

TEST REPORT

APPLICANT : Nexvoo, Inc

PRODUCT NAME : NexPad T530

MODEL NAME : T530

BRAND NAME : Nexvoo

FCC ID : 2AW2G-T530

STANDARD(S) : 47 CFR Part 15 Subpart E

RECEIPT DATE : 2021-06-16

TEST DATE : 2021-06-22 to 2021-08-20

ISSUE DATE : 2022-01-07

Edited by:

Peng Mi

Peng Mi (Rapporteur)

Approved by:

Shen Junsheng

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

1. Technical Information	3
1.1. Applicant and Manufacturer Information	3
1.2. Equipment Under Test (EUT) Description	3
1.3. Modulation Type and Data Rate of EUT	4
1.4. The Channel Number and Frequency	4
1.5. Test Standards and Results	5
1.6. Environmental Conditions	6
2. 47 CFR Part 15E Requirements	7
2.1. Antenna Requirement	7
2.2. Duty Cycle of the Test Signal	8
2.3. Maximum Conducted Output Power	10
2.4. Emission Bandwidth	12
2.5. Peak Power Spectral Density	17
2.6. Frequency Stability	22
2.7. Conducted Emission	24
2.8. Restricted Frequency Bands	28
2.9. Radiated Emission	34
Annex A Test Uncertainty	44
Annex B Testing Laboratory Information	45

Change History		
Version	Date	Reason for change
1.0	2022-01-07	First edition

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Nexvoo, Inc
Applicant Address:	1702 W Michigan St Indianapolis, IN 46222 USA
Manufacturer:	Xiamen Linktop Technology Co., Ltd.
Manufacturer Address:	Room 501-2,502,503, North Building, Torch Hi-Tech Zone, No.56-58 Huoju Road, Xiamen, 361000, Fujian, P.R. China

1.2. Equipment Under Test (EUT) Description

Product Name:	NexPad T530	
Sample No.:	2#	
Hardware Version:	T530_MB_V1.0	
Software Version:	2.0.6	
Modulation Type:	OFDM	
Modulation Mode:	802.11a	
Operating Frequency Range:	5180MHz–5240MHz; 5745MHz-5825MHz	
Channel Number:	Refer to 1.3	
Antenna Type:	PIFA Antenna	
Antenna Gain:	2.6dBi	
Accessory Information:	AC Adapter	
	Brand Name:	Mingxin Power
	Model No.:	MX15Z-0502000VX
	Serial No.:	N/A
	Rated Output:	5V=2A
	Rated Input:	100-240V~50/60Hz, 0.4A
	Manufacturer:	ShenZhen MingXin Power Technologies Co.,Ltd.

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Modulation Type and Data Rate of EUT

Modulation technology	Modulation Type	Data Rate (Mbps) ^{Note1}
OFDM (802.11a)	BPSK	6/9
	QPSK	12/18
	16QAM	24/36
	64QAM	48/54

Note1: The worst-case mode(black bold) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

1.4. The Channel Number and Frequency

(U-NII-1) 5180MHz-5240MHz				
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
20MHz	36	5180	40	5200
	44	5220	48	5240
(U-NII-3) 5745MHz-5825MHz				
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)
20MHz	149	5745	153	5765
	157	5785	161	5805
	165	5825		

Note 1: The black bold channels were selected for test.

1.5. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E (U-NII band) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15(5-1-14 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	ANSI C63.10	Duty Cycle of the Test Signal	Jun 26, 2021	Meng Shurui	PASS	No deviation
3	15.407(a)	Maximum Conducted Output Power	Jun 26, 2021	Meng Shurui	PASS	No deviation
4	15.407(a) (e)	Emission Bandwidth	Jun 26, 2021 Jul 02, 2021	Meng Shurui	PASS	No deviation
5	15.407(a)	Peak Power Spectral Density	Jun 26, 2021	Meng Shurui	PASS	No deviation
6	15.407(g)	Frequency Stability	Jun 26, 2021	Meng Shurui	PASS	No deviation
7	15.207	Conducted Emission	Jan 22, 2021	Wu Runfeng	PASS	No deviation
8	15.407(b)	Restricted Frequency Bands	Aug 20, 2021	Lin Jlayong	PASS	No deviation
9	15.407(b)	Radiated Emission	Aug 20, 2021	Lin Jlayong	PASS	No deviation

Note 1: The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.102013.

Note 2: These RF tests were performed according to the method of measurements prescribed in KDB789033 D02 v02r01.

Note 3: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 12.0dB contains two parts that cable loss 2.0dB and

Attenuator 10dB.

Note 4: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 5: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.6. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15E Requirements

2.1. Antenna Requirement

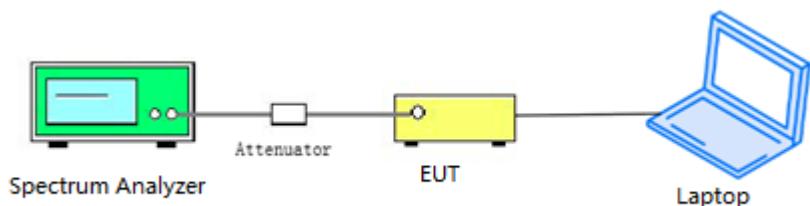
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

Inside of the EUT has a PIFA antenna coupled with the metal shrapnel. Please refer to the EUT internal photos.

2.2. Duty Cycle of the Test Signal


2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

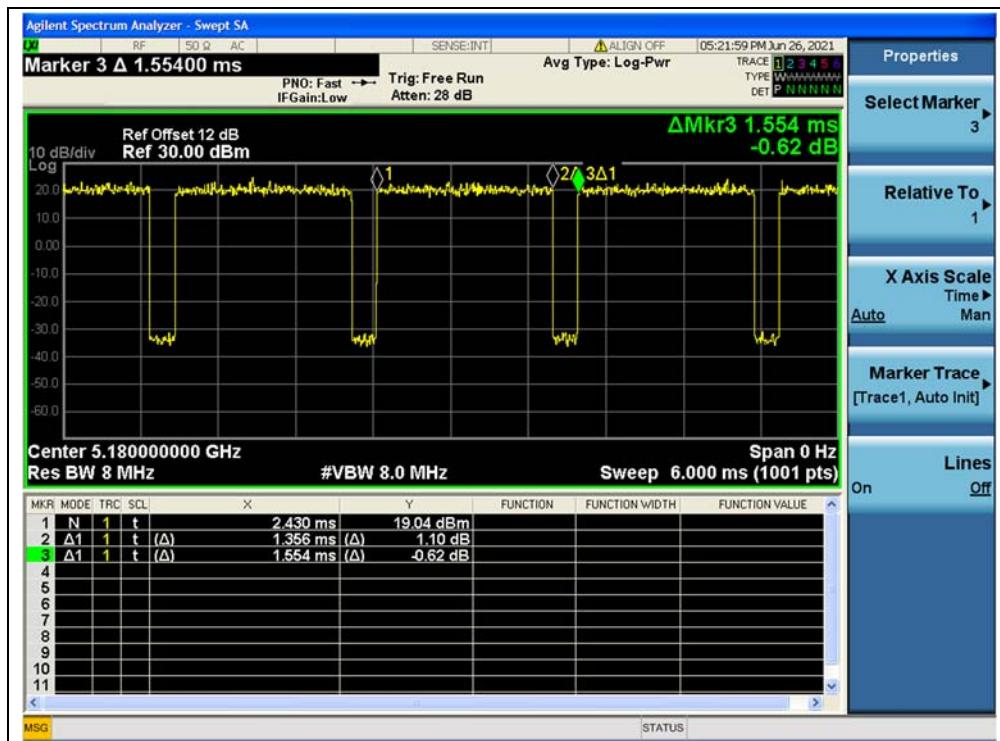
When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be nonconstant.

2.2.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading.

2.2.3. Test Procedure


KDB 789033 Section B was used in order to prove compliance.

2.2.4. Test Result

A. Test Verdict:

Test Mode	Duty Cycle (%) (D)	Duty Factor ($10^{\log[1/D]}$)
802.11a	87.74	0.57

B. Test Plot:

(Channel 36, 5180MHz, 802.11a)

2.3. Maximum Conducted Output Power

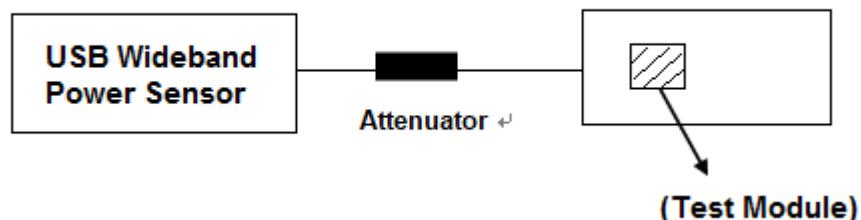
2.3.1. Requirement

(1) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250mW provided the maximum antenna gain does not exceed 6dBi.

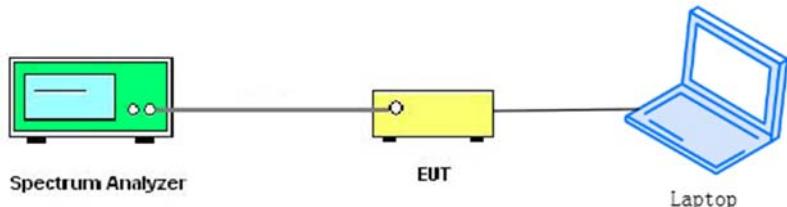
(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or $11\text{dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


(4) According to KDB662911D01 Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = $G_{\text{ANT}} + 10\log(N_{\text{ANT}})$ dB, where G_{ANT} is the antenna gain in dB, N_{ANT} is the number of outputs.


2.3.2. Test Description

Section E) 3) of KDB 789033 defines a methodology using a USB Wideband Power Sensor.

Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading, all test result in USB Wideband Power Sensor.

For ac (VHT80) mode power

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

2.3.3. Test Result
Maximum Average Conducted Output Power
802.11a Mode

Channel	Frequency (MHz)	Average Power (dBm)				Limit (dBm)	Verdict		
		Measured	Duty Factor	Duty Factor Calculated					
				dBm	W				
36	5180	16.01	0.57	16.58	0.045	24	0.25		
44	5220	17.12		17.69	0.059				
48	5240	17.64		18.21	0.066				
149	5745	15.89		16.46	0.044	30	1		
157	5785	15.63		16.20	0.042				
165	5825	15.72		16.29	0.043				


2.4. Emission Bandwidth

2.4.1. Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

2.4.2. Test Description

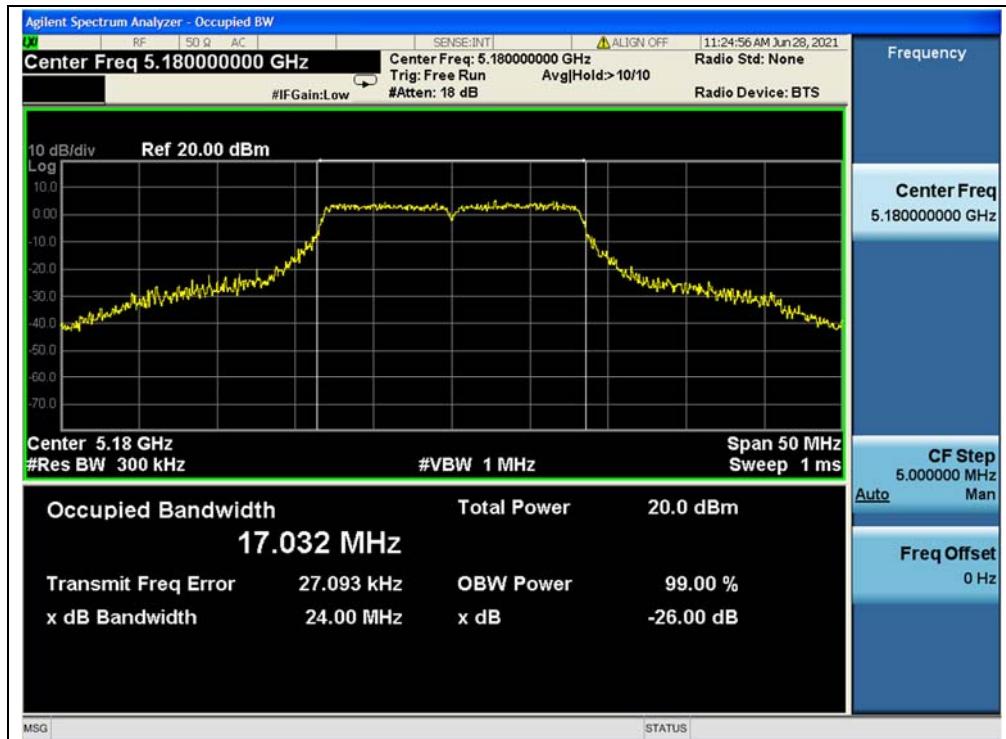
Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading.

2.4.3. Test Procedure

1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance
 - a) Set RBW = approximately 1% of the emission bandwidth.
 - b) Set VBW > RBW.
 - c) Detector = Peak.
 - d) Trace mode = max hold.
 - e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.
Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set video bandwidth (VBW) $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


2.4.4. Test Result

802.11a Mode

A. Test Verdict:

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
36	5180	24.00
44	5220	22.80
48	5240	23.26

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)
149	5745	16.45
157	5785	16.41
165	5825	16.45

B. Test Plot:

(Channel 36, 5180MHz, 802.11a)

(Channel 44, 5220 MHz, 802.11a)

(Channel 48, 5240MHz, 802.11a)

(Channel 149, 5745MHz, 802.11a)

REPORT No. : SZ21060139W04

(Channel 157, 5.785MHz, 802.11a)

(Channel 165, 5.825MHz, 802.11a)

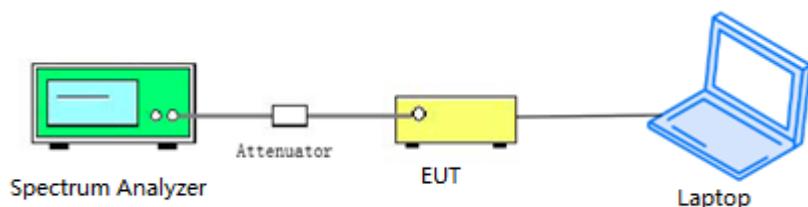
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

2.5. Peak Power Spectral Density

2.5.1. Requirement


- (1) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30dBm in any 500kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

- (4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.
- (5) According to KDB 662911 D01, the directional gain = $G_{ANT} + 10\log(N_{ANT})$ dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading.

2.5.3. Test Procedure

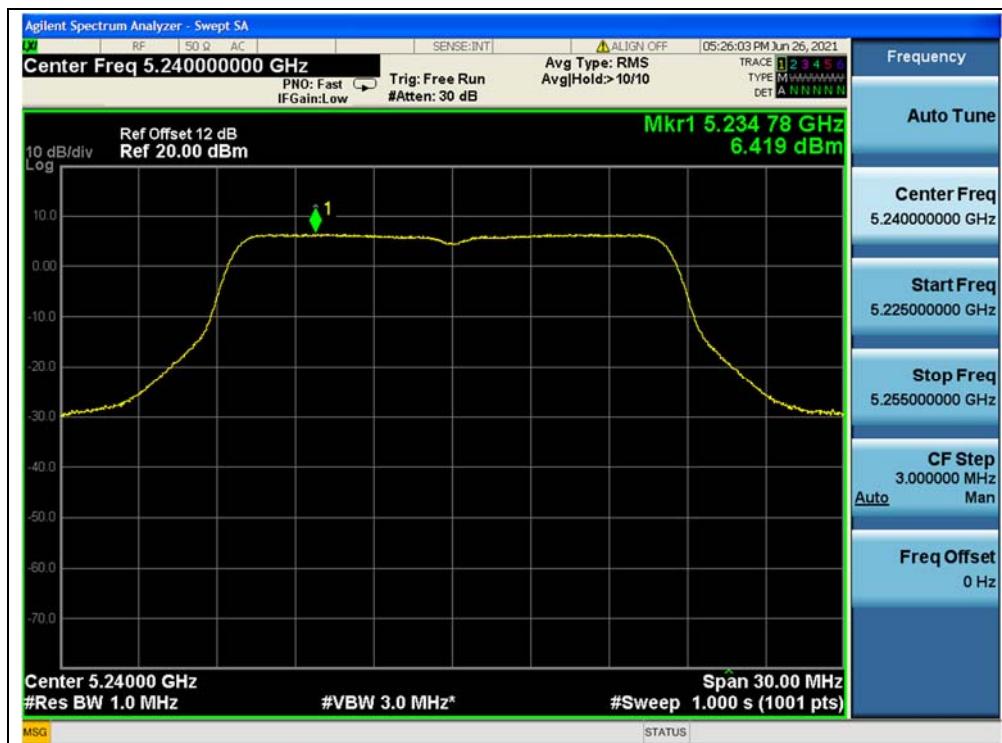
KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-1 was used in order to prove compliance

- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1MHz. Set VBW \geq 3MHz
- 3) Number of points in sweep \geq 2 Span / RBW. Sweep time = auto
- 4) Detector = Average
- 5) Trace mode=Max hold
- 6) Record the max value

2.5.4. Test Result

802.11a Mode

A. Test Verdict:


Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
36	5180	5.77	0.57	6.34	11	PASS
44	5220	6.08		6.65		
48	5240	6.42		6.99		
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
149	5745	1.86	0.57	1.86	30	PASS
157	5785	1.43		1.43		
165	5825	1.30		1.30		

B. Test Plot:

(Channel 36, 5180MHz, 802.11)

(Channel 44, 5220MHz, 802.11a)

(Channel 48, 5240MHz, 802.11a)

(Channel 149, 5745MHz, 802.11a)

(Channel 157, 5785MHz, 802.11a)

(Channel 165, 5825MHz, 802.11a)

2.6. Frequency Stability

2.6.1. Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

2.6.2. Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between 5°C to 40°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

2.6.3. Test Result

U-NII-1 (Ch. 36) 5180MHz				
VOLTAGE (%)	POWER (VDC)	TEMP (°C)	Fre. Dev. (kHz)	Deviation (ppm)
100%	5.0	+20(Ref)	24	4.633
100%		-30	29	5.598
100%		-20	28	5.405
100%		-10	27	5.212
100%		0	26	5.019
100%		+10	23	4.440
100%		+20	21	4.054
100%		+30	22	4.247
100%		+40	25	4.826
100%		+50	21	4.054
85%	4.25	+20	27	5.212
115%	5.75	+20	29	5.598

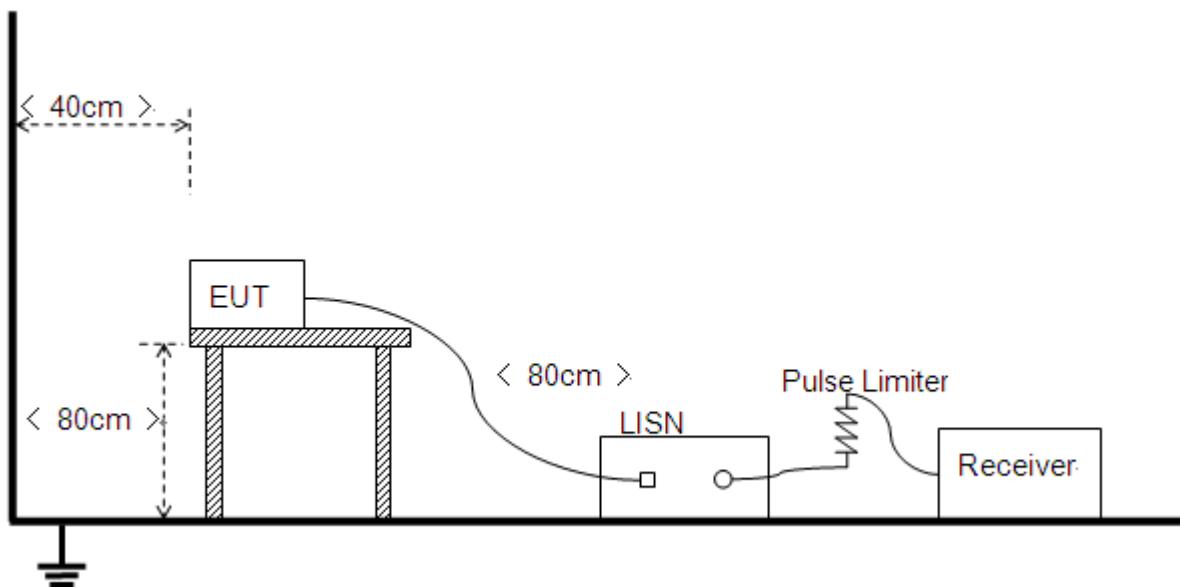
U-NII-3 (Ch. 149)**5745MHz**

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	Fre. Dev. (kHz)	Deviation (ppm)
100%	5.0	+20(Ref)	21	3.655
100%		-30	25	4.352
100%		-20	26	4.526
100%		-10	22	3.829
100%		0	29	5.048
100%		+10	24	4.178
100%		+20	25	4.352
100%		+30	27	4.700
100%		+40	26	4.526
100%		+50	22	3.829
85%	4.25	+20	30	5.222
115%	5.75	+20	31	5.396

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).


Frequency Range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

Note:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

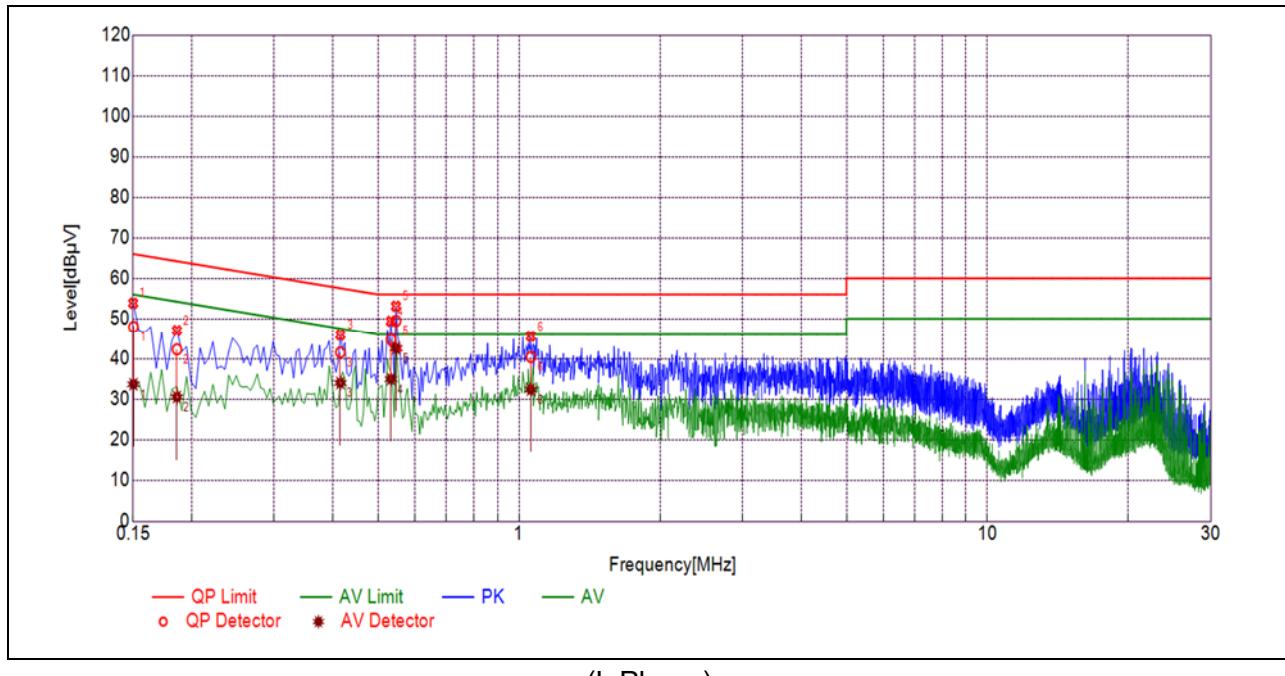
2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

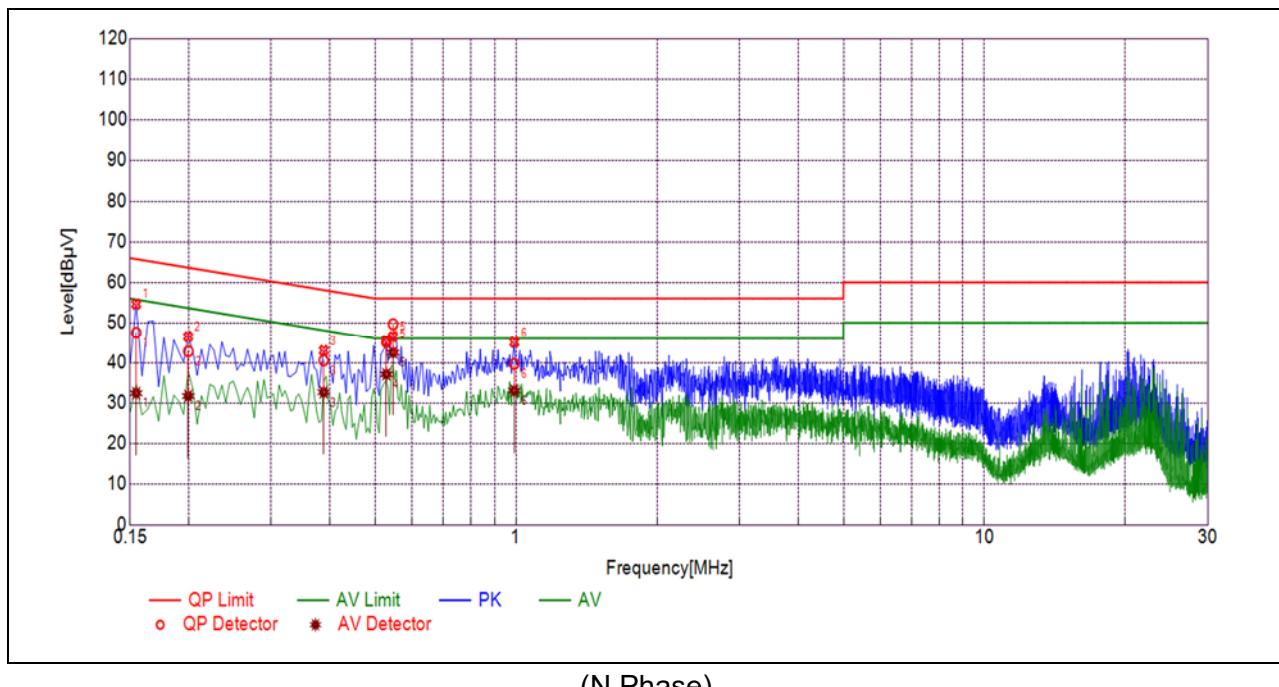
A. Test Setup:

Test Mode: EUT+ADAPTER + WIFI TX


Test Voltage: AC 120V/60Hz

The measurement results are obtained as below:

$$E [\text{dB}\mu\text{V}] = U_R + L_{\text{Cable loss}} [\text{dB}] + A_{\text{Factor}}$$


U_R : Receiver Reading

A_{Factor} : Voltage division factor of LISN

B. Test Plot:

(L Phase)

No.	Fre. (MHz)	Emission Level (dBμV)		Limit (dBμV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1502	47.98	33.65	65.99	55.99	Line	PASS
2	0.1860	42.30	30.50	64.21	54.21		PASS
3	0.4153	41.54	33.96	57.54	47.54		PASS
4	0.5326	44.79	34.93	56.00	46.00		PASS
5	0.5462	49.47	42.54	56.00	46.00		PASS
6	1.0598	40.38	32.33	56.00	46.00		PASS

No.	Fre. (MHz)	Emission Level (dB μ V)		Limit (dB μ V)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1545	47.50	32.41	65.76	55.76	Neutral	PASS
2	0.1996	42.81	31.69	63.63	53.63		PASS
3	0.3883	40.55	32.64	58.10	48.10		PASS
4	0.5284	45.11	37.09	56.00	46.00		PASS
5	0.5462	49.65	42.49	56.00	46.00		PASS
6	0.9913	39.67	33.03	56.00	46.00		PASS

2.8. Restricted Frequency Bands

2.8.1. Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

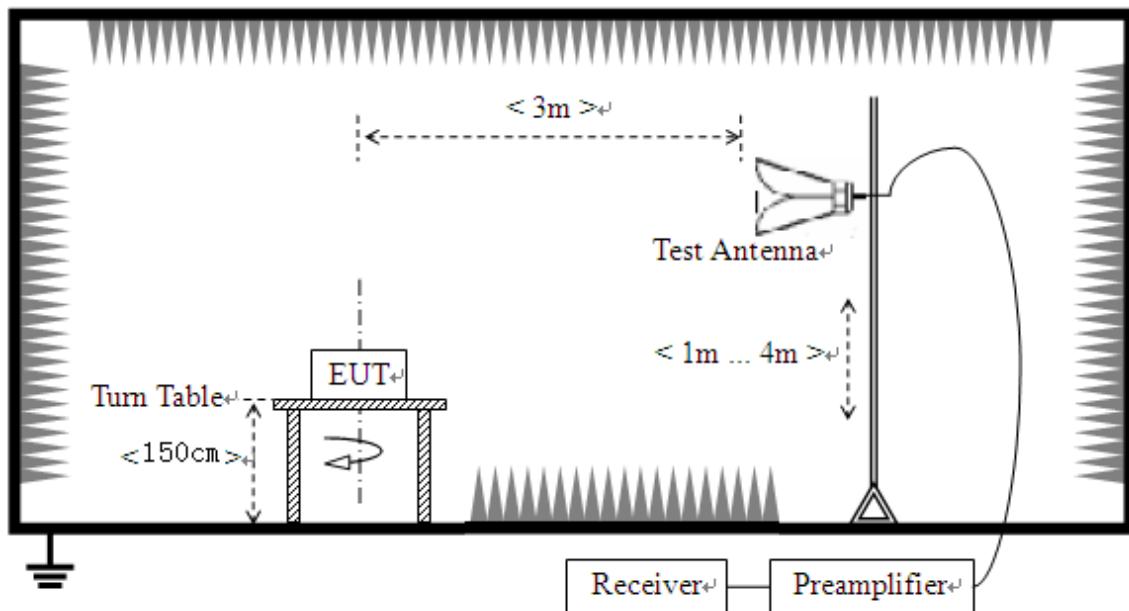
- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dB μ V/m);

$$E = 1000000 \times \sqrt{30P} / 3 \mu\text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dB μ V/m


Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	$2400/F(\text{kHz})$	300
0.490 - 1.705	$24000/F(\text{kHz})$	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

2.8.2. Test Description

Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

2.8.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

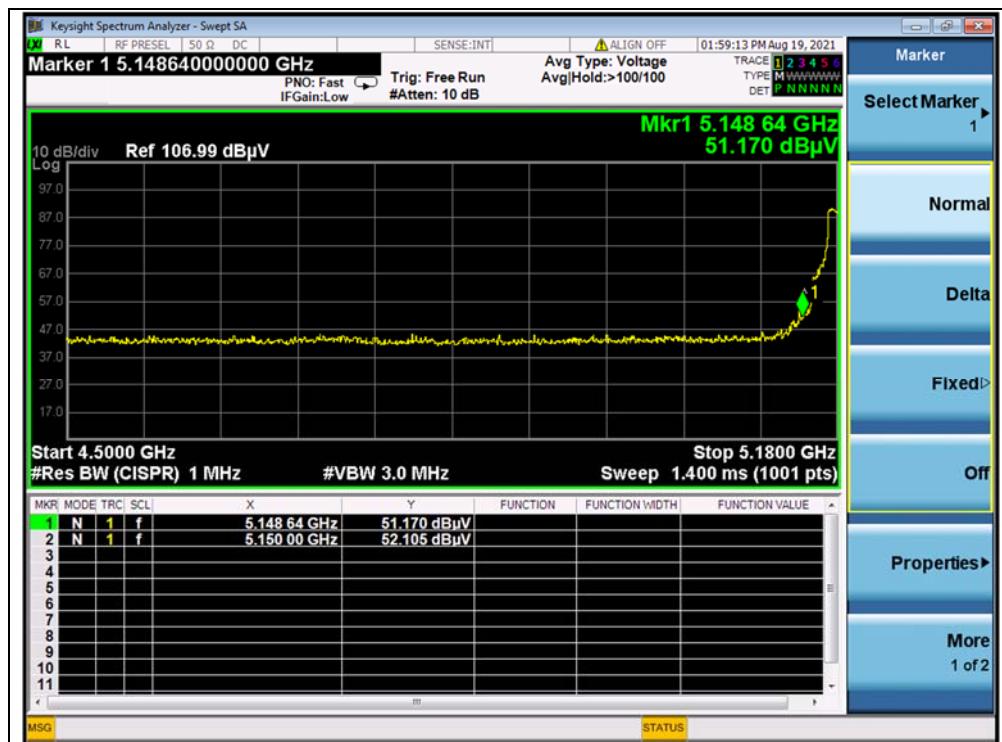
The measurement results are obtained as below:

$$E [\text{dB}\mu\text{V}/\text{m}] = U_R + A_T + A_{\text{Factor}} [\text{dB}]; A_T = L_{\text{Cable loss}} [\text{dB}] - G_{\text{preamp}} [\text{dB}]$$

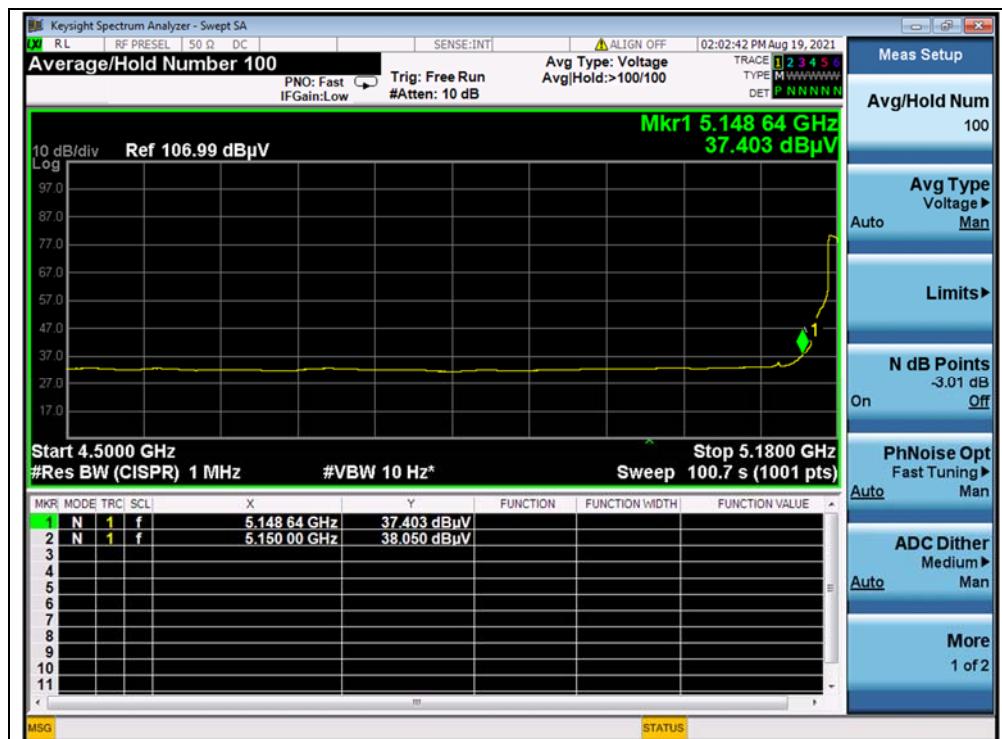
A_T : Total correction Factor except Antenna; U_R : Receiver Reading

G_{preamp} : Preamplifier Gain; A_{Factor} : Antenna Factor at 3m

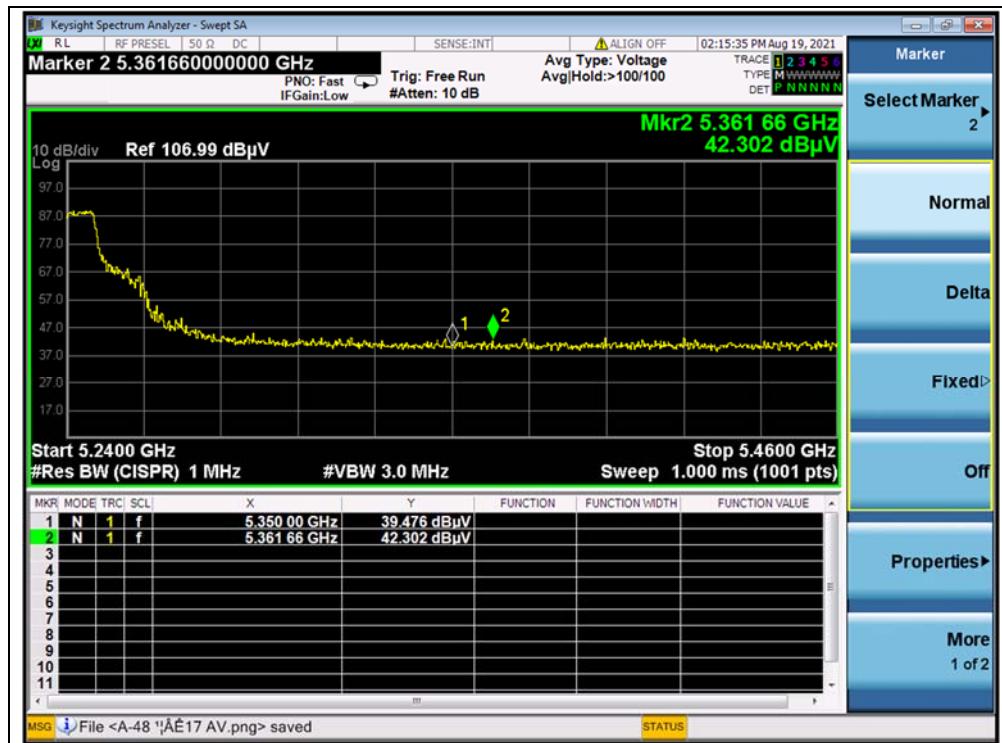
Note 1: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

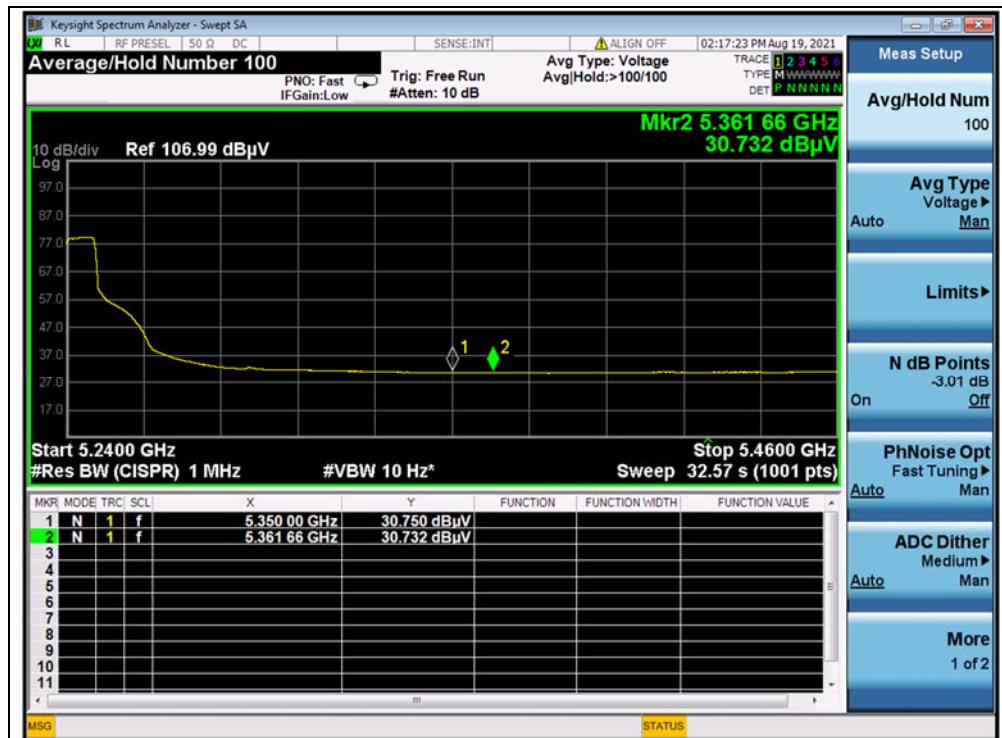

Note 2 All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

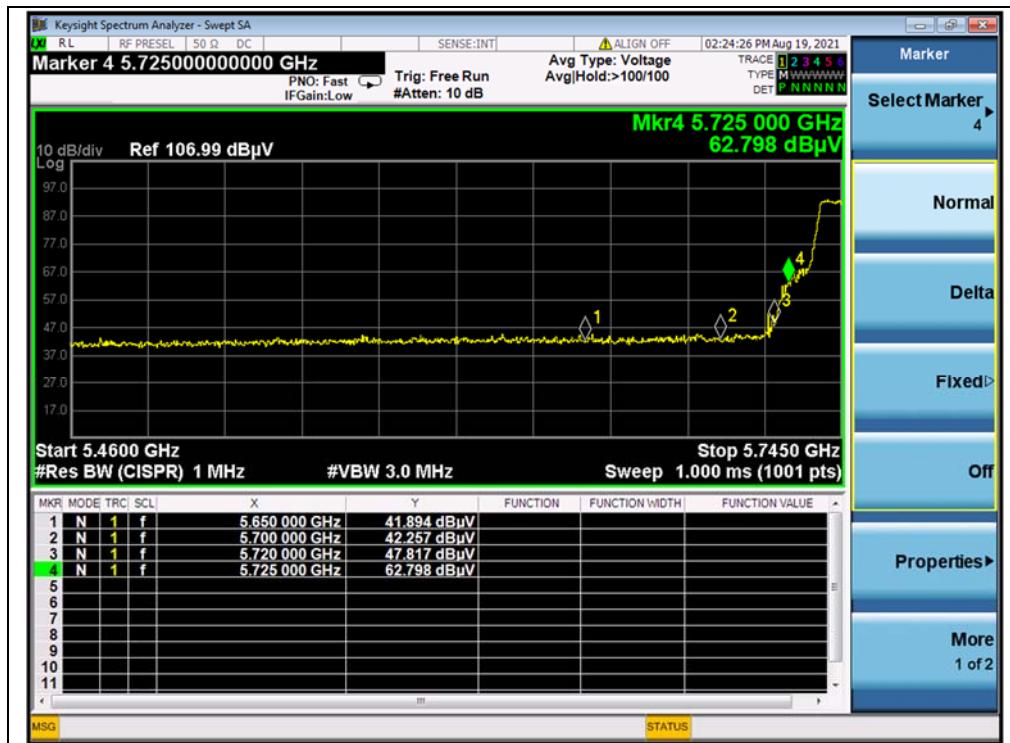
802.11a Mode

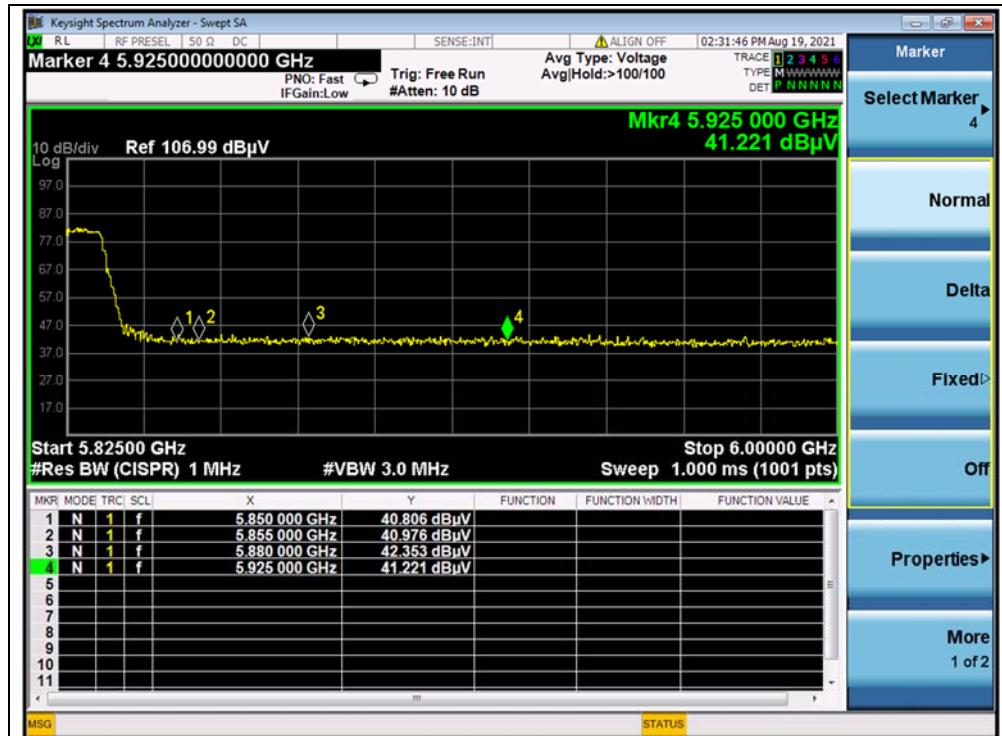

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U_R (dB μ V)	A_T (dB)	A_{Factor} (dB@3m)	Max. Emission E (dB μ V/m)	Limit (dB μ V/m)	Verdict
36	5150.00	PK	52.11	-19.54	32.20	64.77	74	PASS
36	5150.00	AV	38.05	-19.54	32.20	50.71	54	PASS
48	5361.66	PK	42.30	-19.54	32.20	54.96	74	PASS
48	5350.00	AV	30.75	-19.54	32.20	43.41	54	PASS
149	5725.00	PK	62.80	-19.01	32.20	75.99	122.23	PASS
165	5880.00	PK	42.35	-19.01	32.20	55.54	101.53	PASS


B. Test Plot:


(PEAK, Channel 36, 802.11a)


(AVERAGE, Channel 36, 802.11a)


(PEAK, Channel 48, 802.11a)

(AVERAGE, Channel 48, 802.11a)

(PEAK, Channel 149, 802.11a)

(PEAK, Channel 165, 802.11a)

2.9. Radiated Emission

2.9.1. Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.
- (4) For transmitters operating in the 5.725–5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

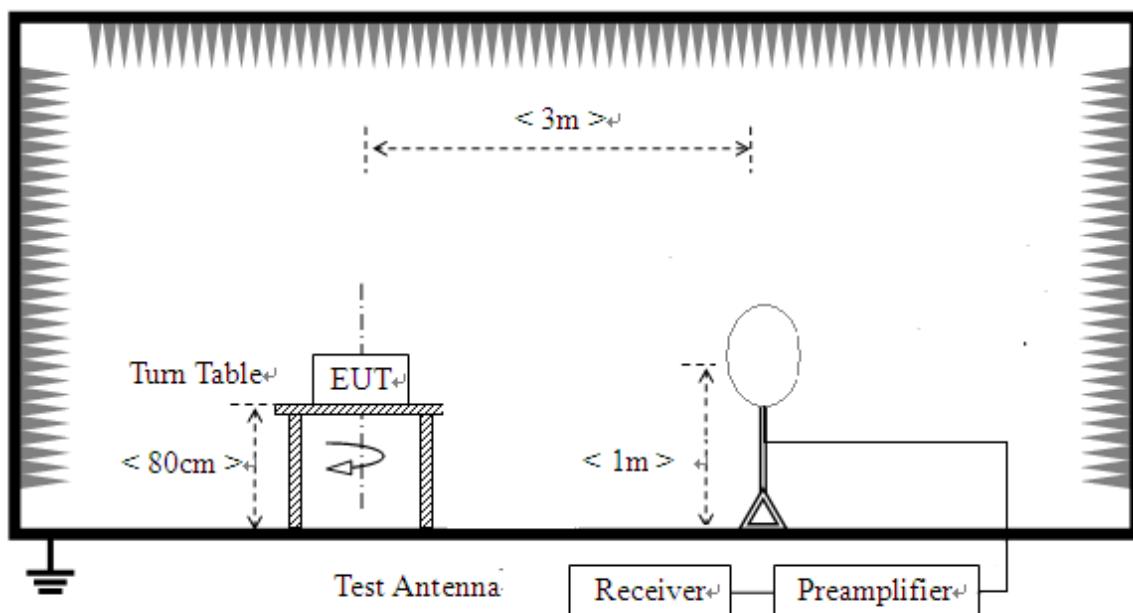
The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dB μ V/m);

$$E = 1000000 \times \sqrt{30P} / 3 \mu\text{V/m}$$

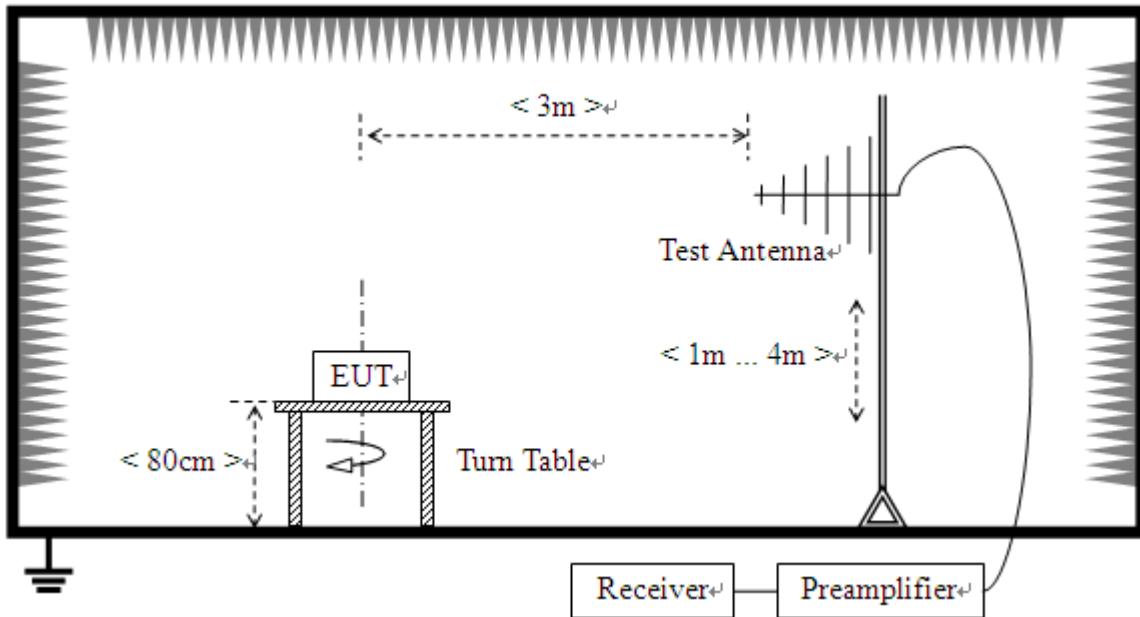
where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dB μ V/m

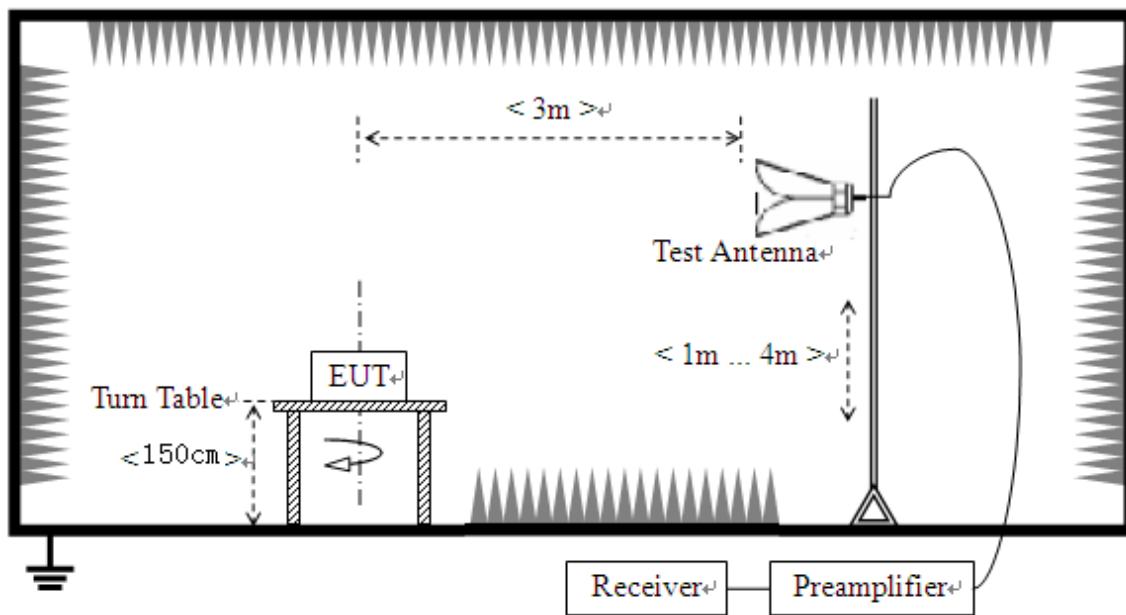
Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).


2.9.2. Test Description

Test Setup:


- 1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

2.9.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

$$E [\text{dB}\mu\text{V/m}] = U_R + A_T + A_{\text{Factor}} [\text{dB}]; A_T = L_{\text{Cable loss}} [\text{dB}] - G_{\text{preamp}} [\text{dB}]$$

A_T : Total correction Factor except Antenna

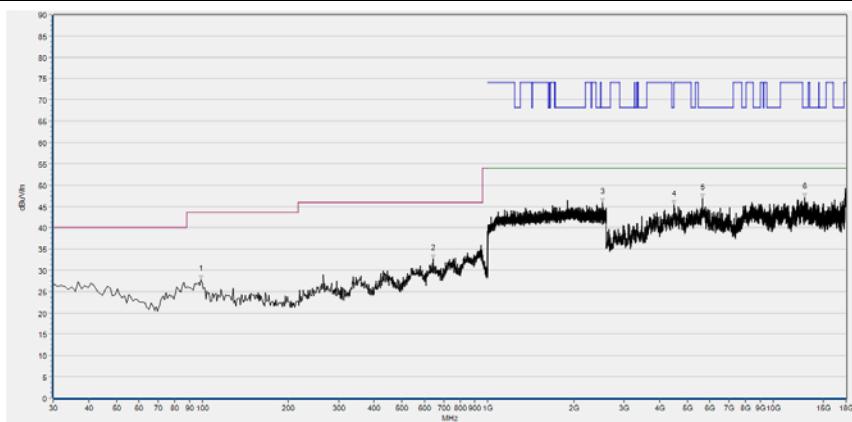
U_R : Receiver Reading

G_{preamp} : Preamplifier Gain

A_{Factor} : Antenna Factor at 3m

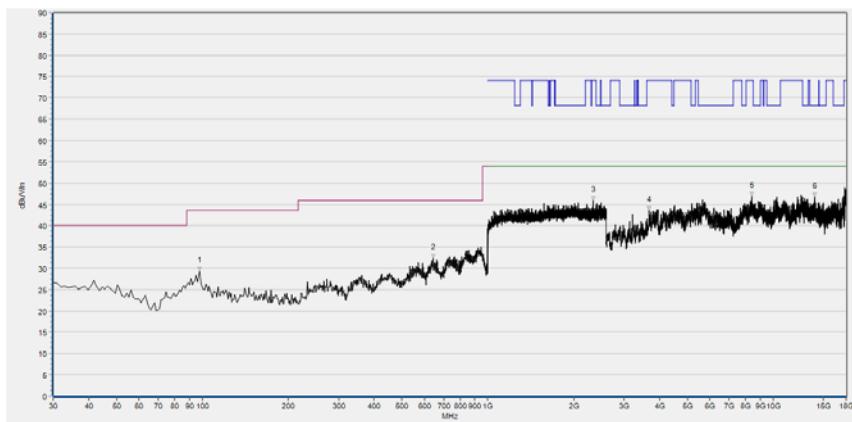
During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note 1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.


Note 2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

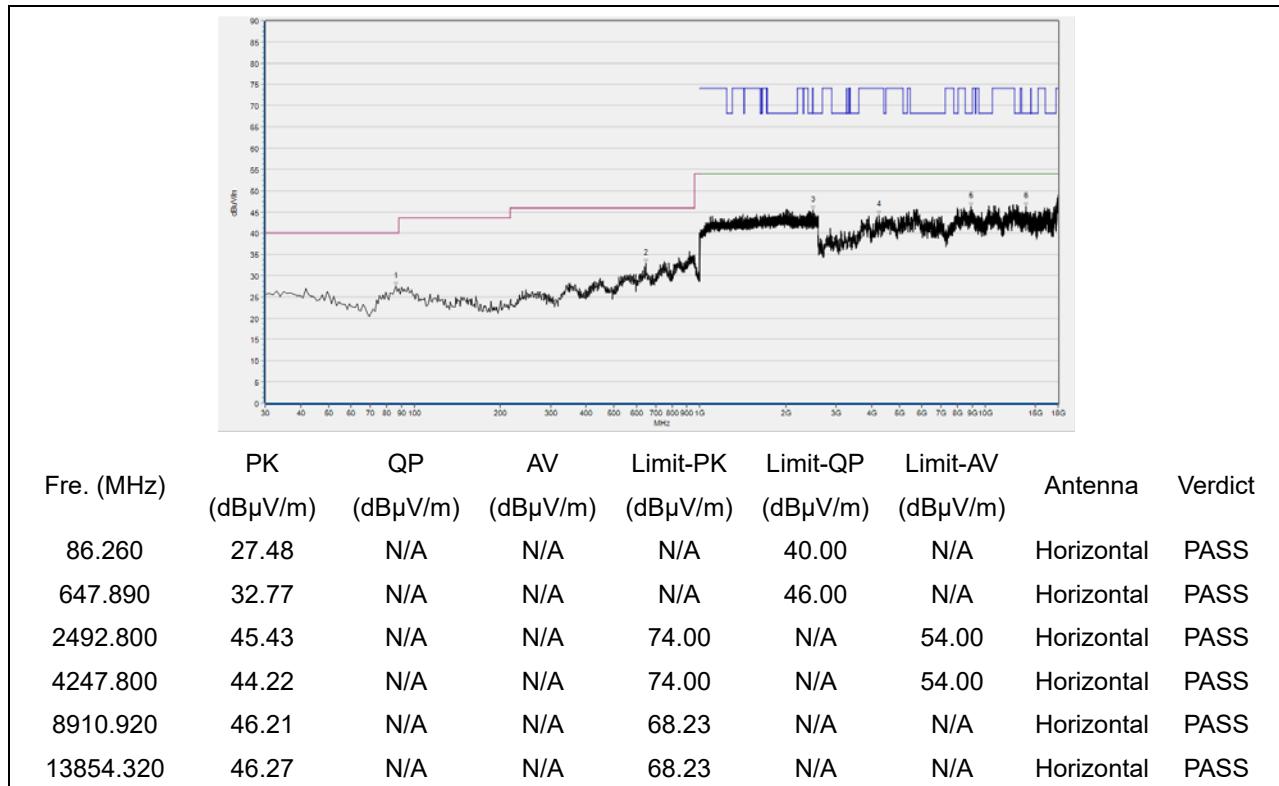
Note 3: For the frequency, which started from 18GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

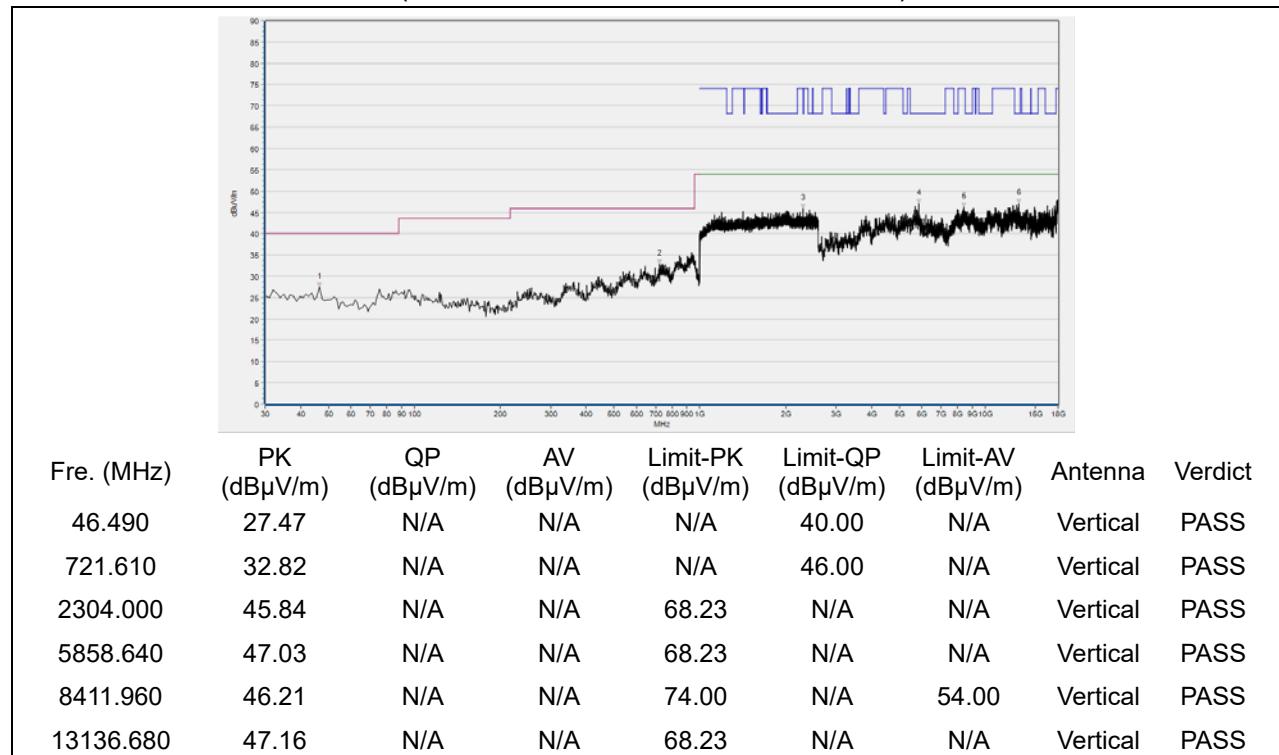
Note 4: All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.


802.11a Mode

Plot for Channel 36

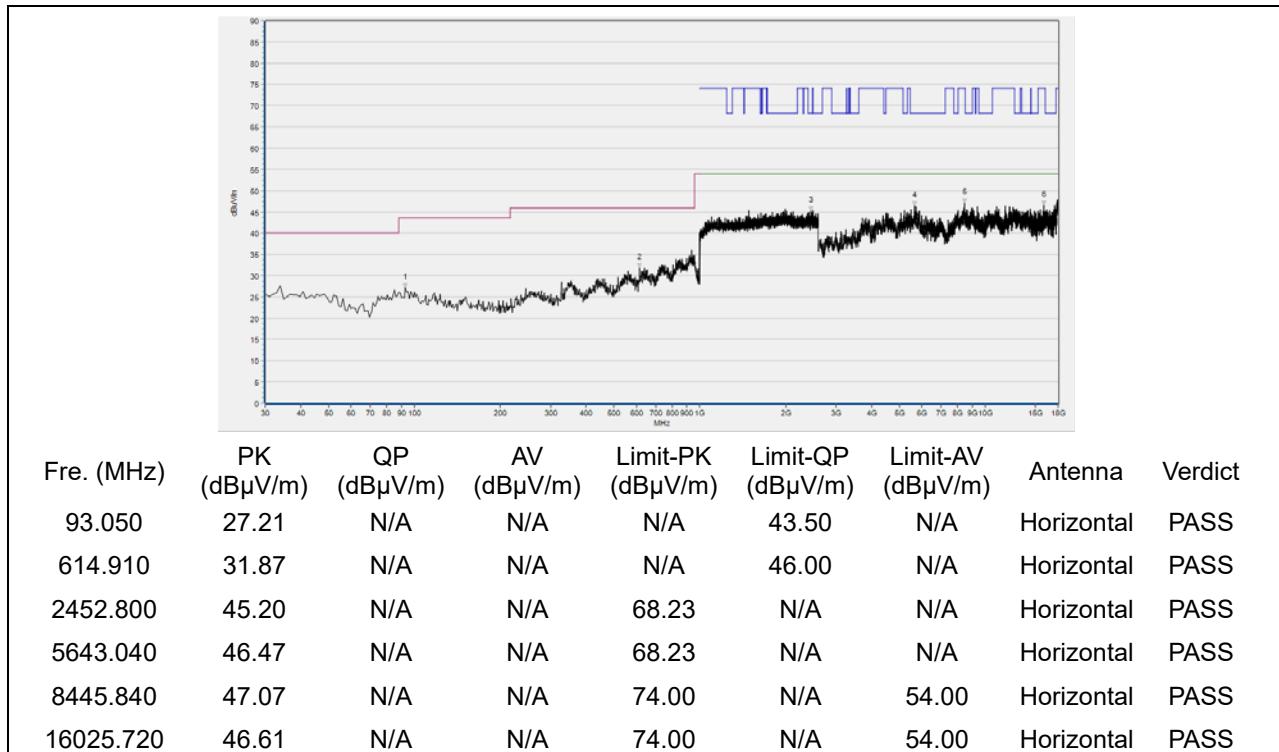
Fre. (MHz)	PK (dB μ V/m)	QP (dB μ V/m)	AV (dB μ V/m)	Limit-PK (dB μ V/m)	Limit-QP (dB μ V/m)	Limit-AV (dB μ V/m)	Antenna	Verdict
98.870	27.90	N/A	N/A	N/A	43.50	N/A	Horizontal	PASS
644.010	32.71	N/A	N/A	N/A	46.00	N/A	Horizontal	PASS
2516.800	45.96	N/A	N/A	68.23	N/A	N/A	Horizontal	PASS
4491.120	45.39	N/A	N/A	68.23	N/A	N/A	Horizontal	PASS
5643.040	46.96	N/A	N/A	68.23	N/A	N/A	Horizontal	PASS
12862.560	47.04	N/A	N/A	68.23	N/A	N/A	Horizontal	PASS


(Antenna Horizontal, 30MHz to 18GHz)

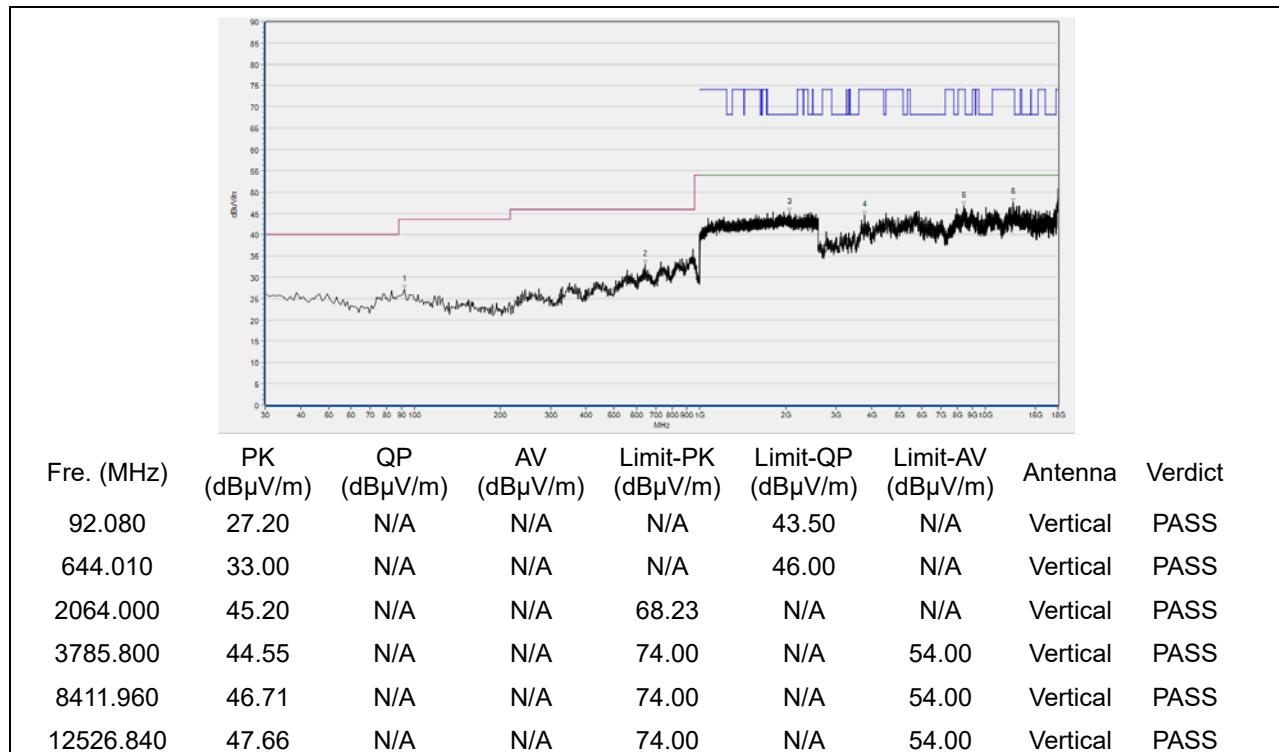

Fre. (MHz)	PK (dB μ V/m)	QP (dB μ V/m)	AV (dB μ V/m)	Limit-PK (dB μ V/m)	Limit-QP (dB μ V/m)	Limit-AV (dB μ V/m)	Antenna	Verdict
97.900	29.41	N/A	N/A	N/A	43.50	N/A	Vertical	PASS
643.040	32.28	N/A	N/A	N/A	46.00	N/A	Vertical	PASS
2341.867	45.98	N/A	N/A	74.00	N/A	54.00	Vertical	PASS
3678.000	43.61	N/A	N/A	74.00	N/A	54.00	Vertical	PASS
8408.880	46.90	N/A	N/A	74.00	N/A	54.00	Vertical	PASS
13934.400	46.69	N/A	N/A	68.23	N/A	N/A	Vertical	PASS

(Antenna Vertical, 30MHz to 18GHz)

Plot for Channel 44

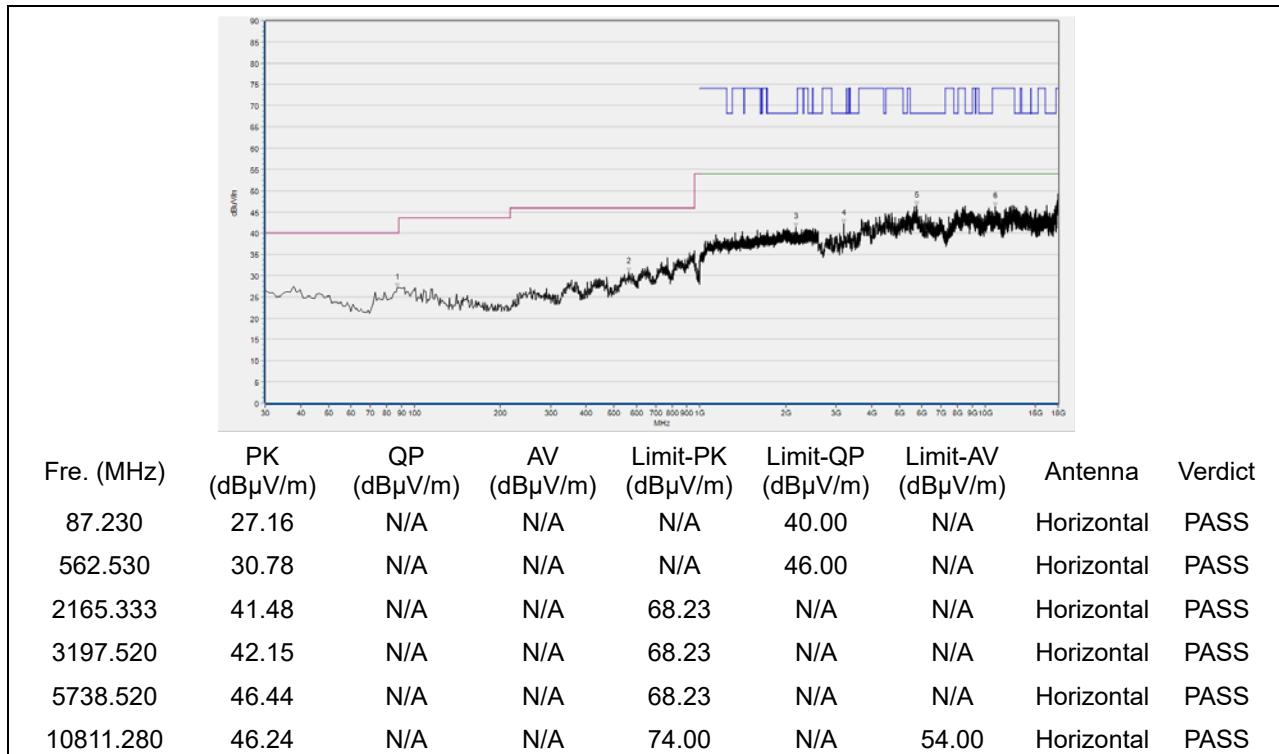


(Antenna Horizontal, 30MHz to 18GHz)

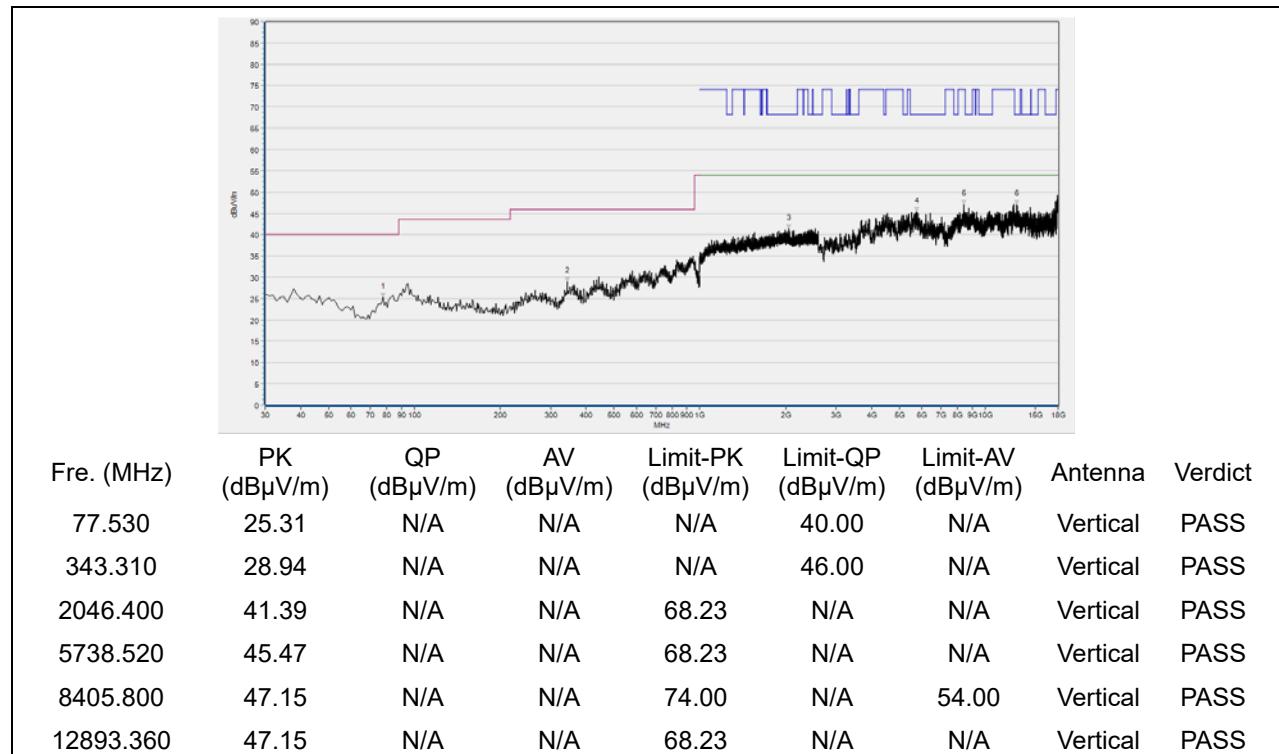


(Antenna Vertical, 30MHz to 18GHz)

Plot for Channel 48

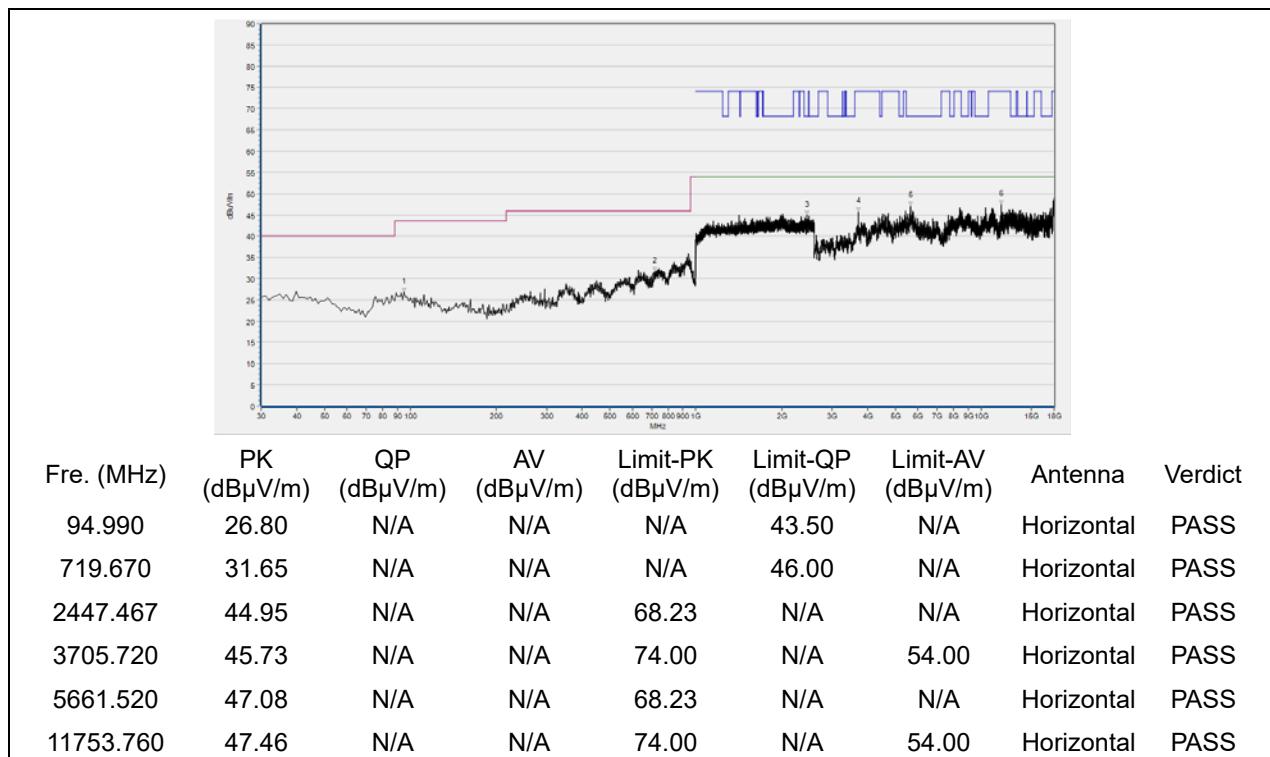


(Antenna Horizontal, 30MHz to 18GHz)

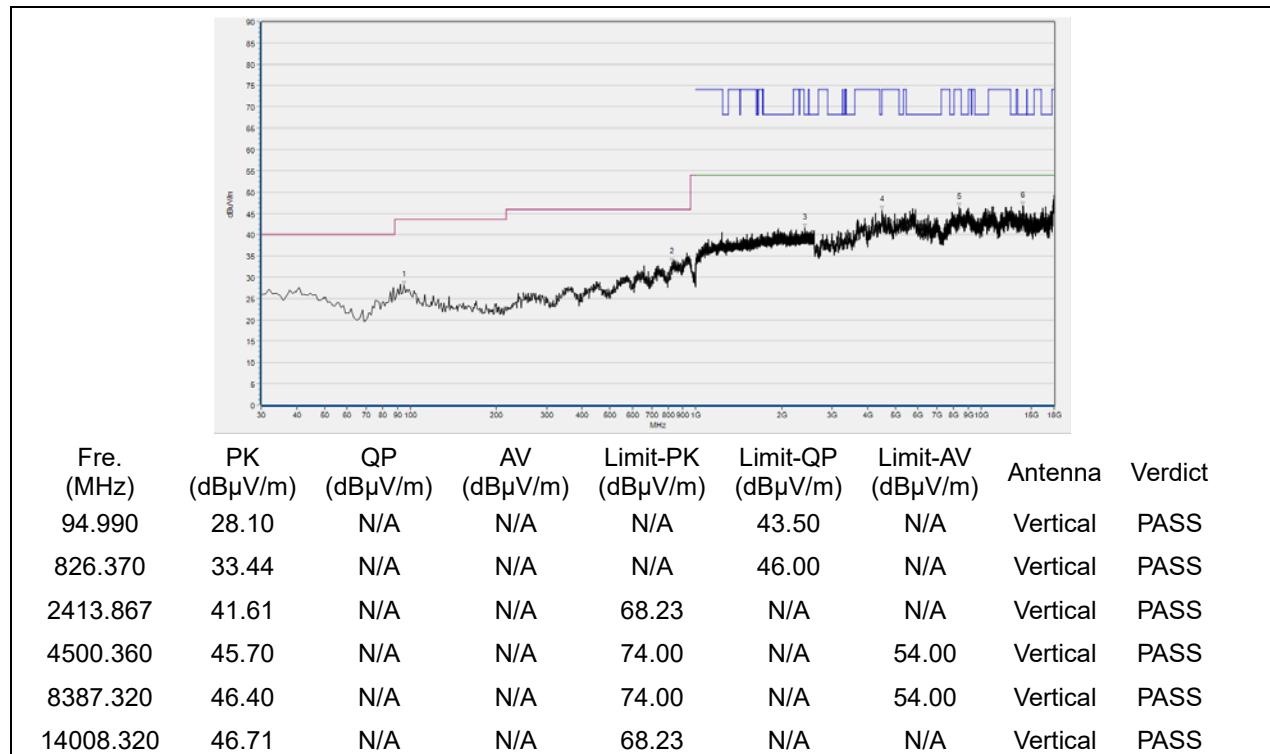


(Antenna Vertical, 30MHz to 18GHz)

Plot for Channel 149

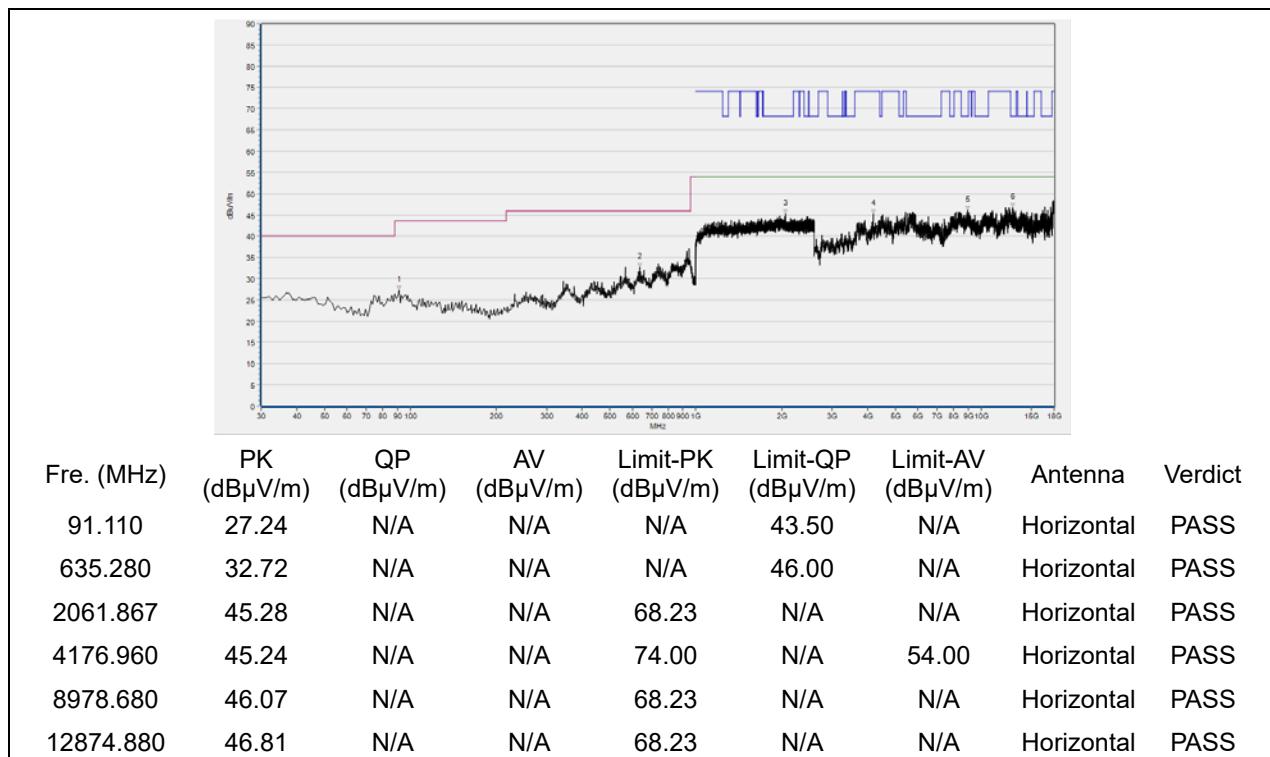


(Antenna Horizontal, 30MHz to 18GHz)

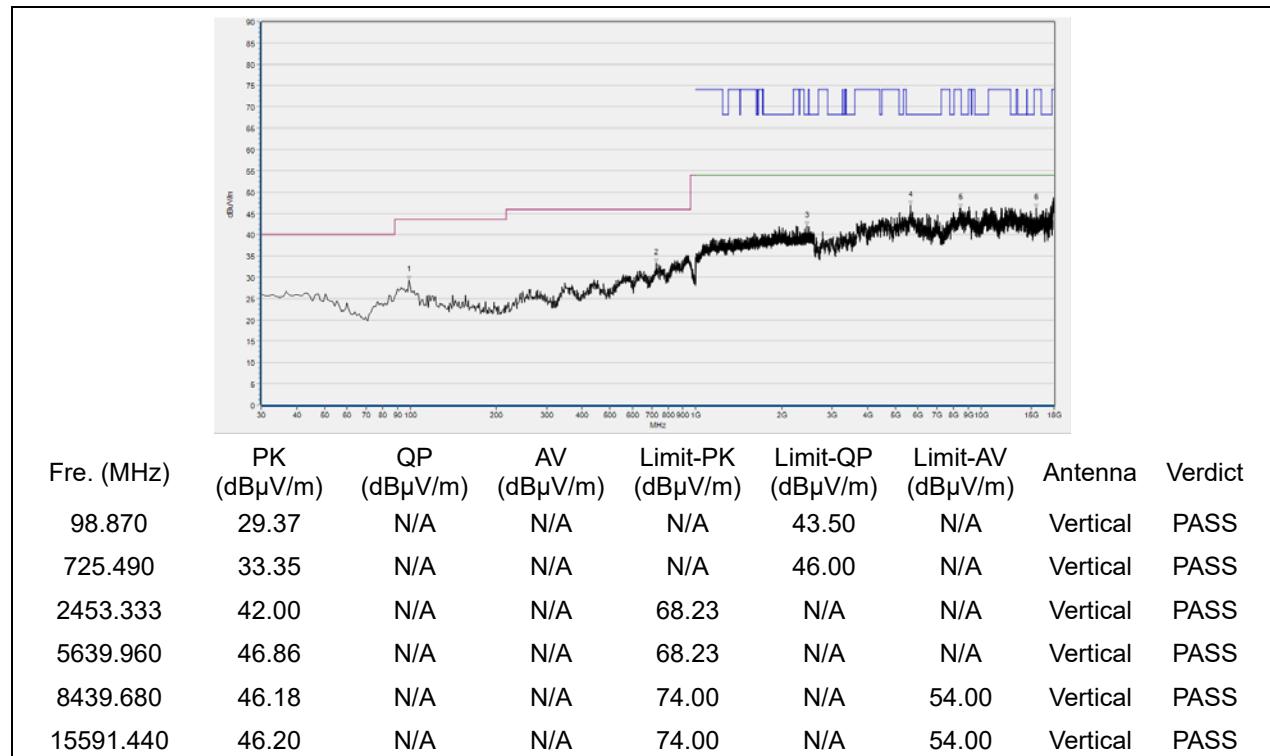


(Antenna Vertical, 30MHz to 18GHz)

Plot for Channel 157



(Antenna Horizontal, 30MHz to 18GHz)



(Antenna Vertical, 30MHz to 18GHz)

Plot for Channel 165

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Peak Output Power	±2.22dB
Power Spectral Density	±2.22dB
Bandwidth	±5%
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Attenuator 1	N/A	10dB	Resnet	N/A	N/A
EXA Signal Analyzer	MY53470836	N9010A	Agilent	2021.03.25	2022.03.24
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2021.03.25	2022.03.24
RF Cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	12108015	DTL-003S101	YOMA	2020.10.26	2021.10.25

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2021.03.09	2022.03.08
LISN	812744	NSLK 8127	Schwarzbeck	2021.03.09	2022.03.08
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561-F	Schwarzbeck	2020.07.24	2021.07.23
Coaxial Cable(BNC) (30MHz-26GHz)	CB01			2021.07.21	2022.07.20
		EMC01	Morlab	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test System	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2019.05.24	2022.05.23
Test Antenna - Horn	BBHA9170 #774	BBHA 9170	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2019.02.14	2022.02.13
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2022.07.25
Coaxial Cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-40GHz)	CB05	EMC05	Morlab	N/A	N/A
1-18GHz pre-Amplifier	61171/61172	S020180L32 03	Tonscend	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
26-40GHz pre-Amplifier	56774	S40M400L4 002	Tonscend	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
18-26.5GHz pre-Amplifier	46732	S10M100L38 02	Tonscend	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
Notch Filter	N/A	WRCG-5150-5350	Wainwright	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
Notch Filter	N/A	WRCG-5470-5725	Wainwright	2020.07.21	2021.07.20
				2021.07.16	2022.07.15
Notch Filter	N/A	WRCG-5725-5850	Wainwright	2020.07.21	2021.07.20
				2021.07.16	2022.07.15

REPORT No. : SZ21060139W04

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06	2023.01.05

———— END OF REPORT ————

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn