

FCC TEST REPORT FCC ID: 2AVZV-H10-4

:	POS SYSTEM
:	H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10-35,H10-41,H10-42,H10-43,H10-44,H10-45,V8,V8-1,V8-2,V8-3,V8-4,V8-5
:	CITAQ
:	PTC21073003102E-FC02
:	PTC21073003102-1#
	: : : : : : : : : : : : : : : : : : : :

Prepared for

CITAQ CO., LTD

9F&13F, Chuangye Bldg, Keji Middle Road, Hi-Tech Zone, Shantou, Guangdong, China

Prepared by

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

1TEST RESULT CERTIFICATION

Applicant's name : CITAQ CO., LTD

Address : 9F&13F, Chuangye Bldg, Keji Middle Road, Hi-Tech Zone, Shantou,

Guangdong, China

Manufacture's name : CITAQ CO., LTD

Address : 9F&13F, Chuangye Bldg, Keji Middle Road, Hi-Tech Zone, Shantou,

Guangdong, China

Product name : POS SYSTEM

Model name :

H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10-35,H10-

41,H10-42,H10-43,H10-44,H10-45,V8,V8-1,V8-2,V8-3,V8-4,V8-5

Standards · FCC CFR47 Part 15 Section 15.247

Test procedure : ANSI C63.10:2013

Test Date : Nov. 19, 2021 to Dec. 20, 2021

Date of Issue : Dec. 21, 2021

Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang / Engineer

Les Tong

Technical Manager:

Chris Du / Manager

Contents

	Page
1TEST RESULT CERTIFICATION	
2 TEST SUMMARY	5
3 TEST FACILITY	
4 GENERAL INFORMATION	
4.1 GENERAL DESCRIPTION OF E.U.T	7
4.2 Test Mode	8
5 EQUIPMENT DURING TEST	10
5.1 EQUIPMENTS LIST	10
5.2 MEASUREMENT UNCERTAINTY	
5.3 DESCRIPTION OF SUPPORT UNITS	
6 CONDUCTED EMISSION	14
6.1 E.U.T. OPERATION	14
6.2 EUT SETUP	
6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
6.4 MEASUREMENT PROCEDURE:	15
6.5 CONDUCTED EMISSION LIMIT	15
6.6 MEASUREMENT DESCRIPTION	15
6.7 CONDUCTED EMISSION TEST RESULT	15
7 RADIATED SPURIOUS EMISSIONS	18
7.1 EUT OPERATION	18
7.2 TEST SETUP	19
7.3 SPECTRUM ANALYZER SETUP	20
7.4 TEST PROCEDURE	21
7.5 SUMMARY OF TEST RESULTS	22
8 CONDUCTED BAND EDGE EMISSION	27
8.1 REQUIREMENT	27
8.2 TEST PROCEDURE	27
8.3 TEST RESULTS	29
9 20 DB BANDWIDTH MEASUREMENT	40

9.1 Test Procedure	40
9.2 TEST RESULT	40
10 MAXIMUM PEAK OUTPUT POWER	47
10.1 Test Procedure	47
10.2 Test Result	47
11 HOPPING CHANNEL SEPARATION	49
11.1 Test Procedure	49
11.2 TEST RESULT	50
12 NUMBER OF HOPPING FREQUENCY	56
12.1 Test Procedure	56
12.2 TEST RESULT	56
13 DWELL TIME	57
13.1 Test Procedure	57
13.2 TEST RESULT	57
14 ANTENNA REQUIREMENT	60
14.1 ANTENNA REQUIREMENT	60
14.2 RESULT	60
15 TEST SETUP	61
16 FUT PHOTOS	63

2 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

3 TEST FACILITY

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

Designation Number: CN1219

4 General Information

4.1 General Description of E.U.T.

Product Name	:	POS SYSTEM
Model Name	:	H10-4,H10,H10-1,H10-3,H10-31,H10-32,H10-33,H10-34,H10-35,H10-41,H10-42,H10-43,H10-44,H10-45,V8,V8-1,V8-2,V8-3,V8-4,V8-5 (Note: The samples are the same except appearance and model number. So H10-4 was selected for full tested.)
Bluetooth Version	:	BT 4.0
Operating frequency	:	2402-2480MHz
Numbers of Channel	:	79 channels
Antenna Type	:	FPCB Antenna
Antenna Gain	ŀ	2 dBi
Type of Modulation	ŀ	GFSK, Π/4-DQPSK, 8DPSK
Power supply	1.	DC 24V 2.5A 60W(Adapter: Model: K65S240250E1;Input: AC 100- 240V,50/60Hz ,1.8A)
Hardware Version	:	V1.2
Software Version	:	Android 5.1

4.2 Test Mode

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, Π/4-DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Note:

1. Test of channel was included the lowest 2402MHz, middle 2441MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

2. All the modulation modes were tested with both AC 120v 60Hz and AC230V 50Hz, the data of the worst mode with AC 120V 60Hz are recorded.

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
MXA Signal Analyzer	Agilent	N9020A	MY56070279	Aug. 21, 2021	Aug. 20, 2022	1 year
Coaxial Cable	CDS	79254	46107086	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Meter	Anritsu	ML2495A	0949003	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Sensor	Anritsu	MA2411B	0917017	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Rohde&Schwa rz	FSU26	1166.1660.26	Aug. 21, 2021	Aug. 20, 2022	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibratio n period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	Aug. 21, 2021	Aug. 20, 2022	1 year
Bilog Antenna	SCHWARZBE CK	VULB9160	9160-3355	Aug. 21, 2021	Aug. 20, 2022	1 year
Preamplifier (low frequency)	SCHWARZBE CK	BBV 9475	9745-0013	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	Schwarzbeck	PLF-100	549489	Aug. 21, 2021	Aug. 20, 2022	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBE CK	9120D	9120D-1246	Aug. 21, 2021	Aug. 20, 2022	1 year
Power Amplifier	LUNAR EM	LNA1G18- 40	J1010000008	Aug. 21, 2021	Aug. 20, 2022	1 year
Horn Antenna	SCHWARZBE CK	BBHA 9170	9170-181	Aug. 21, 2021	Aug. 20, 2022	1 year
Amplifier	SCHWARZBE CK	BBV 9721	9721-205	Aug. 21, 2021	Aug. 20, 2022	1 year
Cable	H+S	CBL-26	N/A	Aug. 21, 2021	Aug. 20, 2022	1 year
RF Cable	R&S	R204	R21X	Aug. 21, 2021	Aug. 20, 2022	1 year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	L2-16B	000WX31025	Aug. 21, 2021	Aug. 20, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	ENV216	101342	Aug. 21, 2021	Aug. 20, 2022	1 year

5.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Remark: The coverage Factor (k=2), and measurement	Uncertainty for a level of Confidence of 95%

5.3 Description of Support Units

Equipment	Model No.	Series No.
-	-	-

6 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.10:2013

Test Result: : PASS

Frequency Range: : 150kHz to 30MHz

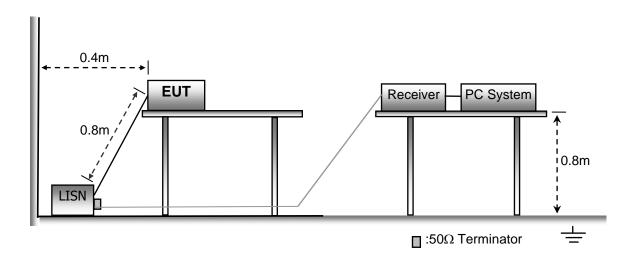
Class/Severity: : Class B

Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)

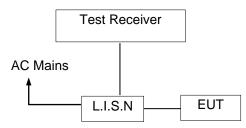
6.1 E.U.T. Operation

Operating Environment:

Temperature: : 25.5 °C


Humidity: : 51 % RH

Atmospheric Pressure: : 101.2kPa


Test Voltage : AC 120V/60Hz

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

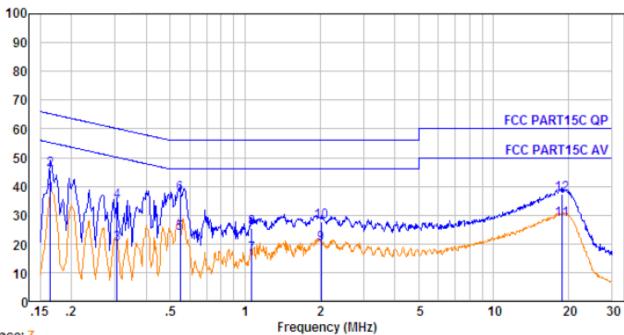
Note

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

6.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

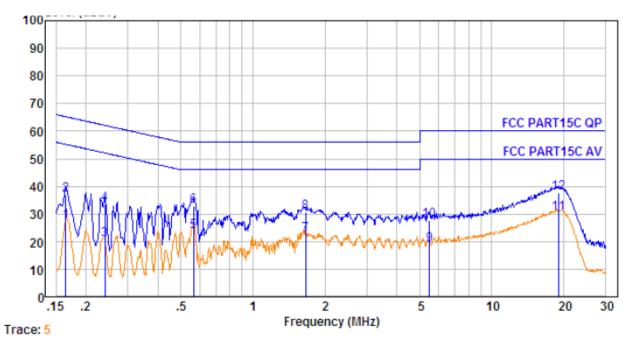
6.7 Conducted Emission Test Result


Pass.

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Line -120V/60Hz:

Trace: 7


No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.165	0.23	9.53	27.31	37.07	55.21	-18.14	Average
2.	0.165	0.23	9.53	36.14	45.90	65.21	-19.31	QP
3.	0.305	0.37	9.68	10.04	20.09	50.10	-30.01	Average
4.	0.305	0.37	9.68	24.68	34.73	60.10	-25.37	QP
5.	0.549	0.43	9.79	13.55	23.77	46.00	-22.23	Average
6.	0.549	0.43	9.79	27.12	37.34	56.00	-18.66	QP
7.	1.065	0.46	9.82	5.98	16.26	46.00	-29.74	Average
8.	1.065	0.46	9.82	15.32	25.60	56.00	-30.40	QP
9.	2.023	0.47	9.85	9.54	19.86	46.00	-26.14	Average
10.	2.023	0.47	9.85	17.35	27.67	56.00	-28.33	QP
11.	18.820	0.43	9.88	18.28	28.59	50.00	-21.41	Average
12.	18.820	0.43	9.88	26.94	37.25	60.00	-22.75	QP

Note: Emission Level = Reading + AMN Factor+Cable Loss Over limited=Emission Level - Limit

Neutral -120V/60Hz:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.165	0.23	9.56	17.36	27.15	55.21	-28.06	Average
2.	0.165	0.23	9.56	27.14	36.93	65.21	-28.28	QP -
3.	0.240	0.32	9.66	10.83	20.81	52.08	-31.27	Average
4.	0.240	0.32	9.66	23.65	33.63	62.08	-28.45	QP -
5.	0.564	0.43	9.82	13.53	23.78	46.00	-22.22	Average
6.	0.564	0.43	9.82	22.65	32.90	56.00	-23.10	QP
7.	1.662	0.47	9.87	12.24	22.58	46.00	-23.42	Average
8.	1.662	0.47	9.87	20.35	30.69	56.00	-25.31	QP
9.	5.476	0.51	9.97	8.22	18.70	50.00	-31.30	Average
10.	5.476	0.51	9.97	17.35	27.83	60.00	-32.17	QP -
11.	19.021	0.42	9.98	19.79	30.19	50.00	-19.81	Average
12.	19.021	0.42	9.98	27.37	37.77	60.00	-22.23	QP

Note: Emission Level = Reading + AMN Factor+Cable Loss Over limited=Emission Level - Limit

7 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method : ANSI C63.10:2013

Test Result : PASS
Measurement Distance : 3m

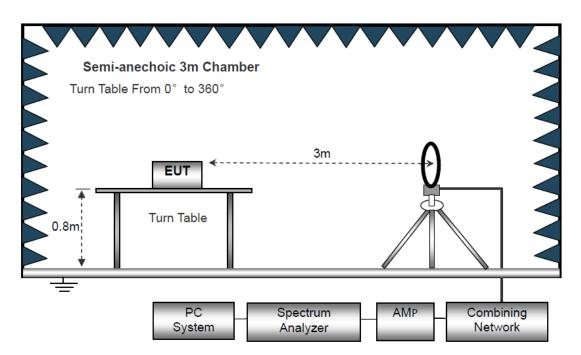
Limit : See the follow table

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

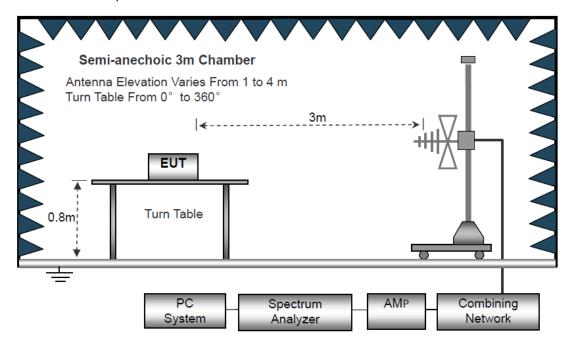
7.1 EUT Operation

Operating Environment:

Temperature : $23.5 \, ^{\circ}\text{C}$ Humidity : $51.1 \, ^{\circ}\text{RH}$

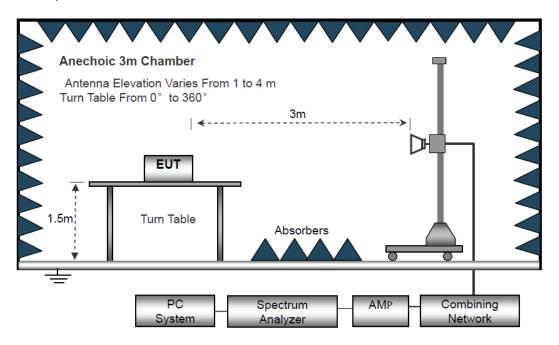

Atmospheric Pressure : 101.2kPa

Test Voltage : AC 120V 60Hz



7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement below 30MHz.


The test setup for emission measurement from 30 MHz to 1 GHz.

Page 19 of 63

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average				

Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

7.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

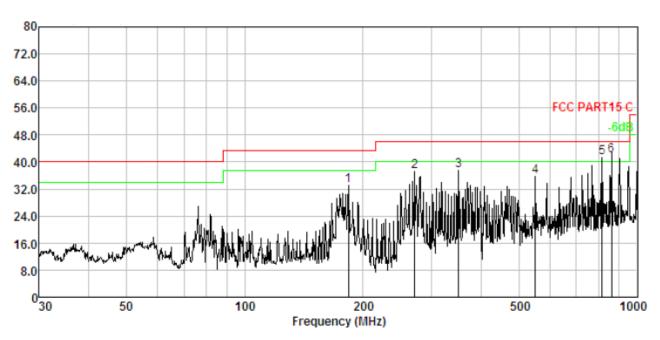
Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

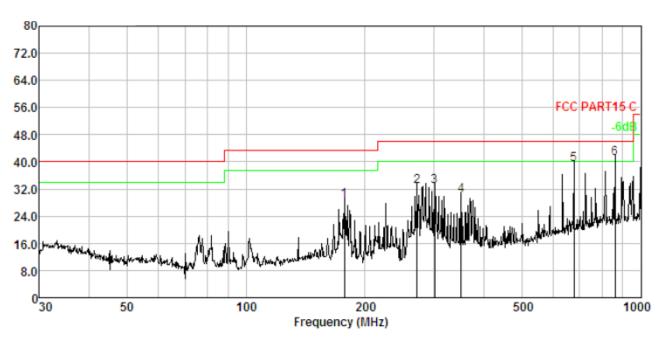
Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz


Please refer to the following test plots:

All the modulation modes were tested the data of the worst mode (GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.

Test plot for Horizontal: GFSK(2402MHz)


No.	Freq MHz	Cable Loss dB	ANT Factor dB	Receiver Reading dBuV/m	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	183.844	2.70	11.92	49.14	30.60	33.16	43.50	-10.34	QP
2.	271.325	3.05	12.52	52.48	30.74	37.31	46.00	-8.69	QP
3.	350.477	3.28	14.25	50.94	30.83	37.64	46.00	-8.36	QP
4.	550.948	3.69	17.95	44.96	30.98	35.62	46.00	-10.38	QP
5.	813.112	4.04	21.85	46.41	31.12	41.18	46.00	-4.82	QP
6.	860.035	4.09	22.06	46.90	31.14	41.91	46.00	-4.09	QP

Note: Emission Level = Reading + Antenna Factor + Cable Loss - Pre-amplifier Over limit=Emission Level - limit

Test plot for Vertical: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB	Receiver Reading dBuV/m	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	177.509	2.66	12.66	43.80	30.59	28.53	43.50	-14.97	QP
2.	271.325	3.05	12.52	47.96	30.74	32.79	46.00	-13.21	QP
3.	300.367	3.14	13.20	47.24	30.77	32.81	46.00	-13.19	QP
4.	350.477	3.28	14.25	43.37	30.83	30.07	46.00	-15.93	QP
5.	677.580	3.88	19.85	46.44	31.05	39.12	46.00	-6.88	QP
6.	860.035	4.09	22.06	46.00	31.14	41.01	46.00	-4.99	QP

Note: Emission Level = Reading + Antenna Factor + Cable Loss - Pre-amplifier Over limit=Emission Level - limit

Test Frequency 1GHz-25GHz

Low Channel (2402MHz) Worst case GFSK

_	20W Orlannon (2 1021W12) World Gado Or Orl												
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin				
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)				
, ,	(dBuV)	,	, ,	(dB/m)	(dB)	Gain	(dBuV/m)	,	, ,				
	,			,	, ,	(dB)	,						
4824	29.75	AV	V	8.18	10.46	10.43	37.96	54	-16.04				
4824	30.26	AV	Н	8.18	10.46	10.43	38.47	54	-15.53				
4824	32.14	PK	V	8.18	10.46	10.43	40.35	74	-33.65				
4824	35.29	PK	Н	8.18	10.46	10.43	43.5	74	-30.5				
14859	30.26	AV	V	9.22	11.05	12.36	38.17	54	-15.83				
14859	31.47	AV	Н	9.22	11.05	12.36	39.38	54	-14.62				
14859	34.29	PK	V	9.22	11.05	12.36	42.2	74	-31.8				
14859	36.28	PK	Н	9.22	11.05	12.36	44.19	74	-29.81				

Middle Channel (2441MHz) Worst case $\pi/4$ -DQPSK

					,				
Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)		
						(dB)			
4882	28.43	AV	V	7.86	9.73	10.75	35.27	54	-18.73
4882	30.12	AV	Н	7.86	9.73	10.75	36.96	54	-17.04
4882	32.69	PK	V	7.86	9.73	10.75	39.53	74	-34.47
4882	35.06	PK	Н	7.86	9.73	10.75	41.9	74	-32.1
15896	29.43	AV	V	8.25	10.29	11.23	36.74	54	-17.26
15896	30.27	AV	Н	8.25	10.29	11.23	37.58	54	-16.42
15896	33.29	PK	V	8.25	10.29	11.23	40.6	74	-33.4
15896	35.74	PK	Н	8.25	10.29	11.23	43.05	74	-30.95

High Channel (2480MHz) Worst case GFSK

Frequency	S.A	Detector	Polarity	Ant.	Cable	Pre-	Emission	Limit	Margin			
(MHz)	Reading	(PK/AV)	(H/V)	Factor	Loss	Amp.	Level	(dBuV/m)	(dB)			
	(dBuV)			(dB/m)	(dB)	Gain	(dBuV/m)					
	,			,	,	(dB)	,					
4960	29.35	AV	V	8.23	9.86	11.46	35.98	54	-18.02			
4960	30.22	AV	Н	8.23	9.86	11.46	36.85	54	-17.15			
4960	33.37	PK	V	8.23	9.86	11.46	40	74	-34			
4960	36.29	PK	Н	8.23	9.86	11.46	42.92	74	-31.08			
15483	30.29	AV	V	9.32	10.24	12.09	37.76	54	-16.24			
15483	32.48	AV	Н	9.32	10.24	12.09	39.95	54	-14.05			
15483	35.98	PK	V	9.32	10.24	12.09	43.45	74	-30.55			
15483	37.29	PK	Н	9.32	10.24	12.09	44.76	74	-29.24			

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

- 2. All other emissions more than 30dB below the limit.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Bluetooth (GFSK, Pi/4-DQPSK, 8DPSK, Hopping)mode have been tested, and the worst result(GFSK, Hopping) was report as below

Test Mode: GFSK Frequency: Channel 0 2402MHz											
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over				
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)				
2386.960	Н	47.42	74	-26.58	33.10	54	-20.90				
2384.160	V	43.87	74	-30.13	29.30	54	-24.70				

Test Mode: GFSK Frequency: Channel 0 2402MHz							
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)
2484.259	Н	40.80	74	-33.20	27.10	54	-26.90
2485.282	V	40.90	74	-33.10	26.10	54	-27.90

Test Mode: GFSK Frequency: Hopping							
Frequency	Polarity	PK(dBuV/m)	Limit 3m	Over	AV(dBuV/m)	Limit 3m	Over
(MHz)	H/V	(VBW=3MHz)	(dBuV/m)	(dB)	(VBW=10Hz)	(dBuV/m)	(dB)
2390.00	Н	40.47	74	-33.53	26.80	54	-27.20
2483.50	Н	51.49	74	-22.51	36.40	54	-17.60
2390.00	V	38.75	74	-35.25	24.10	54	-29.90
2483.50	V	41.37	74	-32.63	26.20	54	-27.80

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

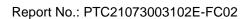
8 CONDUCTED BAND EDGE EMISSION

8.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

8.2 TEST PROCEDURE

For Conducted Test


- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band.

Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

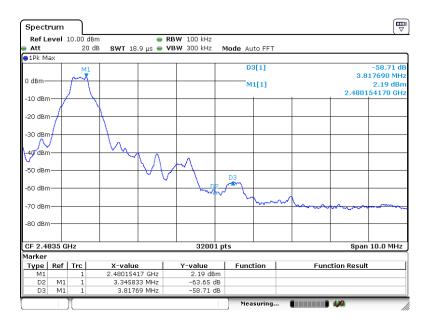
For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

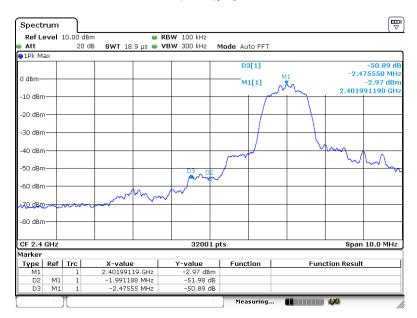
Test set-up(block diagram of configuration):

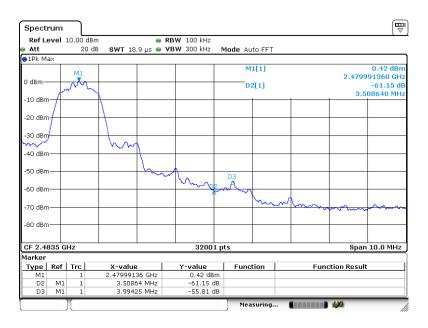
EUT	Spectrum Analyzer
-----	-------------------

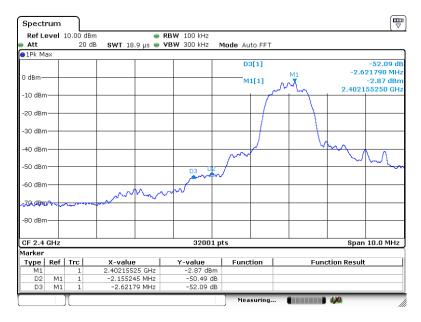
8.3 TEST RESULTS

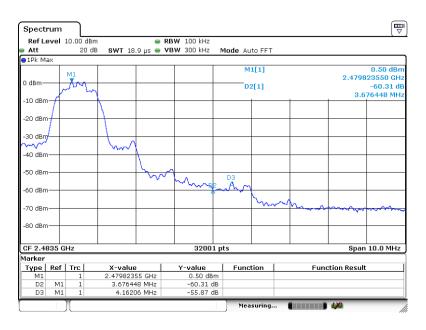

For Conducted Test

For Non-Hopping Mode

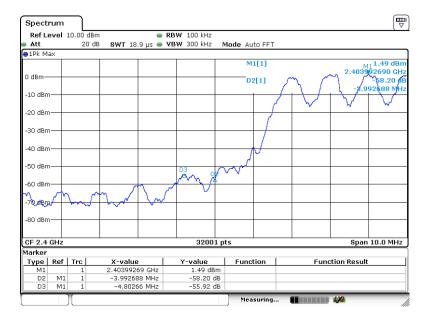

GFSK

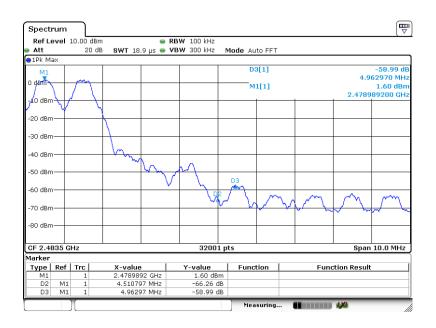



$\pi/4$ -DQPSK

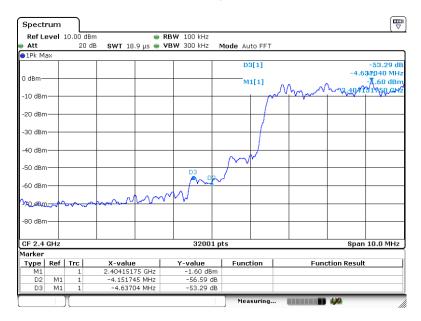


8DPSK

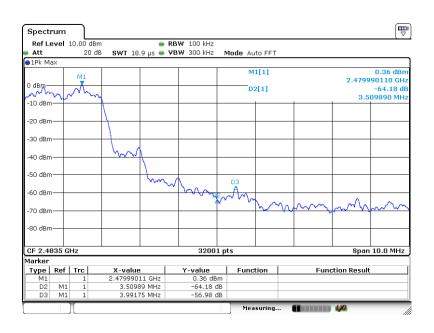



For Hopping Mode

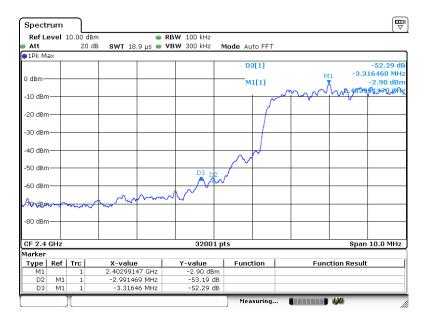
GFSK



Page 32 of 63



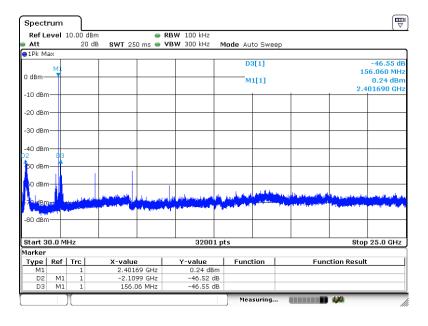
π/4-DQPSK

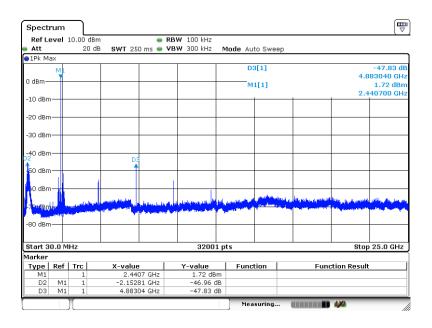


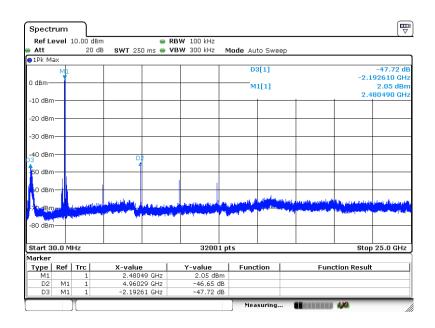
Page 33 of 63



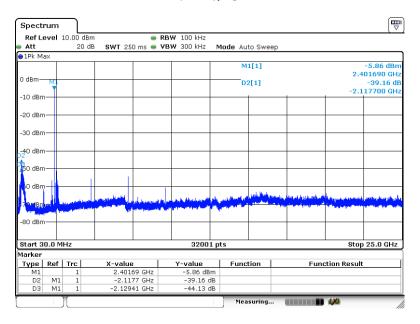
8DPSK

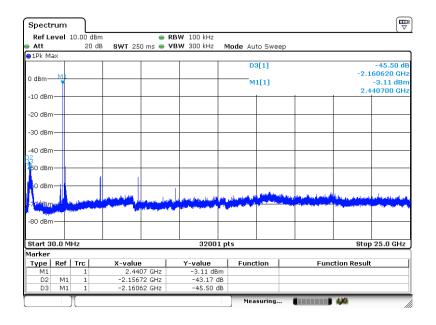

Page 34 of 63

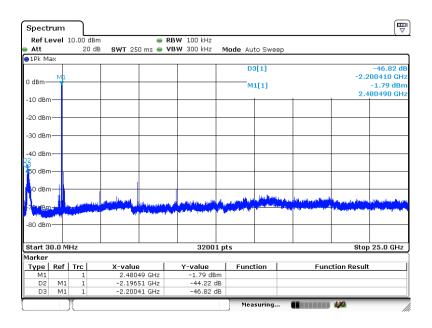

For Conduct spurious emissions


GFSK

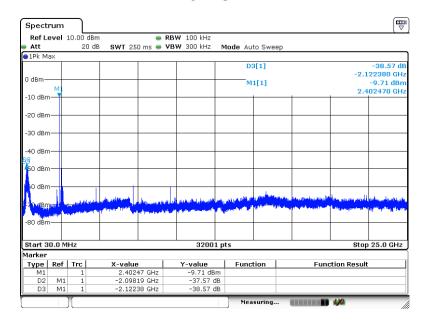
Page 35 of 63

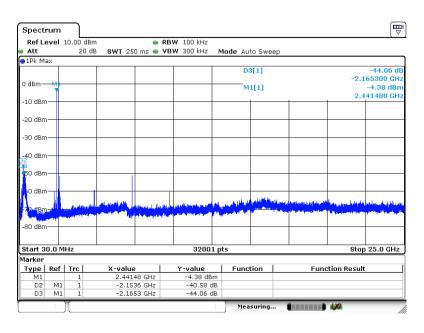


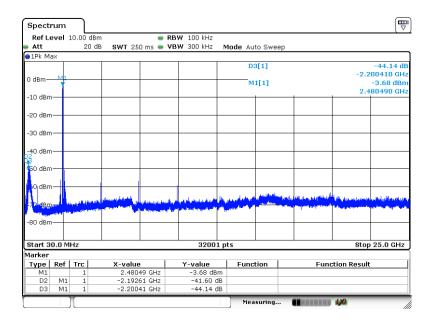




π/4-DQPSK






8DPSK

Page 38 of 63

9 20 dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247

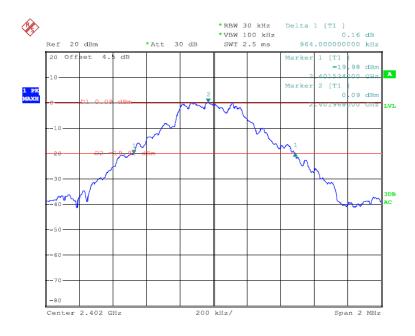
Test Method : ANSI C63.10:2013

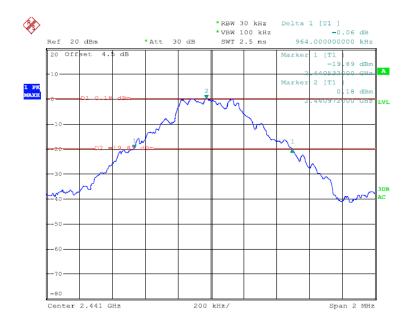
9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW =30kHz, VBW = 100kHz

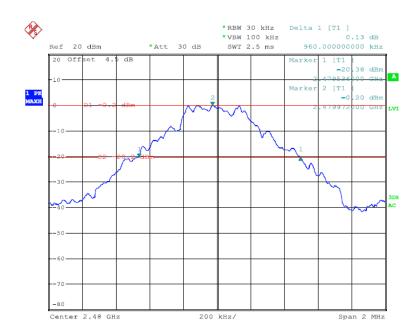
3.Test set-up(block diagram of configuration)

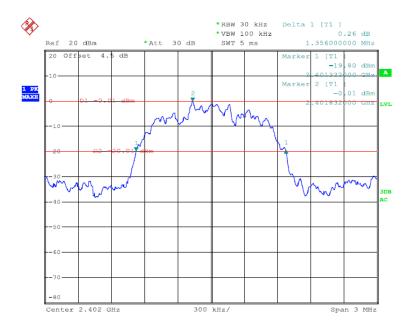

EUT Spectrum Analyzer

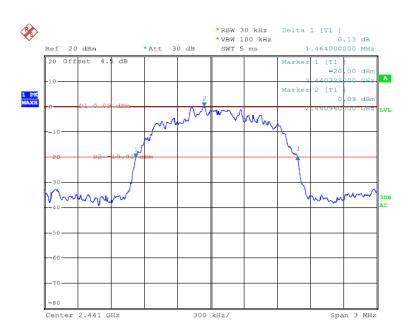

9.2 Test Result

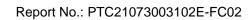

Test Mode: CH00 / CH39 / CH78 (GFSK/(1Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	964
39	2441	964
78	2480	960

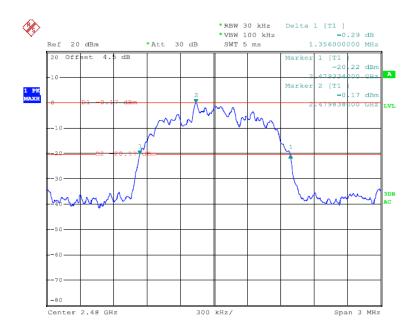


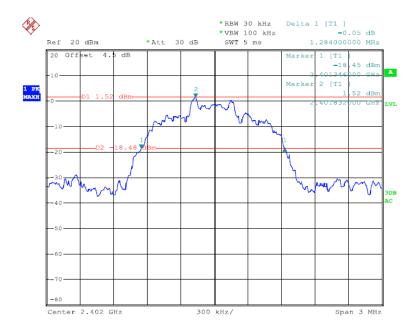


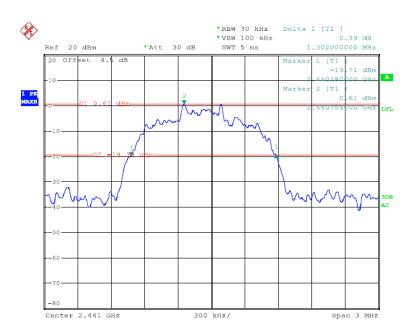



Test Mode: CH00 / CH39 / CH78 (Π/4-DQPSK /(2Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1356
39	2441	1464
78	2480	1356

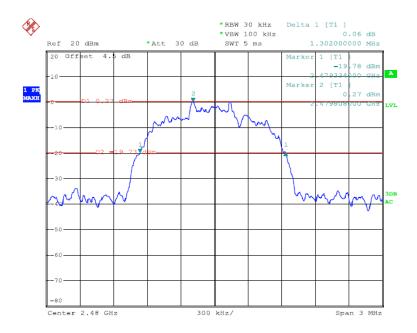






Test Mode: CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

Channel number	Channel frequency (MHz)	20dB Down BW(kHz)
00	2402	1284
39	2441	1302
78	2480	1302



10 Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (b)(1), For frequency hopping systems operating in the

2400-2483.5 MHz band eploying at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt (30dBm). For all other frequency hopping systems in the

2400-2483.5 MHz band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this document. The

0.125watts (20.97 dBm) limit applies.

10.1Test Procedure

1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.
- 4.Test set-up(block diagram of configuration):

	_	
EUT	10dB ATTENUATION	Power meter

10.2Test Result

		GF	FSK(1Mbps)		
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	-0.18	0.00096	1	Pass
CH39	2441	0.01	0.001	1	Pass
CH78	2480	-1.42	0.00072	1	Pass

		π/4C	PSK(2Mbps)		
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	0.89	0.00123	0.125	Pass
CH39	2441	1.29	0.00135	0.125	Pass
CH78	2480	1.08	0.00128	0.125	Pass

		8DF	PSK(3Mbps)		
Test Channel	Frequency	Conducted Output Peak Power	Conducted Output Peak Power	LIMIT	Pass/Fail
	(MHz)	(dBm)	(W)	(W)	
CH00	2402	0.95	0.00128	0.125	Pass
CH39	2441	1.50	0.00141	0.125	Pass
CH78	2480	1.29	0.00135	0.125	Pass

11 Hopping Channel Separation

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

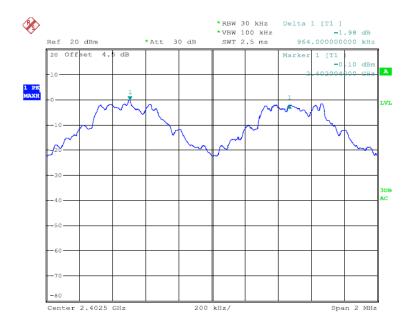
operate with an output power no greater than 1W.

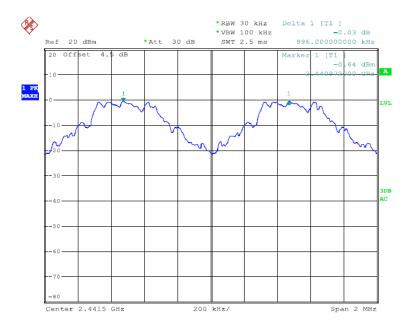
Test Mode : Hopping

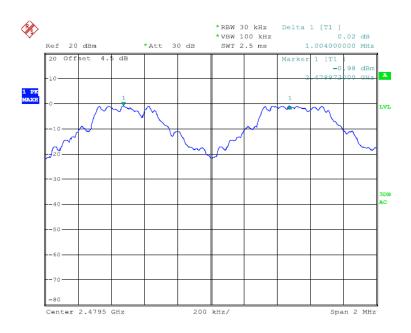
11.1 Test Procedure

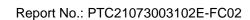
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

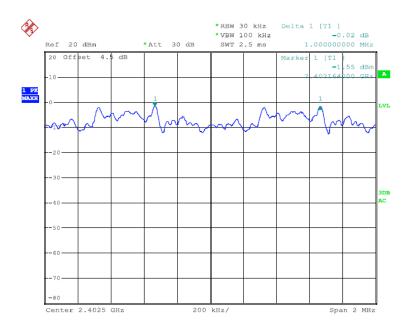
- 2. Set the spectrum analyzer: RBW = 30KHz. VBW =100KHz, Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.
- 4.Test set-up(block diagram of configuration)

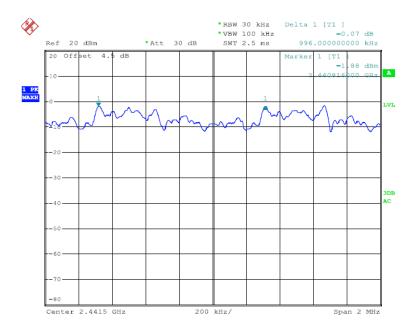


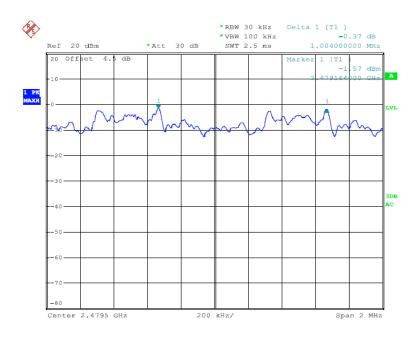

11.2 Test Result

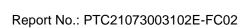

Test Mode:	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)	

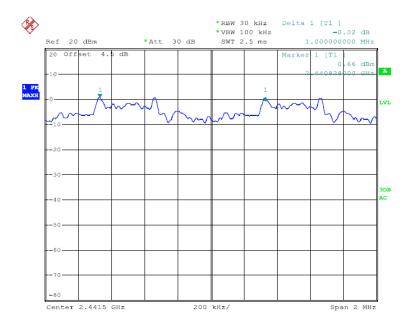

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	964	>642
39	2441	996	>642
78	2480	1004	>640

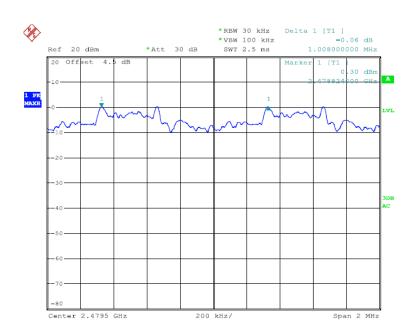





Test Mode:	CH00 / CH39 / CH78 (π/4-DQPSK(2Mbps) Mode)


Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit 2/3 20dB Down BW(kHz)
00	2402	1000	>904
39	2441	996	>916
78	2480	1004	>904




Test Mode:	CH00 / CH39 / CH78 (8DPSK(3Mbps)Mode)

Channel number	Channel frequency (MHz)	Separation Read Value (kHz)	Separation Limit	
			2/3 20dB Down BW(kHz)	
00	2402	1000	>856	
39	2441	1000	>868	
78	2480	1008	>868	

12 Number of Hopping Frequency

Test Requirement : FCC CFR47 Part 15 Section 15.247

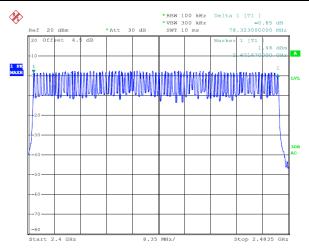
Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels.

Test Mode : Hopping(GFSK)

12.1 Test Procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100KHz. VBW = 300KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;
- 5. Test set-up(block diagram of configuration)

EUT Spectrum Analyzer

12.2 Test Result

Channel Number	Limit
79	≥15

13 Dwell Time

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013

Test Limit : Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

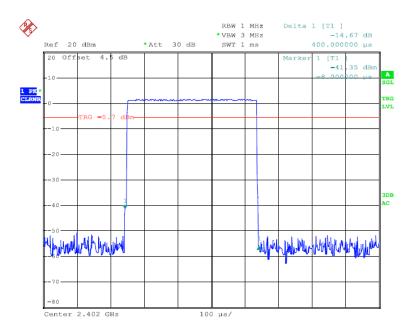
employed.

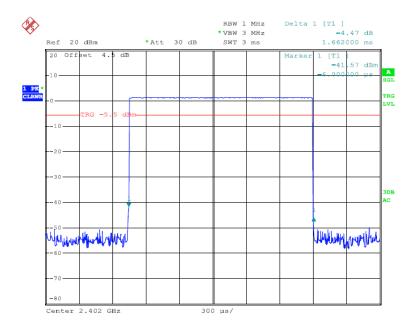
Test Mode : The worst case($\pi/4$ -DQPSK) was recorded

13.1 Test Procedure

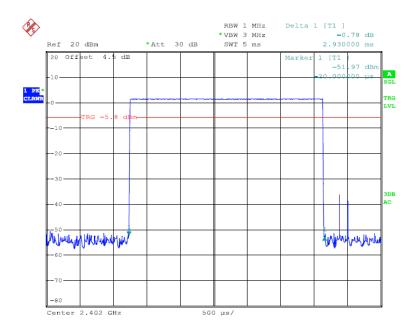
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).
- 5. Test set-up(block diagram of configuration)


EUT Spectrum Analyzer


13.2 Test Result

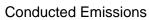
Test Mode:	π/4-DQPSK(2Mbps) –2DH1/2DH3/2DH5


Mode	СН	Length of transmissions time(msec)	Result (msec)	Limit (msec)	
π/4- DQPSK -	Low	0.400	128.00	400	
	Middle	1.662	265.92	400	
	High	2.930	312.543	400	
	Note: Dwell Time= Pulse Time (ms)*1600/6/79*31.6				

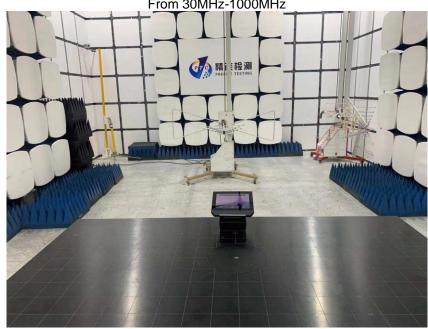
14 Antenna Requirement

14.1 Antenna Requirement

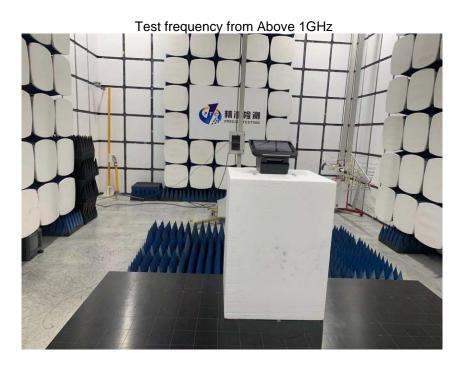
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


14.2 Result

The EUT'S antenna, permanent attached antenna, is FPCB Antenna. The antenna's gain is 2dBi and meets the requirement.



15 Test Setup



Radiated Spurious Emissions From 30MHz-1000MHz

16 EUT PHOTOS

Reference file "appendix II EUT photo"

*****THE END REPORT*****