

FCC TEST REPORT FCC ID: 2AVZV-H10-4

Product	:	POS SYSTEM			
Model Name : H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10- : 35,H10-41,H10-42,H10-43,H10-44,H10-45,V8, V8-1,V8-2,V8-3,V8-4,V8-5					
Brand	:	CITAQ			
Report No. : PTC21073003102E-FC04					
Sample ID : PTC21073003102-2#					
		CITAQ CO., LTD			
9F&13F, Chuangy	e Bldg, Ke	ji Middle Road, Hi-Tech Zone, Shantou, Guangdong, China			
		Prepared by			
	Prec	cise Testing & Certification Co., Ltd.			
Building 1, No	6, Tongxi	n Road, Dongcheng Street, Dongguan, Guangdong, China			

Report No.: PTC21073003102E-FC04

1 TEST RESULT CERTIFICATION

Applicant's name	:	CITAQ CO., LTD
Address	:	9F&13F, Chuangye Bldg, Keji Middle Road, Hi-Tech Zone, Shantou, Guangdong, China
Manufacture's name	:	CITAQ CO., LTD
Address	:	9F&13F, Chuangye Bldg, Keji Middle Road, Hi-Tech Zone, Shantou, Guangdong, China
Product name	:	POS SYSTEM
Model name	:	H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10-35,H10-41, H10-42,H10-43,H10-44,H10-45,V8,V8-1,V8-2,V8-3,V8-4,V8-5
Standards	:	FCC CFR47 Part 15 Section 15.407
Test procedure	:	ANSI C63.10:2013
Test Date	:	Nov. 18, 2021 to Dec. 20, 2021
Date of Issue	:	Dec. 21, 2021
Test Result	:	Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yong

Leo Yang / Engineer

chim

Chris Du / Manager

Technical Manager:

Report No.: PTC21073003102E-FC04

1	Con	itents		Page
1	TEST	RESULT CERTIFICATION		2
1	CONT	ENTS	PAGE	3
2	TEST	SUMMARY		5
2				-
	2.1 TE	EST SITE		5
3	GENE	RAL INFORMATION		6
	3.1 Ge	ENERAL DESCRIPTION OF EUT		6
	3.2 De	ESCRIPTION OF TEST CONDITIONS		8
4	EQUIF	PMENTS LIST FOR ALL TEST ITEMS		9
	4.1 Me	EASUREMENT UNCERTAINTY		10
		ESCRIPTION OF SUPPORT UNITS		11
5	TEST	RESULT		12
	5.1 Co	DNDUCTION EMISSIONS MEASUREMENT		12
	5.1.1	Applied procedures / Limit		12
	5.1.3	Test procedure		13
	5.1.4	DEVIATION FROM TEST STANDARD		14
	5.1.5	TEST SETUP		14
	5.1.6	Test results		15
	5.2 RA	ADIATED EMISSIONS MEASUREMENT		17
	5.2.1	Applied procedures / Limit		17
	5.2.3	Radiated Emissions Test Data		22
	5.3 RA	ADIATED RESTRICTED BAND EDGE MEASUREMENT		53
	5.3.1	Applied procedures / Limit		53
	5.3.2	Test procedure		53
	5.3.3	Deviation from standard		54
	5.3.4	Test results		55
	5.4 BA	ANDWIDTH TEST		63
	5.4.1	Applied procedures / Limit		63
	5.4.2	Test procedure		63
	5.4.3	Deviation from standard		65
	5.4.4	Test setup		65
	5.4.5	Test results		66
		EAK POWER DENSITY		95
	5.5.1	Applied procedures / Limit		95
	5.5.2	Test procedure		95

6

5.5	.3	TEST SETUP	95
5.5	.4	Deviation from standard	96
5.5	5.5	Test results	97
5.6	M٨	AXIMUM PEAK OUTPUT POWER	112
5.6	5.1	Applied procedures / Limit	112
5.6	5.2	Test procedure	112
5.6	5.3	Test Setup	113
5.6	5.4	Deviation from standard	113
5.6	5.5	Test results	114
5.7	F۶	REQUENCY STABILITY MEASUREMENT	115
5.7	. 1	Applied procedures / Limit	115
5.7	.2	Test procedure	115
5.7	.3	Deviation from standard	115
5.7	.4	Test setup	115
5.7	.5	Test results	116
5.8	AL	JTOMATICALLY DISCONTINUE TRANSMISSION	117
5.8	.1	LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	117
5.8	.2	TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	117
5.9	AN	ITENNA REQUIREMENT	117
5.9	.1	STANDARD REQUIREMENT	117
5.9	.2	EUT ANTENNA	117
PH	от	OGRAPHS	118
6.1	R۸	ADIATED EMISSION TEST SETUP	118
6.2	Сс	DNDUCTION EMISSION TEST SETUP	120
6.3	ΕL	JT CONSTRUCTIONAL DETAILS	121

2 Test Summary

FCC Part15 (15.407)					
Test Item FCC standard					
AC Conducted Emission 15.207		PASS			
26dB/6dB Bandwidth	§ 15.407 (a) (26 dB) / § 15.407 (e) (6 dB)	PASS			
Maximum Conducted Output Power	15.407(a)	PASS			
Radiated Emission And (Unwanted Emissions) Measurement	15.407(b)& 15.209	PASS			
Radiated Restricted Band Edge Measurement	15.407(b)& 15.205	PASS			
Power Spectral Density	15.407(a)	PASS			
Frequency Stability	15.407(g)	PASS			
Automatically Discontinue Transmission	15.407(c)	PASS			
Antenna Requirement	15.203	PASS			
Note: Reference to the ANSI C63.10-2013, KDB 789033 D02v01r01, KDB 662911 D01v02r01 and KDB 644545 D03v01. " N/A" denotes test is not applicable in this Test Report.					

2.1 Test Site

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

Designation Number: CN1219

3 General Information

3.1 General Description of EUT

EUT Name:	POS SYSTEM				
	H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10-35,H10-41,H1				
Model No.:	0-42,H10-43,H10-44,H10-45,V8,V8-1,V8-2,V8-3,V8-4,V8-5				
	(Note: The samples are the same except appearance and model number. So				
	H10-4 was selected for full tested.)				
Antenna Gain:	2dBi				
	For 802.11a/n-HT20/ac-VHT20:				
	5180~5240MHz, 5745~5825MHz				
Operation frequency:	For 802.11n-HT40/ac-VHT40:				
	5190~5230MHz, 5755~5795MHz				
	For 802.11ac-VHT80:				
	5210MHz, 5775MHz				
Modulation Type and	802.11a/n/ac: OFDM				
Antenna Type:	FPCB antenna				
Maximum Average Output	802.11a: 11.62dBm				
Power with 5GHz	802.11n-HT20: 11.85dBm				
	802.11n-HT40: 11.68dBm				
	802.11ac-VHT20: 11.46dBm				
	802.11ac-VHT40: 11.69dBm				
	802.11ac-VHT80: 6.68dBm				
Power Supply:	DC 24V 2.5A 60W (Adapter: Model: K65S240250E1;Input: AC 100-240V,				
Power Supply.	50/60Hz ,1.8A)				
Hardware Version:	V1.2				
Software Version:	Android 5.1				

Channel List							
	Channel List for 802.11a/n-HT20/ac-VHT20						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	40	5200	44	5220		
48	5240	149	5745	153	5765		
157	5785	161	5805	165	5825		

	Channel List f	or 802.11n-HT	40/ac-VHT40
--	----------------	---------------	-------------

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230	151	5755	159	5795

Channel List for 802.11ac-VHT80


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	155	5775	-			

1. All the modulation modes were tested with both AC 120v 60Hz and AC230V 50Hz, the data of the worst mode with AC 120V 60Hz are recorded.

3.2 Description of Test conditions

(1) EUT was tested in normal configuration (Please See following Block diagram)

(2) E.U.T. test conditions:

15.31(e): For intentional radiators, measurements of the variation of the input power or the adiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

(3) Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. If required reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over	Number of	Location in
which device operates	frequencies	the range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More then 10 Milz	2	1 near top, 1 near middle and
More than 10 MHz	3	1 near bottom

(4) Frequency range of radiated measurements:

According to the 15.33, The test range will be up to the tenth harmonic of the highest fundamental frequency.

- (5) The EUT 's duty cycle is set to 100%
- (6) The measurements are performed at all Bit Rate of Transmitter, For all tests the worst-case was selected as the table below, the data of the worst-case is shown in the report.

Test Mode	Mode 1: Transmit by 802.11a			
	Mode 2: Transmit by 802.11n-HT20			
	Mode 3: Transmit by 802.11n-HT40			
	Mode 4: Transmit by 802.11ac-VHT20			
	Mode 5: Transmit by 802.11ac-VHT40			
	Mode 6: Transmit by 802.11ac-VHT80			

4 Equipments List for All Test Items

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
MXA Signal Analyzer	Agilent	N9020A	MY56070279	Aug. 21, 2021	Aug. 20, 2022	1 year
Coaxial Cable	CDS	79254	46107086	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Meter	Anritsu	ML2495A	0949003	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Sensor	Anritsu	MA2411B	0917017	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Rohde&Schwa rz	FSU26	1166.1660.26	Aug. 21, 2021	Aug. 20, 2022	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibratio n period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	Aug. 21, 2021	Aug. 20, 2022	1 year
Bilog Antenna	SCHWARZBE CK	VULB9160	9160-3355	Aug. 21, 2021	Aug. 20, 2022	1 year
Preamplifier (low frequency)	SCHWARZBE CK	BBV 9475	9745-0013	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	Schwarzbeck	PLF-100	549489	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBE CK	9120D	9120D-1246	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Amplifier	LUNAR EM	LNA1G18- 40	J101000008 1	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBE CK	BBHA 9170	9170-181	Aug. 21, 2021	Aug. 20, 2022	1 year

Amplifier	SCHWARZBE CK	BBV 9721	9721-205	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	H+S	CBL-26	N/A	Aug. 21, 2021	Aug. 20, 2022	1 year
RF Cable	R&S	R204	R21X	Aug. 21, 2021	Aug. 20, 2022	1 year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	L2-16B	000WX31025	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	ENV216	101342	Aug. 21, 2021	Aug. 20, 2022	1 year

4.1 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(9KHz~30MHz)	±2.54dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Remark: The coverage Factor (k=2), and measure	ment Uncertainty for a level of Confidence of 95%

4.2 Description of Support Units

Equipment	Model No.	Series No.
-	-	-

Report No.: PTC21073003102E-FC04

5 Test Result

5.1 Conduction Emissions Measurement

5.1.1 Applied procedures / Limit

(Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Quasi-peak (dBuV)	Average (dBuV)	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	

0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

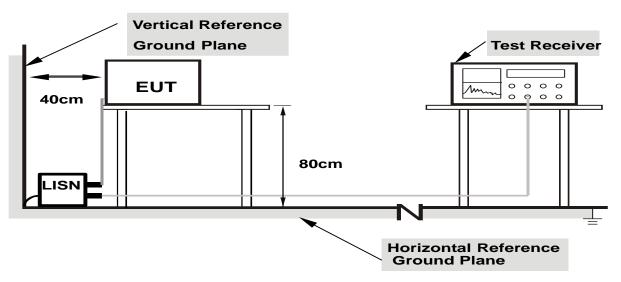
5.1.2 E.U.T. Operation

Operating Environment :

Temperature	:	23.9 °C
Humidity	:	51.4 % RH
Atmospheric Pressure	:	101.21kPa

5.1.3 Test procedure

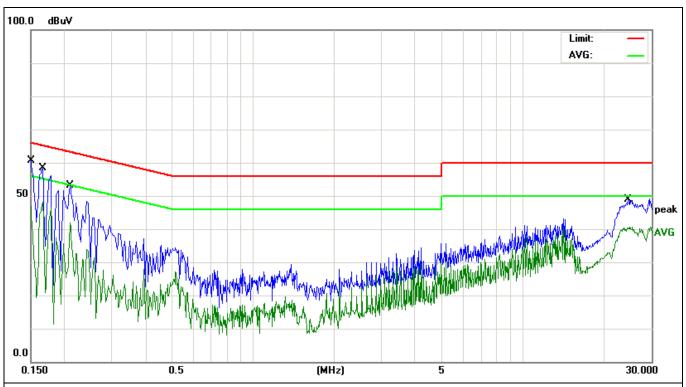
- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos


Report No.: PTC21073003102E-FC04

5.1.4 DEVIATION FROM TEST STANDARD

No deviation

5.1.5 TEST SETUP


Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

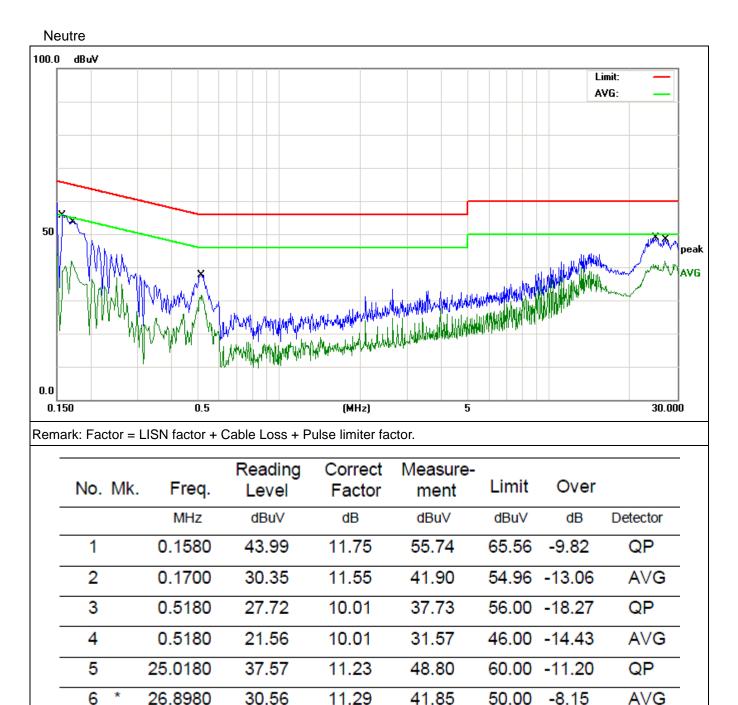
Report No.: PTC21073003102E-FC04

5.1.6 Test results

Line

Remark: Factor = I	LISN factor +	Cable Loss +	Pulse limiter factor.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.1500	48.76	11.94	60.70	65.99	-5.29	QP
2	0.1660	36.47	11.61	48.08	55.15	-7.07	AVG
3	0.2100	41.98	11.06	53.04	63.20	-10.16	QP
4	0.2100	30.80	11.06	41.86	53.20	-11.34	AVG
5	24.5980	37.74	11.22	48.96	60.00	-11.04	QP
6	24.8260	29.45	11.23	40.68	50.00	-9.32	AVG


Note: Emission Level = Reading + AMN Factor+Cable Loss

Over limited=Emission Level - Limit

6

Report No.: PTC21073003102E-FC04

Note: Emission Level = Reading + AMN Factor+Cable Loss Over limited=Emission Level - Limit

41.85

50.00

5.2 Radiated Emissions Measurement

5.2.1 Applied procedures / Limit

FCC Part15 section 15.407

Test Requirement: Limits:

. .

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz at 3M)

FREQUENCY (MHz)	PEAK (dBuV/m)	AVERAGE (dBuV/m)
Above 1000	74	54

Notes:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Measurement Distance:	3m (Semi-Anechoic Chamber)
Frequency range	9 kHz – 40 GHz for transmitting mode.
	Test instrumentation resolution bandwidth 9 kHz (9 kHz - 30 MHz), 120 kHz (30 MHz - 1000 MHz), 1 MHz (1000 MHz – 40 GHz)

Report No.: PTC21073003102E-FC04

Detector:

For PK and QP value: RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold For AV value: RBW = 1 MHz for $f \ge 1$ GHz, VBW =10 Hz Sweep = auto Detector function = peak Trace = max hold

Test Procedure:

1)9 kHz to 30 MHz emissions:

For testing performed with the loop antenna, testing was performed in accordance to ANSI C63.10. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT, During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2)30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

3)1 GHz to 40 GHz emissions:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz.

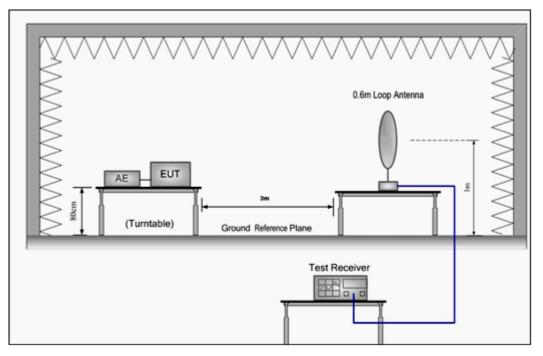
For testing performed with the horn antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scan between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

For the radiated emission test above 1GHz:

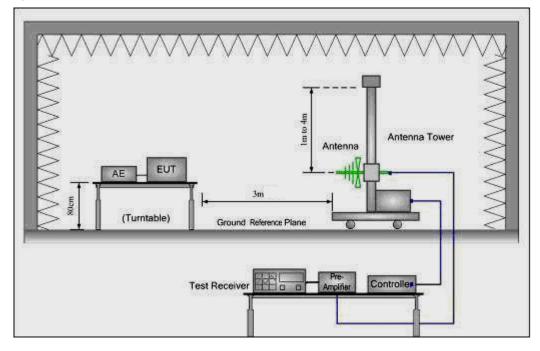
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

And according 15.35(a)

15.35(a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Interference (CISPR) of the International Electro technical Commission. As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, as long as the same bandwidths as indicated for CISPR quasi-peak measurements are employed.

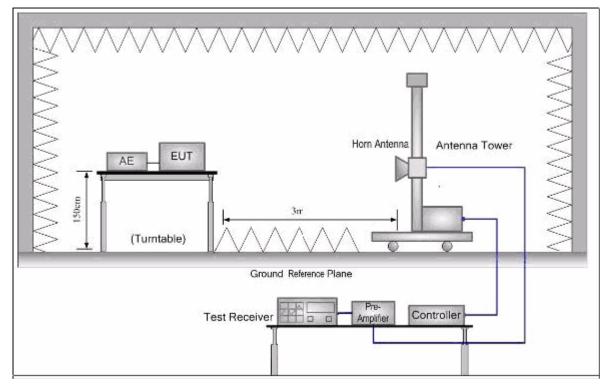

Note: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which CISPR quasi-peak measurements are specified, compliance with the regulations shall be demonstrated using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, using the same measurement bandwidths that are indicated for CISPR quasi-peak measurements.

According to 15.35 (b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.255, and 15.509-15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.



Test Configuration:

1) 9 kHz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

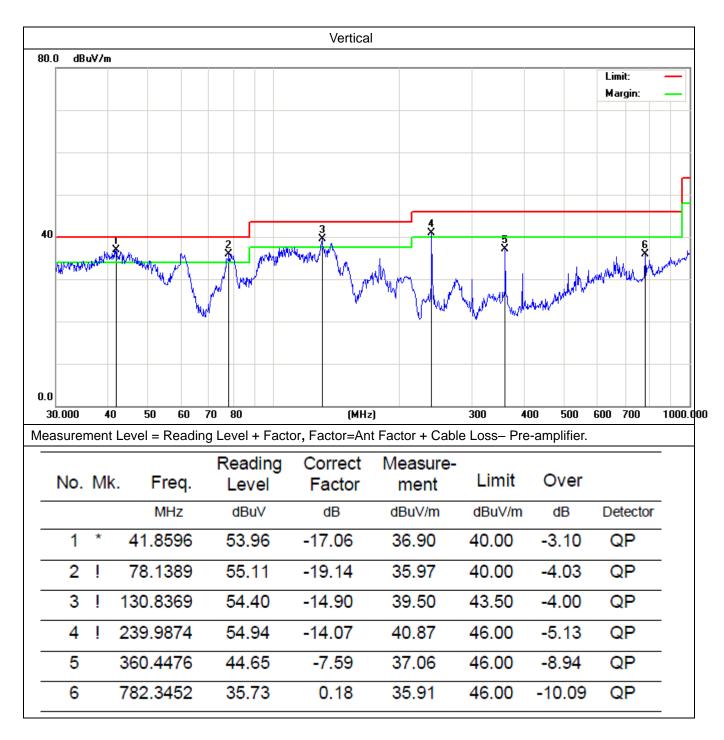
The field strength is calculated by adding the Antenna Factor, Cable Loss & Per-amplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna, Factor + Cable Loss - Preamplifier Factor

5.2.2 E.U.T. Operation

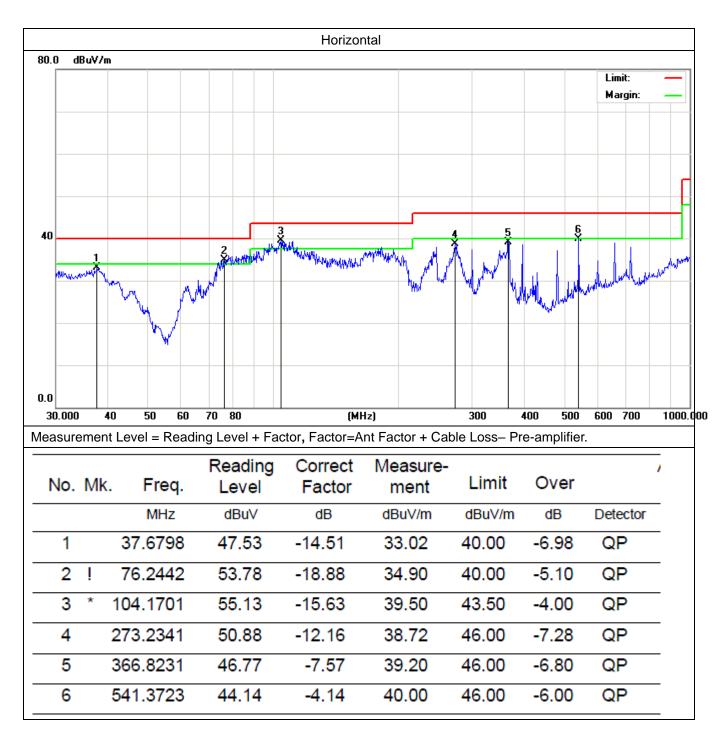
Operating Environment :

Temperature	:	23.9 °C
Humidity	:	51.4 % RH
Atmospheric Pressure	:	101.21kPa


5.2.3 Radiated Emissions Test Data

9 kHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement

The measurements with active loop antenna were greater than 20dB below the limit, so the test data were not recorded in the test report.



Note: Emission Level = Reading + Antenna Factor + Cable Loss – Pre-amplifier

Over limit=Emission Level - limit

Note: Emission Level = Reading + Antenna Factor + Cable Loss – Pre-amplifier

Over limit=Emission Level - limit

1~40 GHz Field Strength of Fundamental & Field Strength of Unwanted Emissions. Peak & Average Measurement.

TX Mode:	Ant	Ant			Measurement Distance:			3 m	
Test channel:	802.11a-5	180MHz	Freque	ncy Range:		1GHz to	40GHz		
RBW/VBW:	Spurious	Spurious emission: 1MHz/3MHz for Peak, 1MHz/10Hz for Average.							
Remark:	1. Average measurement was not performed if peak level lower than average limi2. Other frequency was 20dB below limit line within 1-40GHz, there is not show in the report.								
Vertical									
Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measure Level (dBuV/m)		Limit (dBuV/m)		largin (dB)	Detector Type	
10360.000	39.31	12.56	51.8	7	74.00		2.13	PEAK	
15540.000	37.85	16.45	54.3	0	74.00	-1	9.70	PEAK	
			Horiz	ontal					
Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Meas Lev (dBu\	rel	Limit (dBuV/m)		largin (dB)	Detector Type	
10360.000	38.52	12.56	51.0	8	74.00	-22.92		PEAK	
15540.000	36.49	16.45	52.9	4 74.00		-2	1.06	PEAK	

The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor –Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11a-5	220 MHz		Freque	ency Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	IHz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average lim								
Remark: 2. Other frequency was 20dB below limit line within 1-40GHz, there is not show							is not show		
	in the repo	ort.							
	·		Ver	tical					
Frequency	Reading	Correct	Mea	sure	Lincit			Detector Type	
Frequency	Level	Factor	Le	vel Limit (dBuV/m)		N	Margin (dB)		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)	(uD)			
10440.000	36.67	12.64	49.3	31	74.00	-2	24.69	PEAK	
15660.000	35.54	16.53	52.0)7	74.00	-2	21.93	PEAK	
			Horiz	zontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	Iorgin		
(MHz)	Level	Factor	Le	vel	(dBuV/m)	N	largin	Detector Type	
(10112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(dB)		
10440.000	37.12	12.64	49.7	76	74.00	-2	24.24	PEAK	
15660.000	35.36	16.53	51.8	39	74.00	-2	22.11	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11a-5	240 MHz		Frequency Range:			1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	MHz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average li								
Remark:	2. Other fr	equency was	s 20dB b	elow lir	nit line within 1.	40G	Hz, there	is not show	
	in the repo	ort.							
			Ver	tical					
Frequency	Reading	Correct	Mea	sure	Lingit	N4		Detector Type	
Frequency	Level	Factor	Lev	vel	Limit		largin		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(dB)			
10480.000	36.48	12.68	49.1	16	74.00	-2	24.84	PEAK	
15720.000	34.75	16.54	51.2	29	74.00	-2	2.71	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	Iorgin		
	Level	Factor	Lev	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10480.000	35.12	12.68	47.8	30	74.00	-2	26.20	PEAK	
15720.000	34.37	16.54	50.9	91	74.00	-2	23.09	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11a-5	745 MHz		Freque	ncy Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	IHz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average lin								
Remark: 2. Other frequency was 20dB below limit line within 1-40GHz, there is not show							is not show		
	in the repo	ort.							
			Ver	tical					
Freewooner	Reading	Correct	Mea	sure	Lingit	N 4		Detector Type	
Frequency	Level	Factor	Le			Margin (dB)			
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(uD)			
11490.000	33.84	16.82	50.6	66	74.00	-2	23.34	PEAK	
17235.000	35.72	22.93	58.6	65	74.00	-1	5.35	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11490.000	34.21	16.82	51.0)3	74.00	-2	2.97	PEAK	
17235.000	35.58	22.93	58.5	51	74.00	-1	5.49	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11a-5	785 MHz		Freque	ncy Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	/Hz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average lir								
Remark: 2. Other frequency was 20dB below limit line within 1-40GHz, there is not sho							is not show		
	in the repo	ort.							
			Ver	tical					
Freewooner	Reading	Correct	Mea	sure	Lingit	N 4		Detector Type	
Frequency	Level	Factor	Le				Margin (dB)		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(uD)			
11570.000	34.10	16.71	50.8	31	74.00	-2	23.19	PEAK	
17355.000	36.79	24.37	61.1	16	74.00	-1	2.84	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11570.000	33.25	16.71	49.9	96	74.00	-2	24.04	PEAK	
17355.000	35.58	24.37	59.9	95	74.00	-1	4.05	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11a-5	825 MHz		Freque	ncy Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	MHz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average lir								
Remark: 2. Other frequency was 20dB below limit line within 1-40GHz, the second							Hz, there	is not show	
	in the repo	ort.							
Vertical									
Frequency	Reading	Correct	Mea	sure	Limit	N	lorain		
	Level	Factor	Lev	vel	el (dBuV/m)		1argin (dB)	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/III)	(ub)			
11650.000	34.12	16.61	50.7	73	74.00	-2	3.27	PEAK	
17475.000	29.38	25.01	54.3	39	74.00	-1	9.61	PEAK	
			Hor	izontal					
Froquency	Reading	Correct	Mea	sure	Limit	N	Iorgin		
Frequency	Level	Factor	Lev	vel			largin (dB)	Detector Type	
(MHz)	(dBuV) (dB) (dBuV/m)		(dBuV/m)		(dB)				
11650.000	35.72	16.61	52.3	33	74.00	-2	1.67	PEAK	
17475.000	28.82	25.01	53.8	33	74.00	-2	0.17	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distance:			3 m		
Test channel:	802.11n H	IT20-5180M⊢	lz	Freque	ency Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	1Hz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average lim								
Remark: 2. Other frequency was 20dB below limit line within 1-40GHz, there is not she							is not show		
	in the repo	ort.							
	÷		Ver	tical					
Freesewares	Reading	Correct	Mea	sure	Lingit			Detector Type	
Frequency	Level	Factor	Lev	vel		N	Margin (dB)		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(uD)			
10360.000	33.24	12.56	45.8	30	74.00	-2	28.20	PEAK	
15540.000	35.37	16.45	51.8	32	74.00	-2	2.18	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Lev	vel		N	largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10360.000	35.73	12.56	48.2	29	74.00	-25.71		PEAK	
15540.000	36.15	16.45	52.6	60	74.00	-2	21.40	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measurement Distar			3 m		
Test channel:	802.11n H	IT20-5220M⊢	lz	Frequency Range:			1GHz to 40GHz		
RBW/VBW:	Spurious e	emission: 1M	Hz/3MH	MHz for Peak, 1MHz/10Hz for Average.					
	1. Average measurement was not performed if peak level lower than average limit								
Remark:	2. Other fr	equency was	s 20dB b	elow lir	nit line within 1	-40G	Hz, there	is not show	
	in the repo	ort.							
Vertical									
Frequency	Reading	Correct	Mea	sure	Limit	Marain			
Frequency (MHz)	Level	Factor	Le	vel	(dBuV/m)	Margin (dB)	•	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)	(uD)			
10440.000	33.98	12.64	46.62		74.00	-2	7.38	PEAK	
15660.000	29.44	16.53	45.9	97	74.00	-2	8.03	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	largin		
(MHz)	Level	Factor	Le	vel	(dBuV/m)		-	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(dB)		
10440.000	32.12	12.64	44.7	76	5 74.00		9.24	PEAK	
15660.000	28.91	16.53	45.4	14	74.00	-2	8.56	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant	Ant			Measurement Distance:			3 m		
Test channel: 802.11n HT20-5240MHz			lz	Frequency Range:			1GHz to 40GHz			
RBW/VBW: Spurious emission: 1MHz/3MH					Iz for Peak, 1MHz/10Hz for Average.					
	1. Average	1. Average measurement was not performed if peak level lower than average limit.								
Remark:	2. Other fr	2. Other frequency was 20dB below limit line within 1-40GHz, there is not show								
	in the repo	in the report.								
Vertical										
Frequency	Reading	Correct	Mea	sure	Limit	5.4	lorgin			
Frequency (MHz)	Level	Factor	Le	evel (dBuV/m			/largin (dB)	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)	(UD)				
10480.000	33.15	12.68	45.8	33	74.00	-2	8.17	PEAK		
15720.000	29.36	16.54	6.54 45.9		74.00	-2	8.10	PEAK		
Horizontal										
Frequency (MHz)	Reading	Correct	Mea	sure	Limit	Margin				
	Level	Factor	Le	vel	(dBuV/m)	•	-	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(dB)			
10480.000	34.50	12.68	47.1	18	74.00	-2	6.82	PEAK		
15720.000	28.83	16.54	45.3	37	74.00	-2	8.63	PEAK		

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant				Measurement Distance:			3 m		
Test channel: 802.11n HT20-5745MHz			lz	Frequency Range:			1GHz to 40GHz			
RBW/VBW: Spurious emission: 1MHz/3MH					Iz for Peak, 1MHz/10Hz for Average.					
	1. Average	1. Average measurement was not performed if peak level lower than average limit.								
Remark:	2. Other fr	2. Other frequency was 20dB below limit line within 1-40GHz, there is not show								
	in the repo	in the report.								
			Ver	tical						
Frequency	Reading	Correct	Mea	sure	Lincit	Mora	lorgin			
Frequency (MHz)	Level	Factor	Le	vel			Margin	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(dB)				
11490.000	34.95	16.82	51.7	77	74.00	-2	2.23	PEAK		
17235.000	29.91	22.93 52.8		34	74.00	4.00 -2		PEAK		
Horizontal										
Frequency	Reading	Correct	Mea	sure	Limit	Margin				
Frequency	Level	Factor	Le	vel			-	Detector Type		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)			
11570.000	35.83	16.71	52.5	54	74.00	-2	21.46	PEAK		
17235.000	28.42	22.93	51.3	35	74.00	-2	2.65	PEAK		

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant	nt			Measurement Distance:			3 m		
Test channel: 802.11n HT20-5785MHz			Frequency Range:			1GHz to 40GHz				
RBW/VBW: Spurious emission: 1MHz/3MH:					Iz for Peak, 1MHz/10Hz for Average.					
	1. Average	1. Average measurement was not performed if peak level lower than average limit.								
Remark:	2. Other fr	2. Other frequency was 20dB below limit line within 1-40GHz, there is not show								
	in the repo	in the report.								
Vertical										
Frequency	Reading	Correct	Mea	sure	Lincit		Ao rain			
Frequency (MHz)	Level	Factor	Le			Margin	Detector Type			
	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)	(dB)				
11570.000	35.39	16.71	52.1	10	74.00	-2	21.90	PEAK		
17355.000	28.72	24.37	53.09		74.00		20.91	PEAK		
Horizontal										
Frequency (MHz)	Reading	Correct	Mea	sure	Limit	Morgin				
	Level	Factor	Le	vel		Margin	-	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)			
11570.000	36.12	16.71	52.8	33	74.00	-2	21.17	PEAK		
17355.000	29.48	24.37	53.8	35	74.00	-2	20.15	PEAK		

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant	Ant			Measurement Distance:			3 m		
Test channel: 802.11n HT20-5825MH			lz	Frequency Range:			1GHz to 40GHz			
RBW/VBW: Spurious emission: 1MHz/3MI				Hz for Peak, 1MHz/10Hz for Average						
	1. Average	1. Average measurement was not performed if peak level lower than average limit.								
Remark:	2. Other fr	2. Other frequency was 20dB below limit line within 1-40GHz, there is not show								
	in the repo	in the report.								
Vertical										
Frequency	Reading	Correct	Mea	sure	Limit	Ма	lorgin			
Frequency (MHz)	Level	Factor	Le	vel Limit (dBuV/m)			Margin	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(ubuv/iii)	(dB)				
11650.000	33.56	16.61	50.1	17	74.00	-2	23.83	PEAK		
17475.000	29.71	29.71 25.01		72	74.00 -19		9.28	PEAK		
Horizontal										
Frequency (MHz)	Reading	Correct	Measure		Limit	Margin				
	Level	Factor	Le	vel		Margin	-	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)			
11650.000	34.82	16.61	51.4	43	74.00	-2	2.57	PEAK		
17475.000	28.37	25.01	53.3	38	74.00	-2	20.62	PEAK		

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11n H	IT40-5190MH	lz	Freque	ency Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average measurement was not performed if peak level low							n average limit.	
Remark: 2. Other frequency was 20dB below limit line within 1-						40G	Hz, there	is not show	
	in the report.								
Vertical									
Freesewares	Reading	Correct			Lingit	N	Ao rain		
Frequency	Level	Factor	Lev	vel	Limit	Margin (dB)	-	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(ub)		
10380.000	39.13	12.58	51.7	71	74.00	-2	2.29	PEAK	
15570.000	28.50	16.48	44.9	98	74.00	-2	9.02	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Lev	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10380.000	38.30	12.58	50.8	38	74.00	-2	23.12	PEAK	
15570.000	29.43	16.48	45.9	91	74.00	-2	28.09	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11n H	T40-5230MH	lz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB be					nit line within 1.	40G	Hz, there	is not show	
	in the report.								
			Ver	tical					
Frequency	Reading	Correct	Mea	sure	L ince it		lorgin	Detector Type	
Frequency (MHz)	Level	Factor	Lev	vel (dBuV/m)			/largin (dB)		
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)				
10460.000	37.40	12.66	50.0	06	74.00	-2	23.94	PEAK	
15690.000	28.21	16.53	44.7	74	74.00	-2	9.26	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	N	lorgin		
. ,	Level	Factor	Lev	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10460.000	36.23	12.66	48.8	39	74.00	-2	25.11	PEAK	
15690.000	26.54	16.53	43.0)7	74.00	-3	80.93	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11n H	IT40-5755M⊦	lz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB bel					nit line within 1.	40G	Hz, there	is not show	
	in the repo	ort.							
			Ver	tical					
Frequency	Reading	Correct	Mea	vel (dBuV/m)		Ν	lorgin	Detector Type PEAK	
Frequency (MHz)	Level	Factor	Le				/largin (dB)		
	(dBuV)	(dB)	(dBu	V/m)	(ubu v/III)				
11510.000	34.59	16.78	51.3	37	74.00	-2	2.63	PEAK	
17265.000	28.31	23.29	51.6	60	74.00	-2	2.40	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	Iorgin		
	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11510.000	35.12	16.78	51.9	90	74.00	-2	2.10	PEAK	
17265.000	29.43	23.29	52.7	72	74.00	-2	21.28	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11n H	IT40-5795MH	lz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB below					nit line within 1.	40G	Hz, there	is not show	
	in the repo	ort.							
			Ver	tical					
Frequency	Reading	Correct	Mea	easure		Ν	lorgin		
Frequency (MHz)	Level	Factor	Le	vel	el (dBuV/m)		/largin (dB)	Detector Type	
	(dBuV)	(dB)	(dBu	V/m)	(ubu v/III)				
11590.000	36.31	16.69	53.0	00	74.00	-2	21.00	PEAK	
17385.000	31.40	24.73	56.1	13	74.00	-1	7.87	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	Iorgin		
	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11590.000	34.87	16.69	51.5	56	74.00	-2	2.44	PEAK	
17385.000	28.20	24.73	52.9	93	74.00	-2	21.07	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT20-5180M	Hz	Freque	ency Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average measurement was not performed if peak level low							n average limit.	
Remark: 2. Other frequency was 20dB below limit line within 1-						-40G	Hz, there	is not show	
	in the report.								
Vertical									
Freesewares	Reading	Correct			Lingit	Ν	Ao rain		
Frequency	Level	Factor	Le	vel	Limit (dBuV/m)	Margin (dB)		Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(abuv/m)		(ub)		
10360.000	34.79	12.56	47.3	35	74.00	-2	26.65	PEAK	
15540.000	30.48	16.45	46.9	93	74.00	-2	27.07	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Le	vel		N	largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10360.000	33.05	12.56	45.6	61	74.00	-2	28.39	PEAK	
15540.000	29.34	16.45	45.7	79	74.00	-2	28.21	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT20-5220M	Hz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	Iz for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB below lin					nit line within 1.	40G	Hz, there	is not show	
	in the report.								
			Ver	tical					
Frequency	Reading	Correct	Measure		Lingit	Ν	lorgin		
Frequency (MHz)	Level	Factor	Le	vel (dBuV/m)		Margin (dB)	Detector Type		
	(dBuV)	(dB)	(dBu	V/m)	(ubu v/III)				
10440.000	34.87	12.64	47.5	51	74.00	-2	26.49	PEAK	
15660.000	31.69	16.53	48.2	22	74.00	-2	25.78	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	Iorgin		
	Level	Factor	Le	vel			largin (dB)	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10440.000	33.66	12.64	46.3	30	74.00	-2	27.70	PEAK	
15660.000	32.01	16.53	48.5	54	74.00	-2	25.46	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT20-5240M	Hz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB below					nit line within 1.	-40G	Hz, there	is not show	
	in the report.								
Vertical									
Frequency	Reading	Correct	Mea	sure	Limit		lorgin	Detector Type	
Frequency (MHz)	Level	Factor	Le	vel			/largin (dB)		
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(ub)		
10480.000	34.46	12.68	47.1	14	74.00	-2	6.86	PEAK	
15720.000	32.93	16.54	49.4	47	74.00	-2	4.53	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	largin		
(MHz)	Level	Factor	Le	vel	(dBuV/m)		-	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(dB)		
10480.000	33.15	12.68	45.8	33	74.00	-2	8.17	PEAK	
15720.000	34.79	16.54	51.3	33	74.00	-2	2.67	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT20-5745M	Hz	Freque	ency Range:		1GHz to 40GHz		
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average measurement was not performed if peak level low							n average limit.	
Remark: 2. Other frequency was 20dB below limit line within 1-4						40G	Hz, there	is not show	
	in the repo	ort.							
Vertical									
Frequency	Reading	Correct	Measure		Limit	Ν	lorgin		
Frequency (MHz)	Level	Factor	Le	vel (dBuV/m)			largin (dB)	Detector Type	
	(dBuV)	(dB)	(dBu	V/m)	(ubuv/iii)		(dB)		
11490.000	34.93	16.82	51.7	75	74.00	-2	2.25	PEAK	
17235.000	32.76	22.93	55.6	69	74.00	-1	8.31	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11490.000	36.17	16.82	52.9	99	74.00	-2	21.01	PEAK	
17235.000	28.22	22.93	51.1	15	74.00	-2	2.85	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m	
Test channel:	802.11ac	HT20-5785M	Hz	Freque	ency Range:		1GHz to	40GHz
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.	
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.
Remark: 2. Other frequency was 20dB below					nit line within 1.	-40G	Hz, there	is not show
	in the report.							
			Ver	tical				
Frequency	Reading	Correct	Mea	Limit Vel (dBuV/m)		Ν	lorgin	
Frequency (MHz)	Level	Factor	Le			N	/largin (dB)	Detector Type
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)	(40)		
11570.000	35.86	16.71	52.5	57	74.00	-2	21.43	PEAK
17355.000	29.14	24.37	53.5	51	74.00	-2	20.49	PEAK
			Hor	izontal				
Frequency	Reading	Correct	Mea	sure	Limit	Ν	largin	
(MHz)	Level	Factor	Le	vel	(dBuV/m)	N	-	Detector Type
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(dB)	
11570.000	34.27	16.71	50.9	98	74.00	-2	23.02	PEAK
17355.000	28.66	24.37	53.0)3	74.00	-2	20.97	PEAK

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT20-5825M	Hz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	Iz for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was I	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB below					nit line within 1.	40G	Hz, there	is not show	
	in the report.								
			Ver	tical					
Frequency	Reading	Correct	Mea	Measure		Morgin			
Frequency (MHz)	Level	Factor	Le	vel	Limit (dBuV/m)	Margin (dB)	-	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)				
11650.000	35.58	16.61	52.1	19	74.00	-2	21.81	PEAK	
17475.000	29.30	25.01	54.3	31	74.00	-1	9.69	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	largin		
(MHz)	Level	Factor	Le	vel			-	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	i) (dBuV/m)		(dB)		
11650.000	33.29	16.61	49.9	90	74.00	-2	24.10	PEAK	
17475.000	28.76	25.01	53.7	77	74.00	-2	20.23	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT40-5190M	Hz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious e	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.	
Remark: 2. Other frequency was 20dB belo					nit line within 1.	40G	Hz, there	is not show	
	in the report.								
			Ver	tical					
Frequency	Reading	Correct	Mea	sure			lorgin	Detector Type	
Frequency (MHz)	Level	Factor	Le	vel (dBuV/m)			Margin (dB)		
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/m)		(ub)		
10380.000	33.12	12.58	45.7	70	74.00	-2	8.30	PEAK	
15570.000	30.35	16.48	46.8	33	74.00	-2	7.17	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	largin		
(MHz)	Level	Factor	Le	vel			-	Detector Type	
(101112)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10380.000	35.57	12.58	48.1	15	74.00	-2	25.85	PEAK	
15570.000	32.60	16.48	49.0	08	74.00	-2	4.92	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT40-5230M	Hz	Freque	ency Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average measurement was not performed if peak level lo							n average limit.	
Remark: 2. Other frequency was 20dB below limit line with						40G	Hz, there	is not show	
	in the report.								
Vertical									
Frequency	Reading	Correct			Lincit	Ν	lorgin		
Frequency	Level	Factor	Le	vel	Limit (dBuV/m)	Margin (dB)	Detector Type		
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(abuv/m)		(ub)		
10460.000	34.21	12.66	46.8	37	74.00	-2	27.13	PEAK	
15690.000	30.66	16.53	47.1	19	74.00	-2	26.81	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin		
Frequency	Level	Factor	Le	vel			largin	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
10460.000	35.14	12.66	47.8	30	74.00	-2	26.20	PEAK	
15690.000	30.77	16.53	47.3	30	74.00	-2	26.70	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m	
Test channel:	802.11ac	HT40-5755M	Hz	Freque	ncy Range:		1GHz to	40GHz
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.	
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.
Remark:	2. Other fr	equency was	320dB b	elow lir	nit line within 1.	-40G	Hz, there	is not show
	in the repo	ort.						
	·		Ver	tical				
Frequency	Reading	Correct	Mea	sure	Lingit	N	lorgin	
	Level	Factor	Le	vel	Limit		largin	Detector Type
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)	
11510.000	36.37	16.78	53.1	15	74.00	-2	0.85	PEAK
17265.000	32.92	23.29	56.2	21	74.00	-1	7.79	PEAK
			Hor	izontal				
Frequency	Reading	Correct	Mea	sure	Limit	N	Aorain	
Frequency	Level	Factor	Le	vel			largin	Detector Type
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)	
11510.000	34.85	16.78	51.6	63	74.00	-2	2.37	PEAK
17265.000	31.20	23.29	54.4	49	74.00	-1	9.51	PEAK

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m	
Test channel:	802.11ac	HT40-5795M	Hz	Freque	ncy Range:		1GHz to	40GHz
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.	
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.
Remark:	2. Other fr	equency was	20dB b	elow lir	nit line within 1.	40G	Hz, there	is not show
	in the repo	ort.						
	÷		Ver	tical				
Freeswares	Reading	Correct	Mea	sure	Lingit	N		
	Level	Factor	Le	vel	Limit		Margin (dB)	Detector Type
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)			
11590.000	33.17	16.69	49.8	36	74.00	-2	4.14	PEAK
17385.000	31.62	24.73	56.3	35	74.00	-1	7.65	PEAK
			Hor	izontal				
Frequency	Reading	Correct	Mea	sure	Limit	Ν	lorgin	
	Level	Factor	Le	vel			largin (dB)	Detector Type
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)	
11590.000	34.80	16.69	51.4	49	74.00	-2	2.51	PEAK
17385.000	30.35	24.73	55.0	08	74.00	-1	8.92	PEAK

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m	
Test channel:	802.11ac	HT80-5210M	Hz	Freque	ncy Range:		1GHz to	40GHz
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.	
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel	lower tha	n average limit.
Remark:	2. Other fr	equency was	320dB b	elow lir	nit line within 1.	-40G	Hz, there	is not show
	in the repo	ort.						
			Ver	tical				
Frequency	Reading	Correct	Mea	sure	Lingit	N	lorgin	
Frequency (MHz)	Level	Factor	Le	vel	Limit (dBu)//m)		largin (dB)	Detector Type
	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)	
10420.000	32.16	12.62	44.7	78	74.00	-2	9.22	PEAK
15630.000	29.94	16.52	46.4	46	74.00	-2	7.54	PEAK
			Hor	izontal				
Frequency	Reading	Correct	Mea	sure	Limit	N	lorgin	
Frequency (MHz)	Level	Factor	Le	vel	(dBuV/m)		largin (dB)	Detector Type
(101112)	(dBuV)	(dB)	(dBu	V/m)	(ubu v/III)		(dB)	
10420.000	34.52	12.62	47.1	14	74.00	-2	6.86	PEAK
15630.000	31.76	16.52	48.2	28	74.00	-2	5.72	PEAK

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

TX Mode:	Ant			Measu	rement Distanc	e:	3 m		
Test channel:	802.11ac	HT80-5775M	Hz	Freque	ncy Range:		1GHz to	40GHz	
RBW/VBW:	Spurious	emission: 1M	Hz/3MH	z for Pe	eak, 1MHz/10H	z for	Average.		
	1. Average	e measureme	ent was i	not perf	ormed if peak l	evel l	ower tha	n average limit.	
Remark:	2. Other fr	equency was	320dB b	elow lir	nit line within 1.	-40G	Hz, there	is not show	
	in the repo	ort.							
			Ver	tical					
Frequency	Reading	Correct	Mea	sure	Lingit	N	lorgin		
	Level	Factor	Le	vel	Limit		largin (dB)	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11550.000	33.11	16.73	49.8	34	74.00	-2	4.16	PEAK	
17325.000	30.45	24.01	54.4	46	74.00	-1	9.54	PEAK	
			Hor	izontal					
Frequency	Reading	Correct	Mea	sure	Limit	N	Iorgin		
	Level	Factor	Le	vel			largin (dB)	Detector Type	
(MHz)	(dBuV)	(dB)	(dBu	V/m)	(dBuV/m)		(dB)		
11550.000	34.78	16.73	51.5	51	74.00	-2	2.49	PEAK	
17325.000	31.54	24.01	55.5	55	74.00	-1	8.45	PEAK	

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor.

Average measurement was not performed if peak level lower than average limit.

No any other emissions level which are attenuated less than 20dB below the limit.

According to 15.31(o), The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part.

5.3 Radiated Restricted Band Edge Measurement

5.3.1 Applied procedures / Limit

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

(4) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

(5) The provisions of §15.205 apply to intentional radiators operating under this section. (6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

5.3.2 Test procedure

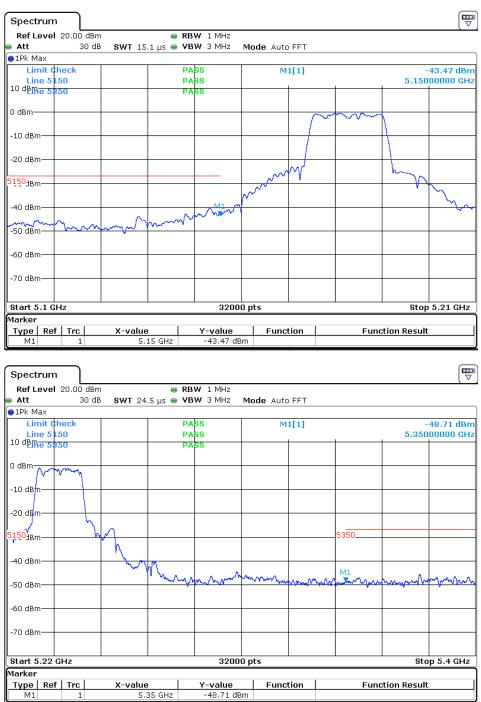
For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 5150 MHz
Start/Stop Frequency	Upper Band Edge: 5350 MHz
RB / VB (emission in restricted band)	1000 KHz/3000 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stan Fraguanay	Lower Band Edge: 5700 to 5725 MHz
Start/Stop Frequency	Upper Band Edge: 5850 to 5870 MHz
RB / VB (emission in restricted band)	1000 KHz/3000 KHz
Trace-Mode:	Max hold

Report No.: PTC21073003102E-FC04


5.3.3 Deviation from standard

No deviation.

5.3.4 Test results

Ant 802.11 a

Report No.: PTC21073003102E-FC04

Spectrum						(₩
Ref Level 20.00 dBr	_	RBW 1 MHz				
Att 30 d	B 🛛 SWT 20.9 μs 👄	VBW 3 MHz M	lode Auto FFT			
∋1Pk Max						
Limit Check		PASS	M2[1]		-35.66 d	lBn
Line 5725		PASS			5.72500000	
10 dBm 5850		PASS	M1[1]		-45.27 d	
			1		5.71500000	GH
0 dBm				_		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-10 dBm						
				N N		
-20 dBm						
705						
5725jBm		M2	~	hr		
-40 dBm		M1 /			M .	
mannon	mann	mann			mon	$\sim$
-SDABM-1						-
-60 dBm						
-70 dBm						
Start 5.65 GHz	1 1	32000	pts	1	Stop 5.8 G	Hz
Marker			-			_
Type   Ref   Trc	X-value	Y-value	Function	Fund	ction Result	
M1 1	5.715 GHz	-45.27 dBm				_
M2 1	5.725 GHz	-35.66 dBm				

Spectrum	Γ								
Ref Level	l 20.00 dBm		👄 F	RBW 1 MHz					
Att	30 dB	SWT 15.	3 µs 👄 ٧	BW 3 MHz	Mode Auto	) FFT			
●1Pk Max									
Limit C			F	PASS	M	2[1]		-	-46.37 dBm
Line 5 10 dBm Line 5	725		F	PASS				5.860	000000 GHz
TU aeme 5	850		F	PASS	M	1[1]			-42.87 dBm
								5.850	00000 GHz
0 dBm	~		~						
-10 dBm									
			1		50	-			
-20 dBm					50				
	~		7						
-30 dBm-	Ŷ		V	~~~					
				Marine I	1				
~40 dBm				1	m M	2 mm			
					- ~~~	m	mon w	h	m
-50 dBm									
-60 dBm									
-70 dBm									
CF 5.85 GH	Ηz			3200	0 pts	1	I	Span	100.0 MHz
Marker									
Type   Re	f   Trc	X-value	1	Y-value	Func	tion	Fund	ction Result	: (
M1	1	5.8	35 GHz	-42.87 dB	m				
M2	1	5.8	36 GHz	-46.37 dB	m				



Spectrum							[₩
Ref Level 20.00 dBn	-	RBW 1 MHz					
	B SWT 15.1 μs 🖷	• VBW 3 MHz	Mode Auto	D FFT			
)1Pk Max							
Limit Check		PASS	M	1[1]			-41.63 dBm
Line 5150		PASS				5.15	000000 GH2
10 dBM e 5350		PASS					
) dBm				0-	hon		
				1 1 -		Λ	
-10 dBm			-		-		-
						11	
-20 dBm				+			
150 _{JBm}				ΓV			
			$\left  \right\rangle$	· ·		· · · ·	
-40 dBm		0 ^{M1}					12
		- AV					
mont	man	4					
-50 dBm							
-60 dBm			1	1			
-70 dBm							
			00 pts			0.1-	p 5.21 GHz
		371				ຽເບ	p 5.21 GHZ
			00 pt3				
larker							
larker Type Ref Trc M1 1 Spectrum	X-value 5.15 GHz	Y-value	Func	tion	Fun	nction Resul	t V
Spectrum Ref Level 20.00 dBn	5.15 GHz	Y-value -41.63	Func		Fun	nction Resul	
Tarker Type Ref Trc M1 1 Spectrum	5.15 GHz	Y-value -41.63	Func		Fun	action Resul	
Narker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	Y-value -41.63	Func dBm Mode Auto	D FFT	Fun		Ū
Barker       Type     Ref     Trc       M1     1       Spectrum     1       Ref Level     20.00 dBn       Att     30 di       \$IPk Max       Limit check       Lime \$150	5.15 GHz	Y-value -41.63 RBW 1 MHz VBW 3 MHz	Func dBm Mode Auto		Fun		-49.40 dBn
Barker       Type     Ref     Trc       M1     1       Spectrum     1       Ref Level     20.00 dBn       Att     30 di       \$IPk Max       Limit check       Lime \$150	5.15 GHz	Y-value           -41.63           RBW 1 MHz           VBW 3 MHz           PA\$S	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Barker       Type     Ref     Trc       M1     1       Spectrum     1       Ref Level     20.00 dBn       Att     30 di       \$IPk Max       Limit check       Lime \$150	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Name         Name           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Name         Name           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Barker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Barker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	Fun		-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350		-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT			-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT			-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350		-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT		5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the system of t	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the system           Ref Level         20.00 dBn           Att         30 di           91Pk Max         Limit Check           Lime 5150         10 dBm           -10 dBm	5.15 GHz	PASS PASS PASS	Mode Auto	D FFT	5350	5.35	-49.40 dBn 000000 GH2
Jarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS PASS	Func dBm Mode Auto	D FFT	5350	5.35	-49.40 dBn
Type         Ref         Trc           M1         1           Spectrum	5.15 GHz	Y-value           -41.63           RBW 1 MHz           VBW 3 MHz           PASS           PASS           PASS           PASS           PASS           PASS           PASS           PASS           PASS           PASS	Mode Auto	2 FFT 1[1]	5350	5.35	-49.40 dBm 000000 GHz
Iarker           Type         Ref         Trc           M1         1           Spectrum         Image: Construct of the second seco	5.15 GHz	PASS PASS PASS	Mode Auto	2 FFT 1[1]	5350	5.35	-49.40 dBm 000000 GHz

#### Ant 802.11 n20



Report No.: PTC21073003102E-FC04

Spectrum					
Ref Level 20.00 dBr	n 😑	RBW 1 MHz			
Att 30 d	В <b>SWT</b> 20.9 µs 👄	VBW 3 MHz M	<b>Iode</b> Auto FFT		
1Pk Max					
Limit Check		PASS	M2[1]		-30.86 dBn
Line 5725		PASS			5.72500000 GH
10 dBm 5850		PASS	M1[1]		-40.89 dBn
				1	5.71500000 GH
0 dBm			- 0- 0		
			(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	
-10 dBm					
				1	
-20 dBm					
		M2	W I		
5725 _{JBm}		1		- they	
		_M1 (~		<u> </u>	0.0
-40 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
mono	mont	sur .			home
-50 dBm	···· · · ·				
-60 dBm					
-70 dBm					
Start 5.65 GHz		32000	nts	I	Stop 5.8 GHz
Aarker		52000	PC3		500p 5.0 GHz
Type   Ref   Trc	X-value	Y-value	Function	Eup	ction Result
M1 1	5.715 GHz	-40.89 dBr		Fun	
M2 1	5.725 GHz	-30.86 dBr			
	chieb drie	20100 4011			

Spectrum					
Ref Level 20.00 dB	im 😑	RBW 1 MHz			
Att 30 (	dB 🛛 <b>SWT</b> 15.3 μs 👄	VBW 3 MHz M	ode Auto FFT		
●1Pk Max					
Limit Check		PASS	M2[1]		-45.25 dBm
Line 5725 10 dBm 5850		PASS			5.86000000 GHz
^{10 d} Eine 5850		PASS	M1[1]		-43.58 dBm
				1	5.85000000 GHz
0 dBm	0				
	$\gamma \gamma \gamma \gamma$				
-10 dBm					
		5850			
-20 dBm					
-30 dBm	- · · · · · · · · · · · · · · · · · · ·				
~~~~		1 m			
-40 dBm			$\Delta \Delta^{M^2}$		
·				mm	man
-50 dBm					,
-60 dBm					
-70 dBm					
CF 5.85 GHz		32000 p	ots	I	Span 100.0 MHz
Marker		•			
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result
M1 1	5.85 GHz	-43.58 dBm			
M2 1	5.86 GHz	-45.25 dBm			

Spectrum						Ē
·						(7
Ref Level 20.00 dBr Att 30 d		RBW 1 MHz	Mada Auto FFT			
1Pk Max	В SWT 20.9 µs 👄		Mode Auto FFT			
Limit Check		PASS	M2[1]			34.23 dBi
Line 5725		PASS	MZ[1]			00000 GH
Line 5725 10 dBm Line 5850		PASS	M1[1]			37.63 dBi
Line 5050		r n p o				00000 GH
) dBm						
			mm	m		
10 dBm				Ann	17	
20 dBm					+	
725 _{JBm}		MI				$ \rightarrow $
			Î Î		l ma	K h
40 dBm		JAN T				•
50 dBm	mm m	Y"				
50 dBm						
60 dBm						
70 dBm						
tart 5.65 GHz		3200	0 pts		Sto	p 5.8 GHz
arker			•			
iype Kef Irc	X-value	Y-value	Function	Fun	ction Result	
M1 1	5.715 GHz	-37.63 dB	im	Fun	ction Result	
M1 1 M2 1			im	Fun	ction Result	
M1 1 M2 1 Spectrum Ref Level 20.00 dBr	5.715 GHz 5.725 GHz m	-37.63 dE -34.23 dE RBW 1 MHz	m	Fun	ction Result	
M1 1 M2 1 Spectrum Ref Level 20.00 dBr Att 30 d	5.715 GHz 5.725 GHz m	-37.63 dE -34.23 dE RBW 1 MHz	im	Fun	ction Result	
M2 1 Spectrum Ref Level 20.00 dBr Att 30 d 30 d D1Pk Max 30 d 30 d	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt RBW 1 MHz VBW 3 MHz	m m Mode Auto FFT	Fun		
M1 1 M2 1 Spectrum Ref Level 20.00 dBr Att 30 d 1Pk Max Limit check Line 51 50	5.715 GHz 5.725 GHz m	-37.63 dE -34.23 dE RBW 1 MHz	m	Fun		47.50 dB
M1 1 M2 1 Spectrum Ref Level 20.00 dBr Att 30 d 1Pk Max Limit check Line 51 50	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PA \$S	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum Ref Level 20.00 dBr Att 30 d 1Pk Max Limit Check Limit Check Line 5,50 0 dBm GBM	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum Image: Comparison of the system o	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum Image: Construction of the second	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum Image: Construction of the second	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dB
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz m	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT			47.50 dBi
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT	Fun		47.50 dBi
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	m m Mode Auto FFT			47.50 dBi
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dBi
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]			47.50 dB 00000 GF
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dt -34.23 dt • RBW 1 MHz • VBW 3 MHz • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dB
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dB 00000 GF
M1 1 M2 1 Bpectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dB 00000 GF
M1 1 M2 1 Bpectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dB 00000 GF
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dBi
M1 1 M2 1 Spectrum	5.715 GHz 5.725 GHz M B SWT 28.7 μs	-37.63 dE -34.23 dE • RBW 1 MHz • VBW 3 MHz • PASS • PASS • PASS	Mode Auto FFT M1[1]	.5350		47.50 dBi

Ant 802.11 n40

Start 5.2 GHz 32000 pts Stop 5.4 GHz Marker Type Ref Trc Y-value -47.50 dBm X-value 5.35 GHz Function Result Function

Spectrum Ref Level 20.00 dB	Bm	e RB	W 1 MHz					(~
Att 30				Mode Auto	FFT			
1Pk Max								
Limit Check		PA		MI	l[1]			-32.86 dBn
Line 5150 ^{0 d} Bine 5850	_	PA PA					5.15	000000 GH
cine asau		PA	55					
dBm								
			~	mm	mon	1		
10 dBm	-					+		
20 dBm								
50jBm-		M1	20			$ \uparrow \downarrow \land$	A	535
	Λ	rom	~~~~				m	
10 dBm		w						$\gamma \sim -$
0.	~~~~~							. www
50 dBm	′							
i0 dBm								
70 dBm	-							
tart 5.1 GHz			3200	Dpts		1	Sto	p 5.25 GHz
arker								
M1 1		.5 GHz	Y-value -32,86 dB	Funct	ion	Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 dt	5.1 3m	5 GHz	-32,86 dB	m		Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 da Att 30	5.1 3m	.5 GHz	-32,86 dB			Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 df Att 30	5.1 3m	5 GHz	-32.86 dB W 1 MHz W 3 MHz	Mode Auto	FFT	Fun	ction Resu	Ţ
M1 1 Spectrum Ref Level 20.00 df Att 30 1Pk Max Limit Check Line 5 50	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto		Fun		-47.91 dBr
M1 1 Spectrum Ref Level 20.00 df Att 30 1Pk Max Limit Check Line 5 50	5.1 3m	5 GHz • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	Fun		-47.91 dBr
M1 1 Spectrum	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	Fun		-47.91 dBr
M1 1 Spectrum	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	Fun		-47.91 dBr
M1 1 Spectrum	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	- Fun		-47.91 dBr
M1 1 Spectrum Ref Level 20.00 di Att 30 Ipk Max Limit check Limit check Limit check O dpIne 5350 dBm	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	- Fun		-47.91 dBr
M1 1 Spectrum Ref Level 20.00 df Att 30 1Pk Max Limit Check Limit Check Line 5 150 0 dBm dBm L0 dBm Max	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	- Fun		-47.91 dBr
M1 1 Spectrum	5.1 3m	5 GHz 7 μs • RB ¹ 7 μs • VB	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT			-47.91 dBr
M1 1 Spectrum	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBr
M1 1 Spectrum Ref Level 20.00 dl Att 30 1Pk Max Limit check Lime 5 150 O dB/Me 5 350 dBm Max 10 dB/m Max S0 dB/m Max S0 dB/m Max	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT			-47.91 dBr
M1 1 Spectrum Ref Level 20.00 dl Att 30 1Pk Max Limit check Lime 5 150 0 dBm dBm L0 dBm	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT			-47.91 dBr
M1 1 Spectrum Ref Level 20.00 dd Att 30 1Pk Max Limit Check Limit Check Limit Check Limit Check Limit Check 0 dBm Max 20 dBm Max 40 dBm Max	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBr
M1 1 Spectrum Ref Level 20.00 dd Att 30 1Pk Max Limit Check Limit Check Limit Check Limit Check Limit Check 0 dBm Max 20 dBm Max 40 dBm Max	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS	Mode Auto	FFT	5350		-47.91 dBn
M1 1 Spectrum Ref Level 20.00 dd Att 30 1Pk Max Limit Check Limit Check Lime 5 50 0 dBm Max 10 dBm Max 50 dBm Max 50 dBm Max	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBn 000000 GH
M1 1 Spectrum Ref Level 20.00 dd Att 30 1Pk Max Limit Check Limit Check Lime 5 50 0 dBm Max 10 dBm Max 50 dBm Max 50 dBm Max	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBn
M1 1 Spectrum Ref Level 20.00 df Ref Level 20.00 df 30 10 dB/m 30 10 dB/m 40 50 dBm 50 50 dBm 50	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBr
M1 1 Spectrum	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350		-47.91 dBr
M1 1 Spectrum	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350	5.35	-47.91 dBr
Spectrum Ref Level 20.00 df Att 30 1Pk Max Limit ¢heck	5.1 3m	-5 GHz 7 μs • VB PA PA PA	-32.86 dB W 1 MHz W 3 MHz SS SS SS	Mode Auto	FFT	5350	5.35	-47.91 dBr 000000 GH

Ant 802.11 ac40

Report No.: PTC21073003102E-FC04

Spectrum					
Ref Level 20.00 dBi	n 😑	RBW 1 MHz			· · · · · ·
Att 30 d	В SWT 20.9 µs 👄	VBW 3 MHz	Mode Auto FFT		
∋1Pk Max					
Limit Check		PASS	M2[1]		-34.48 dBn
Line 5725		PASS			5.72500000 GH
10 dBm e 5850		PASS	M1[1]		-34.14 dBn
					5.71500000 GH
0 dBm				~ ~	
1.0.10			A MAN	V] mmm	-
-10 dBm					
			1		
-20 dBm					
705					
5725 _{JBm}					
10.10		m			N Www
-40 dBm	1	~~			
-50 dBm	mon how and				
-50 aBm					
50 ID					
-60 dBm					
-70 dBm					
Start 5.65 GHz		32000	pts	I	Stop 5.8 GHz
Marker					
Type Ref Trc	X-value	Y-value	Function	Fur	nction Result
M1 1	5.715 GHz	-34.14 dBr			
M2 1	5.725 GHz	-34.48 dBr	n		

Spectrum					
Ref Level 20.00 dBm	🖷 R	BW 1 MHz			· · · · ·
Att 30 dB s	WT 20.9 µs 👄 V	BW 3 MHz Mo	ode Auto FFT		
●1Pk Max					
Limit Check	P	ASS	M2[1]		-43.13 dBm
Line 5725	P	ASS			5.86000000 GHz
10 dBm 5850	Р	ASS	M1[1]		-37.68 dBm
			1	1	5.85000000 GHz
0 dBm					
	m				
-10 dBm	¥ *				
				850	
-20 dBm			7	000	
-30 dBm		hour	\sim m	M1	
m wh		1	m	X M2	
-40 dBm				W Jam	And An
				V X	N . N M. W
-50 dBm					
-60 dBm					
-70 dBm					
Start 5.75 GHz		32000 p	ts		Stop 5.9 GHz
Marker					
Type Ref Trc >	K-value	Y-value	Function	Fund	ction Result
M1 1	5.85 GHz	-37.68 dBm			
M2 1	5.86 GHz	-43.13 dBm			

											Ē
Spectrum											[₩
	20.00 dBr		_		1 MHz						
Att 1Pk Max	30 d	5 SWI 41	.8 µs 👄 '	VBW	3 MHZ N	ode Auto) ++				
Limit C	heck			PASS		M	2[1]				-47.68 dBn
Line 51	50			PASS			~[+]			5.3	5000000 GH
10 dBm = 5	50			PASS		M	1[1]				-41.62 dBn
										5.1	5000000 GH
0 dBm											
-10 dBm											
-10 ubiii		maph	man man	man	month						
-20 dBm		1 '	·γ		· \						
20 0.0111											
150 _{JBm}		+		_						5350	
	м. М1										
-40 dBm	Mart M.	m		-		Vh	w.				
AN VILL	1. M. A	11				YANNA	www	why	Anna .	M2	
Số dBm				+					**********	- Marilan Casada	ne promising
-60 dBm											
-70 dBm											
-70 ubiii											
CF 5.25 GH	Z				32000 j	ots				Spa	n 300.0 MHz
larker	Trol	V_ualua	. 1	~	Jualuo	1 Euno	tion (E	otion Doc	
larker Type Ref		X-value 5.1			- value 41.62 dBm	Func	tion		Fur	nction Res	ult
larker Type Ref M1 M2		5.3	9	-	- value 41.62 dBm 47.68 dBm		tion		Fur	nction Res	Ē
1arker Type Ref M1 M2 Spectrum Ref Level	1 1 20.00 dBr	5.: 5.: n	15 GHz 35 GHz	RBW	41.62 dBm 47.68 dBm 1 MHz		-		Fur	nction Res	ult
Type Ref M1 M2 Spectrum Ref Level Att		5.: 5.: n	15 GHz 35 GHz	RBW	41.62 dBm 47.68 dBm 1 MHz		-		Fur	nction Res	Ē
Type Ref M1 M2 Spectrum Ref Level Att 1Pk Max	1 1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs ● 1	RBW	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT		Fur	nction Res	(III) V
Marker Type Ref M1 M2 Spectrum Ref Level Att 1Pk Max Limit ¢	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs ● 1	RBW	41.62 dBm 47.68 dBm 1 MHz	ode Auto			Fur		(▼ -43.95 dBn
Type Ref M1 M2 Spectrum Ref Level Att 1Pk Max Limit ¢	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • Ч	RBW VBW	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT		Fur	5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref M1 M2 Spectrum Ref Level Att PPk Max Limit C 10 dbm 5 Lime 5	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • Ч	RBW VBW PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]		Fur	5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref M1 M2 Spectrum Ref Level Att 10 dbm 51 0 dBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • Ч	RBW VBW PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]		Fur	5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref M1 M2 Spectrum Ref Level Att 10 dbm 51 0 dBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]		Fur	5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref Type Ref M1 M2 Spectrum Ref Level Att PIPk Max Limit C 10 dBm -10 dBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref Type Ref M1 M2 Spectrum Ref Level Att PIPk Max Limit C 10 dBm -10 dBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref Type Ref M1 M2 Spectrum Ref Level Att PIPk Max Lime 5 10 dBm -10 dBm -20 dBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8	-43.95 dBr 600000 GH -43.92 dBr
Type Ref M1 M2 Spectrum Ref Level Att 10 dbm 5 0 dBm -10 dBm -20 dBm 7251Bm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8	-43.95 dBr 600000 GH -43.92 dBr
Aarker Type Ref M1 M2 Spectrum Ref Level Att PIPk Max Limit C 10 dBm -10 dBm -20 dBm 725JBm	1 20.00 dBr 30 d	5.: 5.: n	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8	-43.95 dBn 600000 GH -43.92 dBn 1500000 GH
Narker Type Ref M1 M2 Spectrum Ref Level Att IPk Max Limit G IO dBm 10 dBm IO dBm -20 dBm -20 dBm -40 dBm -40 dBm	1 20.00 dBr 30 d	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 850	-43.95 dBr 600000 GH -43.92 dBr
Barker Type Ref M1 M2 Spectrum Ref Level Att PiPk Max 10 dbm Limit C -10 dbm - -20 dBm - -40 dbm - -20 dbm - -20 dbm -	1 20.00 dBr 30 d	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 850	-43.95 dBn 600000 GH -43.92 dBn 1500000 GH
Barker Type Ref M1 M2 Spectrum Ref Level Att PiPk Max 10 dbm Limit C -10 dbm - -20 dBm - -40 dbm - -20 dbm - -20 dbm -	1 20.00 dBr 30 d	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 850	-43.95 dBn 600000 GH -43.92 dBn 1500000 GH
Narker Type Ref M1 M2 Spectrum Ref Level Att Ine 50 10 dBm Ine 50 0 dBm Ine 50 -10 dBm Ine 50 -20 dBm Ine 50 -40 dBm Ine 50 -60 dBm Ine 50	1 20.00 dBr 30 d	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 850	-43.95 dBn 600000 GH -43.92 dBn 1500000 GH
Narker Type Ref M1 M2 Spectrum Ref Level Att Ine 50 10 dBm Ine 50 0 dBm Ine 50 -10 dBm Ine 50 -20 dBm Ine 50 -40 dBm Ine 50 -60 dBm Ine 50	1 20.00 dBr 30 d	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 850	-43.95 dBn 600000 GH -43.92 dBn 1500000 GH
Narker Type Ref M1 M2 Spectrum Ref Level Att Ine 53 10 dBm Ine 53 -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	1 20.00 dBr 30 d heck 225 50	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm	ode Auto) FFT 4[1]			5.8 5.7 8850	-43.95 dBr 6000000 GH -43.92 dBr 150000 GH
Aarker Type Ref M1 M2 Spectrum Ref Level Att Ink Max IPk Max Limit G 10 dBm 50 -10 dBm	1 20.00 dBr 30 d heck 225 50	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm 1 MHz	ode Auto) FFT 4[1]			5.8 5.7 8850	-43.95 dBr 6000000 GH -43.92 dBr 150000 GH
Marker Type Ref M1 M2 Spectrum Ref Level Att PiPk Max 10 dBm Int C -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -60 dBm -70 dBm -60 dBm -70 dBm -70 dBm	1 20.00 dBr 30 d heck (25) 50	5.: 5.: B SWT 34	15 GHz 35 GHz .3 µs • 1 .3 µs • 1 .3 µs • 1	PASS PASS PASS	41.62 dBm 47.68 dBm	ode Auto M M	2 FFT 4[1] 1[1]		s My y m	5.8 5.7 850 850 850 850 850 850 850 850 850 850	-43.95 dBn 6000000 GH -43.92 dBn 1500000 GH
Marker Type Ref M1 M2 Spectrum Ref Level Att 1Pk Max	1 20.00 dBr 30 d heck (25) 50	5.: 5.: 8 SWT 34	15 GHz 35 GHz .3 µs • 1 .3 µs • 1 .3 µs • 1	RBW VBW PASS PASS	41.62 dBm 47.68 dBm	ode Auto M M v~v~v~v ots	2 FFT 4[1] 1[1]		s My y m	5.8 5.7 8850	-43.95 dBn 6000000 GH -43.92 dBn 1500000 GH
Narker Type Ref M1 M2 Spectrum Ref Level Att Ine 53 ID dBm Ine 53	GHz	5.: 5.: 8 SWT 34	15 GHz 35 GHz 3 μs 3 μs 3 μs 3 μs 3 μs 3 μs 3 μs 3 μs	PASS PASS PASS PASS PASS	41.62 dBm 47.68 dBm 3 MHz M 3 MHz M 3 MHz M 3 MHz M 3 MHz M 43.92 dBm 45.02 dBm	ode Auto M M	2 FFT 4[1] 1[1]		s My y m	5.8 5.7 850 850 850 850 850 850 850 850 850 850	-43.95 dBn 6000000 GH -43.92 dBn 1500000 GH
Type Ref M1 M2 Spectrum Ref Level Att In e Si IPk Max Limit G IO dBm In e Si -10 dBm - -20 dBm - -60 dBm - -60 dBm - -70 dBm -	1 20.00 dBr 30 d heck 25 50 GHz I Trc 1 1	5.: 5.: 8 SWT 34	15 GHz	PASS PASS PASS PASS PASS	41.62 dBm 47.68 dBm 1 MHz 3 MHz M 47.68 dBm 3 MHz M 43 MHz M 43.92 dBm	ode Auto M M	2 FFT 4[1] 1[1]		s My y m	5.8 5.7 850 850 850 850 850 850 850 850 850 850	-43.95 dBn 6000000 GH -43.92 dBn 1500000 GH

Ant 802.11 ac80

5.4 BANDWIDTH TEST

5.4.1 Applied procedures / Limit

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum power control level, as defined in KDB 789033, at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26 dB bandwidth.

The 26 dB bandwidth is used to determine the conducted power limits.

There is no limit bandwidth for U-NII-1, U-NII-2-A and U-NII-2-C.

The minimum of 6dB Bandwidth measurement is 0.5 MHz for U-NII-3

5.4.2 Test procedure

26 dB BANDWID PROCEDURES

- a. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01
- b. Set RBW = approximately 1% of the emission bandwidth.
- c. Trace mode = max hold
- d. Detector = Peak
- e. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%

6 dB BANDWID PROCEDURES

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

99% BANDWID PROCEDURES

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW \geq 3 RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.6. Use the 99 % power bandwidth function of the instrument (if available).

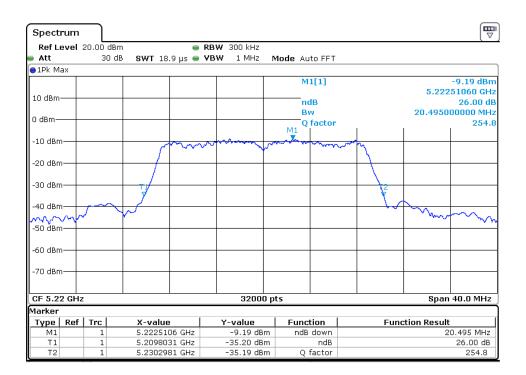
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

Report No.: PTC21073003102E-FC04

5.4.3 Deviation from standard

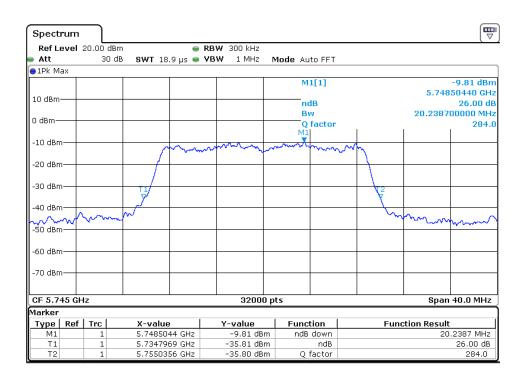
No deviation.

5.4.4 Test setup

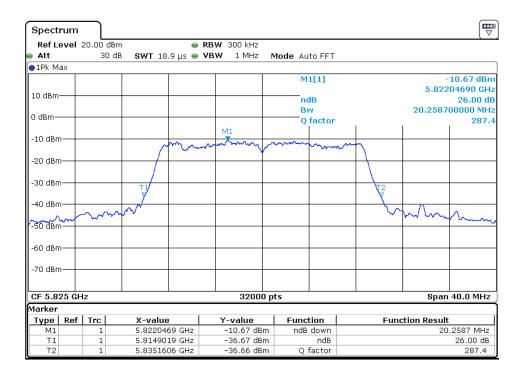

5.4.5 Test results

Test Mode	Data Rate	Channel	Frequency	26dB Bandwidth	6dB Bandwidth	Result
	(Mbps)	No.	(MHz)	(MHz)	(MHz)	
Ant						
802.11a	6	36	5180	20.2387	17.4984	Pass
802.11a	6	44	5220	20.495	17.5062	Pass
802.11a	6	48	5240	20.105	17.5078	Pass
802.11a	6	149	5745	20.2387	17.4937	Pass
802.11a	6	157	5785	20.0037	17.5031	Pass
802.11a	6	165	5825	20.2587	17.4984	Pass
802.11n-HT20	7.2	36	5180	20.1187	17.4922	Pass
802.11n-HT20	7.2	44	5220	20.2125	17.4812	Pass
802.11n-HT20	7.2	48	5240	20.2225	17.5312	Pass
802.11n-HT20	7.2	149	5745	20.205	17.5094	Pass
802.11n-HT20	7.2	157	5785	20.125	17.5141	Pass
802.11n-HT20	7.2	165	5825	20.175	17.5016	Pass
802.11n-HT40	15	38	5190	40.44	35.625	Pass
802.11n-HT40	15	46	5230	40.6425	35.435	Pass
802.11n-HT40	15	151	5755	40.45	35.295	Pass
802.11n-HT40	15	159	5795	40.115	35.3175	Pass
802.11ac-VHT2	7.2	36	5180	20.815	17.4891	Pass
802.11ac-VHT2	7.2	44	5220	23.0862	17.4953	Pass
802.11ac-VHT2	7.2	48	5240	20.2075	17.5406	Pass
802.11ac-VHT2	7.2	149	5745	20.2012	17.5063	Pass
802.11ac-VHT2	7.2	157	5785	20.2325	17.525	Pass
802.11ac-VHT2	7.2	165	5825	20.4187	17.2437	Pass
802.11ac-VHT4	15	38	5190	40.515	35.005	Pass
802.11ac-VHT4	15	46	5230	40.1375	35.4238	Pass
802.11ac-VHT4	15	151	5755	40.4375	35.33	Pass
802.11ac-VHT4	15	159	5795	40.2075	35.455	Pass
802.11ac-VHT8	32.5	42	5210	81.625	76.1626	Pass
802.11ac-VHT8	32.5	155	5775	82.29	76.1	Pass

26 dBc Bandwidth plot as follows:


Spectrum Ref Level 20.00 dBm 👄 RBW 300 kHz Att 30 dB SWT 18.9 µs 👄 VBW 1 MHz Mode Auto FFT ⊖1Pk Max M1[1] -8.21 dBm 5.17226810 GHz 10 dBm· ndB 26.00 dB 20.238700000 MHz Bw 0 dBm-Q factor 255.6 11 -10 dBm--20 dBm· -30 dBm-40 dBmmon \sim -50 dBm -60 dBm· -70 dBm-32000 pts Span 40.0 MHz CF 5.18 GHz Marker Type Ref Trc X-value Y-value Function Function Result 5.1722681 GHz 5.1698606 GHz 20.2387 MHz M1 T1 -8.21 dBm ndB down ndB 1 1 1 -34.20 dBm 26.00 dB Q factor Т2 5.1900994 GHz -34.20 dBm 255.6

Ant 802.11 a



Spectrur	n									
Ref Leve	el 20.00	dBm	•	RBW 300 k	Hz					
🗕 Att	3	OdB SWT	18.9 µs 👄	VBW 1 M	IHz M	lode Au	to FFT			
😑 1Pk Max										
						M	1[1]			-8.45 dBm
10 dBm									5.241	01310 GHz
						nc				26.00 dB
0 dBm						B			20.1050	00000 MHz
					M:	1 Q	factor			260.7
-10 dBm			0	0.00	. X					
-10 0800			Jam	~~~~~	J.		ma	~mm		
-20 dBm										
-20 000										
-30 dBm		T.1								
-30 0.011		₹						t k k k k k k k k k k k k k k k k k k k		
-40 dBm—										
		m						~~~		m
-50 dBm—		×								
-60 dBm										
-70 dBm—										
L										
CF 5.24 G	Hz			32	2000 pt	t s			Spar	40.0 MHz
Marker										
Type Re	_	X-va		Y-valu		Funct		Fun	ction Result	
M1	1		.0131 GHz		5 dBm	ndB	down		2	20.105 MHz
T1	1		9256 GHz	-34.45		~	ndB			26.00 dB
T2	1	5.250	0306 GHz	-34.44	ғавт	Q 1	factor			260.7

Spect	rum									
RefLe	evel	20.00 dE	Im	● RBV	🗸 300 kHz					
🗕 Att		30 (dB SWT 18.9	µs 👄 VBN	V 1 MHz	Mode At	uto FFT			
😑 1Pk Ma	эх									
						IV	1[1]			-9.49 dBm
									5.782	87310 GHz
10 dBm-						n	dB			26.00 dB
						В	w		20.0037	00000 MHz
0 dBm—						q	factor			289.1
10.10					M1					
-10 dBm				non	m	m	m	~~~		
00 40-				· · ·	Ť			Ξ []		
-20 dBm										
00 10										
-30 dBm			1					12		
-40 dBm										
-40 UBII	A.L.	mm	mm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ma	
-50 dBm										$\sim\sim\sim$
-50 aBm										
<0.40										
-60 dBm										
-70 dBm										
-70 UBII										
CF 5.78	35 GH	Iz			32000	pts			Span	40.0 MHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Fund	tion	Fun	ction Result	: [
M1		1	5.7828731	GHz	-9.49 dBn	n ndE	down		20	.0037 MHz
Τ1		1	5.7749594		-35.49 dBn		ndB			26.00 dB
T2		1	5.7949631	GHz	-35.49 dBn	n Q	factor			289.1

Refle	ovel	20.00 dBr	n	RBW 300	kHz				
Att		30 di		_		ode Auto FFT			
1Pk M	эх								
						M1[1]			-8.73 dBr
								5.178	36060 GH
10 dBm·	1Bm					ndB			26.00 d
						Bw		20.1187	00000 MH
) dBm—						Q factor			257
				N.	11				
-10 dBm	∩		- mm	m		man white	m		
-20 dBm	∩— -								
30 dBm	∩— -		+ ₹\$						
			₹				X I		
-40 dBm	۱ <u> </u>								
\sim	\mathcal{M}	mm					V .	\sim	m
-50 dBm	∩— -								
-60 dBm	∩								
-70 dBm	∩——								
CF 5.10		-			32000 pt			0	40.0 MU
	3 GHZ	<u> </u>			32000 pt	5		span	40.0 MHz
larker	n-6	1	W	1			F		
Type M1	ĸer	Trc 1	X-value 5.1783606 GHz	<u>Y-va</u>	73 dBm	Function ndB down	Fund	ction Result	.1187 MHz
T1		1	5.1699969 GHz		73 dBm 72 dBm	ndB down		20	26.00 dB
T2		1	5.1999969 GHz		72 dBm 73 dBm	Q factor			

Ant 802.11 n20

Spect	rum								Ē₽
Ref Le	evel 2	20.00 dBn	n e	• RBW 300 kHz					
Att		30 di	3 SWT 18.9 µs 🧉	VBW 1 MHz	Mode	Auto FFT			
●1Pk Ma	эх								
						M1[1]			-9.05 dBm
10 dBm-								5.222	89560 GHz
TO aBm-						ndB			26.00 dB
0 dBm—						Bw		20.2125	00000 MHz
о цыпі—					N	Q factor			258.4
-10 dBm			0			X.			
-10 080				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		and were	man property		
-20 dBm									
-20 0011	'								
-30 dBm									
-50 abii	'		∮				¥2		
-40 dBr		$- \wedge f$					<u> </u>	-	
$\sqrt{}$	$\sim r$	$\sim \sim$						mon	mm
-50 dBm	<u> </u>								· • • • • •
-60 dBm	<u> </u>								
-70 dBm									
CF 5.22	2 GHz			3200	0 pts			Span	40.0 MHz
Marker					•			•	
Type	Ref	Trc	X-value	Y-value	1 Eu	unction	Fun	ction Result	:
M1		1	5.2228956 GHz	-9.05 dE		ndB down			.2125 MHz
Τ1		1	5.2098631 GHz	-35.06 dB	3m	ndB			26.00 dB
T2		1	5.2300756 GHz	-35.05 dE	3m	Q factor			258.4

Spectrum Ref Level 20.00 dBm		RBW 300 kHz				(\
Att 30 de 1Pk Max	В SWT 18.9 µs 👄	VBW 1 MHz N	Node Auto FFT			
			M1[1]			34 dBr
.0 dBm			ndB		5.737850	60 GH 5.00 d
			Bw		20.2050000	
I dBm			Q factor			284.
10 dBm	M1					
	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manum	1		
20 dBm						
30 dBm						
	∕			¥2		
40 dBm	- ×					
mm				1 W	man	~
30 dBm						~ m
50 dBm						
70 dBm						
F 5.745 GHz	· ·	32000 pt	ts		Span 40.	0 MHz
arker						
Type Ref Trc M1 1	X-value 5.7378506 GHz	Y-value -10.84 dBm	Function ndB down	Fund	tion Result	5 MHz
T1 1	5.7349481 GHz	-36.84 dBm	ndB			.00 dB
T2 1	5.7551531 GHz	-36.83 dBm	Q factor			284.0
pectrum		RBW 300 kHz				T
			Iode Auto FFT			
Att 30 de			Mode Auto FFT M1[1]		-10.	77 dBi
Att 30 d£ 1Pk Max			M1[1]		5.782726	90 GH
Att 30 df 1Pk Max 0 dBm			M1[1]		5.782726 20	90 GH 5.00 d
Att 30 df 1Pk Max 0 dBm			M1[1]		5.782726	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max 0 dBm 0 dBm 0 dBm			M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max		VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max 0 dBm 0 dBm 0 dBm 10 dBm 0 dBm		VBW 1 MHz M	M1[1] ndB Bw	-	5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max 0 dBm 0 dBm 0 dBm 10 dBm 0 dBm 20 dBm 0 dBm		VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max 0 dBm 0 dBm 0 dBm 10 dBm 0 dBm 20 dBm 0 dBm		VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max	B SWT 18.9 µs ●	VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max 0 dBm 0 dBm 0 dBm 10 dBm 0 dBm 20 dBm 0 dBm 30 dBm 0 dBm	B SWT 18.9 µs ●	VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
Att 30 di 1Pk Max	B SWT 18.9 µs ●	VBW 1 MHz M	M1[1] ndB Bw		5.782726 20	90 GH 5.00 d D0 MH
	B SWT 18.9 µs ●	VBW 1 MHz M	M1[1] ndB Bw	2	5.782726 20	5.00 d

-70 dBn	•——							
-70 001	"							
CF 5.7	85 GF	lz		32000 p	ots		Span	40.0 MHz
Marker								
Туре	Ref	Trc	X-value	Y-value	Function	Euno	ction Result	ĺ
M1		1	5.7827269 GHz	-10.77 dBm	ndB down		2	0.125 MHz
Τ1		1	5.7749119 GHz	-36.77 dBm	ndB			26.00 dB
T2			5 7050360 CHz	-36 76 dBm	O factor			287.3

Spectrum									
Ref Level 3	20.00 dBm		🔵 RBW	300 kHz					
Att	30 dB	SWT 18.9 µs	● VBW	1 MHz N	1ode Auto	FFT			
●1Pk Max		· · ·							
					M1[1]			10.43 dBm
10 10								5.817	26440 GHz
10 dBm					ndB	1. Sec. 1.			26.00 dB
0 dBm					Bw			20.1750	00000 MHz
					Q fa	octor			288.3
-10 dBm		M11							
-10 0800		~~~	m	mon m		m	m		
-20 dBm				Ť.					
-20 06111									
-30 dBm									
-30 0.000		Ţ J					1 2		
-40 dBm									
-40 aBm	m	~~							
-50 dBm							V .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon
-60 dBm									
-70 dBm									
CF 5.825 GH	-			32000 p	te				40.0 MHz
Marker	2			02000 p				ohai	1 10.0 0112
Type Ref	Tre	X-value	v	-value	Functio		Eup	ction Result	- 1
M1	1	5.8172644 G		-value -10.43 dBm	ndB_d		run		20.175 MHz
T1	1	5.8148606 G		-36.43 dBm		ndB			26.00 dB
T2	1	5.8350356 G		-36.43 dBm	Q fa				288.3

Spectrum Ref Level)m 👝 🗖	RBW 500 kHz					
Att	20.00 dB 30 (_		Iode Auto FFT				
1Pk Max		ab awr 10.5 ps 🚽 1		Due Autorri				
TEV MOV				M1[1]		0.01.40		
				WILI		-8.91 dBr 5.18535130 GH		
10 dBm				ndB		26.00 d		
				Bw		40.440000000 MH		
) dBm				Q factor		128		
			M1					
-10 dBm		- marine	a more man	mann	min			
			Y Y	- marrow				
-20 dBm					-+			
30 dBm		- T1/			12			
					E L			
40 d8m	- AM	-m			bhy			
$\sim \sim \sim$	$\sim \sim \sim$					r • • •		
-50 dBm								
-60 dBm								
-70 dBm								
CF 5.19 GH	IZ		32000 pt	S		Span 80.0 MHz		
larker								
Type Re		X-value	Y-value	Function	Func	tion Result		
M1	1	5.1853513 GHz	-8.91 dBm	ndB down		40.44 MHz		
T1	1	5.1696713 GHz	-34.91 dBm	ndB		26.00 dB		
T2	1	5.2101113 GHz	-34.90 dBm	Q factor		128.2		

Ant 802.11 n40

Spectrur	n					
Ref Leve	20.00 dBn	n 🖷	RBW 500 kHz			
Att	30 di	В SWT 18.9 µs 👄	VBW 2 MHz N	1ode Auto FFT		
●1Pk Max						,
				M1[1]		-8.39 dBm
10 dBm						5.22317630 GHz
TO UDIII				ndB		26.00 dB
0 dBm				Bw	40.	642500000 MHz
o abiii			M1	Q factor	1 1	128.5
-10 dBm				and the file		
		munum	and a second by	and the second sec	Jun marine	
-20 dBm—			¥			
-30 dBm—					72	
		7				
-40 dBm-	h. man				- Wind	
View . Mars	1 000				VVV	V V
-50 dBm—						
-60 dBm—						
-70 dBm—						
CF 5.23 G	Hz	1 1	32000 pt	ts		Span 80.0 MHz
Marker						
Type Re	ef Trc	X-value	Y-value	Function	Function R	tesult
M1	1	5.2231763 GHz	-8.39 dBm	ndB down		40.6425 MHz
T1	1	5.2099163 GHz	-34.38 dBm	ndB		26.00 dB
T2	1	5.2505588 GHz	-34.39 dBm	Q factor		128.5

Ref Level	20.00 2	18m	_	RBW 500	kHz						(•	
Att			ι.9 μs 🗕			iode Au	to FET					
1Pk Max		GD BAT IC				ouc Ac						
						м	1[1]				-11.31 dBn	
							-1-1				998130 GH	
10 dBm						n	dB				26.00 di	
						Bw			40.45000000 MH			
0 dBm						Q	factor				142.	
-10 dBm						M1						
-10 UBIII			mon	mmm	m	withing	mm	m				
-20 dBm												
20 0.0									1			
-30 dBm									\rightarrow			
		₹							₽	~		
-40 dBm	and the	$\sim \sqrt{\sqrt{\sqrt{2}}}$							\rightarrow	\checkmark		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 V -								M.A	¥ *	48. 1	
-50 dBm-+								-				
-60 dBm												
-70 dBm												
-/ o ubiii												
CF 5.755 GI	1Z			č	32000 pt	S				spa	n 80.0 MHz	
Marker	1 77 1		1			E			E		LA.	
Type Ref M1	1 Trc	X-valu 5.75998		<u> </u>	ue 31 dBm	Func	down		Fun	ction Resu	40.45 MHz	
T1	1	5.73488			30 dBm	nub	ndB				26.00 dB	
T2	1	5.77533			30 dBm	Q	factor				142.4	
	_										Ē	
Spectrum												
Ref Level	20.00 0	1Bm		<b>RBW</b> 500	kHz							
Att	30	dB <b>SWT</b> 18	.9 μs 👄	<b>VBW</b> 2	MHz 🕅	lode Au	ito FFT					
●1Pk Max												
						M	1[1]				-11.11 dBr	
10 dBm										5.79	124380 GH	
							dB			40.115	26.00 d	
			1			B				40.115	000000 MH	
0 dBm —							factor				144.4	

-20 dBm· -30 dBm--40 dBm  $\sim$ -50 dBm -60 dBm· -70 dBm· CF 5.795 GHz 32000 pts Span 80.0 MHz Marker 
 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1
 X-value 5.7912438 GHz 5.7749038 GHz 5.8150188 GHz **Y-value** -11.11 dBm -37.11 dBm -37.12 dBm Function ndB down ndB Q factor Function Result L 40.115 MHz 26.00 dB 144.4



Ref Level	20.00 dBr	n 😑	RBW 300 kHz					
Att	30 d	_		Mode Auto FFT				
)1Pk Max								
				M1[1]		-6.07 dBr		
10 dBm					5.17224310 GH			
				ndB	26.00 d			
) dBm		N4.1	Bw M1 Q factor			20.815000000 MH 248.		
		<b>T</b>						
-10 dBm		- mm	man	man and and and and and and and and and a	~~~~			
-20 dBm								
-30 dBm		т1/			<b>V</b> 2			
-30 UBIII	$\sim$	~~~			×~	m a a		
40 dBm	J					with		
-50 dBm								
-60 dBm								
-70 dBm								
-/0 ubiii								
CF 5.18 GHz 1arker			32000 p	ts		Span 40.0 MHz		
Type   Ref	Trc	X-value	Y-value	Function	- Eun	ction Result		
M1	1	5.1722431 GHz	-6.07 dBm	ndB down	Fun	20.815 MHz		
T1	1	5.1693856 GHz	-32.07 dBm	ndB		26.00 dB		
T2	1	5.1902006 GHz	-32.07 dBm	Q factor		248.5		

Spectrum											
Ref Level 🗄	20.00 dBm	I		RBW 300 kHz							
Att	30 dB	SWT 18	.9 µs 👄	VBW 1 MHz	Mod	le Aut	O FFT				
●1Pk Max											
						M1	[1]				-6.79 dBm
10.10										5.21	719810 GHz
10 dBm						nd	в				26.00 dB
0.40						Bv	e			23.0862	200000 MHz
0 dBm				M1		Q (	factor				226.0
			m	mon	m	m	<b>~</b> ~ ~ ~	na			
-10 dBm				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				~			
-20 dBm									+		
-30 dBm		T1							1	12	
- a mh	$\sim$	w.								you war	ham
-40 dBm											
-50 dBm											
-60 dBm											
-70 dBm											-
CF 5.22 GHz				3200	Onte					Pnar	1 40.0 MHz
Marker				3200	o prs					apar	1 -0.0 MHZ
	1 1	×		M	1	<b>F</b>			F.		
Type Ref		X-value 5.217198		Y-value		Funct	ion down		Fun	ction Resul	t 3.0862 MHz
T1	1	5.217198		-6.79 dB -32.78 dB		пав	aown ndB			23	26.00 dB
T2	1	5.209120		-32.78 dB		O f	actor				20.00 uB 226.0
14		3,232200		52.19 UD	200		actor				220.0

Span 40.0 MHz

Function Result 20.2012 MHz 26.00 dB 284.5



-60 dBm· -70 dBm·

Marker

CF 5.745 GHz

 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1

X-value 5.7477319 GHz 5.7348731 GHz 5.7550744 GHz

Spectrum	-	DDW 200 kuz			l
Ref Level 20.00 dBm Att 30 dB		RBW 300 kHz VBW 1 MHz M	Iode Auto FFT		
1Pk Max	3W1 10.9 µ5 🖷	TOW INTE I	IOUE AUTOFFI		
			M1[1]		-8.33 dE
			marta1		5.24351560 G
10 dBm			ndB		26.00
			Bw		20.207500000 M
D dBm			O factor		259
-10 dBm	manna			Mr Y	
-20 dBm					
-30 dBm				12	
-40 dBm					TAAAV
-50 dBm					
co dos					
-60 dBm					
-70 dBm					
-70 uBin					
CF 5.24 GHz		32000 pt	s		Span 40.0 MH
Marker					
Type   Ref   Trc	X-value	Y-value	Function	Fun	ction Result
M1 1	5.2435156 GHz	-8.33 dBm	ndB down		20.2075 MH
T1 1	5.2299594 GHz	-34.33 dBm	ndB		26.00 d
			ndB Q factor		
T1 1	5.2299594 GHz	-34.33 dBm			26.00 d
T1         1           T2         1	5.2299594 GHz	-34.33 dBm			26.00 d 259.5
T1 1 T2 1 Spectrum	5.2299594 GHz 5.2501669 GHz	-34.33 dBm			26.00 d
T1         1           T2         1           Spectrum	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz			26.00 d 259.5
T1         1           T2         1           Spectrum         Ref Level 20.00 dBm           Att         30 dE	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz			26.00 d 259.5
T1         1           T2         1           Spectrum         Ref Level 20.00 dBm           Att         30 dE	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5
T1         1           T2         1           Spectrum         Ref Level 20.00 dBm           Att         30 dE	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 (1 -10.60 dE 5.74773190 G
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 (1 -10.60 dE 5.74773190 G 26.00
T1         1           T2         1           Spectrum         Image: Constraint of the second s	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1         1           T2         1           Spectrum         Image: Constraint of the second s	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 (1 -10.60 dE 5.74773190 G 26.00
T1         1           T2         1           Spectrum         30 dBm           Att         30 dBm           10 dBm         0 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1         1           T2         1           Spectrum         30 dBm           Att         30 dBm           10 dBm         0 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm -20 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm -20 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor	2	26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1         1           T2         1           Spectrum	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1         1           T2         1           Spectrum	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor		26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M
T1 1 T2 1 Spectrum Ref Level 20.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm	5.2299594 GHz 5.2501669 GHz	-34.33 dBm -34.33 dBm RBW 300 kHz	Q factor	2	26.00 d 259.5 -10.60 dt 5.74773190 G 26.00 20.201200000 M

32000 pts

Function ndB down ndB Q factor

**Y-value** -10.60 dBm -36.60 dBm -36.59 dBm

Span 40.0 MHz

Function Result 20.4187 MHz 26.00 dB 285.6



-60 dBm· -70 dBm·

Marker

CF 5.825 GHz

 Type
 Ref
 Trc

 M1
 1

 T1
 1

 T2
 1

X-value 5.8322756 GHz 5.8146906 GHz 5.8351094 GHz

Spectrum					( v
Ref Level 20.00 dB Att 30 d		RBW 300 kHz VBW 1 MHz M	Iode Auto FFT		
1Pk Max	an 10.9 hz 🖷		IOUE AUTOFFI		
			M1[1]		-10.42 dBr
					5.78274940 GH
10 dBm			ndB		26.00 d
) dBm			Bw		20.232500000 MH
		M1	Q factor	1	285.
10 dBm		MI			
	mon	Marine and M	same and the second sec	sup.	
-20 dBm				$\rightarrow$	
-30 dBm	TI			12	
	, J			The test of the test of the test of the test of test o	
-40 dBm	m l			~	ma
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-50 dBm					
-60 dBm					
-00 ubin					
-70 dBm					
CF 5.785 GHz		32000 pt	s		Span 40.0 MHz
1arker			Function	<b>F</b>	ction Result
Luno   Dot   Tre	V-ualuo				
Type Ref Trc	X-value 5.7827494 GHz	<u>Y-value</u> -10.42 dBm		Fun	
	X-value 5.7827494 GHz 5.7748881 GHz	<u>Y-value</u> -10.42 dBm -36.42 dBm	ndB down ndB	Fun	20.2325 MHz 26.00 dB
M1 1	5.7827494 GHz	-10.42 dBm	ndB down	Fun	20.2325 MHz
M1 1 T1 1	5.7827494 GHz 5.7748881 GHz	-10.42 dBm -36.42 dBm	ndB down ndB	Fun	20.2325 MHz 26.00 dB
M1 1 T1 1 T2 1	5.7827494 GHz 5.7748881 GHz	-10.42 dBm -36.42 dBm	ndB down ndB	Fun	20.2325 MHz 26.00 dB 285.8
M1 1 T1 1 T2 1	5.7827494 GHz 5.7748881 GHz	-10.42 dBm -36.42 dBm	ndB down ndB	Fun	20.2325 MHz 26.00 dB 285.8
M1 1 T1 1 T2 1	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm	ndB down ndB	Fun	20.2325 MHz 26.00 dB 285.8
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 d	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB	Fun	20.2325 MHz 26.00 dB 285.8
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 d	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor	Fun	20.2325 MHz 26.00 dB 285.8
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 d	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor	Fun	20.2325 MHz 26.00 dB 285.8 ♥ -10.73 dBn
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 d           1Pk Max         1	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor Iode Auto FFT M1[1]	Fun	20.2325 MHz 26.00 dB 285.8
M1 1 T1 1 T2 1 Spectrum Ref Level 20.00 dB Att 30 d 1Pk Max	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor Iode Auto FFT M1[1] ndB	Fun	20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBn 5.83227560 GH 26.00 dl
M1         1           T1         1           T2         1           Spectrum	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor Iode Auto FFT M1[1] ndB Bw	Fun	20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBn 5.83227560 GH 26.00 df 20.418700000 MH
M1 1 T1 1 T2 1 Spectrum Ref Level 20.00 dB Att 30 d 10 dBm	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor	M1	20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBn 5.83227560 GH 26.00 df 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 d           91Pk Max         10 dBm           0 dBm         10 dBm	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor		20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBr 5.83227560 GH 26.00 dl 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor		20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBr 5.83227560 GH 26.00 dl 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor		20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBn 5.83227560 GH 26.00 df 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 dB           10 dBm         0           -10 dBm	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor		20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBr 5.83227560 GH 26.00 dl 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 dB           10 dBm         0           -10 dBm	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor		20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBr 5.83227560 GH 26.00 dl 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor	M1	20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBr 5.83227560 GH 26.00 dl 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor	M1	20.2325 MHz 26.00 dB 285.8 ▼ -10.73 dBn 5.83227560 GH 26.00 df 20.418700000 MH
M1         1           T1         1           T2         1           Spectrum         Ref Level 20.00 dB           Att         30 dB           10 dBm         0 dBm           -10 dBm	5.7827494 GHz 5.7748881 GHz 5.7951206 GHz	-10.42 dBm -36.42 dBm -36.41 dBm RBW 300 kHz	ndB down ndB Q factor lode Auto FFT M1[1] ndB Bw Q factor	M1	20.2325 MHz 26.00 dB 285.8

32000 pts

Function ndB down ndB Q factor

**Y-value** -10.73 dBm -36.73 dBm -36.73 dBm



Spectr	rum											
Ref Le	evel :	20.00 0	dBm	•	RBW	500 kHz						
🛛 Att		30	dB SWT	18.9 µs 👄	VBW	2 MHz	Mod	e Auto FFT				
●1Pk Ma	эх											
								M1[1]			-9.33 dBm	
10 dBm-										5.18	541630 GHz	
TO aBm-								ndB			26.00 dB	
0 dBm—								Bw		40.5150	00000 MHz	
о авті—						A41		Q factor			128.0	
-10 dBm						M1						
-10 0000				mon	- And	mony	ممير	moun	margan a			
-20 dBm				[ ]		Ψ						
-20 UBIII												
00 Jp			/									
-30 dBm			Ţ						<u> </u>			
40 d0m		~	$\sim 1$							Δα	m	
-49 dBm	$\sim \sim$	$\sim$	Aures.						~~~~	Anna	ww	
• -50 dBm												
-SU UBIII												
-60 dBm												
-ou ubiii												
-70 dBm												
-70 ubiii												
CF 5.19	9 GHz					32000	pts			Spar	n 80.0 MHz	
Marker												
Type	Ref	Trc	X-va	X-value   Y-value   Fu				unction	Function Result			
M1		1	5.18	54163 GHz		-9.33 dBr	n	ndB down		4	40.515 MHz	
T1		1		97463 GHz		-35.33 dBr		ndB			26.00 dB	
T2		1	5.21	D2613 GHz		-35.34 dBr	n	Q factor			128.0	

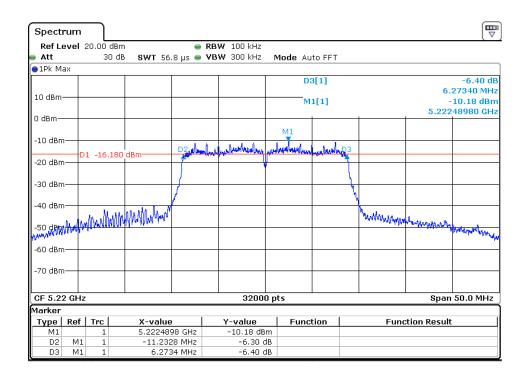
Spectr	um									
Ref Le	vel 2	20.00 dB	Im	RBW	500 kHz					
🔵 Att		30 0	dB <b>SWT</b> 18.9 j	us 👄 VBW	2 MHz	Mode Au	to FFT			
😑 1Pk Ma	эх									
						М	1[1]			-8.75 dBm
									5.236	i44130 GHz
10 dBm-						no	1B			26.00 dB
0.10							N		40.1375	00000 MHz
0 dBm—				M1						130.5
10 40						X				
-10 dBm			~~~	maria	man -	many	mm	minun		
-20 dBm					Ψ					
-20 UBIII										
-30 dBm										
-30 UBIII			4					¥		
-40 dBm										0
-40 080		$\sim$	m w					n	mon	m
-50 dBm										
-30 0011										
-60 dBm										
-70 dBm										
/ 0 0.0										
CF 5.23	3 GHz				32000 j	ots			Span	80.0 MHz
Marker										
	Ref	Trc	X-value		Y-value	Function		Fun	ction Result	
M1		1	5.2364413		-8.75 dBm	ndB down			40	.1375 MHz
T1		1	5.2099438		-34.74 dBm		ndB			26.00 dB
T2		1	5.2500813	GHz	-34.74 dBm	<u> </u>	factor			130.5



Spectrum						( V	
Ref Level 20.00 dB	_	RBW 500 kHz					
Att 30 c	iB <b>SWT</b> 18.9 μs 👄	VBW 2 MHz N	lode Auto FFT				
1Pk Max	- F						
			M1[1]		-11.07 dB		
10 dBm			ndB		5.771	03380 GH	
			Bw		40 49750	26.00 di 20000 MH	
0 dBm			O factor		10.1070	142.	
				MI	1 1		
-10 dBm		. (Davidada da					
	- man	who we will be	and a show we	and a start			
-20 dBm							
-30 dBm	тұ∕			¥2			
-40 dBm	У			y T			
mmm					m	Mr.	
-50 dBm					¥	1 1 100	
-60 dBm							
-70 dBm							
CF 5.755 GHz		32000 pt	s		Span	80.0 MHz	
1arker							
Type   Ref   Trc	X-value	Y-value	Function	Fun	ction Result		
M1 1	5.7710338 GHz	-11.07 dBm	ndB down		40.	4375 MHz	
T1 1	5.7348963 GHz	-37.07 dBm	ndB			26.00 dB	
T2 1	5.7753338 GHz	-37.07 dBm	Q factor			142.7	
Spectrum							
Ref Level 20.00 dB	m 😑	RBW 500 kHz				(*	
Att 30 c	_		lode Auto FFT				

Ref L	evel	20.00 dE	Bm	👄 RB	₩ 500 kHz					
🗎 Att		30	dB <b>SWT</b> 18	.9 µs 👄 🛛 🛛	W 2 MHz	Mode Au	ito FFT			
⊖1Pk M	ax									
						M	1[1]			-10.93 dBm
									5.799	980130 GHz
10 dBm						n	dB			26.00 dB
						В	w		40.2075	00000 MHz
0 dBm–						Q	factor			144.2
						M1				
-10 dBn				man .	mm	min	mon	mm		
					1	f in the second	and an and a second	······································		
-20 dBn	-+-י					-				
-30 dBn	∩—†-		T 1					12		
			7					¥		
-40 dBn		a and N	2 ml					have	Chan and	.0
mm	n~	Andm.	Y'						Y~ ~~ ~~ ~~ YW	mon
-50 dBn	∩— -								+	
-60 dBn	n-+-									
-70 dBn	n——									
CF 5.7		17			3200	Inte			Snar	80.0 MHz
Marker	90 GI	12			3200	5 prs			Spar	100.0 MH2
		1				1 -				1
Туре	Ref		X-value		Y-value	Func		Fun	ction Result	.2075 MHz
M1		1	5.79980		-10.93 dB -36.93 dB		down ndB		4L	
T1 T2		1	5.77498		-36.93 dB -36.92 dB		nas factor			26.00 dB 144.2
		1	5,81519.	IS GHZ	-30.92 dB	m V	ractor			144.2




Spectrum											V
Ref Level	20.00 dBr	n	👄 RB	W 1 MHz							_
🛛 Att	30 d	B <b>SWT</b> 22.9 μs	🔵 VB	W 3 MHz	Mode Auto	FFT					
⊖1Pk Max											
					М	1[1]				-14.50 dBr 325250 GH	
10 dBm					n	dB				26.00 d	
					В	w			81.6250	00000 MH	
0 dBm					Q	factor				63.	.7
-10 dBm				Mi							_
-20 dBm		mm	$\sim \sim$	my	have	~~~	mon				_
-30 dBm											_
-40 dBm								2			
-50 dBm	m	m						hun	m	mm	5
-60 dBm											
-70 dBm											
CF 5.21 GHz		·		32000	) pts				Span	160.0 MHz	z
Marker											
Type   Ref	Trc	frc X-value			alue   Function			Fund	tion Result	t	
M1	1	5.2032525 Gł		-14.50 dBi		down			6	31.625 MHz	z
T1	1	5.1692875 Gł		-40.50 dBr		ndB				26.00 dB	3
T2	1	5.2509125 G	lz	-40.49 dBr	m Q	factor				63.7	

Spect	um						
Ref Le	evel 2	20.00 dBr	n e	RBW 1 MHz			· · · · · ·
🔵 Att		30 di	В <b>SWT</b> 22.9 µs	VBW 3 MHz M	ode Auto FFT		
●1Pk Ma	эх		· · · ·				
					M1[1]		-16.27 dBm
							5.80829250 GHz
10 dBm-					ndB		26.00 dB
o					Bw		82.290000000 MHz
0 dBm—					Q factor		70.6
-10 dBm						И1	
			man and a second	mont	m	million	
-20 dBm				· · · · · · · · · · · · · · · · · · ·		*	
-30 dBm	-						
			⊤.€			12	
-40 dBm		٨	¥			Ť	
		mm	mm			h	mon
-50 dBm							
-60 dBm	-						
-70 dBm	-						
CF 5.7	75 GH	z	1 1	32000 p	ots	1	Span 160.0 MHz
Marker				•			
Type	Ref	Trc	X-value	Y-value	Function	Eun	ction Result
M1		1	5.8082925 GHz	-16.27 dBm	ndB down		82.29 MHz
T1		1	5.7336275 GHz	-42.27 dBm	ndB		26.00 dB
T2		1	5.8159175 GHz	-42.28 dBm	Q factor		70.6



#### 6 dBc Bandwidth plot as follows:

₩ Spectrum 🔵 RBW 100 kHz Ref Level 20.00 dBm SWT 56.8 µs 👄 VBW 300 kHz Att 30 dB Mode Auto FFT ⊖1Pk Ma≻ D3[1] 6.09 dB 6.25310 MHz 10 dBm· M1[1] -10.43 dBm 5.18248980 GHz 0 dBm-M1 -10 dBm· lovelaul والدوح أعومتهم Janah P3 D2. March 01 -16.430 dBm -20 dBm--30 dBm· -40 dBm-Marthan Marthan -50 dBm -60 dBm -70 dBm CF 5.18 GHz 32000 pts Span 50.0 MHz Marker TypeRefTrcM11 Function Function Result X-value Y-value 5.1824898 GHz -10.43 dBm M1 -11.2453 MHz 6.2531 MHz D2 1 -6.14 dB M1 D3 1 -6.09 dB





Ref Le Att	evel :	20.00 c 30		_	RBW 100 kHz VBW 300 kHz	Mode Au	ito FFT				
)1Pk Ma	эх										
						D	3[1]			6.	-6.21 d 25000 MH
10 dBm-	+					M	1[1]			-	10.35 dBr 48980 GH
D dBm—										J.242	40900 GH
-10 dBm						M1					
10 000		1 -16.3	50 dBm	D2	malasel and markers	mlunhun	Lucharde	DЗ			
-20 dBm		1 10.0		4				1			
-30 dBm								4			
50 GDIII				\$				٦,			
-40 dBm			the two has N	· · · · ·							
	man	North Martin	what when the second						W-Whydele	mann	
hand hand										19991110 1	www.www.h
-60 dBm					_						
70 10-											
-70 dBm											
CF 5.24					32000	nts				Snan	50.0 MHz
larker					02000	P()				opun	00.0 1112
Type	Ref	Trc	X-value	.	Y-value	Func	tion		Func	tion Result	:
M1		1	5.24248		-10.35 dBn						
D2	M1	1	-11.25		-6.36 dB						
D3	M1	1	0.,	25 MHz	-6.21 dB		-				

Spectrum					
Ref Level 20.00 dE	=	RBW 100 kHz			· · · · · · · · · · · · · · · · · · ·
e Att 30	dB 🛛 <b>SWT</b> 56.8 µs 👄	<b>VBW</b> 300 kHz M	Mode Auto FFT		
●1Pk Max					
			D3[1]		-6.42 dB
10 dBm					6.25310 MHz
			M1[1]		-12.26 dBm
0 dBm					5.74748200 GHz
o doni					
-10 dBm			M1		
-10 0011	and the second	A LAND	N. I. I. I.		
-20 dBm D1 -18.26	50 dBm	alman malandamban un	have been been been	ND3	
-20 0011		¥		T	
-30 dBm					
				4	
-40 dBm	1			<u> </u>	
-50 dBm	LL M. M. M.			A contract	
-50 dBm	ANNA MANA ANA ANA ANA ANA ANA ANA ANA AN			WWWLAU	
North Alex WAY MANY WITH					Marin Marina
-60 dBm					
-70 dBm					<u> </u>
CF 5.745 GHz		32000 p	ts		Span 50.0 MHz
Marker			1		
Type Ref Trc	X-value	Y-value	Function	Fun	ction Result
M1 1	5.747482 GHz	-12.26 dBm			
D2 M1 1 D3 M1 1	-11.2406 MHz 6.2531 MHz	-6.06 dB -6.42 dB			
	6.2531 MHZ	-6.42 dB			



Ref L	evel	20.00 c	1Bm		<b>RBW</b> 100 kH	z						
Att		30	dB <b>SWT</b> 56	.8 µs 👄	<b>VBW</b> 300 kH	z N	1ode Au	ito FFT				
1Pk M	ах											
							D	3[1]				-6.18 d
10 dBm												.24530 MH
to ubiii							M	1[1]				-12.16 dBr
0 dBm—								I			5.787	749140 GH
-10 dBm	ι					_	M1					
				D2.	In a marken with	أهدرهم	malantin	manh	23			
-20 dBm	ידי	1 -18.1	.60 dBm	1				- Marine 1	-			
						Ť.						
-30 dBr	ו-ר			1					t			
-40 dBm				کمر					- ۲			
-40 UBII			the sector of	ſ						N.		
-50 dBr		malak	ANN MARKAN MARKAN							mahundans	Margarette Margarette	
WUMPHING .	man	ALC: N	will all a start and the start							munun	Abrea the call of the	Wywwww.
-60 dBrr												
-70 dBm	י—⊢											
CF 5.7	B5 G⊢	Iz			320	00 pi	ts				Spar	1 50.0 MHz
/arker						<u> </u>			_		· · ·	
Type	Ref	Trc	X-value	.	Y-value	1	Func	tion		Fund	tion Result	t
M1		1	5.78749	14 GHz	-12.16	dBm						
D2	M1	1	-11.25		-6.3							
D3	M1	1	6.24	53 MHz	-6.18	3 dB						

Spect	rum											
Ref Lo	evel 3	20.00	dBm		RBW 100 kHz							`
Att 🛛		30	dB <b>SWT</b> 56	.8 µs 👄	<b>VBW</b> 300 kHz	Mod	le Au	to FFT				
⊖1Pk M	эx											
							D	3[1]				-6.05 dB
10 dBm·												24840 MHz
10 000							M	1[1]				12.02 dBm
0 dBm—											5.827	48980 GHz
-10 dBm	∩—					M	1					
				D2, 1	al marken and and and	mont	miliun	R	3			
-20 dBm		1 -18.	020 dBm	-	THE REAL PROPERTY OF THE PARTY			New New	-			
						1						
-30 dBm	∩			1					t			
				1					٦			
-40 dBm	<u>ا</u> —۱		1 6.1.1	<u>م</u>						1		
		. And	www.www.www.							websselfer		
-50 dBr	And a grant of the second	We ct.									1 millightend have	alex alexand
												I MANUTANA
-60 dBm												
-70 dBm												
CF 5.8	25 GH	z			3200	D pts					Span	50.0 MHz
Marker												
Туре	Ref	Trc	X-value		Y-value		Func	tion		Func	tion Result	
M1		1	5.827489		-12.02 dB							
D2	M1	1		25 MHz	-6.40 (							
D3	M1	1	6.248	34 MHz	-6.05 (	iB						



Specti	um													
Ref Le	evel	20.00	dBm			RB	<b>W</b> 100 kHz							· · · ·
🗎 Att		3	D dB	SWT 56.	8 µs 👄	VB'	<b>W</b> 300 kHz	M	lode Au	to FFT				
😑 1Pk Ma	эх													
									D	2[1]				-6.36 dB
10 dBm-														.23590 MHz
10 0000									м	1[1]				-10.19 dBm
0 dBm—													5.18	248830 GHz
									M1					
-10 dBm														
	—-n	1 -16.	190	dBm	D2.	ماريم	and and and an	الريم	malaulun		23			
-20 dBm					-			-		-	1			
					1						١,			
-30 dBm	-				1	-					h			
					/						٦			
-40 dBm				to see to al								h address a		
E0 dbm	h	MAN	WW	VIWIWW.								An Add Add Wallow	MMMmula	
- SU UNI	19pmar	MI		MMMMM										apparent was
-60 dBm														
00 00.00														
-70 dBm														
CF 5.18							3200	<b>.</b>					<b></b>	n 50.0 MHz
Marker	o GHZ	<u></u>					3200	u hi	.5				sha	1 30.0 MHz
	Ref	1		X-value			Y-value	- 1	Func	I		E	ction Resu	• 1
Type M1	Rei	Trc 1		5.182488			-10.19 dB	m	Func			Fun	cion Resu	<u></u>
D2	M1	-		-11.235			-10.19 08							
D3	M1				3 MHz		-6.01 0							

### Ant 802.11 n20

Spect	um										
Ref Le	evel 2	20.00 dE	3m		RBW 100 kHz						
🛛 Att		30	dB <b>SWT</b> 56.	8 µs 👄	VBW 300 kHz	Mode Au	uto FFT				
⊖1Pk Ma	эх										
						D	3[1]				-6.18 dB
10 dBm-											24530 MHz
TO UDIII-						M	1[1]				-10.70 dBm
0 dBm—										5.222	248980 GHz
o abiii											
-10 dBm						M1					
10 000				DZ	Industrie lawlow	molester	Indersto	DЗ			
-20 dBm	D:	1 -16.70	00 dBm	4	AND			×			
					· · · ·						
-30 dBm	_			4				<u> </u>			
				1				્યુ			
-40 dBm				1					1		
									Martin		and the second states of the s
-50 dBm		WW AND	mpanaliter water						AL DAD PURCHAR	MAMMAN MAN	kotá "síl.
Man Marken Marker	Ward And										W. W
-60 dBm											
-70 dBm											
CF 5.22	2 GHz				3200	) pts	1			Span	50.0 MHz
Marker											
Type	Ref	Trc	X-value	1	Y-value	Fund	tion		Fund	tion Result	t í
M1		1	5.222489	8 GHz	-10.70 dB	m					
D2	M1	1	-11.235	9 MHz	-6.25 c	lВ					
D3	M1	1	6.245	3 MHz	-6.18 c	1B					



Spect	um										
Ref Le	evel 3	20.00 de	Зm		RBW 100 kHz						
Att 🛛		30	dB <b>SWT</b> 56.	8 µs 👄	<b>VBW</b> 300 kHz	Mode Au	ito FFT				
⊖1Pk Ma	эх										
						D	3[1]				-6.37 dE
10 dBm-											27340 MH
10 00111						м	1[1]				10.24 dBn 49140 GH
0 dBm—							1		1	5.242	49140 GH
						M1					
-10 dBm			_			6 1 1					
		1 -16.24	40 dBm	DZ	In make a bushand	unlun hadman	-	D3			
-20 dBm				Ť				Ť			
				1				١,			
-30 dBm				1				٦.			
40 d0m				(				1	4		
-40 ubii		. Ma	NMMMMM						"Murnynn		
-50 dÅg	a Ma	AN ANY ANY	all had been and the						ALCHO, IS. 6.	May how how	MAL 10.
MAT AND A											ans with when APMA
-60 dBm											
-70 dBm											
CF 5.24	I GHz		1		3200	) pts	1		1	Span	50.0 MHz
Marker										· ·	
Type	Ref	Trc	X-value	1	Y-value	Func	tion		Fund	tion Result	
M1		1	5.242491		-10.24 dB						
D2	M1	1	-11.257		-6.21 c						
D3	M1	1	6.273	4 MHz	-6.37 c	1B					

Specti	um									
Ref Le	evel 2	20.00	dBm		RBW 100 kHz					
🔵 Att		30	0 dB <b>SWT</b> 56	.8 µs 👄	<b>VBW</b> 300 kHz	Mode Au	to FFT			
😑 1Pk Ma	эх									
						D	3[1]			-5.93 dB
10 dBm-										25780 MHz
TO UBIII-						M	1[1]			12.37 dBm
0 dBm—									5.747	48520 GHz
o ubiii—										
-10 dBm						<u>M1</u>				
10 0.011					al marchen	molesalambur				
-20 dBm		1 -18.3	370 dBm		the state of the state of the state	A MICHAILMAN WAR	Maline Mary			
20 0.011				11	¥		1 1			
-30 dBm										
				1				1		
-40 dBm				/				٩		
		. 6đ						Balla to to		
-50 dBm	1 Jacob	aller all	-MAMAMAMAM					- MILLING AND		enderman
and an and the state of the sta	N TANK	· · ·								an an an an an an
-60 dBm										
-70 dBm								-		
CF 5.74	15 GH	z			32000	ots			Span	50.0 MHz
Marker										
	Ref	Trc	X-value	.	Y-value	Func	tion	Fund	tion Result	. 1
M1		1	5.74748		-12.37 dBr					
D2	M1	1	-11.253	L6 MHz	-6.35 d	в				
D3	M1	1	6.25	78 MHz	-5.93 d	В				



Ref L	evel	20.00	dBm			RB۱	✔ 100 kHz							
Att		30	) dB	<b>SWT</b> 56	5.8 µs 👄	٧B١	₩ 300 kHz	М	ode Au	to FFT				
●1Pk M	эх													
									D	3[1]				-6.14 d
10 dBm														26880 MH
									M	1[1]				-12.33 dB 749140 GF
0 dBm—			-			_							0.701	19140 01
									M1					
-10 dBr	)— <del> </del>				· .				•	1				
-20 dBm		1 -18.	330 a	dBm	D2	lund	malasalasa	ماميم	A Marilan	malanha	3			
-20 UBII	-										Τ			
-30 dBm	) <u> </u>										1			
					17						٦.			
-40 dBm	ι <del></del>		-		<u>}</u>	_					1	<u> </u>		
			و دار .	ANNO, MAN	w l							Whitehaller	Acres 1	
-50 dBm	Junto		And the	MMMMM								WWWWWWW	and the ship which	WWWWWW
-60 dBr														
-оо авп	1													
-70 dBm	) <u> </u>													
CF 5.7	35 GF	17					3200	] nt·	ç				Snar	 50.0 MHz
larker							0200				-		opu.	
Type	Ref	Trc		X-valu	e		Y-value	1	Func	tion		Fund	tion Result	t
M1		1		5.78749			-12.33 dB							
D2	M1	-			53 MHz		-5.93 c							
D3	M1	1		6.26	88 MHz		-6.14 c	1B						

Spect	um												
Ref Le Att	evel 3	20.00 dBr 30 d				♥ 100 kHz ♥ 300 kHz	м	l <b>ode</b> Au	to FFT				
●1Pk Ma	эх												
								D	3[1]				-6.14 dB
10 dBm-												6.	25470 MHz
TO UBIII-								M	1[1]				12.13 dBm
0 dBm—												5.827	49140 GHz
								М1					
-10 dBm								Y					
	n	1 -18.130	l dBm	D2	لمسله	mal was have been been been been been been been be	June 1	un hundren	meleral	DЗ			
-20 dBm	' <b>-</b>	1 -10,130		-			-			<u> </u>			
							[			- {			
-30 dBm										4			
-40 dBm				لړ						- ۲			
-40 060			. at a m latest										
-50 dBm		white white	When when the								Wesh M.	A. M.	
Martin	N/I TO I		horangeline								halpelly Mari	and have been the state	which man have
-60 dBm													
00 000													
-70 dBm													
CF 5.82	25 GH	z				3200	0 pt	5				Span	50.0 MHz
Marker													
Туре	Ref	Trc	X-value			Y-value		Funct	tion		Fund	tion Result	
M1		1	5.82749:	14 GHz		-12.13 dB	m						
D2	M1	1	-11.246			-6.37 (							
D3	M1	1	6.254	7 MHz		-6.14 (	dB 🗌						



Spect	um									
	evel 2	20.00 d		_	RBW 100 kHz					
Att		30	dB <b>SWT</b> 94	8 µs 👄	<b>VBW</b> 300 kHz	Mode Au	ito FFT			
⊖1Pk Ma	эх —									
						D	3[1]		19	-6.23 dB 73250 MHz
10 dBm-						м	1[1]			-13.27 dBm
										199380 GHz
0 dBm—										
-10 dBm						M1				
-10 0600				1		- U.Y.				
-20 dBm	D:	1 -19.2	70 dBm	يليبا جافعات	and have been been been been been been been be	perfectively and	الالاليوجان			
								- 1 1		
-30 dBm										
			/							
-40 dBm			<i></i>							
Lis out of the	Alexan	unidal	Non MARINE					where we wanted	J. M. Mulliman In	add all the
1444		11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1								an and a stability
-60 dBm									_	
-70 dBm										
CF 5.19	GHz				32000	) pts			Spar	80.0 MHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Resul	t [
M1		1	5.194993		-13.27 dB					
D2	M1	1	-22.562		-5.34 c					
D3	M1	1	12.732	5 MHZ	-6.23 c	в				

### Ant 802.11 n40

Spectr	um											
	evel 2	20.00 dB			<b>RBW</b> 100 kHz							
Att		30 c	1B SWT 94	4.8 µs 👄	<b>VBW</b> 300 kHz	: N	<b>1ode</b> Au	to FFT				
●1Pk Ma	ax						D	3[1]			12	-5.62 dB .74000 MHz
10 dBm-							M	1[1]				-13.05 dBm 499630 GHz
0 dBm—						+						
-10 dBm							M1					
-20 dBm		1 -19.05		derhale light	war had been been been been been been been bee		holenhali	humber	ydardad	<b>1</b> 3		
-30 dBm			+			¥						
-40 dBm			+									
Makina WA	Norterv	ant Walnut	The Mary Product							WWWWWWWWWW	a and What Man	MAR MARINE
-60 dBm												
-70 dBm												
CF 5.23	3 GHz				320	00 p	ts				Spar	n 80.0 MHz
Marker												
Туре	Ref		X-valu		Y-value	Duri	Funct	tion		Fun	ction Resul	t
M1 D2	M1	1	5.23499	75 MHz	-13.05 d -6.01							
D2	M1 M1	1		75 MHz 74 MHz	-5.62							



Spectrum					
Ref Level 20.00 dB	m =	RBW 100 kHz			( •
Att 30 d	-		Mode Auto FFT		
1Pk Max					
-			D3[1]		-5.81 dE
10 dBm					2.87000 MH
TO UBIN			M1[1]		-15.77 dBn
0 dBm					5.76998880 GH
-10 dBm				м1	
	nel ( ) u	Land lader hashing	Labert Laboration		
-20 dBm	D dBm	Light a state with the state of the		ANN AND A	
-30 dBm		V			
		T			
-40 dBm				$\rightarrow$	
	a handle			Mute	. la k I I
S Postato programment with the	Mar and Mar			- WAR	www.handermander.hander.
-60 dBm					
-00 060					
-70 dBm					
CF 5.755 GHz		32000 p	ts		Span 80.0 MHz
1arker		•			•
Type   Ref   Trc	X-value	Y-value	Function	Fund	ction Result
M1 1	5.7699888 GHz	-15.77 dBm			
D2 M1 1	-32.565 MHz	-5.40 dB			
D3 M1 1	2.87 MHz	-5.81 dB			
					_
Spectrum					E
Ref Level 20.00 dB	m e	RBW 100 kHz			
Att 30 d	B <b>SWT</b> 94.8 μs 🖷	VBW 300 kHz M	Mode Auto FFT		
∋1Pk Max					
			D3[1]		-6.14 dE

⊖1Pk Ma	эх										
						D	3[1]				-6.14 dB
10 dBm-											87000 MHz
TO OPIU-						M	1[1]				-15.33 dBm
0 dBm—										5.799	99380 GHz
o ubiii—											
-10 dBm						MI					
					Jana	, T.					
-20 dBm		1 -21.3	330 dBm	ير <mark>اير اجراد ا</mark> ند		and the second second		<u>الماساسات</u>	L		
					"" ] ]	ſ		1			
-30 dBm			_								
									1		
-40 dBm									<b>\</b>		
Lu.		Maria	LALL MARKAN						No.	الاندية .	
W 20 M 20 M	<b>Mada</b> t	Wwwww	hally man h						- Marth	www.	AN WHITE AN ANTING
-60 dBm											
-70 dBm											
-70 aBm											
CF 5.79	95 GH	z			3200	0 pts				Spar	80.0 MHz
Marker											
Туре	Ref	Trc	X-value	.	Y-value	Func	tion		Fund	ction Result	t (
M1		1	5.79999		-15.33 dB						
D2	M1	1		55 MHz	-5.68 c						
D3	M1	1	12.5	37 MHz	-6.14 0	1B					



Spect	rum									
Ref Le	evel 3	20.00	dBm	-	RBW 100 kHz					
Att 🛛		30	0 dB <b>SWT</b> 56	8 µs 👄	VBW 300 kHz	Mode Au	to FFT			
⊖1Pk Ma	эх									
						D	3[1]			-6.02 dB
10 dBm-									6.	25780 MHz
						м	1[1]		E 103	-9.94 dBm 49140 GHz
0 dBm—								1	5.102	49140 GH2
						M1				
-10 dBm					0	1.1.1				
	—b	1 -16.	780 dBm	D2 Man	In makes has been as	where we will say	malama D3			
-20 dBm				-(	¥					
				1			}			
-30 dBm				۲,			۲ ۲	1		
-40 dBm				{				4		
10 0011		. As	when the second					Manalanda	00	
-50 d8m	Anna		Mexemple and the control of					- I WINDIN	WWWWWWWWWWW	almar who was
MANYAYY										A very and and a very
-60 dBm										
-70 dBm								-		
CF 5.18	3 GHz				32000	pts			Span	50.0 MHz
Marker										
	Ref	Trc	X-value		Y-value	Func	tion 📋	Fund	ction Result	:
M1		1	5.18249:		-9.94 dBm					
D2	M1	1	-11.231		-6.34 dB					
D3	M1	1	6.257	'8 MHz	-6.02 dB					

Spectr	um											
Ref Le	evel 2	20.00 dBr	n	•	RBW 100 kHz							
Att 🗧		30 d	B <b>SWT</b> 56.	8 µs 👄	<b>VBW</b> 300 kHz	Me	ode Au	to FFT				
⊖1Pk Ma	ах											
							D	3[1]				-6.41 dB
10 dBm-												.27340 MHz
10 000							M	1[1]				-10.21 dBm
0 dBm—											5.222	249140 GHz
							M1					
-10 dBm							<b>y</b>					
	n.	1 -16.210	l dBm	DSurly	alma menterstanding	MM	14 milion	- Annala	DЗ			
-20 dBm		-10.210				Į			<u> </u>			
				1		I						
-30 dBm	_			<u> </u>					-			
				/					- \			
-40 dBm			-									
			1 Marmanner							WWWWWWWWW	Almallan in m.	
-50 dBm	how hi	MANA MAN	Whennerwithur									WWWWWW
												1 ALAN (
-60 dBm	-											
-70 dBm	_											
CF 5.22	2 GHz				3200	0 pts	5				Span	50.0 MHz
Marker						-						
Type	Ref	Trc	X-value		Y-value	1	Func	tion		Fund	tion Result	t
M1		1	5.222491	4 GHz	-10.21 dł	3m						
D2	M1	1	-11.221		-6.35							
D3	M1	1	6.273	4 MHz	-6.41	dB						



Specti	um										
Ref Le	evel :	20.00 di	Bm	e Ri	3W 100 kHz						
🛛 Att		30	dB <b>SWT</b> 56.	8 µs 👄 ۷	BW 300 kHz	Mode Au	ito FFT				
⊖1Pk Ma	эх										
						D	3[1]				-6.26 dB
10 dBm-										6.	27340 MHz
10 000						M	1[1]				-9.77 dBm
0 dBm—										5.242	48980 GHz
						M1					
-10 dBm						× T .					
	— D	1 -15.73	70 dBm	DZulm	a marken and make	maland martin	ماحصاليه	D3			
-20 dBm				4	-	1		1			
-30 dBm				+				-			
				کړ				্			
-40 dBm			multurent						WWWWWWW		
		1 march 14	WWW. Marine						AND DEPENDENCE IN THE OWNER OF THE OWNER	When hippy wante	
	though t	· · ·									TYNY PANY TYNY
-60 dBm											
-70 dBm											
-70 ubm											
CF 5.24	i GHz				3200	0 pts				Span	50.0 MHz
Marker		. ,									
Туре	Ref		X-value		Y-value	Func	tion		Func	tion Result	
M1		1	5.242489		-9.77 dB						
D2 D3	M1 M1	1	-11.267	2 MHZ 4 MHZ	-6.61 (						
03	INIT	1	0.273		-0.20 (						

Spectr	um									
Ref Le	vel	20.00 dB	m		RBW 100 kHz					
🔵 Att		30 d	dB <b>SWT</b> 56.	8 µs 👄	<b>VBW</b> 300 kHz	Mode Au	to FFT			
●1Pk Ma	эх			•						
						D	3[1]			-6.27 dB
10 10									6.	24380 MHz
10 dBm-						M	1[1]			12.34 dBm
0 dBm—									5.747	49140 GHz
-10 dBm						<u>M1</u>				
10 0.0				bo J	alma market here land	unline realise	1 1 22			
-20 dBm	<b></b> D	1 -18.34	0 dBm		AT THE AREA INTO A PARTY OF THE	AN IN AN A PARTY AND	AND AND A CONTRACT			
				ſ	- I ¥					
-30 dBm	_			-			1	·		
				1				<u>\</u>		
-40 dBm	+			<i>s</i>				1		
		مصارفه	Marriage WWW					hun		
-50 dBm	MM	Martin Martin	MANNON					- WWWWWW	that the man	www.lalanacaaa
and the second s	·								an a	and a property and
-60 dBm	+		-							<u> </u>
-70 dBm	+									
CF 5.74	5 GF	lz			32000	pts		-	Span	50.0 MHz
Marker						·			· · ·	í
Type	Ref	Trc	X-value	- 1	Y-value	Func	tion	Fund	ction Result	. 1
M1		1	5.747491	L4 GHz	-12.34 dBr	n				
D2	M1	1	-11.262		-6.48 d					
D3	M1	1	6.243	8 MHz	-6.27 d	в				



Ref Le	vel	20.00	dBm		_		<b>W</b> 100 kHz							
Att		3	D dB	SWT 56	.8 µs 👄	٧B	<b>W</b> 300 kHz	Mod	e Au	to FFT				
∎1Pk Ma	x													
									D	3[1]				-6.18 d
10 dBm-										1[1]				.27660 MH -12.12 dBr
									171	1[1]				749140 GH
0 dBm—														
-10 dBm								M:						
-10 aBm						8	ال مامينا ا	6.1						
-20 dBm	⊐₽	1 -18.	120	dBm	- CZ Ulling	بالبيبة	hand same beautions	Anim'n'	NPUL LAND		13			
							l Y				l			
-30 dBm			_		+						t			
10.10					1						્ષ			
-40 dBm				WWW WWW	r							Aland In		
-50 dBm		. Marall	ANN,	MM. M. M.								www.www.dw	moliabirus	
mum	www													MARINA MARINA
-60 dBm			_											
-70 dBm														
CF 5.78	5 G⊦	łz					32000	l pts					Spar	n 50.0 MHz
1arker														
	Ref	Trc		X-value 5.78749			<u>Y-value</u> -12.12 dBr		unc	tion		Fund	tion Result	t
M1 D2	М1	1		-11.248			-12.12 UB -6.36 d							
D3	M1	-			6 MHz		-6.18 d	-						
										-				

Spect	rum											
Ref Lo	evel 3	20.00 c	lBm		RBW 100 kHz							
🛛 Att		30	dB <b>SWT</b> 56.	.8 µs 👄	<b>VBW</b> 300 kHz	Mode	Aut	O FFT				
🔵 1Pk M	эx											
							D3	[1]				-5.96 dB
10 dBm·							_					.25310 MHz
10 0.0111							M1	[1]				-12.00 dBm
0 dBm—											5.82	749140 GHz
						M1						
-10 dBm	∩—					M1						
		1 10 0		D2	alma mountain hundren	unhan te	dunt	ulasa D3	3			
-20 dBm		1 -10.0	100 dBm	-				10 C 10 C	-			
-30 dBm	) <del>  </del>			1			-		t			
10 10				X					٩			
-40 dBm			MMMMMM							1.1.1.1		
50 d9m		when he	WWWWWWWW							www.	Malanser	
wind the second	hit a state of the										ALMIANAN	Honderhoutering
-60 dBm												
00 000	.											
-70 dBm	) <u> </u>											
CF 5.8	25 CH	7			3200	Inte						1 50.0 MHz
Marker	20 011	2			0200	5 pt3			_		opui	1 00.0 10112
Type	Ref	Trc	X-value		Y-value		unct	ion		Fund	tion Resul	+ 1
M1	1.01	1	5.82749:		-12.00 dB		unct			- T unc	Alon Kesul	
D2	M1	1	-10.990		-5.70 c							
D3	M1	1	6,253	1 MHz	-5.96 c	IB						



Spectr	um													
Ref Le	vel 2	20.00 dBm 30 dB		_		100 kHz 300 kHz	Ма	da ku	to FFT					
All 1Pk Ma:	,	30 UE	3WT 94	.o µs 🖷	¥ D YY	300 KHZ	INU	ue Au						
10 dBm-									3[1] 1[1]					-5.66 dB .58880 MHz -13.09 dBm
0 dBm—	_												5.19	499130 GHz
-10 dBm-				4				M1						
-20 dBm-	=D1	1 -19.090	dBm	uluduly li	-		- Marine Ind	a desident	de a da da	y hite	193 1			
-30 dBm-											$\left  \right $			
-40 dBm-		s. station t	1									W		
ikapat kipitat	(van and	uler aller and a second se	<u>MARANA</u>									MUM	hinnertenten	na water and the second
-60 dBm-														
-70 dBm-														
CF 5.19	GHz					3200	) pts						Spa	n 80.0 MHz
Marker														
	Ref		X-value			/-value		Func	tion			Fun	tion Resu	lt
M1		1	5.194993			-13.09 dB								
D2 D3	M1 M1	1	-22.416 12.588			-4.99 c -5.66 c								

Spect	um											
	evel 3	20.00 dBn		_		100 kHz						
Att 1Pk Ma		30 di	3 <b>SWT</b> 94.6	3 µs 👄	VBW	300 kHz	Mode	Auto FF1	Γ			
-								D3[1]			2.	-5.95 dB 85880 MHz
10 dBm-								M1[1]				13.84 dBm 98880 GHz
0 dBm—	-											
-10 dBm					_				M1			
-20 dBm	r—d	1 -19.840	dBm DP	haladadada		her has been and here have	pour palente	hud hunde	-	43		
-30 dBm	-				_							
-40 dBm	·—				_							
wan Malak	nluhanaul	herithter	and server a							Martin Martin	Manual Manual Manual	why have a flat where
-60 dBm												4
-70 dBm												
70 abiii												
CF 5.23	3 GHz		I I			3200	) pts			1	Span	80.0 MHz
Marker												
Туре	Ref		X-value			'-value		nction		Fund	tion Result	
M1		1	5.244988			-13.84 dB						
D2 D3	M1 M1	1	-32,56			-5.24 c -5.95 c						

Al Athen Anthen Anth

Function Result

ndan yanga yang

Span 80.0 MHz



-40 dBm·

hand the second se

-60 dBm--70 dBm-

Marker

CF 5.795 GHz

 Type
 Ref
 Trc

 M1
 1

 D2
 M1
 1

 D3
 M1
 1

X-value 5.7999963 GHz -22.56 MHz 12.895 MHz

Spectrum					
Ref Level 20.00 dBr		W 100 kHz			(
Att 30 d 1Pk Max	IB SWT 94.8 μs 👄 VE	W 300 kHz Mode	Auto FFT		
IPK Max			D3[1]		-5.87 di
			boli		12.76500 MH
10 dBm			M1[1]		-15.18 dBr
D dBm					5.75999630 GH
-10 dBm		1M			
-20. dBm	De De la	Halphales		<b>d</b> 3	
DI -21.18		ייזערי יי		74	
-30 dBm		¥ ***			
-40 dBm					
Sandlandardurabelall				"We give get the	aluluhitana (m/h.hythlatana
				1	
60 dBm					
-70 dBm					
CF 5.755 GHz		32000 pts	1	I	Span 80.0 MHz
larker					
Type Ref Trc	X-value 5.7599963 GHz	Y-value Fui -15.18 dBm	nction	Function	n Result
D2 M1 1	-22.565 MHz	-5.35 dB			
D3 M1 1	12.765 MHz	-5.87 dB			
Spectrum					E
Ref Level 20.00 dBr	m 🖷 <b>R</b> P	W 100 kHz			( `
Att 30 d	_		Auto FFT		
1Pk Max					
			D3[1]		-6.27 d 12.89500 MH
10 dBm			M1[1]		-15.36 dBr
					5.79999630 GH
D dBm					
-10 dBm		- mi	+ +		
	De la	· · · · · · · · · · · · · · · · · · ·	المبارد الم	4.0	
-20 dBm D1 -21.36		Hantania profestional	-	<b>1</b>	
-30 dBm		↓			
		1 1			

32000 pts

1

Function

**Y-value** -15.36 dBm -4.86 dB -6.27 dB



Ref Leve	L 20 00 d	Bm		RBW	' 100 kHz								( .
Att	30 30		L89.7 μs 🕻	-			ode A	uto Fl	FT				
1Pk Max													
							D	3[1]					-5.58 di
10 -10												74.	41380 MH
10 dBm							M	1[1]					21.98 dBr
0 dBm												5.173	73750 GH
-10 dBm													
-10 000													
-20 dBm		M1											
20 000			ուսու			ullu.	1.111	1 1	Ind	шн	3		
-30 dBm	D1 -27.9	80 dBm 🕺				<b></b>	and the second		and a state of				
-40 dBm—		+											
		1									1		
-50 dBm			_								1		
MARINAN.	-	the Rules									Jule	بطالع بالرجيد	ومرافع وبلمان
-60 dBm			-								distant.	An inclusion of the second physical distribution	and and and a state of
-70 dBm—			-										
CF 5.21 G	Hz				3200	0 pts						Span 1	60.0 MHz
larker													
Type   Re	f   Trc	X-val	ue	Y	-value	1	Func	tion	1		Fund	tion Result	
M1	1	5.1737	'375 GHz		-21.98 dB	m							
	11 1		488 MHz		-5.99 c								
D3N	11 1	74.4	138 MHz		-5.58 c	1B							

Spectrur	n									
Ref Leve	el 20.00 dBr	n		<b>RBW</b> 100 kHz						
🛛 Att	30 di	B <b>SWT</b> 189.7	7 μs 👄 🎙	<b>VBW</b> 300 kHz	Mode 4	uto FF1	Г			
⊖1Pk Max										
					D	3[1]				-6.11 dB
10 dBm										42500 MHz
TO UDIII					M	1[1]				23.77 dBm
0 dBm									5.778	73750 GHz
-10 dBm—										
-20 dBm—					-M1					
			unu	um mu	մաստ	1.11	11.JL	LLH3		
-30 dBm	D1 -29.850	) dBm								
10.10										
-40 dBm—										
-50 dBm										
-30 dbm	Land and the second second	Marca -							ور الغانان و المدر و	and the state of the
-60 dBm		Associates.							a design and a second	Contraction of the second s
00 00										
-70 dBm—										
CF 5.775	 GHz			32000	) pts				Span 1	160.0 MHz
Marker									•	
Type   Re	ef   Trc	X-value		Y-value	Func	tion		Func	tion Result	:
M1	1	5.7787375		-23.77 dB						
	41 1	-41.675		-5.77 c						
D3 N	41 1	34.425	MHz	-6.11 c	B					



# 5.5 Peak Power Density

## 5.5.1 Applied procedures / Limit

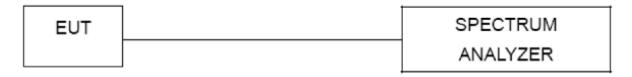
1.For the band 5.150-5.250 GHz, the peak power spectral density shall not exceed 11 dBm in any 1000KHz band.

2.For the band 5.725-5.850 GHz, the peak power spectral density shall not exceed 30 dBm in any 500KHz band. If transmitting antenna directional gain is greater than 6 dBi, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

## 5.5.2 Test procedure

1. The setting follows Method SA-1 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01 . For devices operating in the band, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW  $\geq$  1/T, where T is defined in section II.B.I.a).


b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

## 5.5.3 TEST SETUP



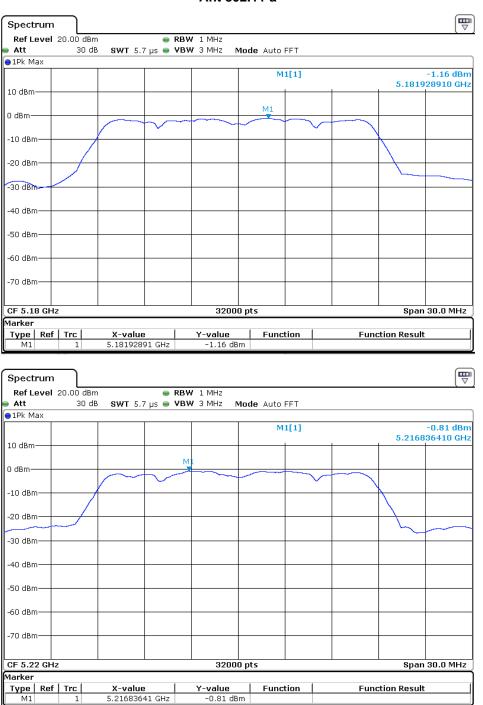


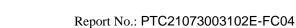
Report No.: PTC21073003102E-FC04

## 5.5.4 Deviation from standard

No deviation.




Report No.: PTC21073003102E-FC04


# 5.5.5 Test results

Test Mode	NTx	Data Rate (Mbps)	Channel No.	Freq. (MHz)	Ant PSD (dBm/MHz)	Limit (dBm /MHz)	Result
11a	2	6	36	5180	-1.16	11.00	Pass
11a	2	6	44	5220	-0.81	11.00	Pass
11a	2	6	48	5240	-0.89	11.00	Pass
11n-HT20	2	7.2	36	5180	-0.48	11.00	Pass
11n-HT20	2	7.2	44	5220	-0.82	11.00	Pass
11n-HT20	2	7.2	48	5240	-0.98	11.00	Pass
11n-HT40	2	15	38	5190	-4.19	11.00	Pass
11n-HT40	2	15	46	5230	-4.25	11.00	Pass
11ac-VHT20	2	7.2	36	5180	-1.02	11.00	Pass
11ac-VHT20	2	7.2	44	5220	-0.90	11.00	Pass
11ac-VHT20	2	7.2	48	5240	-0.64	11.00	Pass
11ac-VHT40	2	15	38	5190	-2.99	11.00	Pass
11ac-VHT40	2	15	46	5230	-2.83	11.00	Pass
11ac-VHT80	2	32.5	42	5210	-3.16	11.00	Pass
11a	2	6	149	5745	-3.31	30.00	Pass
11a	2	6	157	5785	-3.15	30.00	Pass
11a	2	6	165	5825	-2.58	30.00	Pass
11n-HT20	2	7.2	149	5745	-2.67	30.00	Pass
11n-HT20	2	7.2	157	5785	-3.35	30.00	Pass
11n-HT20	2	7.2	165	5825	-2.94	30.00	Pass
11n-HT40	2	15	151	5755	-5.94	30.00	Pass
11n-HT40	2	15	159	5795	-5.95	30.00	Pass
11ac-VHT20	2	7.2	149	5745	-2.99	30.00	Pass
11ac-VHT20	2	7.2	157	5785	-2.83	30.00	Pass
11ac-VHT20	2	7.2	165	5825	-3.16	30.00	Pass
11ac-VHT40	2	15	151	5755	-5.94	30.00	Pass
11ac-VHT40	2	15	159	5795	-5.28	30.00	Pass
11ac-VHT80	2	32.5	155	5775	-14.39	30.00	Pass



### Result plot as follows:







Spectrum Ref Level 20.00 dBm 🖷 RBW 1 MHz **SWT** 5.7 µs 👄 **VBW** 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -0.89 dBm 5.242337660 GHz M1[1] 10 dBm-М1 0 dBm--10 dBm· -20 dBm· -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm· Span 30.0 MHz CF 5.24 GHz 32000 pts Marker 
 Type
 Ref
 Trc

 M1
 1
 X-value 5.24233766 GHz Y-value -0.89 dBm Function Result Function Spectrum . . .

Ref Lev	<b>el</b> 20.00 d	Bm	👄 RB1	🖌 1 MHz					
🔵 Att	30	dB SWT 5.1	7 μs 👄 <b>VB</b>	WI3 MHz N	1ode Auto	FFT			
●1Pk Max									
					Μ	1[1]			-3.31 dBm
								5.7422	28280 GHz
10 dBm									
				NA 1					
0 dBm				Χ					
			$\sim$				$ \sim $		
-10 dBm—		1					,		
								$\langle \rangle$	
-20 dBm—									
-30 d&m-									
-40 dBm—									
EQ JD									
-50 dBm—									
<0.40-m									
-60 dBm—									
70 40									
-70 dBm—									
CF 5.745	ĠHz			32000	) pts			Span	30.0 MHz
Marker									
	ef Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1	1	5.742228	28 GHz	-3.31 dB	m				





Type Ref Trc

X-value 5.82789922 GHz

Spectrum Ref Level 20.00 dBm 🔵 RBW 1 MHz Att 30 dB SWT 5.7 µs 👄 VBW 3 MHz Mode Auto FFT ●1Pk Max -3.15 dBm 5.782061410 GHz M1[1] 10 dBm-0 dBm--10 dBm· -20 dBm· -30 dBm -40 dBm· -50 dBm--60 dBm· -70 dBm· CF 5.785 GHz 32000 pts Span 30.0 MHz Marker X-value 5.78206141 GHz Y-value -3.15 dBm Type Ref Trc Function Function Result M1 1 ₩ Spectrum 🔵 RBW 1 MHz Ref Level 20.00 dBm SWT 5.7 µs 👄 VBW 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -2.58 dBm 5.827899220 GHz M1[1] 10 dBm-0 dBm--10 dBm--20 dBm--30 dBm -40 dBm· -50 dBm· -60 dBm· -70 dBm-CF 5.825 GHz 32000 pts Span 30.0 MHz Marker

Y-value -2.58 dBm Function

Function Result



	20.00 dBm			RBW 1 MHz					( \
Att	30 dE	SWT 5	.7 µs 👄	VBW 3 MHz (	Mode Auto I	FFT			
1Pk Max									
					M	1[1]			-0.48 dBn
.0 dBm							1	5.182	323590 GH
I dBm					M1				
abiii		$\sim$	$+ \sim$	~	~~~~		1		
10 dBm		(					``````````````````````````````````````	λ	
								$\backslash$	
20 dBm									
30 dBm-								<u> </u>	
40 dBm									
to ubiii									
50 dBm									
50 dBm									
so ubili									
70 dBm									
o ubiii									
F 5.18 GH	z			3200	0 pts			Spa	n 30.0 MHz
arker									
M1		X-valu 5.182323		<b>Y-value</b> -0.48 dB	Funct	tion	Fund	ction Resu	
Spectrum		5.182323	359 GHz			tion	Fund	tion Resu	
M1 Gpectrum Ref Level Att		5.18232:	359 GHz	-0.48 dE RBW 1 MHz			Fund	tion Resu	
M1 Gpectrum Ref Level Att	20.00 dBm	5.18232:	359 GHz	-0.48 dE RBW 1 MHz	Mode Auto	FFT	Fund	tion Resu	(The second seco
M1 Gpectrum Ref Level Att	20.00 dBm	5.18232:	359 GHz	-0.48 dE RBW 1 MHz	Mode Auto		Fund		-0.82 dBn
M1 Gpectrum Ref Level Att 1Pk Max	20.00 dBm	5.18232:	359 GHz	-0.48 dE RBW 1 MHz	Mode Auto	FFT	Fund		-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT	Fund		-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dE RBW 1 MHz	Mode Auto	FFT	Fund		-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT	Fund		-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT	Fund		-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT	Fund		-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT	Fund		-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm 10 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 pectrum Ref Level Att 1Pk Max 0 dBm 0 dBm 10 dBm 20 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm 10 dBm 20 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm 20 dBm 20 dBm 30 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 Cpectrum Ref Level Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr 020470 GH
M1 Spectrum	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBn
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm 10 dBm 20 dBm 40 dBm 50 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBn
M1 Cpectrum Ref Level Att 1Pk Max 0 dBm 10 dBm 20 dBm 20 dBm 50 dBm 50 dBm 50 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm 0 dBm 20 dBm 20 dBm 40 dBm 50 dBm 50 dBm	20.00 dBm	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT			-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm 0 dBm 20 dBm 30 dBm 50 dBm 50 dBm 70 dBm	20.00 dBm 30 dE	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT		5.218	-0.82 dBr
M1 Spectrum Ref Level Att 1Pk Max 0 dBm 0 dBm 20 dBm 20 dBm 50 dBm 50 dBm 50 dBm 70 dBm F 5.22 GH	20.00 dBm 30 dE	5.18232:	359 GHz	-0.48 dt	Mode Auto	FFT		5.218	-0.82 dBr 020470 GH
M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm 10 dBm 20 dBm 40 dBm 50 dBm	20.00 dBm 30 dE	5.18232:	.7 μs •	-0.48 dt	Mode Auto	FFT 1[1]		5.218	-0.82 dBr 020470 GH

Ant 802.11 n20



Span 30.0 MHz

Function Result



-70 dBm-

Marker

CF 5.745 GHz

Type Ref Trc

X-value 5.74810922 GHz

Spectrum Ref Level 20.00 dBm 🔵 RBW 1 MHz Att 30 dB SWT 5.7 µs 👄 VBW 3 MHz Mode Auto FFT ●1Pk Max -0.98 dBm 5.241613910 GHz M1[1] 10 dBmм1 0 dBm--10 dBm· -20 dBm· -30 dBm--40 dBm· -50 dBm--60 dBm--70 dBm· CF 5.24 GHz 32000 pts Span 30.0 MHz Marker Y-value -0.98 dBm X-value Type Ref Trc Function Function Result 5.24161391 GHz M1 1 ₩ Spectrum 😑 RBW 1 MHz Ref Level 20.00 dBm **SWT** 5.7 µs 👄 **VBW** 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -2.67 dBm 5.748109220 GHz M1[1] 10 dBm-0 dBm--10 dBm--20 dBm--30 dBm -40 dBm· -50 dBm· -60 dBm·

32000 pts

Function

Y-value -2.67 dBm





Marker

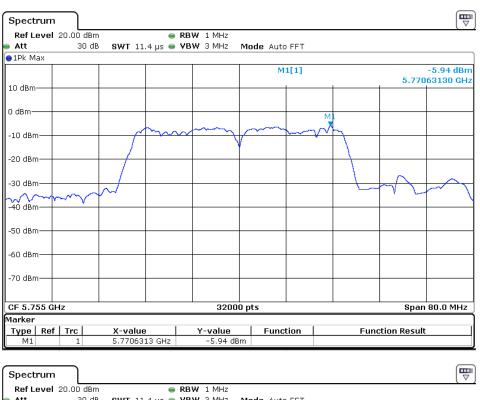
Type Ref Trc

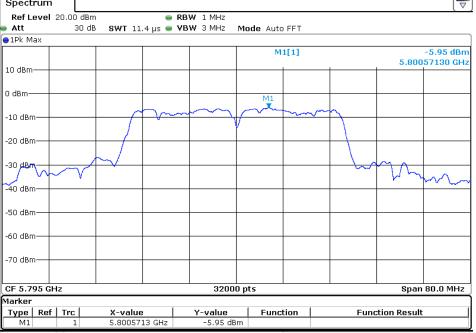
X-value 5.82850016 GHz

Spectrum Ref Level 20.00 dBm 🔵 RBW 1 MHz Att 30 dB SWT 5.7 µs 👄 VBW 3 MHz Mode Auto FFT ●1Pk Max -3.35 dBm 5.782656720 GHz M1[1] 10 dBm-0 dBm-T -10 dBm· -20 dBm· -30 dBm--40 dBm· -50 dBm--60 dBm· -70 dBm· CF 5.785 GHz 32000 pts Span 30.0 MHz Marker X-value 5.78265672 GHz Y-value -3.35 dBm Type Ref Trc Function Function Result M1 1 ₩ Spectrum 🔵 RBW 1 MHz Ref Level 20.00 dBm SWT 5.7 µs 👄 VBW 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -2.94 dBm 5.828500160 GHz M1[1] 10 dBm-0 dBm--10 dBm--20 dBm--30 dBm -40 dBm· -50 dBm· -60 dBm· -70 dBm-CF 5.825 GHz 32000 pts Span 30.0 MHz

Y-value -2.94 dBm Function

Function Result





Spectrum Ref Level 20.00	) dBm	- R	RBW 1 MHz					( 🛛
				<b>1ode</b> Auto F	FT			
1Pk Max								
				M1[	1]		5.40	-4.19 dBm
.0 dBm			_				5.18	473380 GHz
I dBm			- M1					
	~		min	$\sim$	$\sim$	2		
10 dBm			-  ¥			$\uparrow$		
20 dBm								
30/dBm							22	
	$\gamma \gamma \gamma$					~v~		m
40 dBm								~
50 dBm								
60 dBm								
70 dBm								
F 5.19 GHz	I		32000	pts	I		Spa	n 80.0 MHz
arker	1			1	- 1			
Type Ref Tro M1	1 5.18473	338 GHz	Y-value -4.19 dBm	Functio	on	Fun	ction Resu	
Type     Ref     Tro       M1     Image: state s	1 5.18473 0 dBm	338 GHz	-4.19 dBm			Fun	ction Resu	
Type         Ref         Tro           M1         Tro         Tro           Bpectrum         Ref Level 20.00         Att	1 5.18473 0 dBm	338 GHz	-4.19 dBm	<b>1ode</b> Auto F	FT	Fun	ction Resu	
Type         Ref         Tro           M1         Tro         Tro           Bpectrum         Ref Level 20.00         Att	1 5.18473 0 dBm	338 GHz	-4.19 dBm	1	FT	Fun		-4.25 dBn
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max	1 5.18473 0 dBm	338 GHz	-4.19 dBm	<b>1ode</b> Auto F	FT	Fun		-4.25 dBn
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max	1 5.18473 0 dBm	338 GHz	-4.19 dBm	<b>1ode</b> Auto F	FT	Fun		-4.25 dBn
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max 0 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	<b>1ode</b> Auto F	FT	Fun		-4.25 dBn
Type Ref Trc M1 20.00 Att 20.00 Att 0 dBm 0 dBm 0 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 20.00 Att 20.00 Att 0 dBm 0 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 20.00 Ref Level 20.00 Att 1Pk Max 0 dBm dBm 10 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 20.00 Ref Level 20.00 Att 1Pk Max 0 dBm dBm 10 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         1         1           Spectrum         Ref Level         20.00           Att         11Pk Max           0 dBm         0           10 dBm         10           20 dBm         20 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 Trc Spectrum Ref Level 20.00 Att 1Pk Max 0 dBm dBm 10 dBm 20 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type Ref Trc M1 20.00 Ref Level 20.00 Att 1Pk Max 0 dBm 10 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         1         1           Spectrum         Ref Level         20.00           Att         1         1           1Pk Max         0         dBm         1           10 dBm         10         dBm         1           20 dBm         30         dBm         1           30 dBm         50         dBm         1	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		t -4.25 dBn 510630 GH:
Type Ref Trc M1 Spectrum Ref Level 20.00 Att 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         30         30         48m           10         dBm         30         48m         30         48m           50         dBm         50         dBm         50         48m	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         1         1           Spectrum         Ref Level         20.00           Att         1         1           1Pk Max         0         dBm         1           10 dBm         10         dBm         1           20 dBm         30         dBm         1           30 dBm         50         dBm         1	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         30         30         48m           10         dBm         30         48m         30         48m           50         dBm         50         dBm         50         48m	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1[	FT	Fun		-4.25 dBn
Type         Ref         Trc           M1         30         30         48m           10         dBm         30         48m         30         48m           50         dBm         50         dBm         50         48m           50         dBm         50         dBm         50         48m           50         dBm         50         dBm         50         48m         50         50         48m         50         48m         50         48m         50         48m         50         48m         50         48m         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50 <td< td=""><td>1 5.18473 0 dBm</td><td>338 GHz</td><td>-4.19 dBm</td><td>10de Auto F M1</td><td>FT</td><td>Fun</td><td>5.23</td><td>-4.25 dBn</td></td<>	1 5.18473 0 dBm	338 GHz	-4.19 dBm	10de Auto F M1	FT	Fun	5.23	-4.25 dBn
Type         Ref         Trc           M1         30         30         48           20         dBm         30         48         30         48           50         dBm         30         48         30         48         30         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40         40	1 5.18473	938 GHz • F 1.4 μs • V	-4.19 dBm	10de Auto F M1	FT		5.23	-4.25 dBn 510630 GH:

Ant 802.11 n40



Report No.: PTC21073003102E-FC04







Spectrum Ref Level	20.00 dBm	1	● RBW	/ 1 MHz					
Att	30 dB	SWT 5.	7 µs 👄 🛛 🗛	VI3 MHz M	Mode Auto	FFT			
1Pk Max					1				
					M	1[1]		5 176	-1.02 dBn 917970 GH
0 dBm								3.170	917970 GH
			м	1					
dBm			قر						
					-				
10 dBm									
00 d0 ee									
20 dBm									
30 dBm								$\sim$	$\sim$
Jo abiii									
40 dBm									
50 dBm —									
50 dBm —									
70 dBm									
F 5.18 GH	lz			3200	0 pts			Spa	n 30.0 MHz
arker									
	Trc 1	<b>X-valu</b> 5.176917		Y-value -1.02 dB	Func	tion	Fund	ction Resul	t
Type Ref M1						tion	Fund	ction Resul	
Fype Ref M1 Spectrum Ref Level	20.00 dBm	5.176917	97 GHz	-1.02 dB	9m	-	Fund	ction Resul	
Fype Ref M1 Gpectrum Ref Level Att		5.176917	'97 GHz	-1.02 dB		-	Fund	ction Resu	
Fype Ref M1 Gpectrum Ref Level Att	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto	FFT	Fund	ction Resu	(The second seco
Fype Ref M1 Spectrum Ref Level Att 1Pk Max	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto	-	Fund		-0.90 dBr
Fype Ref M1 Gpectrum Ref Level Att	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto	FFT	Func		-0.90 dBr
Ref Level Att 0 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Type     Ref       M1     M1       Spectrum     Ref Level       Att     1Pk Max       0 dBm     0 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto	FFT	Func		-0.90 dBr
Ref Level Att D dBm dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Type Ref M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype Ref M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype Ref M1 Spectrum Ref Level Att 1Pk Max 0 dBm dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype Ref M1 Gpectrum Ref Level Att 1Pk Max 0 dBm dBm 0 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype Ref M1 Spectrum Ref Level Att 1Pk Max dBm dBm L0 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Type         Ref           M1         Spectrum           Spectrum         Ref Level           Att         1           1Pk Max         0 dBm           0 dBm         0 dBm           20 dBm         0 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype         Ref           M1	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype Ref M1 Spectrum Ref Level Att 1Pk Max	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBr
Fype         Ref           M1         Spectrum           Spectrum         Ref Level           Att         IPk Max           0 dBm         dBm           10 dBm         0 dBm           30 dBm         60 dBm           50 dBm         50 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT	Func		-0.90 dBn 522340 GH
Fype         Ref           M1	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT			-0.90 dBr
Fype         Ref           M1         B           Bpectrum         B           Ref Level         Att           1Pk Max         dBm           0 dBm         dBm           10 dBm         dBm           20 dBm         dBm           30 dBm         dBm           50 dBm         GodBm           50 dBm         GodBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT			-0.90 dBr
Fype         Ref           M1         Spectrum           Spectrum         Ref Level           Att         IPk Max           0 dBm         dBm           10 dBm         0 dBm           30 dBm         60 dBm           50 dBm         50 dBm	20.00 dBm	5.176917	97 GHz	-1.02 dB	Mode Auto M1	FFT			-0.90 dBr
Type         Ref           M1	20.00 dBm 30 dP	5.176917	97 GHz	-1.02 dB	Mode Auto	FFT		5.222	-0.90 dBr 522340 GH
Type         Ref           M1	20.00 dBm 30 dP	5.176917	97 GHz	-1.02 dB	Mode Auto	FFT		5.222	-0.90 dBr



Report No.: PTC21073003102E-FC04

Spectrum 🔵 RBW 1 MHz Ref Level 20.00 dBm **SWT** 5.7 µs 👄 **VBW** 3 MHz Att 30 dB Mode Auto FFT ●1Pk Max -0.64 dBm 5.237793590 GHz M1[1] 10 dBm-M1 0 dBm--10 dBm· -20 dBm· -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm· Span 30.0 MHz CF 5.24 GHz 32000 pts Marker 
 Type
 Ref
 Trc

 M1
 1
 X-value 5.23779359 GHz Y-value -0.64 dBm 1 Function Function Result ₽ Spectrum 🖷 RBW 1 MHz Ref Level 20.00 dBm e Att 30 dB SWT 5.7 μs SVBW 3 MHz Mode Auto FFT

🔵 1Pk Max									
					М	1[1]		5 7485	-2.99 dBm 502970 GHz
10 dBm								0.7400	
0 dBm						M1			
		$\sim$			$\sim$	~~			
-10 dBm									
-20 dBm								$\rightarrow$	
								$\langle \rangle$	
-30 dBm								<u> </u>	
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 5.745 G	Hz			32000	) pts			Span	30.0 MHz
Marker	1 - 1				1 -				
	Trc	X-value		Y-value	Func	tion	Func	tion Result	t
M1	1	5.748502	97 GHZ	-2.99 dBr	п				



Span 30.0 MHz

Function Result



CF 5.825 GHz

Type Ref Trc

X-value 5.82218516 GHz

Marker

Spectrum Ref Level 20.00 dBm 🔵 RBW 1 MHz Att 30 dB SWT 5.7 µs 👄 VBW 3 MHz Mode Auto FFT ●1Pk Max -2.83 dBm 5.787252340 GHz M1[1] 10 dBmм1 0 dBm---10 dBm· -20 dBm· -30 dBm -40 dBm· -50 dBm--60 dBm--70 dBm· CF 5.785 GHz 32000 pts Span 30.0 MHz Marker X-value 5.78725234 GHz Y-value -2.83 dBm Type Ref Trc Function Function Result M1 1 ₩ Spectrum 🔵 RBW 1 MHz Ref Level 20.00 dBm **SWT** 5.7 µs 👄 **VBW** 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -3.16 dBm 5.822185160 GHz M1[1] 10 dBm-0 dBm--10 dBm--20 dBm--30 dBm -40 dBm--50 dBm· -60 dBm· -70 dBm-

32000 pts

Function

Y-value -3.16 dBm



Spectrum Ref Level 20.00 dB			BW 1 MHz					( •
Att 30 c	B SWT 11	4 µs 🖷 🛛	BW 3 MHz	Mode Auto	FFT			
1Pk Max					4141			0.00.40.
				M	1[1]		5.19	-3.98 dBn 1378380 GH
LO dBm						1	1	1
) dBm				641				
				-M1				
10 dBm	+	V~		/	··~ ·	<u> </u>		_
				-		$  \rangle$		
20 dBm						+		
30 dBm	h							
	1 vv					~~~	$\gamma \sim$	han
40 dBm								V · (
50 dBm								
60 dBm								
60 dBm								
70 dBm								_
F 5.19 GHz			3200	nts			Sna	in 80.0 MHz
arker								
M1 1	<u>X-value</u> 5.19378		<u>Y-value</u> -3.98 dB	Func	tion	Fun	ction Resu	
M1 1	5.19378	38 GHz			tion	Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 dB Att 30 c	5.19378 m	38 GHz	-3.98 dE	Bm	-	Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 dB Att 30 c	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun	ction Resu	
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 1Pk Max	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	-	Fun		-3.36 dBr
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 1Pk Max	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1         1           Spectrum	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1         1           Spectrum	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1         1           Spectrum         Ref Level 20.00 dB           Att         30 c           1Pk Max         0 dBm           0 dBm         0 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 1Pk Max 0 dBm 10 dBm 10 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 1Pk Max 0 dBm 10 dBm 10 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 1Pk Max 0 dBm 10 dBm 20 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1 1 Spectrum Ref Level 20.00 dB Att 30 c 10Pk Max 0 dBm 10 dBm 20 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBn
M1         1           Spectrum         Ref Level         20.00 dB           Att         30 c           1Pk Max         30 dBm           0 dBm         20 dBm           30 dBm         30 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1         1           Spectrum         Ref Level         20.00 dB           Att         30 c         30 c           1Pk Max         30 dBm         30 dBm           10 dBm         20 dBm         30 dBm           30 dBm         40 dBm         30 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT	Fun		-3.36 dBr
M1         1           Spectrum         Ref Level         20.00 dB           Att         30 c         30 c           1Pk Max         30 dBm         30 dBm           10 dBm         20 dBm         30 dBm           30 dBm         40 dBm         30 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBr
M1         1           Spectrum	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBn
Spectrum Ref Level 20.00 dB	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBn
M1         1           Spectrum	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBn
M1         1           Spectrum         Ref Level 20.00 dB           Att         30 d           iPk Max            0 dBm            10 dBm            20 dBm            30 dBm            50 dBm            60 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBr
M1         1           Spectrum         Ref Level         20.00 dB           Att         30 c           1Pk Max         0         dBm           0 dBm         0         dBm           10 dBm         0         dBm           20 dBm         0         dBm           50 dBm         50 dBm         50 dBm	5.19378 m	38 GHz	-3.98 dE BW 1 MHz	Mode Auto	) FFT			-3.36 dBr

Ant 802.11 ac40

Span 80.0 MHz

Function Result



CF 5.795 GHz

Type Ref Trc

X-value 5.7998663 GHz

Marker

Spectrum Ref Level 20.00 dBm 🔵 RBW 1 MHz Att 30 dB SWT 11.4 µs 👄 VBW 3 MHz Mode Auto FFT ●1Pk Max -5.94 dBm 5.75934880 GHz M1[1] 10 dBm-0 dBm-M1 -10 dBm· -20 dBm· -30 dBm- $\sim$  $\sqrt{}$ -40 dBm· -50 dBm--60 dBm--70 dBm· CF 5.755 GHz 32000 pts Span 80.0 MHz Marker X-value 5.7593488 GHz Y-value -5.94 dBm Type Ref Trc Function Function Result M1 1 ₽ Spectrum Ref Level 20.00 dBm 😑 RBW 1 MHz SWT 11.4 µs 👄 VBW 3 MHz Att 30 dB Mode Auto FFT 😑 1Pk Max -5.28 dBm 5.79986630 GHz M1[1] 10 dBm-0 dBm м1 -10 dBm--20 dBm--30 dBm· γ -40 dBm--50 dBm· -60 dBm· -70 dBm-

32000 pts

Function

Y-value -5.28 dBm



Spectrum									E □
Ref Level		1	🖷 R	BW 1 MHz					(*
Att	30 dB	SWT 22	.9 µs 👄 ۷	BW 3 MHz	Mode Auto	D FFT			
1Pk Max		1							
					M	1[1]		5 22	-11.91 dBm 824250 GHz
10 dBm						-	1	0.22	
0 dBm									
-10 dBm						M1			
-10 UBIII		~~~~	mm	mmm	mont	how	mm -		
-20 dBm				'	¥ í	· ·			
-30 dBm				-			+		
		1					1		
Haden -	mm	$\sim$							man
-50 dBm								mm	· ·
SO GBIN									
-60 dBm									
-70 dBm				-					-
CF 5.21 GH	z			3200	0 pts			Span	160.0 MHz
1arker									
	1				1 -		-		
Type Ref M1 Spectrum		X-value 5.22824	25 GHz	Y-value -11.91 de	Func	tion	Fu	nction Resu	
Type Ref M1		5.22824	25 GHz		3m		Fu	nction Resu	
Type Ref M1 Spectrum Ref Level Att	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto	D FFT	Fu	nction Resu	
Type Ref M1 Spectrum Ref Level	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto		Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att IPk Max	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm 0 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm 0 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dE BW 1 MHz	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -10 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -10 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -20 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu	5.76	-14.39 dBm 822750 GH2
Type Ref M1 Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu		-14.39 dBm 822750 GH2
Type Ref M1 Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu	5.76	-14.39 dBm 822750 GHz
Type Ref M1 Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu	5.76	-14.39 dBm 822750 GHz
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT	Fu	5.76	-14.39 dBm 822750 GHz
Type Ref M1 Spectrum Ref Level Att 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 dt	3m Mode Auto	D FFT		5.76	-14.39 dBm 822750 GHz
Type         Ref           M1         Spectrum           Ref Level         Att           PIPk Max         IO dBm           10 dBm         -           -10 dBm         -           -20 dBm         -           -30 dBm         -           -60 dBm         -           -70 dBm         -	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 de	Mode Auto	D FFT		5.76	-14.39 dBm 822750 GHz
Type         Ref           M1         Spectrum           Ref Level         Att           PIPk Max         IO dBm           10 dBm         -           -10 dBm         -           -20 dBm         -           -30 dBm         -           -60 dBm         -           -60 dBm         -           -70 dBm         -           -60 dBm         -           -70 dBm         -           -70 dBm         -	20.00 dBm 30 dE	5.22824	25 GHz	-11.91 de	3m Mode Auto	D FFT		5.76	-14.39 dBm 822750 GHz
Type         Ref           M1         Spectrum           Ref Level         Att           PIPk Max         IO dBm           10 dBm         -           -10 dBm         -           -20 dBm         -           -30 dBm         -           -60 dBm         -           -70 dBm         -	1 20.00 dBm 30 dE	5.22824	25 GHz	-11.91 de	Mode Auto	2 FFT 1[1]		5.76	-14.39 dBm 822750 GHz

Ant 802.11 ac80



## 5.6 Maximum Peak Output Power

#### 5.6.1 Applied procedures / Limit

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### FCC Part15 (15.407), Subpart E

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.407(E)	Peak Output	0.25 watt or 23.9794dBm	5150-5250	PASS
(ii)/(3)	Power	1 watt or 30dBm	5725-5850	PASS

#### 5.6.2 Test procedure

KDB 789033 D02v01r01 - Section E) 3) b) Method PM-G

The EUT was directly connected to the Power Sensor & Power meter.

Average power measurements were perform only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.



#### 5.6.3 Test Setup



#### 5.6.4 Deviation from standard

No deviation.



### 5.6.5 Test results

Test Mode	Data Rate	Channel	Freq.	Ant	Limit	Result
	(Mbps)	No.	(MHz)	Average	≤(dBm)	
				Power (dBm)		
11a	6	36	5180	11.62	23.9794	Pass
11a	6	44	5220	11.48	23.9794	Pass
11a	6	48	5240	11.51	23.9794	Pass
11a	6	149	5745	10.65	30	Pass
11a	6	157	5785	10.34	30	Pass
11a	6	165	5825	10.27	30	Pass
11n-HT20	7.2	36	5180	11.85	23.9794	Pass
11n-HT20	7.2	44	5220	11.33	23.9794	Pass
11n-HT20	7.2	48	5240	11.26	23.9794	Pass
11n-HT20	7.2	149	5745	10.71	30	Pass
11n-HT20	7.2	157	5785	10.45	30	Pass
11n-HT20	7.2	165	5825	10.36	30	Pass
11n-HT40	15	38	5190	11.19	23.9794	Pass
11n-HT40	15	46	5230	11.68	23.9794	Pass
11n-HT40	15	151	5755	10.52	30	Pass
11n-HT40	15	159	5795	10.33	30	Pass
11ac-VHT20	7.2	36	5180	11.29	23.9794	Pass
11ac-VHT20	7.2	44	5220	11.46	23.9794	Pass
11ac-VHT20	7.2	48	5240	11.35	23.9794	Pass
11ac-VHT20	7.2	149	5745	10.74	30	Pass
11ac-VHT20	7.2	157	5785	10.48	30	Pass
11ac-VHT20	7.2	165	5825	10.50	30	Pass
11ac-VHT40	15	38	5190	11.13	23.9794	Pass
11ac-VHT40	15	46	5230	11.69	23.9794	Pass
11ac-VHT40	15	151	5755	10.25	30	Pass
11ac-VHT40	15	159	5795	10.34	30	Pass
11ac-VHT80	32.5	42	5210	6.68	23.9794	Pass
11ac-VHT80	32.5	155	5775	6.45	30	Pass

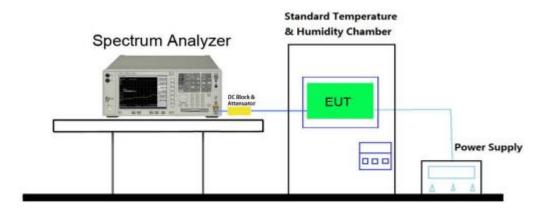


## 5.7 FREQUENCY STABILITY MEASUREMENT

#### 5.7.1 Applied procedures / Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an Emission is maintained within the band of operation under all conditions of normal operation as specified in the user"s manual.

#### 5.7.2 Test procedure


- 1. To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- 3. The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

#### 5.7.3 Deviation from standard

No deviation.

#### 5.7.4 Test setup





#### 5.7.5 Test results

Voltage	Power	Temp	Frequency Tolerance (ppm)
(%)	(VAC)	(°C)	
	120	- 20	3.47
		- 10	2.06
		0	1.73
4000/		+ 10	2.51
100%		+ 20 (Ref)	3.96
		+ 30	4.24
		+ 40	3.01
		+ 50	2.68
115%	138	+ 20	3.47
85%	102	+ 20	2.88

Note: Frequency Tolerance (ppm) = {[Measured Frequency (Hz) - Declared Frequency (Hz)] / Declared Frequency (Hz)}  $*10^{6}$ .



## 5.8 AUTOMATICALLY DISCONTINUE TRANSMISSION

#### 5.8.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

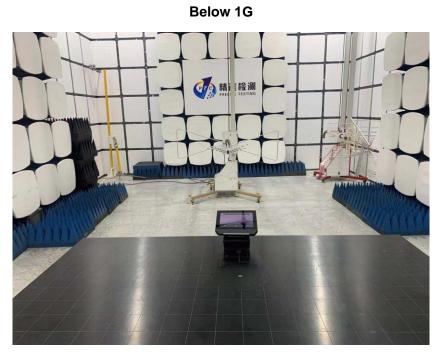
#### 5.8.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission

### 5.9 ANTENNA REQUIREMENT

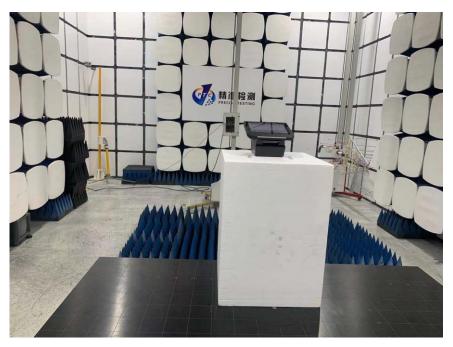
#### 5.9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


#### 5.9.2 EUT ANTENNA

The EUT'S antenna, permanent attached antenna, is FPCB Antenna. The antenna's gain is 2dBi and meets the requirement.




# 6 Photographs

## 6.1 Radiated Emission Test Setup



Above 1G







## 6.2 Conduction Emission Test Setup





## 6.3 EUT Constructional Details

Reference file "appendix II EUT photo"

**End of report**