

Dynamic Frequency Selection (DFS) Test Report

Product Name : HEX Sense

Trade Name : Origin Wireless Taiwan Corporation

Model No. : Hex Sense

FCC ID : 2AW26TR-WIFISEN-X

Applicant : Origin Wireless Taiwan Corp.

Address : 3F A1-1 No. 1, Lixing 1st. Rd., Easr Dist.

Hsinchu City 300, Taiwan

Date of Receipt : Sep. 07, 2020

Issued Date : Nov. 19, 2020

Report No. : 2090185R-E3032610103

Report Version : V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of DEKRA Testing and Certification Co., Ltd.

DFS Test Report

Issued Date: Nov. 19, 2020

Report No.: 2090185R-E3032610103

Product Name : HEX Sense

Applicant : Origin Wireless Taiwan Corp.

Address : 3F A1-1 No. 1, Lixing 1st. Rd., Easr Dist. Hsinchu City 300,

Taiwan

Manufacturer : WNC VIETNAM CO., LTD.

Model No. : Factory H2, Lot G1-3-4-6-8, Que Vo Industrial Park, Van Duong

Ward, Bac Ninh City, Bac Ninh Province, Vietnam

FCC ID : 2AW26TR-WIFISEN-X

EUT Voltage : AC 120V/60Hz
Testing Voltage : AC 120V/60Hz

Trade Name : Origin Wireless Taiwan Corporation

Applicable Standard : FCC CFR Title 47 Part 15 Subpart E Section 15.407: 2019

ANSI C63.10: 2013

Laboratory Name : Hsin Chu Laboratory

Address : No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu

County 31061, Taiwan, R.O.C.

TEL: +886-3-582-8001 / FAX: +886-3-582-8958

Test Result : Complied

Documented By :

(Lyla Yang / Engineering Adm. Specialist)

Scott drang

Lyla Jang

Tested By :

(Scott Chang / Senior Engineer)

Approved By :

(Louis Hsu / Deputy Manager)

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report.	Nov. 19, 2020

TABLE OF CONTENTS

	Description	Page
1.	General Information	5
1.1.	EUT Description	5
1.2.	Standard Requirement	7
1.3.	UNII Device Description	8
1.4.	Test Equipment	9
1.5.	Test Setup	10
1.6.	DFS Detection Thresholds	10
2.	In-Service Monitoring for Channel Move Time and Channel Closing Transmission	on Time
	and Non-Occupancy Period	12
2.1.	Test Procedure	12
2.2.	Test Requirement	12
2.3.	Uncertainty	12
2.4.	Test Result of Channel Move Time and Channel Closing Transmission Time and	
	Non-Occupancy Period	13
Atta	nchment 1	23
	Test Setup Photograph	23
Atta	nchment 2	25
	EUT External Photograph	25
Atta	nchment 3	28
	EUT Internal Photograph	28

1. General Information

1.1. EUT Description

Product Name	HEX Sense			
Trade Name	Origin Wireless Taiwan Corporation			
Model No.	Hex Sense			
DFS Frequency Range /	IEEE 802.11a/n (20MHz)	5260~5320MHz / 4 Channels		
Number of DFS Channels		5500~5700MHz / 11 Channels		
	IEEE 802.11n (40MHz)	5270~5310MHz / 2 Channels		
		5510~5670MHz / 5 Channels		
Type of Modulation	802.11a/n	Orthogonal Frequency Division Multiplexing		
		(OFDM)		
Data Rate	802.11a	6, 9, 18, 24, 36, 48, 54Mbps		
	802.11n	Support a subset of the combination of GI,		
		MCS 0~MCS 7 and bandwidth defined in 802.11n		
Channel Control	Auto			
Channel Bandwidth	20/40 MHz			
DFS Function	□Master ∎Slave			
TPC Function	■ <500mW not required □ ≥ 500mW employ a TPC*			
Communication Mode	■ IP Based Systems □ Frame Based System □ Other System			
Antenna Gain	Refer to the table "Antenna List"			
HW Version	HW002			
SW Version	0.1.0a			

Anter	Antenna Information							
No.	Brand	Model No.	Antenna Type	Antenna Gain				
0 WNC		LVX5 3S.00227.111	PIFA Antenna	Bluetooth: 0.44dBi				
0	WINC	LVX3_33.00227.111		WiFi 5GHz: 3.28 dBi				

IEEE 802.11a/n (20MHz)

Working Fre	Working Frequency of Each Channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260 MHz	56	5280 MHz	60	5300 MHz	64	5320 MHz
100	5500 MHz	104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz		

IEEE 802.11n (40MHz)

Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz	102	5510 MHz	110	5550 MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz		

Toot Mode	Made 1: Transmit Made
rest wode	Mode 1: Transmit Mode

Note:

- 1. This device is a HEX Sense including 5GHz a/n, BT 4.0 transmitting and receiving functions.
- 2. Regards to the frequency band operation; the lowest · middle and highest frequency of channel were selected to perform the test, and then shown on this report.
- 3. The EUT description is from the customer declaration.

Report No.: 2090185R-E3032610103

1.2. Standard Requirement

FCC Part 15.407:

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500mW.

U-NII devices operating in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

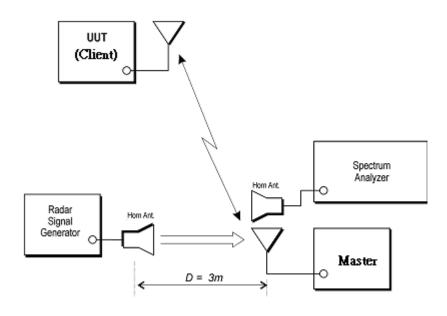
1.3. UNII Device Description

- (1) The EUT operates in the following DFS band:
 - 1. 5250-5350 MHz
 - 2. 5470-5725 MHz
- (2) The U-NII device maximum power is 20.622dBm (E.I.R.P). Below are the available 50 ohm antenna assemblies and their corresponding gains. 0dBi gain was used to set the -63 dBm threshold level (-64dBm +1 dB) during calibration of the test setup.
- (3) WLAN traffic is generated by the test software "Iperf.exe" from the Master device to the Slave device in the transfer data rate >17%.
- (4) For the 5250-5350 MHz and 5470-5725 MHz bands, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.

1.4. Test Equipment

DFS / SR11-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A	US47140172	2020/06/18	2021/06/17
ESG Vector Signal Generator	Agilent	E4438C	MY45095759	2020/05/11	2021/05/10
MXG Vector Signal Generator	Keysight	N5182B	MY53052548	2020/02/24	2021/02/23
Signal & Spectrum Analyzer	R&S	FSV40	101049	2020/03/30	2021/03/29
EXA Signal Analyzer	Keysight	N9010A	MY51440132	2020/02/21	2021/02/20
Horn Antenna	Schwarzbeck	BBHA 9120D	639	2020/06/04	2021/06/03
Horn Antenna	Schwarzbeck	BBHA 9120D	01656	2020/10/14	2021/10/13
Spectrum Analyzer	Keysight	N9030B	MY57140404	2020/06/03	2021/06/02


Note: All equipment upon which need to calibrated are with calibration period of 1 year.

Instrument	Manufacturer	Type No.	Serial No	FCC ID
Laptop PC	DELL	Vostro A860	CD8BMH1	
Laptop PC	ASUS	K45VD	0343G3110M	
Wireless Router	ASUS	ASUS RT-AX88U	JCITHP000040	MSQ-RTAXHP00
ATT (Qty: 3)	Mini-Circuits	BW-S3W2 DC-18GHz	0025	
RF Cable (Qty: 6)	Schaffner		25494/6	

Software	Manufacturer	Function
Agilent Signal Studio for DFS_V1.0.0	Agilent	Radar Signal Generation Software
Magic iPerf_V1.0	NextDoorDeveloper	iPerf Tool
Device Firmware Version	Arcadyan	200318_1721/ 5.02L.05p1Build09

1.5. Test Setup

1.6. DFS Detection Thresholds

(1) Interference Threshold value, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)
≥200 milliwatt	-64dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

(2) DFS Response requirement values

Parameter	Value
Non-Occupancy Period	Minimum 30 Minutes
Channel Availability Check Time	60 Seconds
O	10 Seconds
Channel Move Time	See Note 1.
	200 milliseconds + approx. 60 milliseconds over remaining
Channel Closing Transmission Time	10 seconds period
	(See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page: 11 of 35

Report No.: 2090185R-E3032610103

2. In-Service Monitoring for Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

2.1. Test Procedure

The EUT was tested according to U-NII test procedure of KDB905462 D02 for compliance to FCC 47CFR 15.407 requirements.

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time, and Non-Occupancy Period. The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB (-63dBm) is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5300MHz/5510MHz and 5630MHz.

Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test.

At time T0 the Radar Waveform generator sends a Burst of pulses for each of the radar types at -63dBm.

Observe the transmissions of the UUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time results to the limits defined in the DFS Response requirement values table.

Measure the UUT for more than 30 minutes following the channel close/move time to verify that the UUT does not resume any transmissions on this Channel.

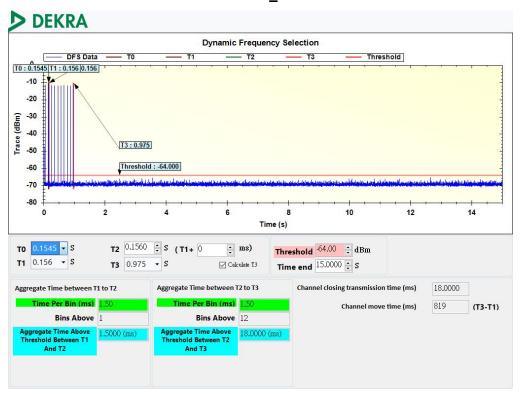
2.2. Test Requirement

Parameter	Value
Channel Move Time	10 Seconds
Channel Closing	200 milliseconds + approx. 60 milliseconds
Transmission Time	over remaining 10 seconds period
Non-Occupancy Period	Minimum 30 minutes

2.3. Uncertainty

± 1ms.

2.4. Test Result of Channel Move Time and Channel Closing Transmission Time and Non-Occupancy Period

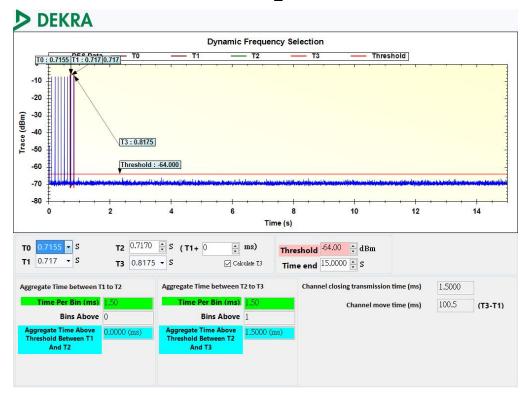

Product : HEX Sense

Test Item : Channel Move Time and Channel Closing Transmission Time

Radar Type: Type 0
Test Date: 2020/03/01

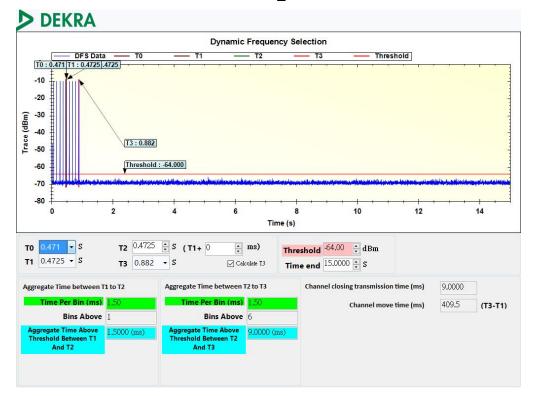
Test Mode : Mode 1: Transmit Mode

5300 MHz_20BW


Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.819	10

The results showed that after radar signal injected the channel move time was less than 10 seconds.

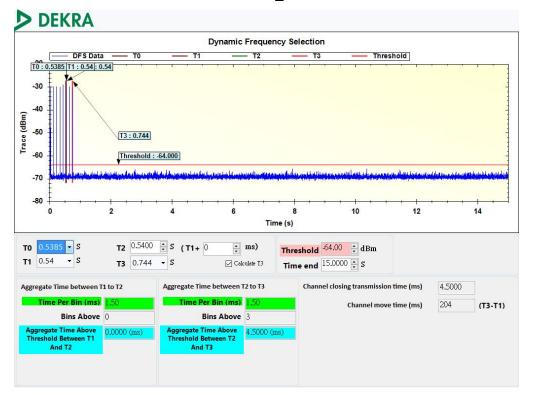
Test Result (ms)	Limit (ms)
18	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period
	(ms)


Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.101	10

The results showed that after radar signal injected the channel move time was less than 10 seconds.

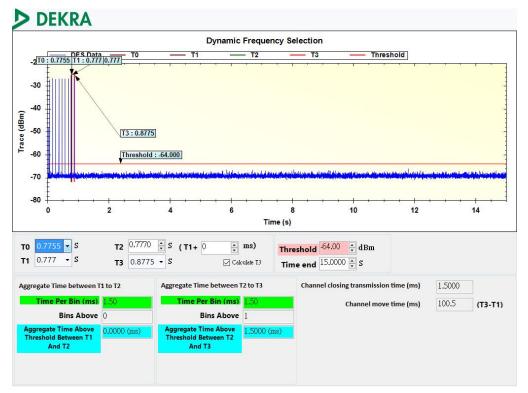
Test Item	Test Result (ms)	Limit (ms)
Channel Closing Transmission	1.5	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period

5620 MHz_20BW


Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.410	10

The results showed that after radar signal injected the channel move time was less than 10 seconds.

Test Item	Test Result (ms)	Limit (ms)
Channel Closing Transmission	9	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period


Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.204	10

The results showed that after radar signal injected the channel move time was less than 10 seconds.

Test Result (ms)	Limit (ms)
4.5	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period
	(ms)

Test Item	Test Result (Sec)	Limit (Sec)
Channel Move Time	0.101	10

The results showed that after radar signal injected the channel move time was less than 10 seconds.

Test Item	Test Result (ms)	Limit (ms)
Channel Closing Transmission	1.5	200 milliseconds + approx. 60 milliseconds over remaining 10 seconds period

Product : HEX Sense

Test Item : Non-Occupancy Period

Radar Type: Type 0

Test Date : 2020/10/26

Test Mode : Mode 1: Transmit Mode

5300 MHz_20BW

Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	>30

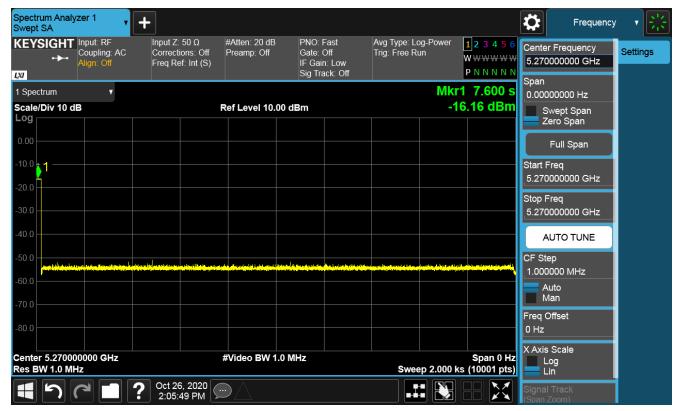
^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

5500 MHz_20BW

Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	>30

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

5620 MHz_20BW



Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	>30

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

5270 MHz_40BW

Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	>30

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.

5550 MHz_40BW

Test Item	Test Result (Minutes)	Limit (Minutes)
Non-Occupancy Period	>30	>30

^{*}No EUT transmissions were observed on the test channel during 30 minutes observation time.