

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Whale Vision Technology Co., Ltd
For
IP camera

Model No.: JS-K218, JS-K219, JS-K258, JS-K261, JS-P165, JS-F01, JS-F02, JS-F03, JS-F04, JS-F05, JS-F06, JS-F07, JS-F08, JS-F09

FCC ID: 2AW24-JSK218

Prepared For: Shenzhen Whale Vision Technology Co., Ltd

401, 4/F, Jianyi Chuanggu, No. 2507, Songbai Road, Longteng community,

Shiyan street, Bao'an District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 28, 2022 ~ Apr. 11, 2022

Date of Report: Apr. 11, 2022

Report Number: HK2203211051-E

TEST RESULT CERTIFICATION

Applicant's name: Shenzhen Whale Vision Technology Co., Ltd
401, 4/F, Jianyi Chuanggu, No. 2507, Songbai Road, Longteng

Manufacture's Name: Shenzhen Whale Vision Technology Co., Ltd

community, Shiyan street, Bao'an District, Shenzhen, China

Report No.: HK2203211051-E

Product description

JS-K218, JS-K219, JS-K258, JS-K261, JS-P165, JS-F01,

Model and/or type reference : JS-F02, JS-F03, JS-F04, JS-F05, JS-F06, JS-F07, JS-F08,

JS-F09

Standards FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests...... Mar. 28, 2022 ~ Apr. 11, 2022

Date of Issue Apr. 11, 2022

Test Result Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	
	1.3. MEASUREMENT UNCERTAINTY	
2.	EUT DESCRIPTION	
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. CARRIER FREQUENCY OF CHANNELS	
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	9
3.	ENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	27
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	67
5.	PHOTOGRAPH OF TEST	68
	DUOTOC OF THE FUT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Apr. 11, 2022	Jason Zhou
n/G	and and	a)G	3

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	IP camera	WAKTESTING	WAY TESTIN
Model Name:	JS-K218	.	0
Series Model:	JS-K219, JS-K258, JS-K261, JS- JS-F03, JS-F04, JS-F05, JS-F06	100	
Model Difference:	All model's the function, software the same, only with a product of ferent. Test sample model: JS-	color and mod	
FCC ID:	2AW24-JSK218	O HUAN	O HO
Antenna Type:	PCB Antenna	J.G	
Antenna Gain:	1dBi	HUAKTESTII	HUAKTESTIL
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz	TESTING	
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH	HOM	HUAKTESTING
Modulation Type:	CCK/OFDM/DBPSK/DAPSK	ESTING	
Power Source:	DC 5V from adapter	- WAKTESTING	HUAKTESTING
Power Rating:	DC 5V from adapter	9	
Hardware Version	D155-2.6	TSTNG	-c5TNV
Software Version	V33.6.25	MINAK .	MINAK W

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Carrier Frequency of Channels

Channel List For 802.11b/802.11g/802.11n (HT20)								
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)								
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452	-STING		

Channel List For 802.11n (HT40)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
TING_	XTESTING (04	2427	07	2442	- TESTIN	WTE	
@ H		05	2432	08	2447	HILAK	Monage Home	
03	2422	06	2437	09	2452			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

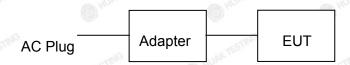
2.3. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)


Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted and radiation testing:

Adapter information

Model: XED-UL050100CU Input: 100-240V ~ 50/60Hz 0.2A

Output: 5V 1.0A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

STING	Mode	Data rate	
	802.11b	1Mbps	(HUAN
à	802.11g	6Mbps	
	802.11n(H20)	6.5Mbps	ESTING
W H	802.11n(H40)	13.5Mbps	HUAN
			(0.00)

Final Test Mode:

Operation mode:	STING	Keep the EUT in o	continuous tra	ansmitting
Operation mode.	THAK TES	with modulation		

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

V TES.	V TES.	TES.	ES.	ED. TED.
Equipment	Model No.	Serial No.	FCC ID	Trade Name
NG /	I INCTEST	1	I JANTESTIN	I NIG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

Test Specification

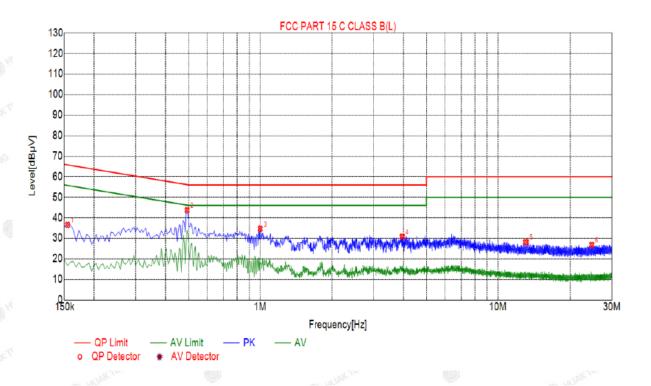
-m/G	TING	TING	711			
FCC Part15 C Section	on 15.207	JK TES	HUAKTED			
ANSI C63.10:2013	ANSI C63.10:2013					
150 kHz to 30 MHz	150 kHz to 30 MHz					
RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	BuV) Average 56 to 46* 46 50	MYTESTING			
Test table/Insulation Remark E.U.T AC	power EMI Receiver	r — AC power	ANTESTING			
Charging + transmitt	ting with modula	tion				
 The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
D	6000	0000				
	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW= Frequency range (MHz) 0.15-0.5 0.5-5 5-30 Ref E.U.T AC Test table/Insulation Remark EUT Equipment Under Test LISN Line Impedance Stabiliz Test table height=0.8m Charging + transmitt 1. The E.U.T is containe impedance so provides a 500hm measuring equipm 2. The peripheral de power through a coupling impedance refer to the blood photographs). 3. Both sides of A. conducted interfere emission, the relating the interface cab	RBW=9 kHz, VBW=30 kHz, Sweep to the manage of the provides a 50ohm/50uH coupling measuring equipment. 2. The peripheral devices are also copower through a LISN that provice oupling impedance with 50ohm refer to the block diagram of photographs). 3. Both sides of A.C. line are checonducted interface cables must be children and the provides of the interface cables must be children and the provides of the interface cables must be children and the provides of the interface cables must be children and the provides of the interface cables must be children and the provides and the p	ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Filter Ac power E.U.T ac power E.U.T is connected to the main power through a Lish the height-0 8m Charging + transmitting with modulation 1. The E.U.T is connected to the main power through a conducted interference are also connected to the power through a Lish that provides a 500hm/s0uH coupling impedance for measuring equipment. 2. The peripheral devices are also connected to the power through a Lish that provides a 500hm coupling impedance with 500hm termination. (For refer to the block diagram of the test setuphotographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum conducted interference ables must be changed accorded ANSI C63.10: 2013 on conducted measurement			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2203211051-E

Test Instruments

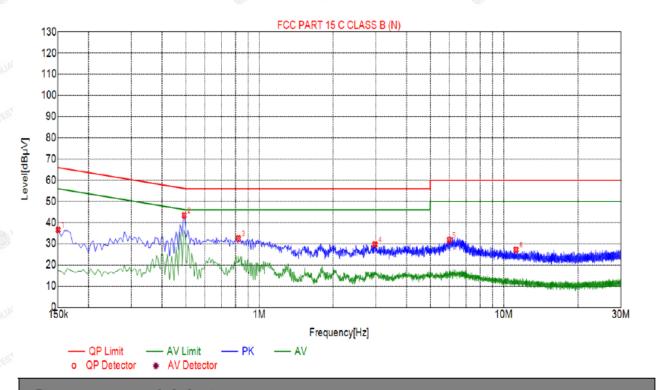
ADS. YV	1	Alle VV	200007	ATTAC 41	2002007			
	Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Receiver	R&S	ESCI 7	HKE-010	Feb. 18, 2022	Feb. 17, 2023			
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023			
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 18, 2022	Feb. 17, 2023			
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A			


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. TEST RESULT

Test Specification: Line


Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре		
1	0.1545	36.49	20.03	65.75	29.26	16.46	PK	L		
2	0.4920	43.68	20.04	56.13	12.45	23.64	PK	L		
3	1.0005	34.66	20.06	56.00	21.34	14.60	PK	L		
4	3.9570	30.80	20.25	56.00	25.20	10.55	PK	L		
5	13.0650	28.12	19.96	60.00	31.88	8.16	PK	L		
6	24.6390	26.84	20.24	60.00	33.16	6.60	PK	L		
D	Marain - Limi									

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Specification: Neutral

Sus	spe	cted	st

NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1500	36.50	20.03	66.00	29.50	16.47	PK	N	
2	0.4920	43.44	20.04	56.13	12.69	23.40	PK	N	
3	0.8205	32.47	20.06	56.00	23.53	12.41	PK	N	
4	2.9715	29.66	20.22	56.00	26.34	9.44	PK	N	
5	5.9865	31.80	20.23	60.00	28.20	11.57	PK	N	
6	11.2245	27.16	20.01	60.00	32.84	7.15	PK	N	

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15	, KTESTIN	
Test Method:	KDB 558074	(C) HOW	(I) HUNN
Limit:	30dBm	W.TESTING	e)C
Test Setup:	Power meter	EUT	MAKTES IN MAKTES THUS
Test Mode:	Transmitting mode with n	nodulation	
Test Procedure:	1. The testing follows the FCC KDB 558074 D0 v05r02. 2. The RF output of EUT meter by RF cable an compensated to the result. 3. Set to the maximum por EUT transmit continued. 4. Measure the Peak output in the test report.	was connected to dattenuator. The esults for each mower setting and ously.	o the power path loss was easurement. enable the
Test Result:	PASS	1 HILL	0

Test Instruments

HUAN	HUA	HUPE	HUA"	HUP	HUAN		
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

MG	TING	TING TING	TING TING
TES.	HUAK TES.	TX 802.11b Mode	HUAK TES!
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	20.03	30
CH06	2437	20.32	30
CH11	2462	20.84	30
	9	TX 802.11g Mode	
CH01	2412	22.43	30
CH06	2437	22.26	30 HINK TEST
CH11	2462	22.77	30
	TESTING	TX 802.11n20 Mode	TESTING
CH01	2412	22.37	30
CH06	2437	22.20	30
CH11	2462	22.57	30 1111
-	9	TX 802.11n40 Mode	9
CH03	2422	20.27	30
CH06	2437	20.46	30 HUMETESTIN
CH09	2452	20.86	30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 1	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	KDB 558074	O HOS	(HONO			
Limit:	>500kHz	LAKTESTING	"NG			
Test Setup:	Spectrum Analyzer	EUT	HUAN TESTING			
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS	O HUM	9 m			

Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

FICATION

Test data

Test channel	6dB Emission Bandwidth (MHz)						
	802.11b	802.11g	802.11n(H20)	802.11n(H40)			
Lowest	8.160	16.360	17.080	35.200			
Middle	9.560	16.360	16.760	35.360			
Highest	9.080	16.320	16.680	34.400			
Limit:	>500k						
Test Result:		TESTING LAKTESTI	PASS	TING WAK TESTING			

Test plots as follows:

802.11b Modulation

Lowest channel

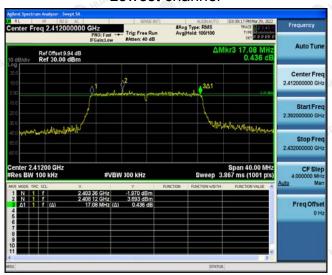
Middle channel

Highest channel

802.11g Modulation

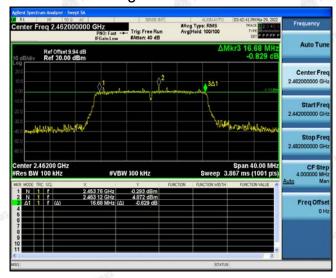
Lowest channel

Middle channel

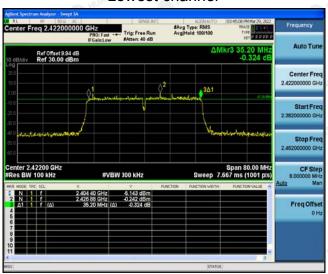


Highest channel

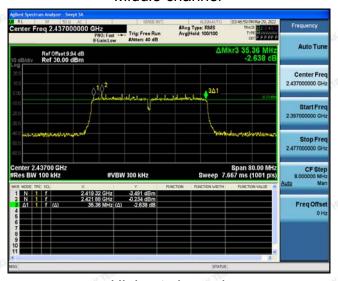
802.11n (HT20) Modulation


Lowest channel

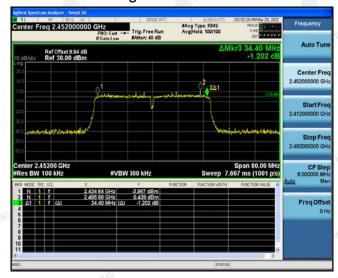
Middle channel



Highest channel

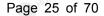


802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel


4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUI
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS (Market Market Mar

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

FICATION

Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023	
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

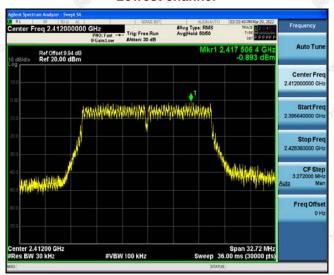
EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)			
	Lowest	3.64	-6.36			
802.11b	Middle	3.32	-6.68			
	Highest	4.81	-5.19			
802.11g	Lowest	-0.89	-10.89			
	Middle	0.2	-9.8			
	Highest	-0.4	-10.4			
802.11n(H20)	Lowest	-1.2	-11.2			
	Middle	-0.7	-10.7			
	Highest	-0.14	-10.14			
802.11n(H40)	Lowest	-5.25	-15.25			
	Middle	-5.35	-15.35			
	Highest	-5.01	-15.01			
PSD test result (dBm/	/3kHz)= PSD test	t result (dBm/30kHz)-10				
Limit: 8dBm/3kHz						
Test Result:	PASS					

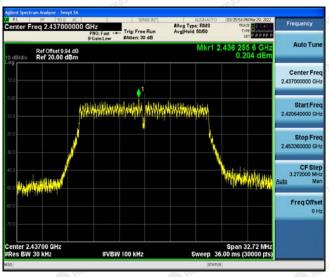
Test plots as follows:

802.11b Modulation

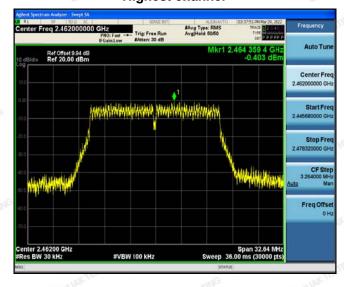
Lowest channel

Middle channel

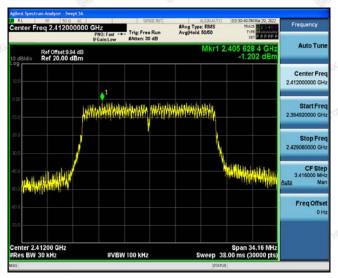

Highest channel



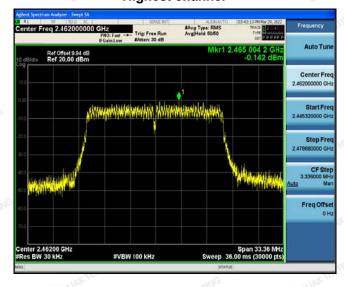
802.11g Modulation


Lowest channel

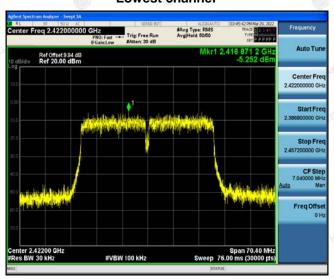
Middle channel

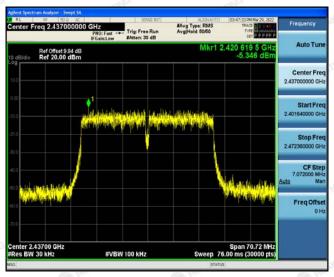

Highest channel

802.11n (HT20) Modulation

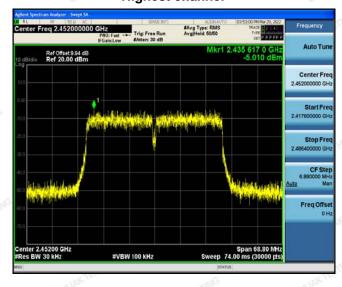

Lowest channel

Middle channel


Highest channel


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

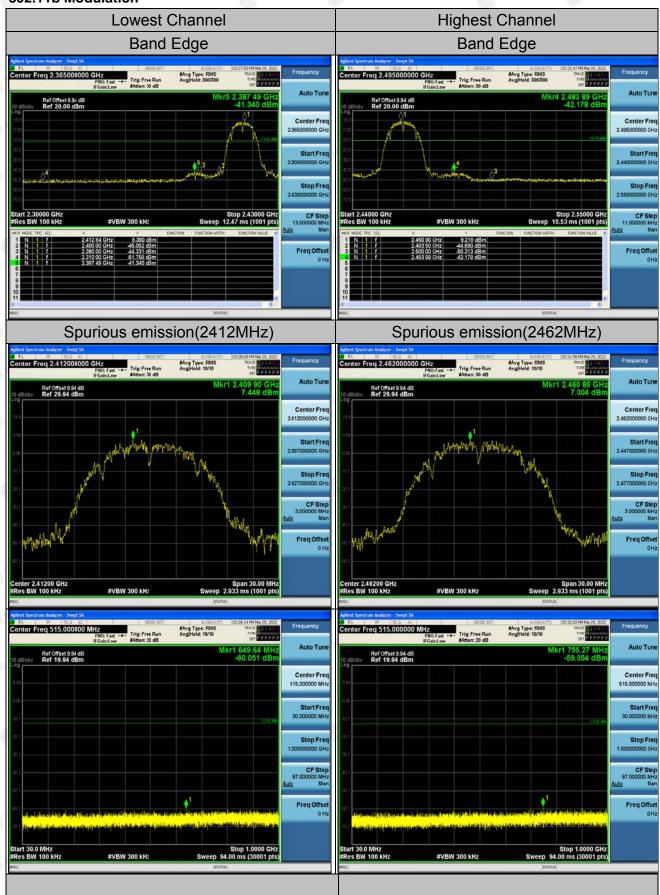
4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

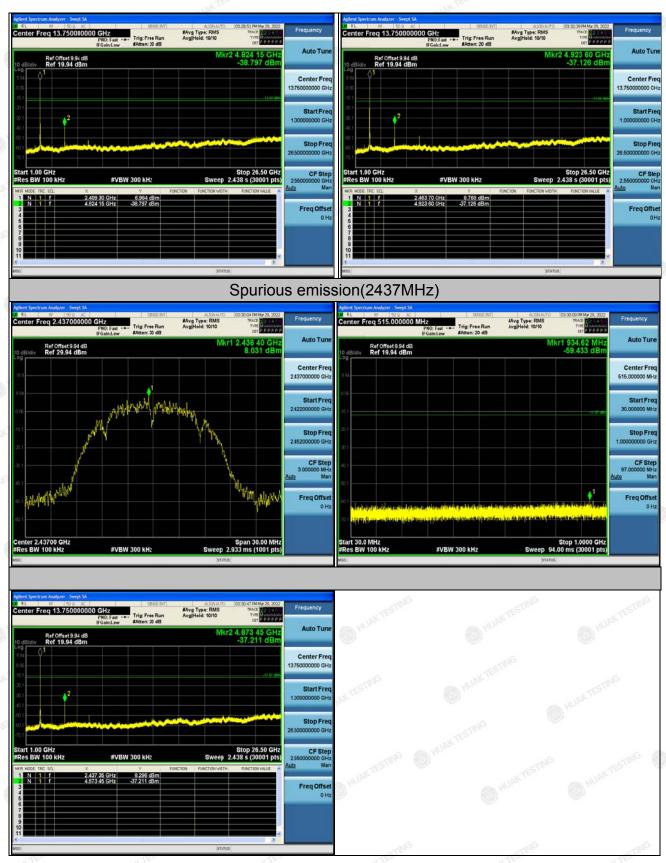
Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Transmitting mode with modulation The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
	PASS				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

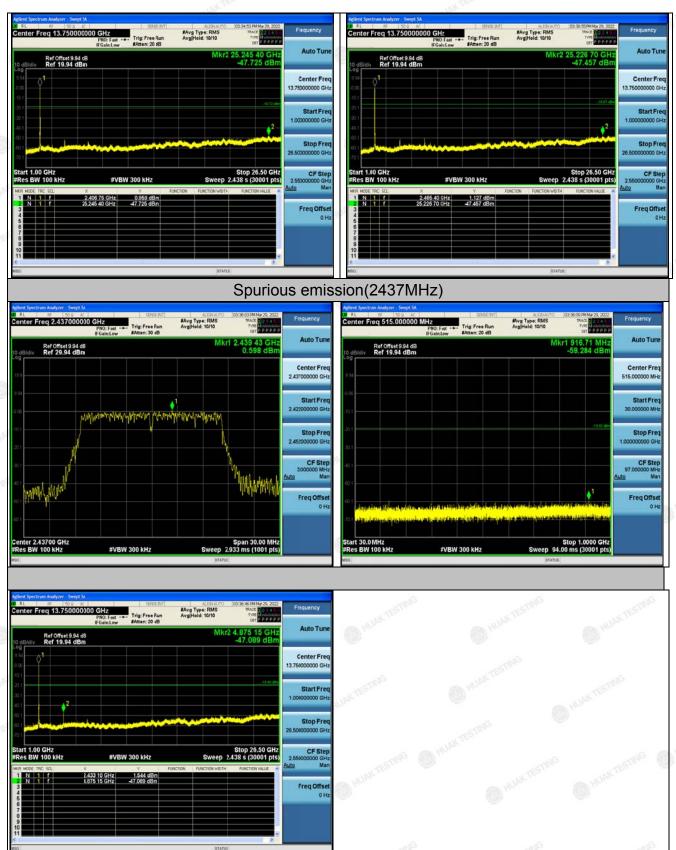
Test Instruments


RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023		
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A		

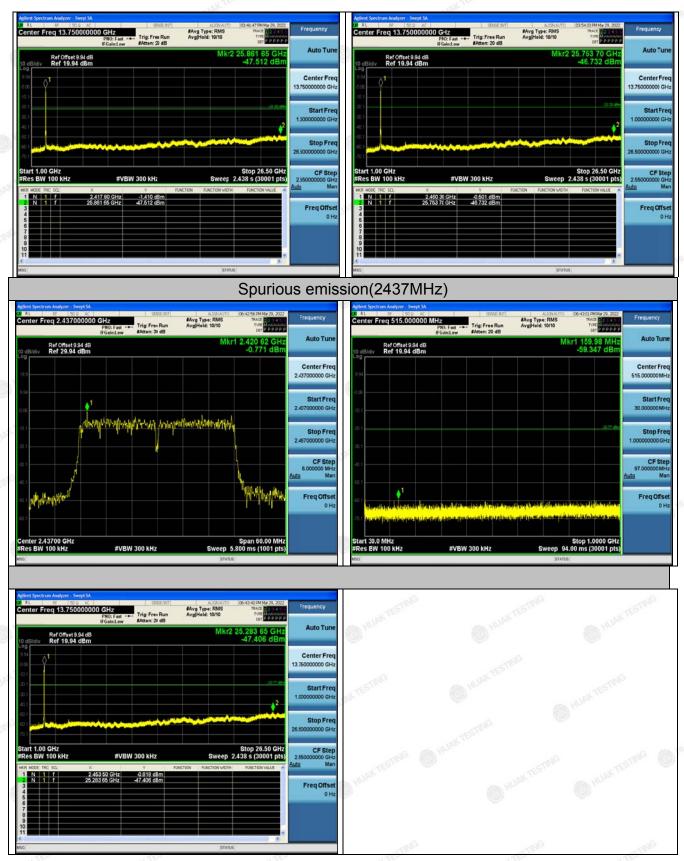

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

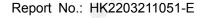
Test Data

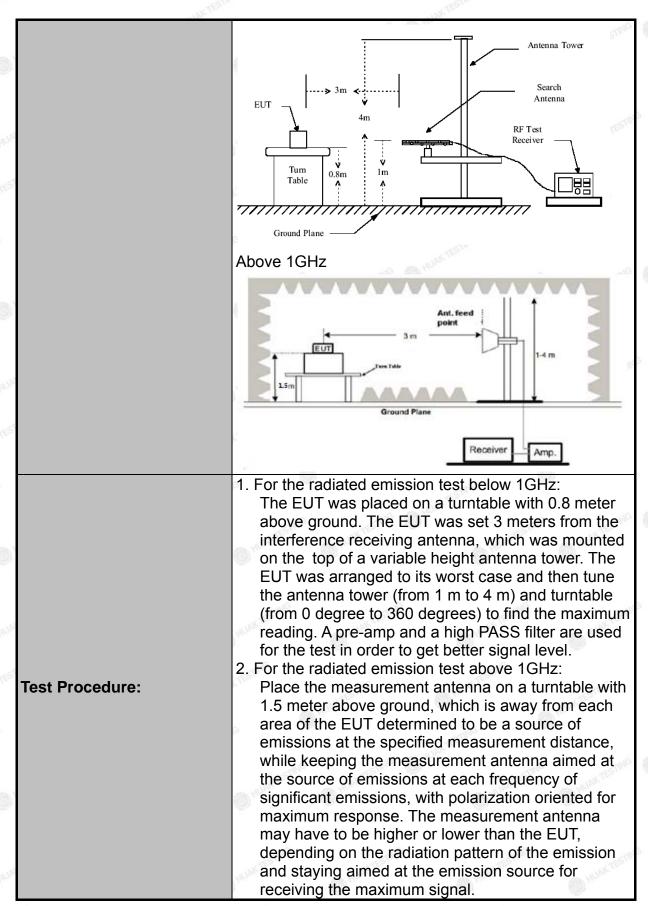

802.11b Modulation

802.11g Modulation



802.11n (HT40) Modulation




4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15	C Section	on 1	15.209	TESTI	₫G	TESTIN
Test Method:	ANSI C63.10): 2013		(HUAR		(1) HUAR
Frequency Range:	9 kHz to 25 (GHz			CTING		
Measurement Distance:	3 m	TESTING		AL HU	AKTE		TESTING
Antenna Polarization:	Horizontal &	Vertical			^	0	HUAR
Operation mode:	Transmitting	mode w	/ith	modulati	ion		
	Frequency 9kHz- 150kHz	Detecto Quasi-pe		RBW 200Hz	VBW 1kHz		Remark si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pe	ak	9kHz	30kHz	Quas	si-peak Value
	30MHz-1GHz	Quasi-pe	ak	120KHz	300KHz		si-peak Value
	Above 1GHz	Peak	STIL	1MHz	3MHz	+	eak Value
	70	Peak		1MHz	10Hz	AVE	erage Value
	Frequency			Field Stre (microvolts)	/meter)	_	asurement nce (meters)
	0.009-0.4	- 332		2400/F(k	•		300
	0.490-1.7			24000/F(KHz)	DECTE:	30
	1.705-30 30-88			30	MG		30
	88-216			100 150	<u> </u>		3
Limit:	216-960			200		TING	3
	Above 960			500	THUAK T		3
	(i)	9				•	
	Frequency			Strength olts/meter)	- I HISTORIA I HATE		Detector
	WAK TE	THE WAY TO	5	500 3		,	Average
	Above 1GHz		5	000	3		Peak
	For radiated	emissio	ns	below 30	MHz		-=TING
Test setup:	0.8 m		n Table	i m	RX Anto	enna ↑ 1 m	PAG
	30MHz to 10	6Hz			Receive	er]_	HUAN STI

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

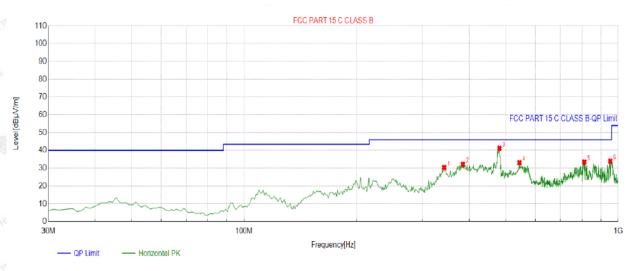
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

- tak	, int
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Test Instruments

	Rad	iated Emission	Test Site (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI-7	HKE-010	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	Feb. 17, 2023
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 18, 2022	Feb. 17, 2023
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

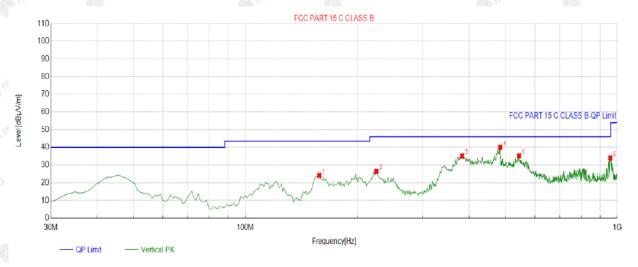

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal



QP Detector

Suspe	cted List								
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	342.6527	-11.65	42.06	30.41	46.00	15.59	100	294	Horizontal
2	384.4044	-10.75	43.03	32.28	46.00	13.72	100	167	Horizontal
3	481.5015	-8.46	49.63	41.17	46.00	4.83	100	282	Horizontal
4	544.6146	-7.09	40.15	33.06	46.00	12.94	100	40	Horizontal
5	811.6316	-2.92	36.38	33.46	46.00	12.54	100	128	Horizontal
6	952.4224	-1.26	35.23	33.97	46.00	12.03	100	33	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

QP Detecto

Suspected List									
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
110.	[MHz]	[dB] [dBµV/m] [dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	lolanty		
1	158.1682	-18.35	42.51	24.16	43.50	19.34	100	2	Vertical
2	225.1652	-14.44	40.89	26.45	46.00	19.55	100	145	Vertical
3	382.4625	-10.78	45.99	35.21	46.00	10.79	100	189	Vertical
4	484.4144	-8.49	48.51	40.02	46.00	5.98	100	85	Vertical
5	544.6146	-7.09	42.44	35.35	46.00	10.65	100	113	Vertical
6	957.2773	-1.33	35.38	34.05	46.00	11.95	100	193	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
	WIESTING -	WESTING
W. LESTING	- WEST	WIESING
Mor	W. Marie	@ HOP
	ing	STING

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	z) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.35	-3.64	56.71	74	-17.29	peak
4824	45.12	-3.64	41.48	54	-12.52	AVG
7236	56.44	-0.95	55.49	74	-18.51	peak
7236	43.78	-0.95	42.83	54	-11.17	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.14	-3.64	56.5	74 TESTIN	-17.5	peak
4824	45.12	-3.64	41.48	54	-12.52	AVG
7236	56.98	-0.95	56.03	74	-17.97	peak
7236	43.01	-0.95	42.06	54	-11.94	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.71	-3.51	55.2	74	-18.8	peak
4874	45.12	-3.51	41.61	54	-12.39	AVG
7311	58.32	-0.82	57.5	74	-16.5	peak
7311	44.01	-0.82	43.19	54	-10.81	AVG
lemark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier.		CSTING	TESTIN

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.25	-3.51	56.74	74X	-17.26	peak
4874	45.18	-3.51	41.67	54	-12.33	AVG
7311	56.92	-0.82	56.1	74	-17.9	peak
7311	43.34	-0.82	42.52	54	-11.48	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

AFICATION.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	[©] (dBµV/m)	(dB)	Туре
4924	61.02	-3.43	57.59	74	-16.41	peak
924	45.12	-3.43	41.69	54	-12.31	AVG
7386	56.28	-0.75	55.53	74	-18.47	peak
7386	43.16	-0.75	42.41	54	-11.59	AVG

Vertical:

		1000				
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	。(dBμV/m)	(dB)	Туре
4924	59.72	-3.43	56.29	74	-17.71	peak
4924	45.16	-3.43	41.73	54	-12.27	AVG
7386	56.32	-0.75	55.57	74	-18.43	peak
7386	42.09	-0.75	41.34	54	-12.66	AVG
		1000		4/10		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.72	-3.64	55.08	74	-18.92	peak
4824	45.16	-3.64	41.52	54	-12.48	AVG
7236	56.28	-0.95	55.33	74	-18.67	peak
7236	44.64	-0.95	43.69	54	-10.31	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.37	-3.64	55.73	74	-18.27	peak
4824	44.15	-3.64	40.51	54	-13.49	AVG
7236	59.38	-0.95	58.43	74	-15.57	peak
7236	44.72	-0.95	43.77	54	-10.23	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.42	-3.51	54.91	74	-19.09	peak
4874	46.92	-3.51	43.41	54	-10.59	AVG
7311	56.32	-0.82	55.5	74	-18.5	peak
7311	41.99	-0.82	41.17	54	-12.83	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier.		TESTING	W TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.74	-3.51	56.23	74 ALLEY	-17.77	peak
4874	45.72	-3.51	42.21	54	-11.79	AVG
7311	56.28	-0.82	55.46	74	-18.54	peak
7311	44.97	-0.82	44.15	54	-9.85°	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.25	-3.43	56.82	74	-17.18	peak
4924	45.17	-3.43	41.74	54	-12.26	AVG
7386	56.28	-0.75	55.53	74	-18.47	peak
7386	44.02	-0.75	43.27	54	-10.73	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

(MHz) (dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) Type 4924 60.34 -3.43 56.91 74 -17.09 peak 4924 45.78 -3.43 42.35 54 -11.65 AVG 7386 56.92 -0.75 56.17 74 -17.83 peak 7386 44.32 -0.75 43.57 54 -10.43 AVG	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
4924 45.78 -3.43 42.35 54 -11.65 AVG 7386 56.92 -0.75 56.17 74 -17.83 peak	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
7386 56.92 -0.75 56.17 74 -17.83 peak	4924	60.34	-3.43	56.91	74	-17.09	peak
TESTING TESTING	4924	45.78	-3.43	42.35	54	-11.65	AVG
7386 44.32 -0.75 43.57 54 -10.43 AVG	7386	56.92	-0.75	56.17	74	-17.83	peak
	7386	44.32	-0.75	43.57	54	-10.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.71	-3.64	55.07	74	-18.93	peak
4824	45.16	-3.64	41.52	54	-12.48	AVG
7236	58.32	-0.95	57.37	74	-16.63	peak
7236	44.02	-0.95	43.07	54	-10.93	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	58.64	-3.64	55	74	-19	peak
4824	45.71	-3.64	42.07	54	-11.93	AVG
7236	58.58	-0.95	57.63	74	-16.37	peak
7236	43.65	-0.95	42.7	54	-11.3	AVG
-allo	-(III, 1070)		THE OLD	(0.09)	-010	-11/4-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	57.99	-3.51	54.48	74.00	-19.52	peak
4874.00	46.65	-3.51	43.14	54.00	-10.86	AVG
7311.00	56.22	-0.82	55.40	74.00	-18.60	peak
7311.00	44.44	-0.82	43.62	54.00	-10.38	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss -	Pre-amplifier.		AKTESTING	"IAK TESTA

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	59.72	-3.51	56.21	74.00	-17.79	peak
4874.00	45.61	-3.51	42.10	54.00	-11.90	AVG
7311.00	56.23	-0.82	55.41	74.00	-18.59	peak
7311.00	43.01	-0.82	42.19	54.00	-11.81	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

TEICATION.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Trino
(MHz)	(MHz) (dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	58.96	-3.43	55.53	74	-18.47	peak
4924	45.16	-3.43	41.73	54	-12.27	AVG
7386	57.41	-0.75	56.66	74	-17.34	peak
7386	43.25	-0.75	42.5	54 KTEST	-11.5	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	– Pre-amplifier	ne Duy	TING	ESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	58.79	-3.43	55.36	74	-18.64	peak
4924	45.62	-3.43	42.19	54	-11.81	AVG
7386	57.88	-0.75	57.13	74	-16.87	peak
7386	43.16	-0.75	42.41	54	-11.59	AVG
		10000	FED3191			

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.14	-3.63	54.51	74	-19.49	peak
4844	46.25	-3.63	42.62	54	-11.38	AVG
7266	56.42	-0.94	55.48	74	-18.52	peak
7266	44.35	-0.94	43.41	54	-10.59	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.42	-3.63	54.79	74 (m)	-19.21	peak
4844	45.16	-3.63	41.53	54	-12.47	AVG
7266	55.92	-0.94	54.98	74	-19.02	peak
7266	43.05	-0.94	42.11	54	-11.89	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	— Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	58.44	-3.51	54.93	74	-19.07	peak
4874	45.12	-3.51	41.61	54	-12.39	AVG
7311	56.92	-0.82	56.1	74	-17.9	peak
7311	42.01	-0.82	41.19	54	-12.81	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	_ Pre-amplifier	MG HUAR	-16	TNG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atak Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	59.38	-3.51	55.87	74	-18.13	peak
4874	44.01	-3.51	40.5	54	-13.5	AVG
7311	55.85	-0.82	55.03	74	-18.97	peak
7311	43.07	-0.82	42.25	54	-11.75	AVG
200	175		3.1		~5	11 (62)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH9 (802.11n/H40 Mode)/2452 Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	59.37	-3.43	55.94	74	-18.06	peak
4904	44.15	-3.43	40.72	54	-13.28	AVG
7356	56.23	-0.75	55.48	74	-18.52	peak
7356	42.01	-0.75	41.26	54	-12.74	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.24	-3.43	54.81	74	-19.19	peak
47.15	-3.43	43.72	54	-10.28	AVG
56.12	-0.75	55.37	74	-18.63	peak
43.25	-0.75	42.5	54	-11.5	AVG
	58.24 47.15 56.12	58.24 -3.43 47.15 -3.43 56.12 -0.75	58.24 -3.43 54.81 47.15 -3.43 43.72 56.12 -0.75 55.37	58.24 -3.43 54.81 74 47.15 -3.43 43.72 54 56.12 -0.75 55.37 74	58.24 -3.43 54.81 74 -19.19 47.15 -3.43 43.72 54 -10.28 56.12 -0.75 55.37 74 -18.63

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.28	-5.81	49.47	74	-24.53	peak
2310	STING MINA	-5.81	TING I STIM	54	TING	AVG
2390	56.32	-5.84	50.48	74	-23.52	peak
2390	/	-5.84	1	54	1	AVG
2400	57.14	-5.84	51.3	_{NG} 74	-22.7	peak
2400	HUAK TE	-5.84	A HUAK TE	54	WAKTES /	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.37	-5.81	50.56	74	-23.44	peak
2310	I G	-5.81	1	54	mig l	AVG
2390	57.41	-5.84	51.57	74	-22.43	peak
2390	1	-5.84	1	54	nG /	AVG
2400	56.89	-5.84	51.05	74 HUAK	-22.95	peak
2400	1	-5.84	HUAM	54	1	AVG

W TESTING LAW TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	DELHUAK TEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.41	-5.65	51.76	74 HUAY	-22.24	peak
2483.50	1	-5.65	MINON!	54	1	AVG
2500.00	56.23	-5.65	50.58	74	-23.42	peak
2500.00	OK TESTING	-5.65	TING I NY TESTING	54	TSTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.72	-5.65	51.07	74	-22.93	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	54.15	-5.65	48.5	74	-25.5	peak
2500.00	1	-5.65	7	54	* /	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.28	-5.81	50.47	74	-23.53	peak
2310	ane I	-5.81	1 mg	54	ESTING /	AVG
2390	55.41	-5.84	49.57	74	-24.43	peak
2390	1	-5.84	1	54	1	AVG
2400	55.29	-5.84	49.45	74	-24.55	peak
2400	1	-5.84	(a) YUM	54	HUAKTE	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.37	-5.81	50.56	74	-23.44	peak
2310	K TESTING HOW	-5.81	ESTING / TESTING	54	TESTAG	AVG
2390	55.45	-5.84	49.61	74	-24.39	peak
2390	1	-5.84	1	54	1	AVG
2400	57.02	-5.84	51.18	⁹⁶ 74	-22.82	peak
2400	HO. I	-5.84	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	58.74	-5.65	53.09	74	-20.91	peak
2483.50	rsmis /	-5.65	TIM! ESTING	54	1	AVG
2500.00	56.98	-5.65	51.33	74	-22.67	peak
2500.00	THE HUAL	-5.65	J 1	54	1	AVG
TSING.	NA TESTING WHO	-5.65	NG NGKTESTIN	54	TESMIG	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.42	-5.65	51.77	74	-22.23	peak
2483.50	1	-5.65	1	54	us I	AVG
2500.00	56.41	-5.65	50.76	74	-23.24	peak
2500.00	HUAR /	-5.65	Q HUAR	54	MAKIE	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.32	-5.81	50.51	74	-23.49	peak
2310	rsme /	-5.81	NK ESTING	54	1	AVG
2390	55.41	-5.84	49.57	74	-24.43	peak
2390	HUM!	-5.84	1	54	1	AVG
2400	58.11	-5.84	52.27	74	-21.73	peak
2400	1	-5.84	1	54	3) ₁	AVG

Vertical:

1		-671			-6711	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.27	-5.81	50.46	74	-23.54	peak
2310	AK TESTING	-5.81	ESTING MAKTESTIN	54	LAK TISTING	AVG
2390	57.41	-5.84	51.57	74	-22.43	peak
2390	1	-5.84	1	54	1	AVG
2400	56.29	-5.84	50.45	74	-23.55	peak
2400	1	-5.84	0	54	1	AVG
NG.	•	.AIG	.		A)G	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.02	-5.65	49.37	74 HUAN	-24.63	peak
2483.50	1	-5.65	HUAR	54	1	AVG
2500.00	57.42	-5.65	51.77	74	-22.23	peak
2500.00	ALTESTINE W	-5.65	STING / KTESTIN	54	TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.37	-5.65	50.72	74	-23.28	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	57.41	-5.65	51.76	74	-22.24	peak
2500.00	1	-5.65	7	54	9 1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. t. st. S. TING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.19	-5.81	48.38	74	-25.62	peak
2310	rsms /	-5.81	MAY/ESTINE	54	1	AVG
2390	56.23	-5.84	50.39	74	-23.61	peak
2390	TINC MAN	-5.84	NG I	54	1	AVG
2400	55.87	-5.84	50.03	74	-23.97	peak
2400	/	-5.84	1	54	1	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	MAKTESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.87	-5.81	50.06	74	-23.94	peak
2310	1	-5.81	Man.	54	HUAK	AVG
2390	56.24	-5.84	50.4	74	-23.6	peak
2390	WESTY'S	-5.84	/ NYTEST	54	OKTESTYE	AVG
2400	55.28	-5.84	49.44	74	-24.56	peak
2400	I I	-5.84	1	54	ESTING /	AVG
1.04	(E)		TES	75/87		TES

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2452MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.84	-5.65	51.19	74 HUAN	-22.81	peak
2483.50	1	-5.65	HUAR	54	1 6	AVG
2500.00	57.41	-5.65	51.76	74	-22.24	peak
2500.00	SK TESTING ()	-5.65	STING / KTESTIN	54	TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	Matan Dandina	Factor	Engine Laurel	Lineite	Manain	9
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.32	-5.65	50.67	74	-23.33	peak
2483.50	1 HUNK	-5.65	1	54	I	AVG
2500.00	56.44	-5.65	50.79	74	-23.21	peak
2500.00	1	-5.65	1	54	1	AVG

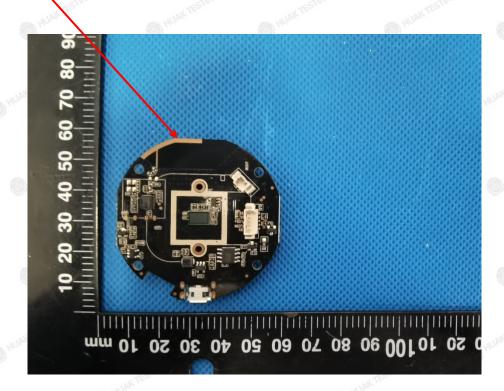
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

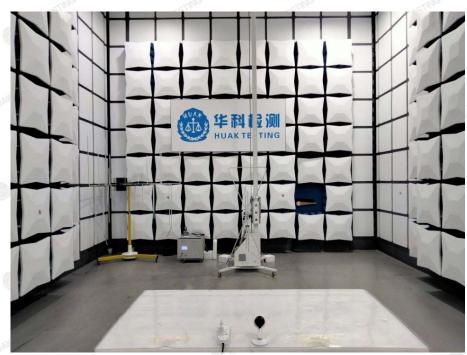

Refer to statement below for compliance.

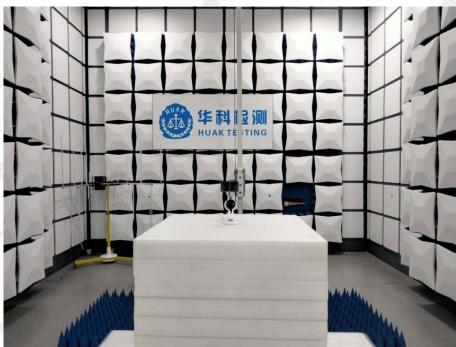
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, need professional installation. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

WIFI ANTENNA




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. PHOTOGRAPH OF TEST

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.