

Page: 1 of 49

# FCC Radio Test Report FCC ID: 2AVZT-Q8

# **Original Grant**

Report No. : TB-FCC171459

**Applicant**: Yin Gege Musical Instrument Co., Ltd.

**Equipment Under Test (EUT)** 

**EUT Name** : Hand roll piano

Model No. : Q8

Series Model No. : Q1,Q2,Q3,Q5,Q6,Q7,Q9,Q10,Q11,S1,S2,S3,S5,S6

Brand Name : Yin Gege

**Receipt Date** : 2020-01-06

**Test Date** : 2020-01-06 to 2020-03-16

**Issue Date** : 2020-03-18

**Standards** : FCC Part 15, Subpart C(15.247 :2019)

**Test Method** : ANSI C63.10: 2013

**PASS** 

Conclusions : In the configuration tested, the EUT complied with the standards specified above,

Galen

**Test/Witness** 

Engineer

Engineer Supervisor : WWW SV

Engineer Manager :

Garen

IVAN SU Ivan Su TOBY Su Figure 1945 \*

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.



# Contents

| COL | N1EN15                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5  |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 6  |
|     | 1.4 Description of Support Units                             | 7  |
|     | 1.5 Description of Test Mode                                 | 7  |
|     | 1.6 Description of Test Software Setting                     | 7  |
|     | 1.7 Measurement Uncertainty                                  |    |
|     | 1.8 Test Facility                                            |    |
| 2.  | TEST SUMMARY                                                 |    |
| TES | ST SOFTWARE                                                  | 10 |
| 3.  | TEST EQUIPMENT                                               | 11 |
| 4.  | CONDUCTED EMISSION TEST                                      | 12 |
|     | 4.1 Test Standard and Limit                                  |    |
|     | 4.2 Test Setup                                               |    |
|     | 4.3 Test Procedure                                           |    |
|     | 4.4 EUT Operating Mode                                       |    |
|     | 4.5 Test Data                                                |    |
| 5.  | RADIATED EMISSION TEST                                       | 14 |
|     | 5.1 Test Standard and Limit                                  |    |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 EUT Operating Condition                                  | 16 |
|     | 5.5 Test Data                                                | 16 |
| 6.  | RESTRICTED BANDS REQUIREMENT                                 | 17 |
|     | 6.1 Test Standard and Limit                                  | 17 |
|     | 6.2 Test Setup                                               |    |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 EUT Operating Condition                                  | 18 |
|     | 6.5 Test Data                                                | 18 |
| 7.  | NUMBER OF HOPPING CHANNEL                                    | 19 |
|     | 7.1 Test Standard and Limit                                  | 19 |
|     | 7.2 Test Setup                                               |    |
|     | 7.3 Test Procedure                                           |    |
|     | 7.4 EUT Operating Condition                                  |    |
|     | 7.5 Test Data                                                |    |
| 8.  | AVERAGE TIME OF OCCUPANCY                                    | 20 |
|     | 8.1 Test Standard and Limit                                  |    |
|     |                                                              |    |



Report No.: TB-FCC171459
Page: 3 of 49

|     | 8.2 Test Setup                                       | 20 |
|-----|------------------------------------------------------|----|
|     | 8.3 Test Procedure                                   | 20 |
|     | 8.4 EUT Operating Condition                          | 20 |
|     | 8.5 Test Data                                        | 21 |
| 9.  | CHANNEL SEPARATION AND BANDWIDTH TEST                | 22 |
|     | 9.1 Test Standard and Limit                          | 22 |
|     | 9.2 Test Setup                                       |    |
|     | 9.3 Test Procedure                                   |    |
|     | 9.4 EUT Operating Condition                          | 22 |
|     | 9.5 Test Data                                        |    |
| 10. | PEAK OUTPUT POWER TEST                               | 24 |
|     | 10.1 Test Standard and Limit                         | 24 |
|     | 10.2 Test Setup                                      | 24 |
|     | 10.3 Test Procedure                                  | 24 |
|     | 10.4 EUT Operating Condition                         | 24 |
|     | 10.5 Test Data                                       |    |
| 11. | ANTENNA REQUIREMENT                                  | 25 |
|     | 11.1 Standard Requirement                            | 25 |
|     | 11.2 Antenna Connected Construction                  | 25 |
|     | 11.3 Result                                          | 25 |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA               | 26 |
| ATT | ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA     | 36 |
|     | ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA        |    |
|     | ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA        |    |
| ATT | ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA | 44 |
| ATT | ACHMENT G PEAK OUTPUT POWER TEST DATA                | 48 |



Report No.: TB-FCC171459
Page: 4 of 49

# **Revision History**

| Report No.   | Version   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB-FCC171459 | Rev.01    | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2020-03-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |           | DI TUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A LIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3            | 033       | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COUNTY OF    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WOR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 1000      | THE COURSE OF THE PARTY OF THE  | TO DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | William . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4000         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | UD S      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Garage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TO THE       | 1         | WORK OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The state of the s |
| The same     | 1 6       | THE PARTY OF THE P | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



Page: 5 of 49

# 1. General Information about EUT

# 1.1 Client Information

| Applicant                                                                                                   |  | Yingege Musical Instrument Co., Ltd.                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------|--|
| Address : B501, Tingwei 33, Chuanggu 33, Huale Road, Hengg<br>Longgang District, Shenzhen, Guangdong, China |  | B501, Tingwei 33, Chuanggu 33, Huale Road, Henggang Street, Longgang District, Shenzhen, Guangdong, China              |  |
| Manufacturer                                                                                                |  | Dongguan Baorui Silicone Products Co., Ltd.                                                                            |  |
| Address                                                                                                     |  | No.16 Building, Shundi Industrial Zone, Dongfeng Management Zone, Humen Town, Dongguan City, Guangdong Province, China |  |

# 1.2 General Description of EUT (Equipment Under Test)

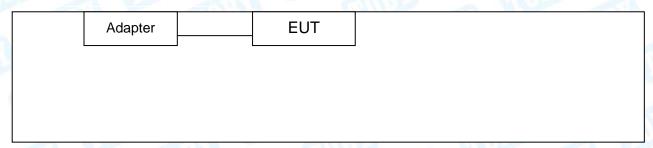
| EUT Name              |   | Hand roll piano                                          | Hand roll piano                                                                                  |  |  |
|-----------------------|---|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Models No.            |   | Q8,Q1,Q2,Q3,Q5,Q6,Q7,Q9,Q10,Q11,S1,S2,S3,S5,S6           |                                                                                                  |  |  |
| Model Difference      | : | All these models are in th only difference is color.     | If these models are in the same PCB, layout and electrical circuit, the ply difference is color. |  |  |
|                       |   | Operation Frequency:                                     | Bluetooth V4.2: 2402~2480 MHz                                                                    |  |  |
|                       |   | Number of Channel:                                       | Bluetooth: 79 Channels see Note 2                                                                |  |  |
| Product Description   | • | Max Peak Output Power:                                   | Bluetooth: -0.913dBm                                                                             |  |  |
| 2000 pilon            | K | Antenna Gain:                                            | 0dBi PCB Antenna                                                                                 |  |  |
|                       |   | Modulation Type:                                         | GFSK (1 Mbps)                                                                                    |  |  |
| Power Supply          |   | DC Voltage Supply from A DC Voltage supplied by Li-      |                                                                                                  |  |  |
| Power Rating          |   | Input: DC 5V<br>DC 3.7V 2000mAh by Li-io                 |                                                                                                  |  |  |
| Software Version      |   | N/A                                                      |                                                                                                  |  |  |
| Hardware<br>Version   | Ę | N/A                                                      |                                                                                                  |  |  |
| Connecting I/OPort(S) | · | Please refer to the User's Manual                        |                                                                                                  |  |  |
| Remark                |   | The antenna gain provided by conduction test provided by | ed by the applicant, the verified for the RF by TOBY test lab.                                   |  |  |

#### Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.



Page: 6 of 49


#### (2) Channel List:

|         | Bluetooth Channel List |         |                    |         |                    |  |  |  |
|---------|------------------------|---------|--------------------|---------|--------------------|--|--|--|
| Channel | Frequency<br>(MHz)     | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |  |
| 00      | 2402                   | 27      | 2429               | 54      | 2456               |  |  |  |
| 01      | 2403                   | 28      | 2430               | 55      | 2457               |  |  |  |
| 02      | 2404                   | 29      | 2431               | 56      | 2458               |  |  |  |
| 03      | 2405                   | 30      | 2432               | 57      | 2459               |  |  |  |
| 04      | 2406                   | 31      | 2433               | 58      | 2460               |  |  |  |
| 05      | 2407                   | 32      | 2434               | 59      | 2461               |  |  |  |
| 06      | 2408                   | 33      | 2435               | 60      | 2462               |  |  |  |
| 07      | 2409                   | 34      | 2436               | 61      | 2463               |  |  |  |
| 08      | 2410                   | 35      | 2437               | 62      | 2464               |  |  |  |
| 09      | 2411                   | 36      | 2438               | 63      | 2465               |  |  |  |
| 10      | 2412                   | 37      | 2439               | 64      | 2466               |  |  |  |
| 11      | 2413                   | 38      | 2440               | 65      | 2467               |  |  |  |
| 12      | 2414                   | 39      | 2441               | 66      | 2468               |  |  |  |
| 13      | 2415                   | 40      | 2442               | 67      | 2469               |  |  |  |
| 14      | 2416                   | 41      | 2443               | 68      | 2470               |  |  |  |
| 15      | 2417                   | 42      | 2444               | 69      | 2471               |  |  |  |
| 16      | 2418                   | 43      | 2445               | 70      | 2472               |  |  |  |
| 17      | 2419                   | 44      | 2446               | 71      | 2473               |  |  |  |
| 18      | 2420                   | 45      | 2447               | 72      | 2474               |  |  |  |
| 19      | 2421                   | 46      | 2448               | 73      | 2475               |  |  |  |
| 20      | 2422                   | 47      | 2449               | 74      | 2476               |  |  |  |
| 21      | 2423                   | 48      | 2450               | 75      | 2477               |  |  |  |
| 22      | 2424                   | 49      | 2451               | 76      | 2478               |  |  |  |
| 23      | 2425                   | 50      | 2452               | 77      | 2479               |  |  |  |
| 24      | 2426                   | 51      | 2453               | 78      | 2480               |  |  |  |
| 25      | 2427                   | 52      | 2454               |         |                    |  |  |  |
| 26      | 2428                   | 53      | 2455               |         |                    |  |  |  |

<sup>(3)</sup> The Antenna information about the equipment is provided by the applicant.

# 1.3 Block Diagram Showing the Configuration of System Tested

### **TX Mode**





Page: 7 of 49

#### 1.4 Description of Support Units

|         | Equipment Information |               |              |      |  |  |  |  |
|---------|-----------------------|---------------|--------------|------|--|--|--|--|
| Name    | Model                 | FCC<br>ID/VOC | Manufacturer | Note |  |  |  |  |
| Adapter | CS-1201000            |               |              | V    |  |  |  |  |

#### 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test |                   |  |  |  |  |
|--------------------|-------------------|--|--|--|--|
| Final Test Mode    | Description       |  |  |  |  |
| Mode 1             | Adapter + TX Mode |  |  |  |  |

| For Radiated Test |                                          |  |  |  |
|-------------------|------------------------------------------|--|--|--|
| Final Test Mode   | Description                              |  |  |  |
| Mode 1            | Adapter + TX GFSK Mode                   |  |  |  |
| Mode 2            | Adapter + TX Mode(GFSK) Channel 00/39/78 |  |  |  |
| Mode 3            | Adapter + Hopping Mode(GFSK)             |  |  |  |

Both adapters were tested, and the report shows only the worst pattern: adapter 2 **Note:** 

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

# 1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.



Page: 8 of 49

| Test Software Version | Beken RF Test_v1.0 |         |          |
|-----------------------|--------------------|---------|----------|
| Frequency             | 2402 MHz           | 2441MHz | 2480 MHz |
| GFSK                  | DEF                | DEF     | DEF      |

### 1.7 Measurement Uncertainty

The reported uncertainty of measurement y  $\pm$  U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|---------------------------------------------|------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | ±3.42 dB<br>±3.42 dB                     |
| Radiated Emission  | Level Accuracy:<br>9kHz to 30 MHz           | ±4.60 dB                                 |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.40 dB                                 |
| Radiated Emission  | Level Accuracy:<br>Above 1000MHz            | ±4.20 dB                                 |



Page: 9 of 49

#### 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

#### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

#### IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.



Page: 10 of 49

# 2. Test Summary

|                      | FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1 |                                         |          |        |  |  |
|----------------------|------------------------------------------------|-----------------------------------------|----------|--------|--|--|
| Standard Section     |                                                | To ad Marin                             |          |        |  |  |
| FCC                  | IC                                             | Test Item                               | Judgment | Remark |  |  |
| 15.203               | 13                                             | Antenna Requirement                     | PASS     | N/A    |  |  |
| 15.207               | RSS-GEN<br>7.2.2                               | Conducted Emission                      | PASS     | N/A    |  |  |
| 15.205               | RSS-Gen<br>7.2.3                               | Restricted Bands                        | PASS     | N/A    |  |  |
| 15.247(a)(1)         | RSS 247<br>5.1 (2)                             | Hopping Channel Separation              | PASS     | N/A    |  |  |
| 15.247(a)(1)         | RSS 247<br>5.1 (4)                             | Dwell Time                              | PASS     | N/A    |  |  |
| 15.247(b)(1)         | RSS 247<br>5.4 (2)                             | Peak Output Power                       | PASS     | N/A    |  |  |
| 15.247(b)(1)         | RSS 247<br>5.1 (4)                             | Number of Hopping Frequency             | PASS     | N/A    |  |  |
| 15.247(d)            | RSS 247<br>5.5                                 | Band Edge                               | PASS     | N/A    |  |  |
| 15.247(c)&<br>15.209 | RSS 247<br>5.5                                 | Radiated Spurious Emission              | PASS     | N/A    |  |  |
| 15.247(a)            | RSS 247<br>5.1 (1)                             | 99% Occupied Bandwidth & 20dB Bandwidth | PASS     | N/A    |  |  |

**Note:** (1)"/" for no requirement for this test item.

(2)N/A is an abbreviation for Not Applicable.

(3)All tests were conducted using the adapter and antenna gain provided by the applicant,

The laboratory tests only according to the information provided by the applicant.

# **Test Software**

| Test Item                   | Test Software | Manufacturer | Version No. |
|-----------------------------|---------------|--------------|-------------|
| Conducted Emission          | EZ-EMC        | EZ           | CDI-03A2    |
| Radiation Emission          | EZ-EMC        | EZ           | FA-03A2RE   |
| RF Conducted<br>Measurement | MTS-8310      | MWRFtest     | V2.0.0.0    |



Page: 11 of 49

# 3. Test Equipment

| Equipment               | Manufacturer                                  | Model No.         | Serial No.                | Last Cal.     | Cal. Due Date |
|-------------------------|-----------------------------------------------|-------------------|---------------------------|---------------|---------------|
| EMI Test Receiver       | Rohde & Schwarz                               | ESCI              | 100321                    | Jul. 13, 2019 | Jul. 12, 2020 |
| RF Switching Unit       | Compliance Direction Systems Inc              | RSU-A4            | 34403                     | Jul. 13, 2019 | Jul. 12, 2020 |
| AMN                     | SCHWARZBECK                                   | NNBL 8226-2       | 8226-2/164                | Jul. 13, 2019 | Jul. 12, 2020 |
| LISN                    | Rohde & Schwarz                               | ENV216            | 101131                    | Jul. 13, 2019 | Jul. 12, 2020 |
| Radiation Emission      | Test                                          |                   |                           |               |               |
| Equipment               | Manufacturer                                  | Model No.         | Serial No.                | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                                       | E4407B            | MY45106456 Jul. 13, 2019  |               | Jul. 12, 2020 |
| EMI Test Receiver       | Rohde & Schwarz ESPI 100010/007 Jul. 13, 2019 |                   | Jul. 12, 2020             |               |               |
| Spectrum Analyzer       | Rohde & Schwarz                               | FSVR              | 1311.006K40-10094<br>5-DH | Feb. 10, 2019 | Feb. 09, 2020 |
| Bilog Antenna           | ETS-LINDGREN                                  | 3142E             | 00117537                  | Jan. 27, 2019 | Jan. 26, 2020 |
| Bilog Antenna           | ETS-LINDGREN                                  | 3142E             | 00117542                  | Jan. 27, 2019 | Jan. 26, 2020 |
| Horn Antenna            | ETS-LINDGREN                                  | 3117              | 00143207                  | Mar.02, 2020  | Mar. 01, 2021 |
| Horn Antenna            | ETS-LINDGREN                                  | 3117              | 00143209                  | Mar.02, 2020  | Mar. 01, 2021 |
| Horn Antenna            | ETS-LINDGREN                                  | BBHA 9170         | BBHA9170582               | Mar.02, 2020  | Mar. 01, 2021 |
| Loop Antenna            | SCHWARZBECK                                   | FMZB 1519 B       | 1519B-059                 | Jul. 13, 2019 | Jul. 12, 2020 |
| Pre-amplifier           | Sonoma                                        | 310N              | 185903                    | Mar.02, 2020  | Mar. 01, 2021 |
| Pre-amplifier           | HP                                            | 8449B             | 3008A00849                | Mar.02, 2020  | Mar. 01, 2021 |
| Pre-amplifier           | SKET                                          | LNPA_1840G-50     | SK201904032               | Jul. 27, 2019 | Jul. 26, 2020 |
| Cable                   | HUBER+SUHNER                                  | 100               | SUCOFLEX                  | Mar.02, 2020  | Mar. 01, 2021 |
| Positioning Controller  | ETS-LINDGREN                                  | 2090              | N/A                       | N/A           | N/A           |
| Antenna Cond            | ucted Emissior                                | า                 |                           |               |               |
| Equipment               | Manufacturer                                  | Model No.         | Serial No.                | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                                       | E4407B            | MY45106456                | Jul. 13, 2019 | Jul. 12, 2020 |
| Spectrum Analyzer       | Rohde & Schwarz                               | ESCI              | 100010/007                | Jul. 13, 2019 | Jul. 12, 2020 |
| MXA Signal Analyzer     | Agilent                                       | N9020A            | MY49100060                | Sep. 16, 2019 | Sep. 15, 2020 |
| Vector Signal Generator | Agilent                                       | N5182A            | MY50141294                | Sep. 16, 2019 | Sep. 15, 2020 |
| Analog Signal Generator | Agilent                                       | N5181A            | MY50141953                | Sep. 16, 2019 | Sep. 15, 2020 |
| Control of the last     | DARE!! Instruments                            | RadiPowerRPR3006W | 17I00015SNO26             | Sep. 16, 2019 | Sep. 15, 2020 |
| DE Dawar Canasa         | DARE!! Instruments                            | RadiPowerRPR3006W | 17I00015SNO29             | Sep. 16, 2019 | Sep. 15, 2020 |
| RF Power Sensor         | DARE!! Instruments                            | RadiPowerRPR3006W | 17I00015SNO31             | Sep. 16, 2019 | Sep. 15, 2020 |
|                         | DARE!! Instruments                            | RadiPowerRPR3006W | 17I00015SNO33             | Sep. 16, 2019 | Sep. 15, 2020 |



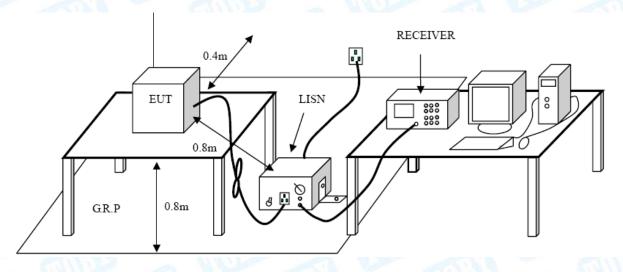
Page: 12 of 49

## 4. Conducted Emission Test

#### 4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

#### 4.1.2 Test Limit


#### **Conducted Emission Test Limit**

| Eroguanav     | Maximum RF Line Voltage (dBμV) |               |  |  |
|---------------|--------------------------------|---------------|--|--|
| Frequency     | Quasi-peak Level               | Average Level |  |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |  |
| 500kHz~5MHz   | 56                             | 46            |  |  |
| 5MHz~30MHz    | 60                             | 50            |  |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 4.2 Test Setup



#### 4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.



Page: 13 of 49

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

#### 4.4 EUT Operating Mode

Please refer to the description of test mode.

#### 4.5 Test Data

Please refer to the Attachment A.



Page: 14 of 49

# 5. Radiated Emission Test

#### 5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

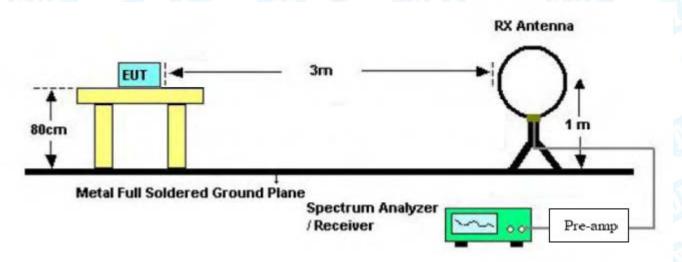
5.1.2 Test Limit

#### Radiated Emission Limit (9 kHz~1000MHz)

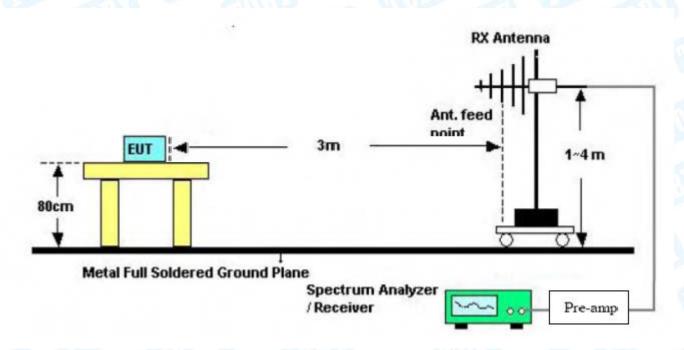
| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |  |  |
|-------------------|----------------------------------|-------------------------------|--|--|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |  |  |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |  |  |
| 1.705~30.0        | 30                               | 30                            |  |  |
| 30~88             | 100                              | 3                             |  |  |
| 88~216            | 150                              | 3                             |  |  |
| 216~960           | 200                              | 3                             |  |  |
| Above 960         | 500                              | 3                             |  |  |

#### Radiated Emission Limit (Above 1000MHz)

| Frequency  | Class B (dBuV/ | m)(at 3m) |
|------------|----------------|-----------|
| (MHz)      | Peak           | Average   |
| Above 1000 | 74             | 54        |


#### Note:

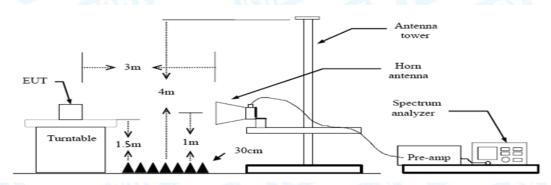
- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)




Page: 15 of 49

### 5.2 Test Setup




**Below 30MHz Test Setup** 



**Below 1000MHz Test Setup** 



Page: 16 of 49



**Above 1GHz Test Setup** 

#### 5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

# 5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

#### 5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

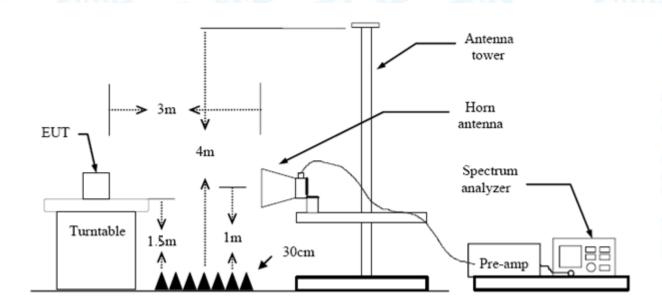
Please refer to the Attachment B.



Page: 17 of 49

# 6. Restricted Bands Requirement

#### 6.1 Test Standard and Limit


6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

| Restricted Frequency | Class B (dBuV/m)(at 3m) |         |  |
|----------------------|-------------------------|---------|--|
| Band<br>(MHz)        | Peak                    | Average |  |
| 310 ~2390            | 74                      | 54      |  |
| 2483.5 ~2500         | 74                      | 54      |  |

Note: All restriction bands have been tested, only the worst case is reported.

#### 6.2 Test Setup



#### 6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.



Report No.: TB-FCC171459
Page: 18 of 49

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

#### 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

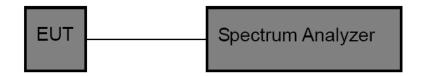
All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.



Page: 19 of 49

# 7. Number of Hopping Channel


#### 7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

| Section | Test Item                    | Limit |
|---------|------------------------------|-------|
| 15.247  | Number of Hopping<br>Channel | >15   |

#### 7.2 Test Setup



#### 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=300 KHz, Sweep time= Auto.

### 7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

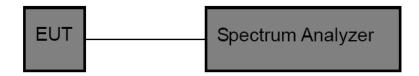
#### 7.5 Test Data

Please refer to the Attachment D.



Page: 20 of 49

# 8. Average Time of Occupancy


#### 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

| Section               | Test Item       | Limit   |
|-----------------------|-----------------|---------|
| 15.247(a)(1)/ RSS-210 | Average Time of | 0.4.000 |
| Annex 8(A8.1d)        | Occupancy       | 0.4 sec |

#### 8.2 Test Setup



#### 8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=3MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

#### 8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

{Total of Dwell} = {Pulse Time} \* (1600 / X) / {Number of Hopping Frequency} \* {Period} {Period} = 0.4s \* {Number of Hopping Frequency}

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.



Page: 21 of 49

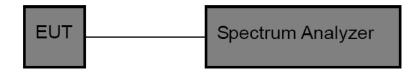
# 8.5 Test Data

Please refer to the Attachment E.



Page: 22 of 49

# 9. Channel Separation and Bandwidth Test


#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

| Test Item          | Limit                                                               | Frequency Range(MHz) |  |  |
|--------------------|---------------------------------------------------------------------|----------------------|--|--|
| Bandwidth          | <=1 MHz<br>(20dB bandwidth)                                         | 2400~2483.5          |  |  |
| Channel Separation | >25KHz or >two-thirds of<br>the 20 dB bandwidth<br>Which is greater | 2400~2483.5          |  |  |

#### 9.2 Test Setup



#### 9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=300 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
  - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

# 9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.



Page: 23 of 49

# 9.5 Test Data

Please refer to the Attachment F.



Page: 24 of 49

# 10. Peak Output Power Test

#### 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

| Test Item         | Limit                                                    | Frequency Range(MHz) |
|-------------------|----------------------------------------------------------|----------------------|
| Peak Output Power | Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm) | 2400~2483.5          |

# 10.2 Test Setup



#### 10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=8 MHz for bandwidth more than 1MHz.

## 10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

#### 10.5 Test Data

Please refer to the Attachment G.



Page: 25 of 49

# 11. Antenna Requirement

#### 11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

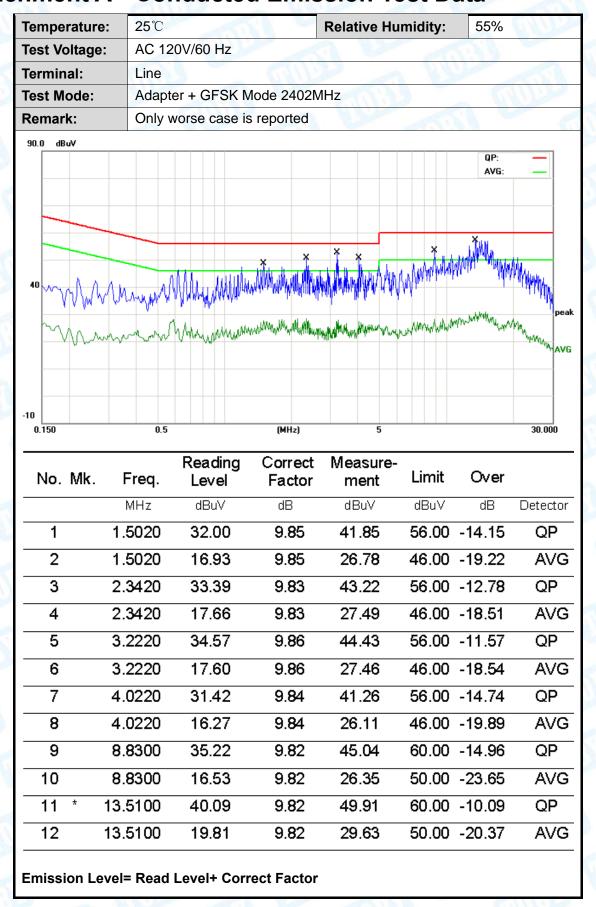
#### 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 11.3 Result


The EUT antenna is a PCB Antenna. It complies with the standard requirement.

| Antenna Type |                                   |   |  |
|--------------|-----------------------------------|---|--|
| DE LO        | ⊠Permanent attached antenna       | V |  |
| TU TO        | ☐Unique connector antenna         | ล |  |
|              | Professional installation antenna | 3 |  |

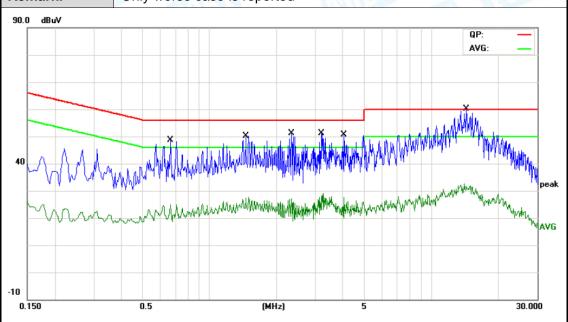




**Attachment A-- Conducted Emission Test Data** 






 Temperature:
 25 °C
 Relative Humidity:
 55%

 Test Voltage:
 AC 120V/60 Hz

 Terminal:
 Neutral

 Test Mode:
 Adapter + GFSK Mode 2402MHz

 Remark:
 Only worse case is reported



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz     | dBu∀             | dB                | dBuV             | dBu∀  | dB     | Detector |
| 1       | 0.6620  | 31.50            | 9.77              | 41.27            | 56.00 | -14.73 | QP       |
| 2       | 0.6620  | 13.59            | 9.77              | 23.36            | 46.00 | -22.64 | AVG      |
| 3       | 1.4540  | 34.02            | 9.79              | 43.81            | 56.00 | -12.19 | QP       |
| 4       | 1.4540  | 17.21            | 9.79              | 27.00            | 46.00 | -19.00 | AVG      |
| 5       | 2.3380  | 36.51            | 9.85              | 46.36            | 56.00 | -9.64  | QP       |
| 6       | 2.3380  | 17.15            | 9.85              | 27.00            | 46.00 | -19.00 | AVG      |
| 7 *     | 3.1780  | 36.64            | 9.86              | 46.50            | 56.00 | -9.50  | QP       |
| 8       | 3.1780  | 18.58            | 9.86              | 28.44            | 46.00 | -17.56 | AVG      |
| 9       | 4.0180  | 34.40            | 9.82              | 44.22            | 56.00 | -11.78 | QP       |
| 10      | 4.0180  | 16.53            | 9.82              | 26.35            | 46.00 | -19.65 | AVG      |
| 11      | 14.4060 | 40.50            | 9.86              | 50.36            | 60.00 | -9.64  | QP       |
| 12      | 14.4060 | 20.30            | 9.86              | 30.16            | 50.00 | -19.84 | AVG      |



Page: 28 of 49

# Attachment B-- Radiated Emission Test Data

#### 9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

#### 30MHz~1GHz

| Temperature:                                             | 25℃                           |                                                                       |                                                                             | Relative H                                                     | unnuity.                                         | 55%                                         |                                  |
|----------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------|
| Test Voltage:                                            | AC 12                         | 20V/60 Hz                                                             | AMIL                                                                        |                                                                | 6.70                                             |                                             | 13                               |
| Ant. Pol.                                                | Horizo                        | ontal                                                                 |                                                                             | 400                                                            |                                                  | HAR                                         |                                  |
| Test Mode:                                               | Adapt                         | ter + TX GF                                                           | SK Mode 24                                                                  | 102MHz                                                         | MAD.                                             |                                             |                                  |
| Remark:                                                  | Only                          | worse case                                                            | is reported                                                                 |                                                                |                                                  | CON!                                        |                                  |
| 80.0 dBuV/m                                              |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                | (RF)FCC 15C                                      | 3M Radiation                                |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                | 6                                                | Margin -6                                   | an -                             |
| 1<br>×                                                   | 2<br>X                        | - in                                                                  |                                                                             |                                                                | Ž I                                              |                                             |                                  |
| 30                                                       | MM                            |                                                                       | ham h                                                                       | H. J. Julia I                                                  |                                                  |                                             | more                             |
|                                                          | /                             | 4                                                                     | "YVVVVIII                                                                   | W PARAMANANA                                                   | my hall all                                      | warmen.                                     |                                  |
| '                                                        |                               |                                                                       |                                                                             | קוי נין זיי                                                    |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
|                                                          |                               |                                                                       |                                                                             |                                                                |                                                  |                                             |                                  |
| -20<br>30.000 40 50                                      | 60 70                         | 80                                                                    | (MHz)                                                                       | 300                                                            | 400 500                                          | 600 700                                     | 1000.000                         |
| 30.000 40 50                                             |                               | 80<br>Reading                                                         | (MHz)                                                                       | 300<br>Measure-                                                |                                                  |                                             | 1000.000                         |
| 30.000 40 50                                             | 60 70                         |                                                                       |                                                                             |                                                                | 400 500<br>Limit                                 | 600 700<br>Over                             | 1000.000                         |
| 30.000 40 50<br>No. Mk. F                                |                               | Reading                                                               | Correct                                                                     | Measure-                                                       |                                                  |                                             | 1000.000                         |
| No. Mk. F                                                | req.                          | Reading<br>Level                                                      | Correct<br>Factor                                                           | Measure-<br>ment                                               | Limit                                            | Over                                        |                                  |
| No. Mk. F                                                | req.<br>MHz                   | Reading<br>Level                                                      | Correct<br>Factor                                                           | Measure-<br>ment<br>dBuV/m                                     | <b>Limit</b><br>dBuV/m                           | <b>Over</b>                                 | Detector                         |
| No. Mk. F                                                | req.<br>MHz<br>7601<br>2128   | Reading<br>Level<br>dBuV<br>52.17<br>60.71                            | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25                               | Measure-<br>ment<br>dBuV/m<br>35.57<br>36.46                   | Limit dBuV/m 40.00 40.00                         | Over  dB  -4.43  -3.54                      | Detector<br>QP<br>QP             |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98.                       | 7601<br>2128<br>8324          | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43                   | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13                     | Measure-<br>ment<br>dBu∀/m<br>35.57<br>36.46<br>39.30          | Limit dBuV/m 40.00 40.00 43.50                   | Over  dB  -4.43  -3.54  -4.20               | Detector<br>QP<br>QP<br>QP       |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98. 4 ! 111               | 7601<br>2128<br>8324          | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43<br>60.95          | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13<br>-22.45           | Measure-<br>ment<br>dBu∀/m<br>35.57<br>36.46<br>39.30<br>38.50 | Limit dBuV/m 40.00 40.00 43.50 43.50             | Over  dB  -4.43  -3.54  -4.20  -5.00        | Detector<br>QP<br>QP<br>QP<br>QP |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98. 4 ! 111 5 289         | 7601<br>2128<br>8324<br>.3468 | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43<br>60.95<br>53.57 | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13<br>-22.45<br>-16.23 | Measure-<br>ment  dBu∀/m  35.57  36.46  39.30  38.50  37.34    | Limit  dBuV/m  40.00  40.00  43.50  43.50  46.00 | Over  dB  -4.43  -3.54  -4.20  -5.00  -8.66 | QP<br>QP<br>QP<br>QP<br>QP       |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98. 4 ! 111 5 289         | 7601<br>2128<br>8324          | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43<br>60.95          | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13<br>-22.45           | Measure-<br>ment<br>dBu∀/m<br>35.57<br>36.46<br>39.30<br>38.50 | Limit dBuV/m 40.00 40.00 43.50 43.50             | Over  dB  -4.43  -3.54  -4.20  -5.00        | Detector<br>QP<br>QP<br>QP<br>QP |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98. 4 ! 111 5 289         | 7601<br>2128<br>8324<br>.3468 | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43<br>60.95<br>53.57 | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13<br>-22.45<br>-16.23 | Measure-<br>ment  dBu∀/m  35.57  36.46  39.30  38.50  37.34    | Limit  dBuV/m  40.00  40.00  43.50  43.50  46.00 | Over  dB  -4.43  -3.54  -4.20  -5.00  -8.66 | QP<br>QP<br>QP<br>QP<br>QP       |
| No. Mk. F  1 ! 34. 2 * 62. 3 ! 98. 4 ! 111 5 289 6 ! 385 | 7601<br>2128<br>8324<br>.3468 | Reading<br>Level<br>dBuV<br>52.17<br>60.71<br>61.43<br>60.95<br>53.57 | Correct<br>Factor<br>dB/m<br>-16.60<br>-24.25<br>-22.13<br>-22.45<br>-16.23 | Measure-<br>ment  dBu∀/m  35.57  36.46  39.30  38.50  37.34    | Limit  dBuV/m  40.00  40.00  43.50  43.50  46.00 | Over  dB  -4.43  -3.54  -4.20  -5.00  -8.66 | QP<br>QP<br>QP<br>QP<br>QP       |



Report No.: TB-FCC171459
Page: 29 of 49

Page:

| Temperature:                                    | 25℃                                       |                                                                       |                                                                             | Relative H                                                  |                                                  | 55%                                           |                                       |
|-------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------|
| Test Voltage:                                   | AC 120                                    | 0V/60 Hz                                                              | 1.3                                                                         | (Diri)                                                      | 172                                              | 2                                             | Mil.                                  |
| Ant. Pol.                                       | Vertica                                   | I HARD                                                                |                                                                             |                                                             | -0                                               | 199                                           |                                       |
| Test Mode:                                      | Adapte                                    | er + TX GFS                                                           | SK Mode 240                                                                 | 02MHz                                                       | I III                                            |                                               | 1                                     |
| Remark:                                         | Only w                                    | orse case is                                                          | s reported                                                                  |                                                             | _ الا                                            | · OA                                          |                                       |
| 80.0 dBuV/m                                     |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             | (RF)FCC 15C                                      |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             | 6                                                | Margin -6 d                                   | В                                     |
| / / / / / / / / / / / / / / / / / / /           | $\wedge$ $A$                              |                                                                       |                                                                             |                                                             | Ž ,                                              |                                               |                                       |
| 30                                              | V // // \                                 | 4                                                                     | 1                                                                           | 5<br>X                                                      |                                                  | mme                                           | y March                               |
| ~ (                                             | , 4 k h                                   | wh. 1                                                                 |                                                                             |                                                             |                                                  | white the same                                |                                       |
|                                                 |                                           |                                                                       | 11 A CHILINE                                                                | ייישיין ייין וו דייין                                       |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 |                                           |                                                                       |                                                                             |                                                             |                                                  |                                               |                                       |
|                                                 | 60 70                                     | 90                                                                    | (MIIa)                                                                      | 200                                                         | 400 500                                          | 500 700                                       | 1000 000                              |
| 30.000 40 50                                    | 60 70                                     | 80                                                                    | (MHz)                                                                       | 300                                                         | 400 500                                          | 600 700                                       | 1000.000                              |
| 30.000 40 50                                    |                                           | Reading                                                               | Correct                                                                     | Measure-                                                    |                                                  |                                               | 1000.000                              |
| 30.000 40 50<br>No. Mk.                         | Freq.                                     | Reading<br>Level                                                      |                                                                             | Measure-<br>ment                                            | Limit                                            | Over                                          | 1000.000                              |
| 30.000 40 50<br>No. Mk.                         |                                           | Reading                                                               | Correct                                                                     | Measure-                                                    |                                                  |                                               | 1000.000                              |
| 30.000 40 50<br>No. Mk.                         | Freq.                                     | Reading<br>Level                                                      | Correct<br>Factor                                                           | Measure-<br>ment                                            | Limit                                            | Over                                          | Detecto                               |
| No. Mk. I                                       | Freq.                                     | Reading<br>Level                                                      | Correct<br>Factor                                                           | Measure-<br>ment<br>dBuV/m                                  | <b>Limit</b><br>dBuV/m                           | <b>Over</b>                                   |                                       |
| No. Mk. 1  1 * 45 2 ! 50                        | Freq.<br>MHz<br>.0583                     | Reading<br>Level<br>dBuV<br>58.08                                     | Correct<br>Factor<br>dB/m<br>-21.68                                         | Measure-<br>ment<br>dBuV/m<br>36.40                         | Limit<br>dBuV/m<br>40.00                         | Over<br>dB<br>-3.60                           | Detecto                               |
| No. Mk. 1  1 * 45 2 ! 50 3 62                   | Freq. MHz .0583 .4089                     | Reading<br>Level<br>dBuV<br>58.08<br>58.80<br>57.72                   | Correct<br>Factor<br>dB/m<br>-21.68<br>-23.40<br>-24.22                     | Measure-<br>ment<br>dBuV/m<br>36.40<br>35.40<br>33.50       | Limit  dBuV/m  40.00  40.00  40.00               | Over  dB  -3.60  -4.60  -6.50                 | Detecto<br>QP<br>QP<br>QP             |
| No. Mk. I  1 * 45 2 ! 50 3 62 4 109             | Freq. MHz .0583 .4089 .6507               | Reading<br>Level<br>dBuV<br>58.08<br>58.80<br>57.72<br>51.91          | Correct<br>Factor<br>dB/m<br>-21.68<br>-23.40<br>-24.22<br>-22.47           | Measure-<br>ment<br>36.40<br>35.40<br>33.50<br>29.44        | Limit  dBuV/m  40.00  40.00  40.00  43.50        | Over  dB  -3.60  -4.60  -6.50  -14.06         | Detector QP QP QP                     |
| No. Mk. 1  1 * 45 2 ! 50 3 62 4 109 5 252       | Freq. MHz .0583 .4089 .6507 0.7960 2.9482 | Reading<br>Level<br>dBuV<br>58.08<br>58.80<br>57.72<br>51.91<br>46.39 | Correct<br>Factor<br>dB/m<br>-21.68<br>-23.40<br>-24.22<br>-22.47<br>-16.98 | Measure-<br>ment  dBuV/m  36.40  35.40  33.50  29.44  29.41 | Limit  dBuV/m  40.00  40.00  40.00  43.50  46.00 | Over  dB  -3.60  -4.60  -6.50  -14.06  -16.59 | Detecto<br>QP<br>QP<br>QP<br>QP<br>QP |
| No. Mk. 1  1 * 45 2 ! 50 3 62 4 109 5 252       | Freq. MHz .0583 .4089 .6507               | Reading<br>Level<br>dBuV<br>58.08<br>58.80<br>57.72<br>51.91          | Correct<br>Factor<br>dB/m<br>-21.68<br>-23.40<br>-24.22<br>-22.47           | Measure-<br>ment<br>36.40<br>35.40<br>33.50<br>29.44        | Limit  dBuV/m  40.00  40.00  40.00  43.50        | Over  dB  -3.60  -4.60  -6.50  -14.06         | Detector QP QP QP                     |
| No. Mk. 1  1 * 45 2 ! 50 3 62 4 109 5 252 6 385 | Freq. MHz .0583 .4089 .6507 0.7960 2.9482 | Reading<br>Level<br>dBuV<br>58.08<br>58.80<br>57.72<br>51.91<br>46.39 | Correct<br>Factor<br>dB/m<br>-21.68<br>-23.40<br>-24.22<br>-22.47<br>-16.98 | Measure-<br>ment  dBuV/m  36.40  35.40  33.50  29.44  29.41 | Limit  dBuV/m  40.00  40.00  40.00  43.50  46.00 | Over  dB  -3.60  -4.60  -6.50  -14.06  -16.59 | Detecto<br>QP<br>QP<br>QP<br>QP<br>QP |



Page: 30 of 49

### Above 1GHz(Only worse case is reported)

| Temperature:  | 25℃                                                        | Relative Humidity: | 55%    |  |  |  |
|---------------|------------------------------------------------------------|--------------------|--------|--|--|--|
| Test Voltage: | AC 120V/60 Hz                                              |                    | A DIVI |  |  |  |
| Ant. Pol.     | Horizontal                                                 |                    |        |  |  |  |
| Test Mode:    | TX GFSK Mode 2402MHz                                       |                    |        |  |  |  |
| Remark:       | No report for the emission which more than 20 dB below the |                    |        |  |  |  |
|               | prescribed limit.                                          |                    |        |  |  |  |

| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4805.386 | 43.36            | 15.57             | 58.93            | 74.00  | -15.07 | peak     |
| 2  | *    | 4805.386 | 29.90            | 15.57             | 45.47            | 54.00  | -8.53  | AVG      |



Page: 31 of 49

| Temperature:  | 25℃                                        | Relative Humidity:       | 55%         |  |  |  |  |
|---------------|--------------------------------------------|--------------------------|-------------|--|--|--|--|
| Test Voltage: | AC 120V/60 Hz                              | AC 120V/60 Hz            |             |  |  |  |  |
| Ant. Pol.     | Vertical                                   | /ertical                 |             |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2402M                         | Hz                       | 100         |  |  |  |  |
| Remark:       | No report for the emissi prescribed limit. | on which more than 10 dB | 3 below the |  |  |  |  |

| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector |
| 1  |      | 4803.622 | 42.98            | 15.56             | 58.54            | 74.00  | -15.46 | peak     |
| 2  | *    | 4803.622 | 29.34            | 15.56             | 44.90            | 54.00  | -9.10  | AVG      |



Page: 32 of 49

| Temperature:  | 25℃                                       | Relative Humidity:         | 55%         |  |  |  |  |
|---------------|-------------------------------------------|----------------------------|-------------|--|--|--|--|
| Test Voltage: | AC 120V/60 Hz                             | C 120V/60 Hz               |             |  |  |  |  |
| Ant. Pol.     | Horizontal                                | lorizontal                 |             |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2441                         | ИНz                        |             |  |  |  |  |
| Remark:       | No report for the emiss prescribed limit. | sion which more than 10 dE | 3 below the |  |  |  |  |

| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4882.500 | 30.07            | 15.92             | 45.99            | 54.00  | -8.01  | AVG      |
| 2  |      | 4883.394 | 43.16            | 15.92             | 59.08            | 74.00  | -14.92 | peak     |



Page: 33 of 49

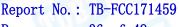
| Tomporeture   | 25℃                                                        | Polotivo Humiditur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55%  |  |  |  |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
| Temperature:  | 25 C                                                       | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33%  |  |  |  |  |  |
| Test Voltage: | AC 120V/60 Hz                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OHU: |  |  |  |  |  |
| Ant. Pol.     | Vertical                                                   | retical entities and the second entitle entitl |      |  |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2441MHz                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |  |  |
|               | prescribed limit.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |  |  |

|   | No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1 |     |     | 4482.782 | 43.37            | 14.11 | 57.48            | 74.00  | -16.52 | peak     |
| 2 | !   | *   | 4483.292 | 29.61            | 14.11 | 43.72            | 54.00  | -10.28 | AVG      |



Page: 34 of 49

| Temperature:  | 25℃                                             | Relative Humidity:      | 55%      |  |  |  |  |
|---------------|-------------------------------------------------|-------------------------|----------|--|--|--|--|
| Test Voltage: | AC 120V/60 Hz                                   | (MIN)                   | OHU:     |  |  |  |  |
| Ant. Pol.     | Horizontal                                      |                         |          |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2480MHz                            |                         |          |  |  |  |  |
| Remark:       | No report for the emission wh prescribed limit. | nich more than 10 dB be | elow the |  |  |  |  |

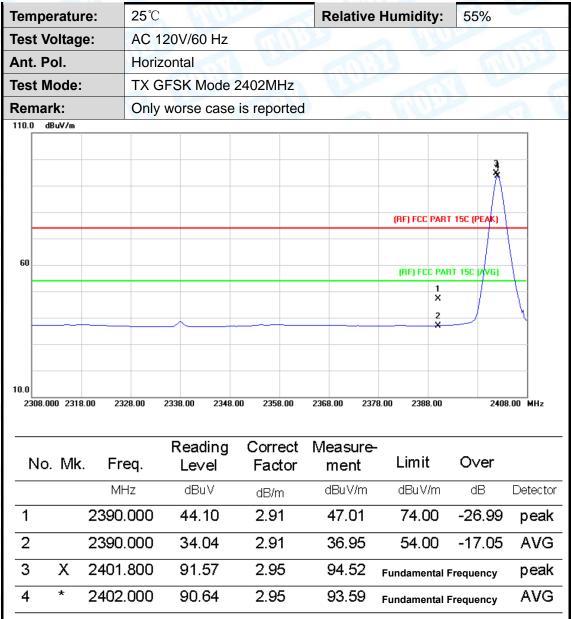

| N | lo. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector |
| 1 |     |     | 4959.730 | 43.11            | 16.26             | 59.37            | 74.00  | -14.63 | peak     |
| 2 | 7   | *   | 4959.730 | 30.34            | 16.26             | 46.60            | 54.00  | -7.40  | AVG      |



Page: 35 of 49

| Temperature:  | 25℃                                                        | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55%    |  |  |  |
|---------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| Test Voltage: | AC 120V/60 Hz                                              | THE PARTY OF THE P | A VIVI |  |  |  |
| Ant. Pol.     | Vertical                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |
| Test Mode:    | TX GFSK Mode 2480MHz                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |
|               | prescribed limit.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |

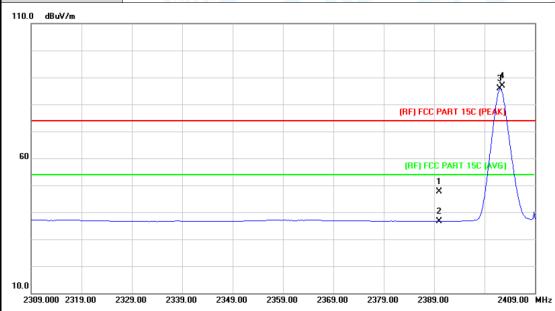
| No | . Mk | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4959.148 | 43.08            | 16.27             | 59.35            | 74.00  | -14.65 | peak     |
| 2  | *    | 4959.148 | 28.99            | 16.27             | 45.26            | 54.00  | -8.74  | AVG      |






Page: 36 of 49

# **Attachment C-- Restricted Bands Requirement Test Data**


#### (1) Radiation Test

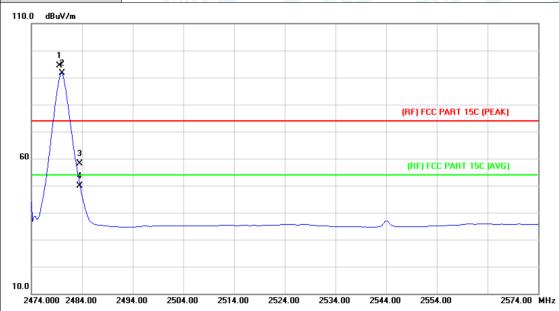




Page: 37 of 49

| Temperature:  | 25℃                         | Relative Humidity: | 55%    |
|---------------|-----------------------------|--------------------|--------|
| Test Voltage: | AC 120V/60 Hz               | GULLE              |        |
| Ant. Pol.     | Vertical                    |                    |        |
| Test Mode:    | TX GFSK Mode 2402MHz        |                    |        |
| Remark:       | Only worse case is reported | CALIFORNIA PORTO   | A RIVE |
| 110.0 dBuV/m  |                             |                    |        |



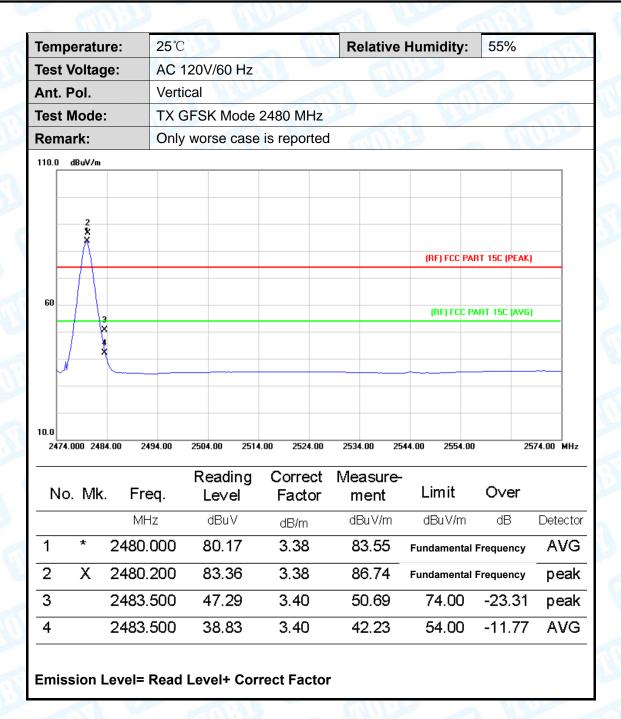

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over      |          |
|-----|----|----------|------------------|-------------------|------------------|-------------|-----------|----------|
|     |    | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m      | dB        | Detector |
| 1   |    | 2390.000 | 44.68            | 2.91              | 47.59            | 74.00       | -26.41    | peak     |
| 2   |    | 2390.000 | 33.75            | 2.91              | 36.66            | 54.00       | -17.34    | AVG      |
| 3   | *  | 2402.000 | 82.99            | 2.95              | 85.94            | Fundamental | Frequency | AVG      |
| 4   | Χ  | 2402.600 | 84.00            | 2.95              | 86.95            | Fundamental | Frequency | peak     |

**Emission Level= Read Level+ Correct Factor** 



Page: 38 of 49

| Temperature:  | 25℃                         | Relative Humidity: | 55%    |
|---------------|-----------------------------|--------------------|--------|
| Test Voltage: | AC 120V/60 Hz               | CHILL              |        |
| Ant. Pol.     | Horizontal                  |                    |        |
| Test Mode:    | TX GFSK Mode 2480 MHz       |                    |        |
| Remark:       | Only worse case is reported | CALIFE ST          | A HAVE |

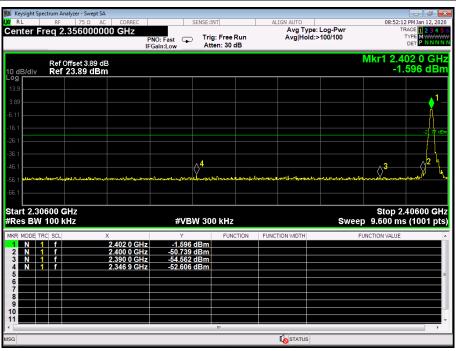


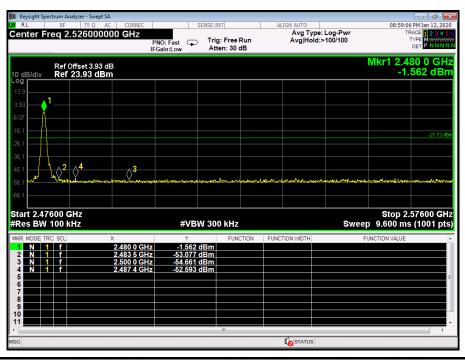

| No. | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | O∨er      |          |
|-----|------|----------|------------------|-------------------|------------------|-------------|-----------|----------|
|     |      | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m      | dB        | Detector |
| 1   | Х    | 2479.600 | 90.90            | 3.38              | 94.28            | Fundamental | Frequency | peak     |
| 2   | *    | 2480.000 | 88.37            | 3.38              | 91.75            | Fundamental | Frequency | AVG      |
| 3   |      | 2483.500 | 54.83            | 3.40              | 58.23            | 74.00       | -15.77    | peak     |
| 4   |      | 2483.500 | 46.37            | 3.40              | 49.77            | 54.00       | -4.23     | AVG      |

**Emission Level= Read Level+ Correct Factor** 



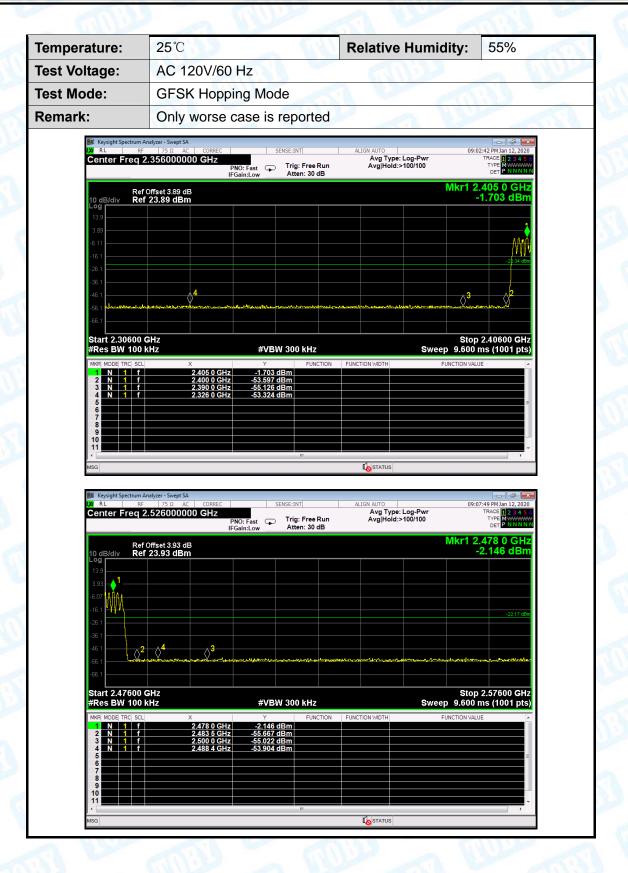
Page: 39 of 49




40 of 49 Page:

#### (2) Conducted Test

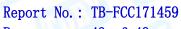









41 of 49 Page:

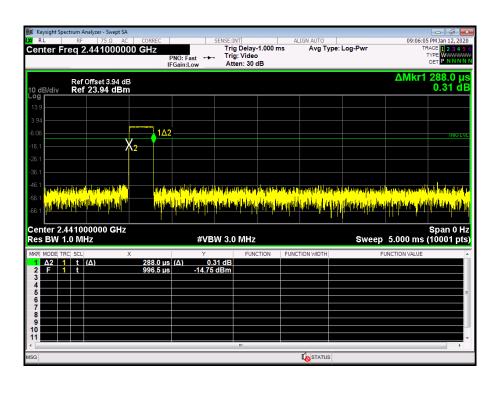







**Attachment D-- Number of Hopping Channel Test Data** 

| Temperature:                   | 25°C                         |                                        | Relative Humidi                        | ty: 55%                         |
|--------------------------------|------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| Test Voltage:                  | AC                           | 120V/60 Hz                             |                                        | TO SEE TO                       |
| Test Mode:                     | Нор                          | ping Mode                              | THURSDAY OF                            |                                 |
| Frequency Rai                  | nge                          | Test Mode                              | Quantity of Hopping<br>Channel         | Limit                           |
| 2402MHz~2480l                  | МНz                          | GFSK                                   | 79                                     | >15                             |
|                                |                              | (                                      | FSK Mode                               | <u> </u>                        |
| Log                            | f Offset 3.94<br>ef 23.94 di | dB<br>Bm                               | Atten: 30 dB                           | 1 2.402 004 0 GHz<br>-1.693 dBm |
| 13.9<br>3.94<br>-6.06<br>-16.1 | <del>∖</del> Ŷ√₹Ŷ₩           | JAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | MAMANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |                                 |
| -36.1<br>-46.1                 |                              |                                        |                                        | Y                               |






Page: 43 of 49

## **Attachment E-- Average Time of Occupancy Test Data**

| Temper     | ature:                                           | 25°                 | C             |              | Rel | ative Humidity: | 55%   | CHI.   |  |
|------------|--------------------------------------------------|---------------------|---------------|--------------|-----|-----------------|-------|--------|--|
| Test Vo    | Itage:                                           | AC                  | AC 120V/60 Hz |              |     |                 |       |        |  |
| Test Mo    | de:                                              | Hopping Mode (GFSK) |               |              |     |                 |       |        |  |
| Test       | Chani                                            | nel                 | Pulse         | Total of Dwe | ell | Period Time     | Limit | Result |  |
| Mode       | (MH                                              | z)                  | Time (ms)     | (ms)         |     | (s)             | (ms)  | Result |  |
| 1DH1       | 244                                              | 1                   | 0.288         | 92.16        |     | 31.60           | 400   | PASS   |  |
| 1DH1 Total | 1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79 |                     |               |              |     |                 |       |        |  |
|            | GFSK Hopping Mode 1DH1                           |                     |               |              |     |                 |       |        |  |
|            |                                                  |                     |               | 2441 MF      | łz  |                 |       |        |  |







Page: 44 of 49

# Attachment F-- Channel Separation and Bandwidth Test Data

| emperature:                                                                    | 25℃                                                 |                  | 77 (19)                                                           | Relative Hur                                    | nidity:    | 55%                                                  |                         |
|--------------------------------------------------------------------------------|-----------------------------------------------------|------------------|-------------------------------------------------------------------|-------------------------------------------------|------------|------------------------------------------------------|-------------------------|
| est Voltage:                                                                   | AC 120V                                             | //60 Hz          | 1300                                                              |                                                 |            | . (1)                                                | 1100                    |
| est Mode:                                                                      | TX Mode                                             | e (GFSK)         |                                                                   | ARGE                                            |            |                                                      |                         |
| Channel frequer<br>(MHz)                                                       | псу                                                 | 99% OB'<br>(kHz) | W                                                                 | 20dB Band<br>(kHz)                              |            | Bandw                                                | )dB<br>idth *2/3<br>Hz) |
| 2402                                                                           |                                                     | 945.28           |                                                                   | 1011                                            |            |                                                      |                         |
| 2441                                                                           |                                                     | 932.65           |                                                                   | 988.5                                           | ;          |                                                      |                         |
| 2480                                                                           |                                                     | 926.10           |                                                                   | 1014                                            |            |                                                      |                         |
|                                                                                |                                                     | G                | FSK TX M                                                          | ode                                             |            |                                                      | -                       |
| LXI RL R                                                                       | Analyzer - Occupied BW F $75 \Omega$ AC 2.402000000 |                  | SENSE:INT<br>Center Freq: 2.4(<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AUTO  <br>02000000 GHz<br>Avg Hold:>10/10 | Radio<br>) | 08:51:23 PM Jan 12, 2020<br>Std: None<br>Device: BTS |                         |
| 10 dB/div Log 10.00 -10.0 -20.0                                                | F 75 Ω AC                                           | GHz              | Center Freq: 2.40<br>Trig: Free Run                               | 02000000 GHz                                    | Radio<br>) | 08:51:23 PM Jan 12, 2020<br>Std: None                |                         |
| 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -50.0 -70.0                               | 2.4020000000 Ref 20.00 dBm                          | GHz              | Center Freq: 2.40<br>Trig: Free Run                               | 02000000 GHz                                    | Radio<br>) | 88:51:23 PM Jan 12, 2020<br>Std: None<br>Device: BTS |                         |
| 10 dB/div Log 10.0 -10.0 -20.0 -30.0 -40.0 -60.0 -70.0 Center 2.402 #Res BW 30 | 2.4020000000  Ref 20.00 dBm                         | #FGain:Low       | Center Freq: 2.40<br>Trig: Free Run                               | 000 kHz                                         | Radio      | 08:51:23 PM Jan 12, 2020<br>Std: None                |                         |
| Center Freq  10 dB/div Log 10.0 20.0 30.0 40.0 50.0 Center 2.402 #Res BW 30    | 2.4020000000  Ref 20.00 dBm                         | #FGain:Low       | Center Freq: 2.4 Trig: Free Run #Atten: 30 dB                     | 00 kHz                                          | Radio      | 8:51:23 MJan 12, 2020<br>Std: None<br>Device: BTS    |                         |



45 of 49 Page:



**#VBW** 100 kHz

0.65 dBm

99.00 %

-20.00 dB

STATUS

**Total Power** 

x dB

% of OBW Power

Center 2.48 GHz #Res BW 30 kHz

**Occupied Bandwidth** 

**Transmit Freq Error** 

x dB Bandwidth

926.10 kHz

18.954 kHz

1.014 MHz

Span 2 MHz Sweep 2.667 ms

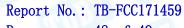


Page: 46 of 49

| Temperature:                | <b>25</b> ℃         |               | Relative Humidity | : 55%           |  |  |
|-----------------------------|---------------------|---------------|-------------------|-----------------|--|--|
| Test Voltage: AC 120V/60 Hz |                     |               |                   |                 |  |  |
| Test Mode:                  | Hopping Mode (GFSK) |               |                   |                 |  |  |
| Channel frequ               | iency               | Separation Re | ad Value S        | eparation Limit |  |  |
| (MHz)                       |                     | (kHz)         |                   | (kHz)           |  |  |
| 2402                        |                     | 870           |                   | 674             |  |  |
| 2441                        | 2441                |               |                   | 659             |  |  |
| 2480                        |                     | 990           |                   | 676             |  |  |
|                             |                     | GFSK Hoppin   | g Mode            |                 |  |  |

### 2402 MHz






Report No.: TB-FCC171459 Page: 47 of 49

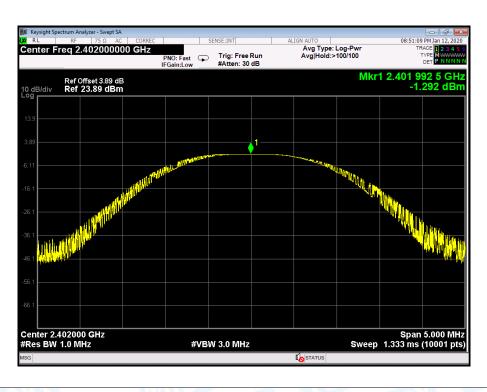


#### 2480 MHz





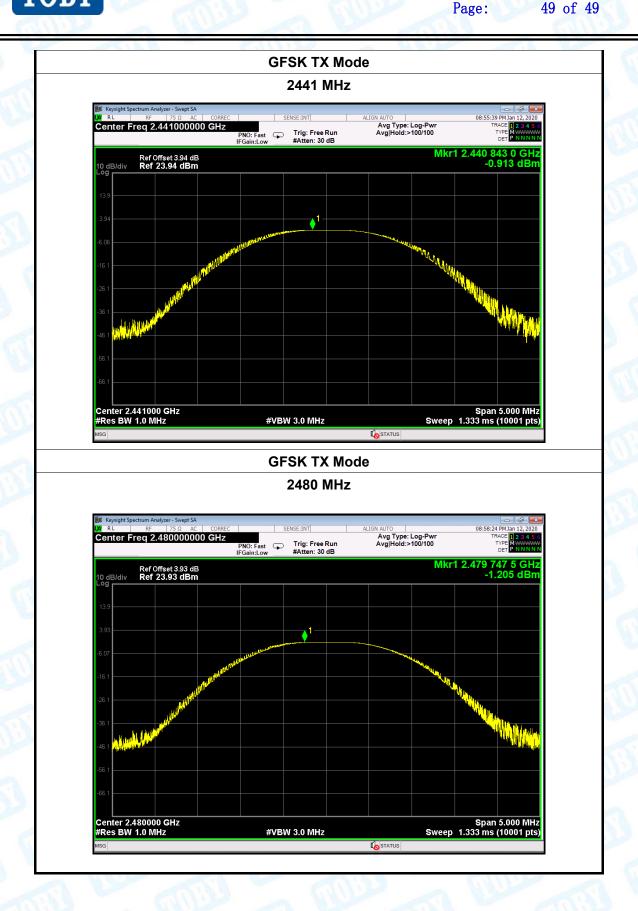



Page: 48 of 49

## **Attachment G-- Peak Output Power Test Data**

| Temperature:    | 25℃      |             | Relative Humidity: | 55%        |
|-----------------|----------|-------------|--------------------|------------|
| Test Voltage:   | AC 120V/ | 60 Hz       |                    | 63.7       |
| Test Mode:      | TX Mode  | (GFSK)      |                    | 100        |
| Channel frequen | cy (MHz) | Test Result | (dBm) L            | imit (dBm) |
| 2402            |          | -1.292      |                    |            |
| 2441            |          | -0.913      |                    | 30         |
| 2480            |          | -1.205      |                    |            |
|                 |          | OFOK TV     | A1 .               |            |

#### **GFSK TX Mode**


#### 2402 MHz



TOBY

Report No.: TB-FCC171459

Page: 49 of 49



#### ----END OF REPORT----