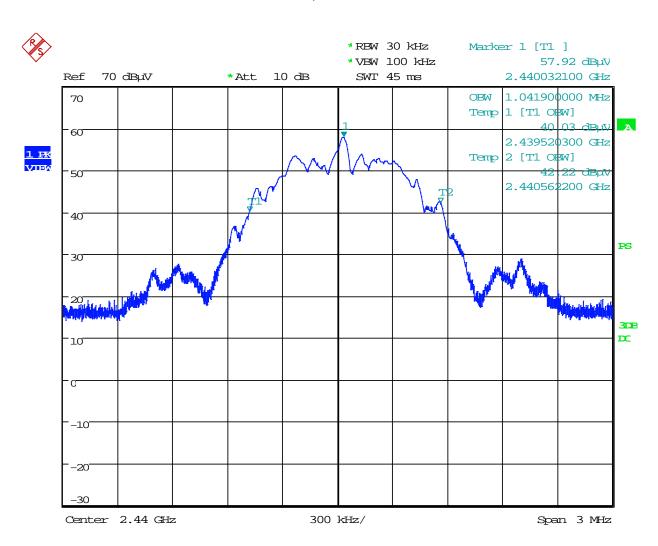
Date: 21.SEP.2020 11:38:41

Report Number: F2P24085A-01E Page 14 of 31 Issue Date: 2020-09-21


-20dB, High Channel

Date: 21.SEP.2020 11:42:39

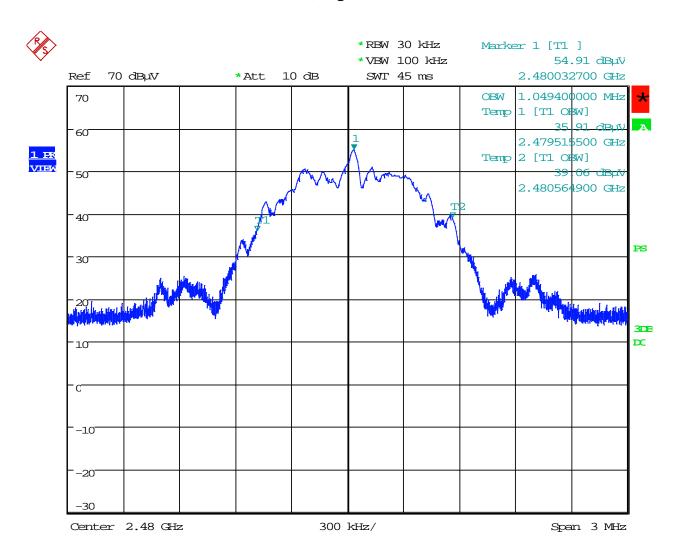
Report Number: F2P24085A-01E Page 15 of 31 Issue Date: 2020-09-21


99%, Low Channel

Date: 21.SEP.2020 11:31:46

Report Number: F2P24085A-01E Page 16 of 31 Issue Date: 2020-09-21

99%, Mid Channel


Date: 21.SEP.2020 11:37:39

Report Number: F2P24085A-01E Page 17 of 31 Issue Date: 2020-09-21

Order Number: F2P24085A

Applicant: Grektek LLC Model: EVBT1

99%, High Channel

Date: 21.SEP.2020 11:41:40

Report Number: F2P24085A-01E Page 18 of 31 Issue Date: 2020-09-21

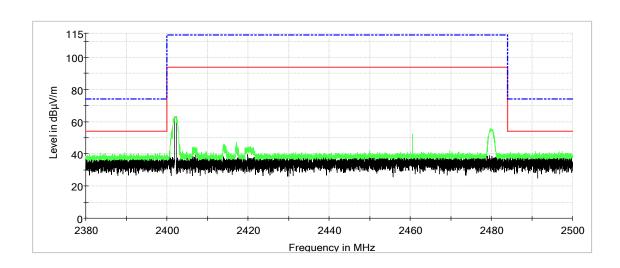
Model: EVBT1

8 FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS

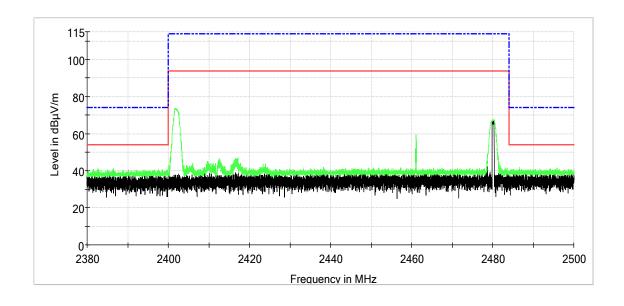
(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.


NOTE: During the pre-scan evaluation, the EUT was rotated in all three orthogonal positions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions.

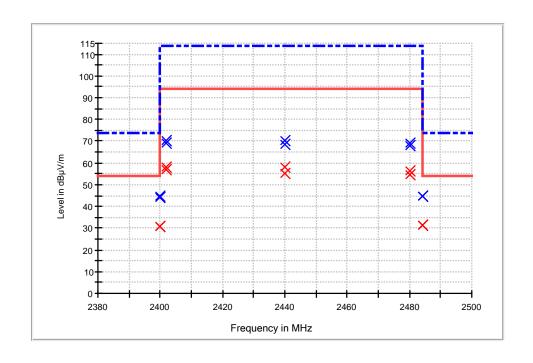
Report Number: F2P24085A-01E Page 19 of 31 Issue Date: 2020-09-21


8.1 Test Data - Field Strength of Emissions from Intentional Radiators

Test Date(s):	2020-09-16	Test Engineer(s):	J. Chiller
Cton doude.	CFR 47 Part 15.249(a)	Air Temperature:	23.7°C
Standards:		Relative Humidity:	43%

Band Edges: Vertical

Band Edges: Horizontal (worst case)


Band Edge and Field Strength of the Fundamentals

MaxPeak

Frequency (MHz)	Antenna Polarization	Bandwidth (kHz)	Antenna Height (cm)	Azimuth (deg)	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2400.00	V	1000.00	150.00	21.00	37.1	7.8	44.90	74.0	-29.1
2400.00	Н	1000.00	150.00	338.00	36.4	7.8	44.20	74.0	-29.8
2402.00	Н	1000.00	150.00	338.00	62.3	7.8	70.10	114.0	-43.9
2402.00	V	1000.00	150.00	21.00	61.5	7.8	69.30	114.0	-44.7
2440.00		1000.00	150.00	31.00	60.4	8.1	68.50	114.0	-45.5
2440.00	Н	1000.00	150.00	327.00	62.0	8.1	70.10	114.0	-43.9
2480.00		1000.00	150.00	31.00	59.5	8.3	67.80	114.0	-46.2
2480.00	Ι	1000.00	150.00	344.00	60.6	8.3	68.90	114.0	-45.1
2483.50	Ι	1000.00	150.00	344.00	36.6	8.4	45.00	74.0	-29.0
2483.50	V	1000.00	150.00	31.00	36.1	8.4	44.50	74.0	-29.5

AVG

Frequency (MHz)	Antenna Polarization	Bandwidth (kHz)	Antenna Height (cm)	Azimuth (deg)	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2400.00		1000.00	150.00	21.00	22.8	7.8	30.60	54.0	-23.4
2400.00	Н	1000.00	150.00	338.00	22.8	7.8	30.60	54.0	-23.4
2402.00	Н	1000.00	150.00	338.00	50.2	7.8	58.00	94.0	-36.0
2402.00		1000.00	150.00	21.00	49.2	7.8	57.00	94.0	-37.0
2440.00		1000.00	150.00	31.00	47.1	8.1	55.20	94.0	-38.8
2440.00	H	1000.00	150.00	327.00	50.0	8.1	58.10	94.0	-35.9
2480.00		1000.00	150.00	31.00	46.5	8.3	54.80	94.0	-39.2
2480.00	Н	1000.00	150.00	344.00	47.9	8.3	56.20	94.0	-37.8
2483.50	Н	1000.00	150.00	344.00	22.9	8.4	31.30	54.0	-22.7
2483.50	V	1000.00	150.00	31.00	22.9	8.4	31.30	54.0	-22.7

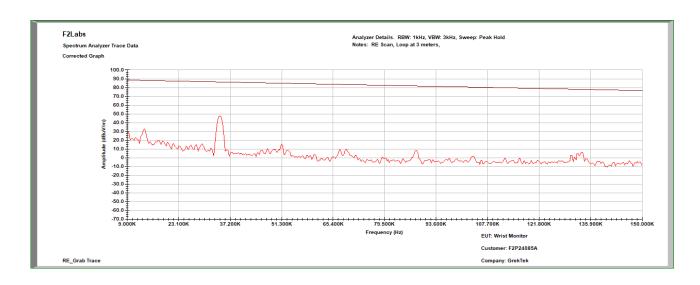
Report Number: F2P24085A-01E Page 21 of 31 Issue Date: 2020-09-21

Model: EVBT1

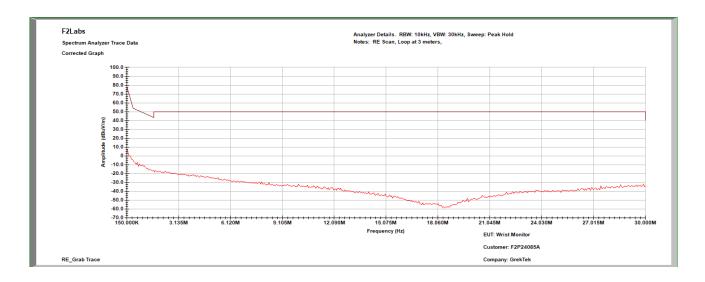
8.2 Test Data – Spurious Emissions

Notes: Plots are peak, max hold pre-scan data included only to determine what frequencies to investigate and measure. During the pre-scan evaluation, the EUT was rotated in all possible directions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. At some frequencies, no emissions from the EUT were measurable over the ambient noise floor. The readings did not change with EUT on and EUT off.

At least 6 of the highest frequencies were measured per ANSI 63.4 in a 3-meter anechoic chamber. Frequencies below 1 GHz were measured using a quasi-peak detector. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions. Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit. Frequencies were scanned from 9kHz to 26 GHz and the highest emissions are listed below.

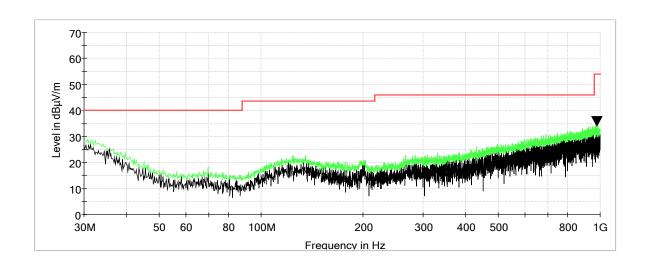

In the following plots, the black line indicates ambient noise and the red line indicates the measurement with the EUT on. Emissions to be found by the EUT were measured and listed in tables below.

060818

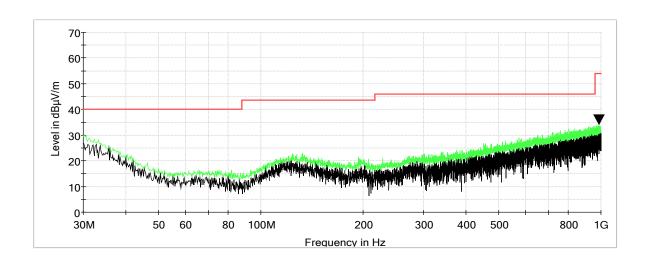

Report Number: F2P24085A-01E Page 22 of 31 Issue Date: 2020-09-21

Test Date(s):	2020-07-23	Test Engineer(s):	J. Chiller
Standards:	CFR 47 Part 15.249(d) / Part	Air Temperature:	21.1°C
	45.000	Relative Humidity:	52%

Characterization Scan, 9 kHz to 150 kHz



Characterization Scan, 150 kHz to 30 MHz



The following scans are from low channel, which was determined to be worst case.

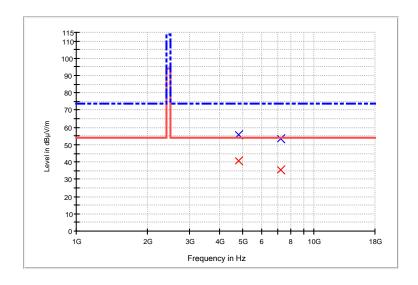
Characterization Scan, 30 MHz to 1000 MHz, Vertical


Characterization Scan, 30 MHz to 1000 MHz, Horizontal

Note: Measurements represent all channels.

30 MHz to 1000 MHz

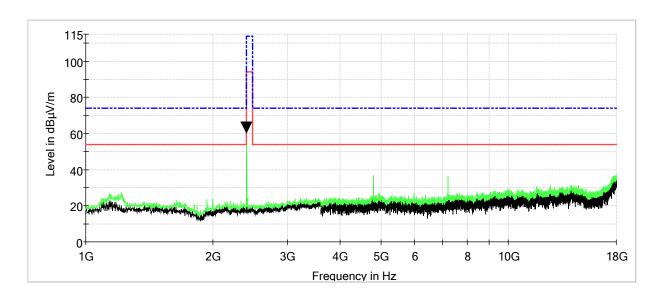
Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correcton Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.160000	Н	100.00	0.00	17.2	6.3	23.50	40.0	-16.5
40.080000	V	100.00	0.00	17.6	-0.5	17.10	40.0	-22.9
58.720000	Н	100.00	0.00	16.4	-7.1	9.30	40.0	-30.7
81.800000	V	100.00	0.00	16.1	-6.8	9.30	40.0	-30.7
132.440000	Н	100.00	0.00	15.0	0.1	15.10	43.5	-28.4
194.720000	Н	100.00	0.00	13.9	-0.9	13.00	43.5	-30.5
303.160000	V	100.00	0.00	13.2	1.6	14.80	46.0	-31.2
401.720000	Н	100.00	0.00	11.6	4.0	15.60	46.0	-30.4
502.600000	V	100.00	0.00	11.4	6.6	18.00	46.0	-28.0
605.400000	Н	100.00	0.00	11.3	8.1	19.40	46.0	-26.6

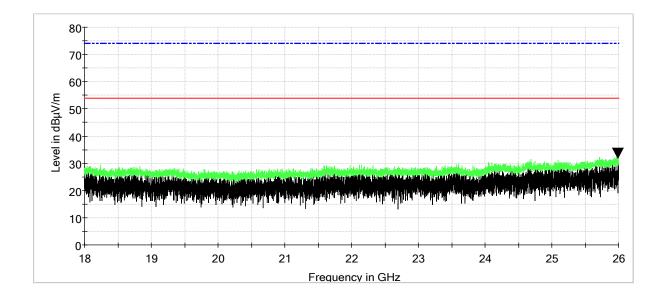

Greater Than 1 GHz

MaxPeak

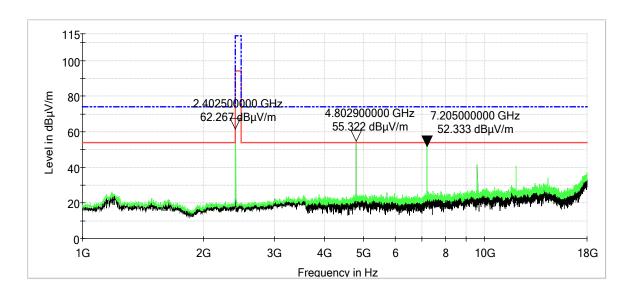
Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correcton Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804.00000	0 H	150.00	1.00	80.3	-24.5	55.80	74.0	-18.2
7206.00000	0 H	150.00	1.00	71.3	-18.1	53.20	74.0	-20.8

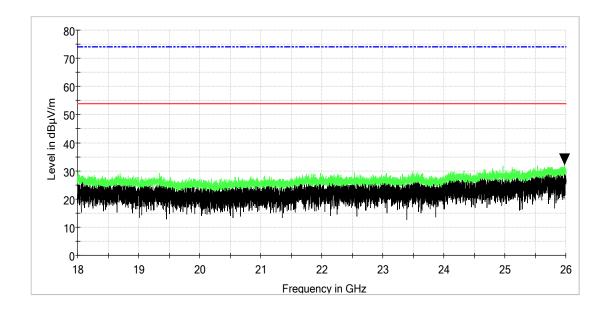
AVG


Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correcton Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804.000000	Н	150.00	1.00	65.0	-24.5	40.50	54.0	-13.5
7206.000000	Н	150.00	1.00	53.5	-18.1	35.40	54.0	-18.6

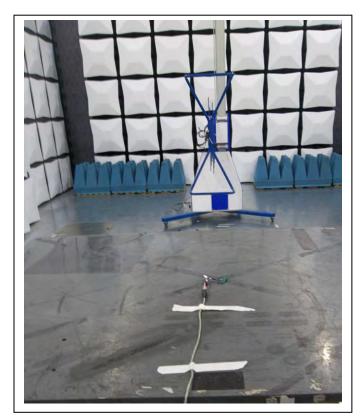

Note: Correction Factor = cable loss + antenna loss – preamp gain - receiver gain.

Report Number: F2P24085A-01E Page 26 of 31 Issue Date: 2020-09-21

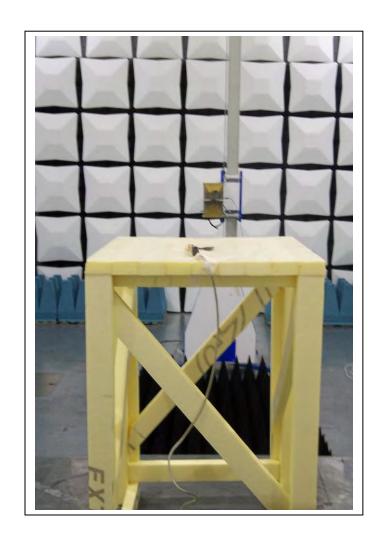

Low Channel, 1 GHz to 18 GHz, Vertical


Low Channel, 18 GHz to 26 GHz, Vertical

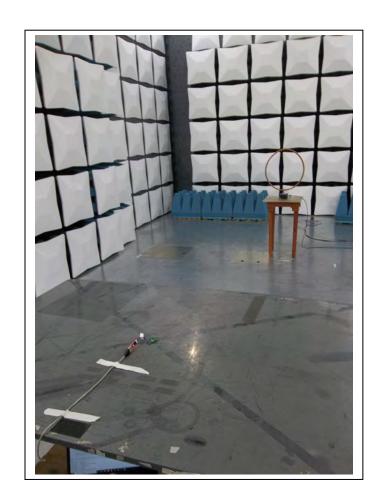
Low Channel, 1 GHz to 18 GHz, Horizontal


Low Channel, 18 GHz to 26 GHz, Horizontal

Report Number: F2P24085A-01E Page 28 of 31 Issue Date: 2020-09-21


9 **PHOTOGRAPHS - TEST SETUPS**

Radiated Spurious Emissions, Less Than 1 GHz



Page 29 of 31 Report Number: F2P24085A-01E Issue Date: 2020-09-21

Radiated Spurious Emissions, Greater Than 1 GHz; Field Strength of Emissions, Occupied Bandwidth

Loop Antenna

