

Page:

1

of

58

Report Number: F690501-RF-RTL002373

TEST REPORT				
of FCC Part 15 Subpart C §15.247 IC RSS-247 Issue 2 and RSS-Gen Issue 5				
FCC ID: 2AVZC-A000010007A IC Certification: 26076-A000010007A				
Equipment Under Test : BT/Wi-Fi Combo Module Gen6 Model Name : A000020012A Variant Model Name(s) : -				
Applicant : Markone technology CO., Ltd. Manufacturer : SUNTEL VINA CO., LTD.				
Date of Receipt : 2021.06.08 Date of Test(s) : 2021.06.11 ~ 2021.07.13				
Date of Issue : 2021.07.15				
In the configuration tested, the EUT complied with the standards specified above. This report does not assure KOLAS accreditation.	test			
 The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. 				
Tested by: Nancy Park Technical Manager: Jinhyoung Cho	garty and the second			
SGS Korea Co., Ltd. Gunpo Laboratory				

RTT7081-02(2020.10.05)(0)

Report Number:	F690501-RF-RTL002373	Page:	2	of	58

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	10
3. 20 dB Bandwidth & 99 % Bandwidth	30
4. Maximum Peak Conducted Output Power	39
5. Carrier Frequency Separation	41
6. Number of Hopping Frequencies	43
7. Time of Occupancy(Dwell Time)	45
8. AC Power Line Conducted Emission	53
9. Antenna Requirement	58

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Phone No. : +82 31 688 0901

Fax No. : +82 31 688 0921

1.2. Details of Applicant

Applicant	: Markone technology CO., Ltd.
Address	232, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheonbuk-do, South Korea, 28119
Contact Person Phone No.	: Lee, Jong-bok : +82 10 9916 2536

1.3. Details of Manufacturer

Company : SUNTEL VINA CO., LTD Address : Lot XN8, Dai An Industrial Zone Extension, Lai Cach Town, Cam Giang District, Hai Duong Province, Viet Nam.(SUNTEL VINA)

1.4. Description of EUT

Kind of Product	BT/Wi-Fi Combo Module Gen6	
Model Name	A000020012A	
Serial Number	Conducted: 001 Radiated: 002	
Power Supply	DC 3.3 V	
Frequency Range	2 402 M ¹ / ₂ ~ 2 480 M ¹ / ₂ (Bluetooth)	
Modulation Technique	GFSK, π/4DQPSK, 8DPSK	
Number of Channels	79 channels (Bluetooth)	
Antenna Type	PCB & Cable Assembly Antenna	
Antenna Gain	1.65 dB i	
H/W Version	V04	
S/W Version	V10	

Report Number: F690501-RF-RTL002373

Page: 4 of

58

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMR40	100272	Jun. 16, 2021	Annual	Jun. 16, 2022
Signal Generator	R&S	SMBV100A	255834	May 31, 2021	Annual	May 31, 2022
Spectrum Analyzer	R&S	FSV30	103453	Nov. 04, 2020	Annual	Nov. 04, 2021
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 04, 2020	Annual	Sep. 04, 2021
Bluetooth Tester	TESCOM	TC-3000C	3000C000560	Sep. 17, 2020	Annual	Sep. 17, 2021
Directional Coupler	KRYTAR	152613	122660	Jun. 15, 2021	Annual	Jun. 15, 2022
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-10SS	21	Jun. 04, 2021	Annual	Jun. 04, 2022
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	11	May 17, 2021	Annual	May 17, 2022
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 08, 2021	Annual	Feb. 08, 2022
Power Sensor	R&S	NRP-Z81	100669	May 07, 2021	Annual	May 07, 2022
DC Power Supply	Agilent	U8002A	MY49030063	Feb. 02, 2021	Annual	Feb. 02, 2022
Preamplifier	H.P.	8447F	2944A03909	Aug. 06, 2020	Annual	Aug. 06, 2021
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 09, 2021	Annual	Jun. 09, 2022
Preamplifier	TESTEK	TK-PA1840H	130016	Jan. 07, 2021	Annual	Jan. 07, 2022
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 22, 2019	Biennial	Aug. 22, 2021
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	01126	Dec. 22, 2020	Biennial	Dec. 22, 2022
Horn Antenna	R&S	HF906	100326	Feb. 04, 2021	Annual	Feb. 04, 2022
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	9170-540	Nov. 26, 2020	Annual	Nov. 26, 2021
Test Receiver	R&S	ESU26	100109	Feb. 19, 2021	Annual	Feb. 19, 2022
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESCI 7	100911	Feb. 19, 2021	Annual	Feb. 19, 2022
Two-Line V-Network	R&S	ENV216	100190	May 04, 2021	Annual	May 04, 2022
Shield Room	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	MWX221-NMSNMS (4 m)	J1023142	Jul. 05, 2021	Semi- annual	Jan. 05, 2022
Coaxial Cable	RFONE	PL520-NMNM-10M (10 m)	20200324001	Jul. 05, 2021	Semi- annual	Jan. 05, 2022
Coaxial Cable	RADIALL	TESTPRO 3	182287	Feb. 19, 2021	Semi- annual	Aug. 19, 2021
Coaxial Cable	RADIALL	TESTPRO 3	182288	Feb. 19, 2021	Semi- annual	Aug. 19, 2021
Coaxial Cable	RADIALL	TESTPRO 3	182291	Feb. 19, 2021	Semi- annual	Aug. 19, 2021

Note;

- For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

1.6. Declaration by the Manufacturer

- Adaptive Frequency Hopping is supported and use at least 20 channels.

1.7. Information about the FHSS characteristics:

1.7.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.7.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.7.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.7.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.7.5. Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: F690501-RF-RTL002373

1.8. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part15 Subpart C, IC RSS-247 Issue 2 and RSS-Gen Issue 5				
Section in FCC	Section in IC	Test Item(s)	Result	
15.205(a) 15.209 15.247(d)	RSS-247 Issue 2 5.5 RSS-Gen Issue 5 8.9	Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	Complied	
15.247(a)(1)	RSS-247 Issue 2 5.1(b) RSS-Gen Issue 5 6.7	20 dB Bandwidth and 99 % Bandwidth	Complied	
15.247(a)(1) 15.247(b)(1)	RSS-247 Issue 2 5.1(b) 5.4(b)	Maximum Peak Conducted Output Power	Complied	
15.247(a)(1)	RSS-247 Issue 2 5.1(b)	Carrier Frequency Separation	Complied	
15.247(a)(1)(iii)	RSS-247 Issue 2 5.1(d)	Number of Hopping Frequencies	Complied	
15.247(a)(1)(iii)	RSS-247 Issue 2 5.1(d)	Time of Occupancy (Dwell Time)	Complied	
15.207	RSS-Gen Issue 5 8.8	AC Power Line Conducted Emission	Complied	

1.9. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

1.10. Sample Calculation

Where relevant, the following sample calculation is provided:

1.10.1. Conducted Test

Offset value (dB) = Directional coupler (dB) + Cable loss (dB)

1.10.2. Radiation Test

Field strength level (dBµN/m) = Measured level (dBµN) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

Report Number: F690501-RF-RTL002373

1.11. Test Report Revision

Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL002373	2021.07.15	Initial

1.12. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter		Uncertainty		
RF Output Power		± 0.36 dB		
Occupied Bandwidth		± 13.12 k⊞z		
Conducted Spurious Emission	± 0.63 dB			
AC Conducted Emission	± 3.45 dB			
Radiated Emission, 9 kHz to 30 MHz	Н	± 3.66 dB		
	V	± 3.66 dB		
Padiated Emission below 1 (1/4	Н	± 4.90 dB		
Radiated Emission, below 1 Glz	V	± 4.82 dB		
Redicted Emission above 1 Mr	Н	± 3.62 dB		
Radiated Emission, above 1 Ghz	V	± 3.64 dB		

All measurement uncertainty values are shown with a coverage factor k = 2 to indicate a 95 % level of confidence.

1.13. Information of software for test.

- Using the software of CyBluetool (Version 0.1.55.1) to testing of EUT.

1.14. Descriptions of Test Mode

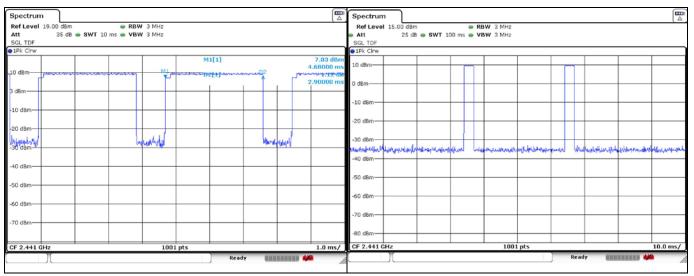
Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

Operation Mode	Data Rate (Mbps)	Channel	Frequency (ᡅ)	RF Output Power (dB m)
		Low	2 402	-0.46
GFSK	1	Middle	2 441	<u>-0.18</u>
		High	2 480	-0.24
	Low	2 402	2.15	
π/4DQPSK	2	Middle	2 441	<u>2.44</u>
	High	2 480	2.41	
		Low	2 402	2.38
8DPSK	3	Middle	2 441	<u>2.70</u>
		High	2 480	2.60

Note;

1. For transmitter radiated spurious emissions, conducted spurious emission, carrier frequency separation and number of hopping frequencies, GFSK / DH5 and 8DPSK / 3DH5 are tested as worst condition. 2. For 20 dB bandwidth and maximum peak conducted output power, GFSK / DH5, π /4DQPSK / 2DH5 and 8DPSK / 3DH5 are tested as worst condition.

3. For Time of Occupancy, GFSK / DH1, DH3, DH5 and 8DPSK / 3DH1, 3DH3, 3DH5 are tested as worst condition.



1.15. Duty Cycle Correction Factor of EUT

According to KDB 558074 D01 15.247 Meas Guidance v05r02, 9, as a "duty cycle correction factor", pulse averaging with 20 log (worst case dwell time / 100 ms) has to be used for average result.

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time 3DH5 packet is observed;

the period to have 3DH5 packet completing one hopping sequence is 2.90 ms x 20 channels = 58.00 ms

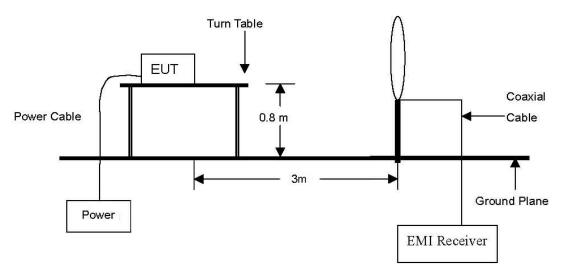
There cannot be 2 complete hopping sequences within 100 ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 58.00 ms] = 2 hops

Thus, the maximum possible ON time:

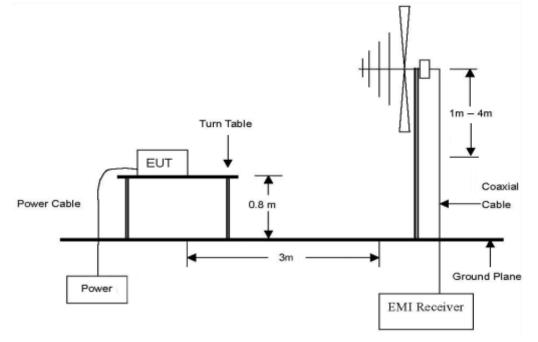
2.90 ms x 2 = 5.80 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time:

20 x log (5.80 ms/100 ms) = -24.73 dB



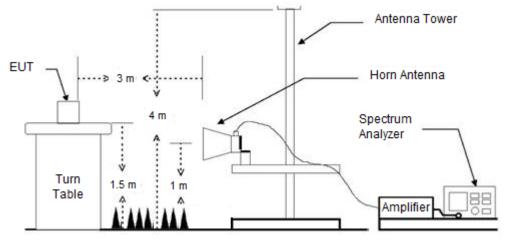
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

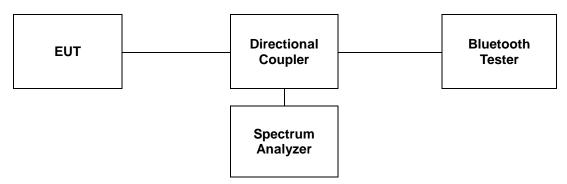
The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz$

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz.



Report Number: F690501-RF-RTL002373

Page: 11 of 58


The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gh to the 10th harmonic of the highest fundamental frequency or 40 Gh, whichever is lower.

Report Number: F690501-RF-RTL002373

2.1.2. Conducted Spurious Emissions

2.2. Limit

2.2.1. FCC

According to §15.247(d), in any 100 klz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)	Field Strength (<i>µ</i> N/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., \S 15.231 and 15.241.

Report Number: F690501-RF-RTL002373

2.2.2. IC

According to RSS-247 Issue 2, 5.5, in any 100 kt bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kt bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen Issue 5, 8.9, except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency (Mb)	Field Strength (<i>µ</i> V/m at 3 m)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 6 – General Field Strength Limits at frequencies below 30 Mb

Frequency	Magnetic Field Strength (H-Field) (µA/m)	Measurement Distance (meters)
9-490 kHz 1	6.37/F (F in klz)	300
490-1 705 kHz	63.7/F (F in k⊞)	30
1.705-30 Mz	0.08	30

Note¹: The emission limits for the ranges 9-90 kl and 110-490 kl are based on measurements employing a linear average detector.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 $\,{\rm M}{\rm z}$

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note;

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kl/z for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. For frequency above 1 GHz, set spectrum analyzer detector to peak, and resolution bandwidth is 1 MHz and video bandwidth is 3 MHz.
- Definition of DUT Axis.
 Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is Y – axis during radiation test.

2.3.3. Test Procedures for Conducted Spurious Emissions

2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. RBW \geq 100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold

2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. RBW = 1 Mb VBW = 3 Mb Sweep = auto Detector function = peak Trace = max hold

2.3.3.3. TDF function

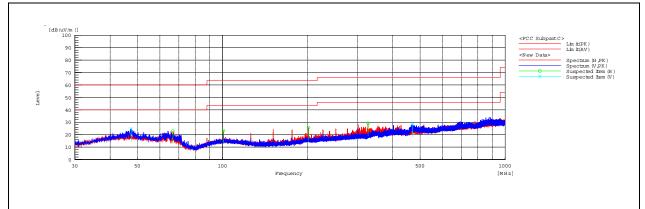
- For plots showing conducted spurious emissions from 9 kl_2 to 25 Gl_2 , all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

Report Number: F690501-RF-RTL002373

2.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb


The frequency spectrum from 9 klt to 1 000 Mb was investigated. All reading values are peak values.

Radia	Radiated Emissions			Correctio	n Factors	Total	Total Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
47.46	31.30	Peak	V	20.10	-27.25	24.15	40.00	15.85
66.70	34.10	Peak	Н	16.19	-27.06	23.23	40.00	16.77
100.69	33.00	Peak	н	17.50	-26.71	23.79	43.50	19.71
201.33	34.50	Peak	н	16.49	-25.69	25.30	43.50	18.20
327.31	34.40	Peak	н	19.64	-25.11	28.93	46.00	17.07
469.98	31.90	Peak	V	22.20	-25.80	28.30	46.00	17.70
Above 600.00	Not detected	-	-	-	-	-	-	-

Remark;

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Reported spurious emissions are in EDR / 3DH5 / Middle channel as worst case among other modes.
- Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak values.

Operating Mode: GFSK (1 Mbps)

A. Low Channel (2 402 Mtz)

Radia	ated Emissic	ons	Ant.	Correction Factors			Total	Limit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	23.62	Peak	Н	28.00	6.06	-	57.68	74.00	16.32
*2 310.00	-	Average	-	-	-	-24.73	32.95	54.00	21.05
*2 385.01	27.30	Peak	Н	28.14	6.16	-	<u>61.60</u>	74.00	12.40
*2 385.01	-	Average	-	-	-	-24.73	36.87	54.00	17.13
*2 390.00	25.00	Peak	Н	28.16	6.14	-	59.30	74.00	14.70
*2 390.00	-	Average	-	-	-	-24.73	34.57	54.00	19.43

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (2 441 Mz)

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL002373

Page: 18 of 58

C. High Channel (2 480 Mb)

Radia	ated Emissic	ons	Ant.	Correction Factors			Total	Limit	
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	25.10	Peak	Н	28.33	6.21	-	59.64	74.00	14.36
*2 483.50	-	Average-	-	-	-	-24.73	34.91	54.00	19.09
*2 493.62	26.99	Peak	н	28.31	6.24	-	61.54	74.00	12.46
*2 493.62	-	Average	-	-	-	-24.73	36.81	54.00	17.19
*2 500.00	24.67	Peak	н	28.30	6.27	-	59.24	74.00	14.76
*2 500.00	-	Average	-	-	-	-24.73	34.51	54.00	19.49

Radia	Radiated Emissions		Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL002373

Operating Mode: 8DPSK (3 Mbps)

A. Low Channel (2 402 Mz)

Radia	ated Emissic	ons	Ant.	Cor	Correction Factors			Lim	it
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	24.49	Peak	Н	28.00	6.06	-	58.55	74.00	15.45
*2 310.00	-	Average	-	-	-	-24.73	33.82	54.00	20.18
*2 389.38	25.58	Peak	н	28.16	6.14	-	59.88	74.00	14.12
*2 389.38	-	Average	-	-	-	-24.73	35.15	54.00	18.85
*2 390.00	24.39	Peak	Н	28.16	6.14	-	58.69	74.00	15.31
*2 390.00	-	Average	-	-	-	-24.73	33.96	54.00	20.04

Radiated Emissions		Ant.	Corr	Correction Factors			Limit		
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

B. Middle Channel (2 441 Mz)

Radiated Emissions			Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

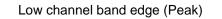
Report Number: F690501-RF-RTL002373

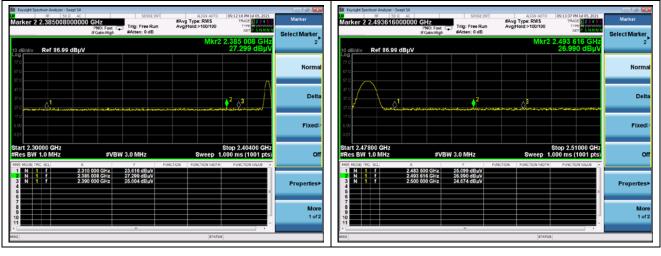
C. High Channel (2 480 Mbz)

Radia	Ant.	Correction Factors			Total	Limit			
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	25.61	Peak	н	28.33	6.21	-	60.15	74.00	13.85
*2 483.50	-	Average	-	-	-	-24.73	35.42	54.00	18.58
*2 485.52	27.47	Peak	н	28.33	6.22	-	<u>62.02</u>	74.00	11.98
*2 485.52	-	Average	-	-	-	-24.73	37.29	54.00	16.71
*2 500.00	24.63	Peak	н	28.30	6.27	-	59.20	74.00	14.80
*2 500.00	-	Average	-	-	-	-24.73	34.47	54.00	19.53

Radiated Emissions		Radiated Emissions Ant. Correction Factors			Total	Limit			
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

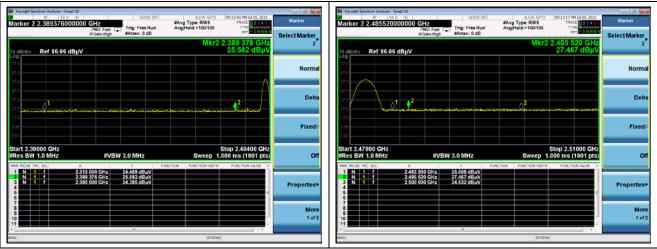
Remark;


- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.


Report Number: F690501-RF-RTL002373

- Test plots

Operating Mode: GFSK (1 Mbps)



High channel band edge (Peak)

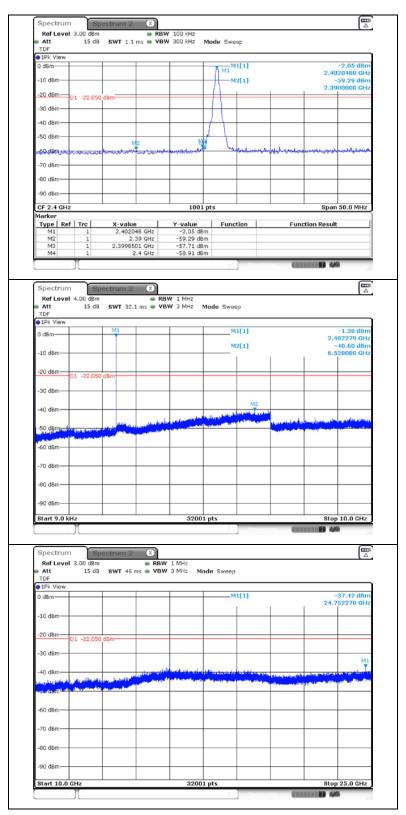
Operating Mode: 8DPSK (3 Mbps)

Low channel band edge (Peak)

High channel band edge (Peak)

Page:

22


of

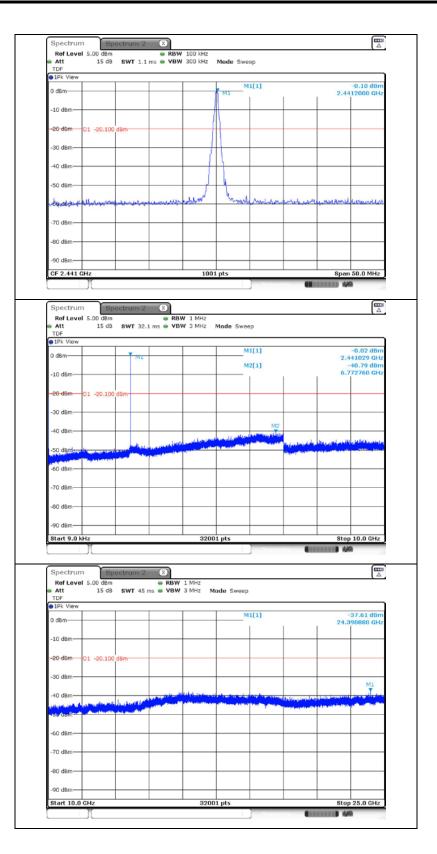
58

Report Number: F690501-RF-RTL002373

2.4.3. Plot of Spurious Conducted Emissions Operating Mode: GFSK (1 Mbps)_hopping function turned off

Low channel

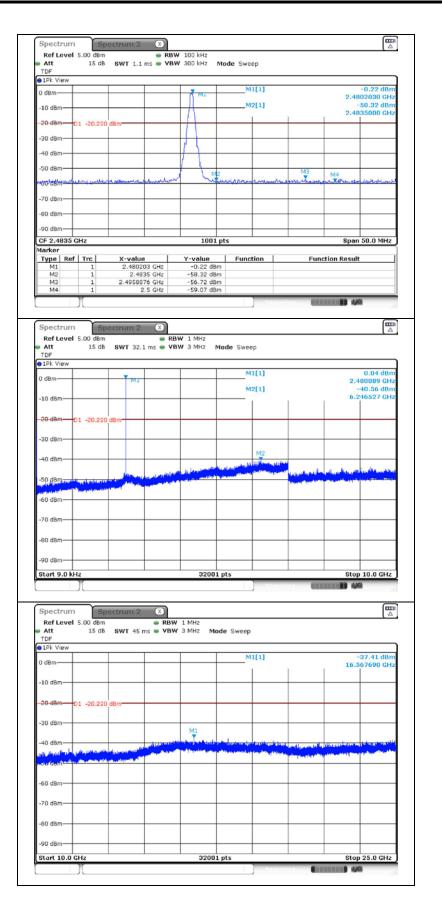
Page:


23

of

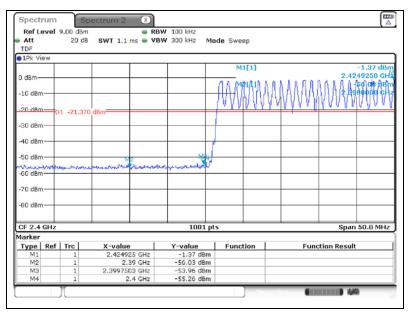
58

Report Number: F690501-RF-RTL002373


Middle channel

Report Number: F690501-RF-RTL002373

High channel



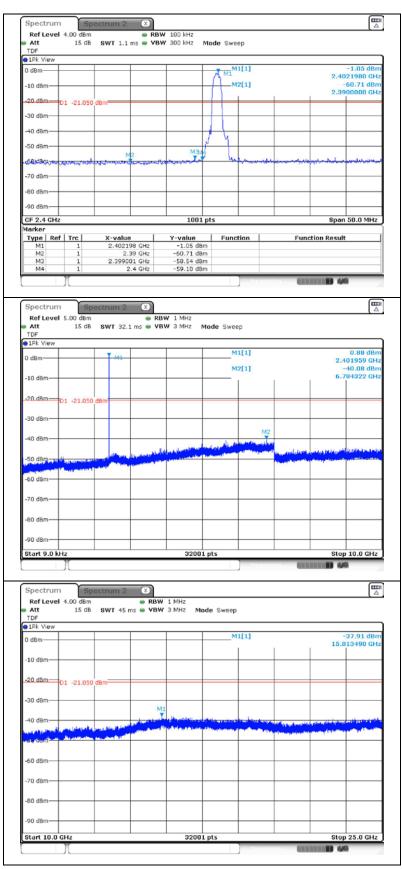
Report Number: F690501-RF-RTL002373

Page: 25 of 58

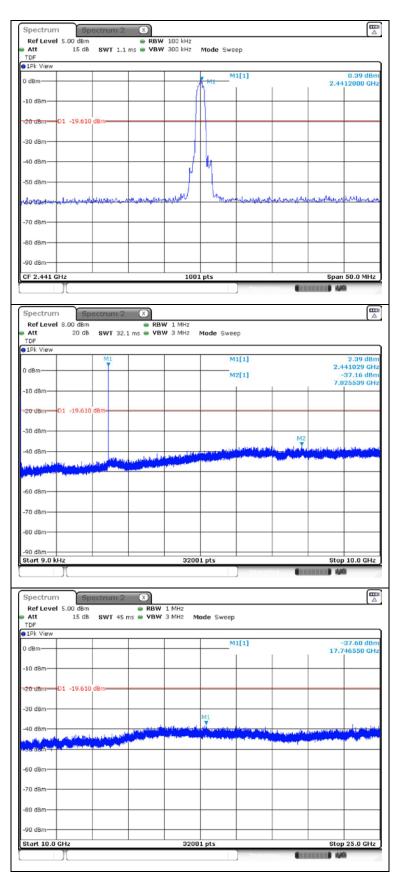
Operating Mode: GFSK (1 Mbps)_hopping function turned on Band edge compliance

Low channel

High channel


Spect	rum	Sp	ectrum 2 🛛 🗙				
	evel	10.00 dBn		RBW 100 kHz			
Att		20 d8	3 SWT 1.1 ms 🖷 '	VBW 300 kHz N	lode Sweep		
TDF							
1Pk Vi	ew						
M1					M1[1]		-0.07 dBn
R dBr	<u> </u>	0.0.0.0	0.0.0.0.0.0.0	0.0.0.0	100113		1720 GH
MM	AIA	MUU	INAABABAAA	YADEN I.	M2[1]		35000 GH
-10 gBr	שעי	IVM			1	2.400	13000 GH
-20 dBm		1 -20.070		1			
-20 000		1 -20.070	ubiii				
-30 dBm	\rightarrow						
	·						
-40 dBm	<u>+</u>			1			
					МЗ		
-50 dBm	<u> </u>			Mart and Co		Werker march and the wards	A
-60 dBm							
-ou ubii	-						
-70 dBm				_			
-80 dBrr	<u>+</u>						
CF 2.4	835 G	Hz		1001 p	ts	Span	50.0 MHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Function Result	
M1		1	2.461172 GHz	-0.07 dBm			
M2		1	2.4835 GHz	-54.38 dBm			
M3 M4		1	2.4908427 GHz	-52.17 dBm			
M4	_	1	2.5 GHz	-54.63 dBm			
					Mo	eseries	

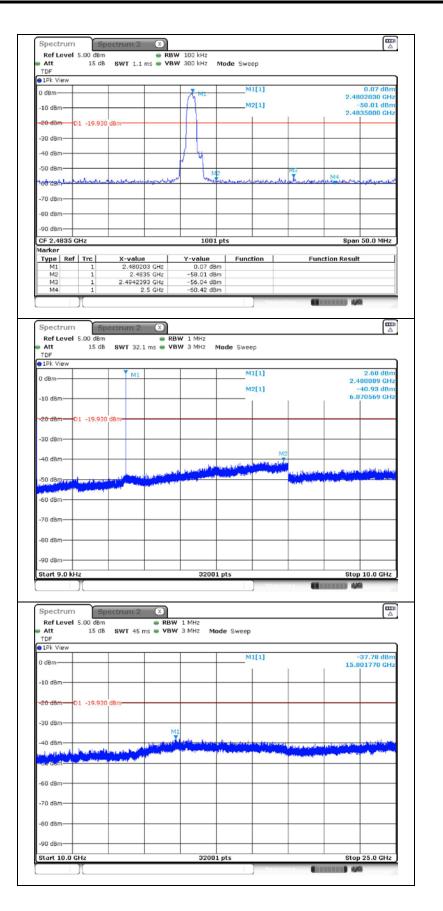
Report Number: F690501-RF-RTL002373


Operating Mode: 8DPSK (3 Mbps)_hopping function turned off

Low channel

Report Number: F690501-RF-RTL002373

Page:

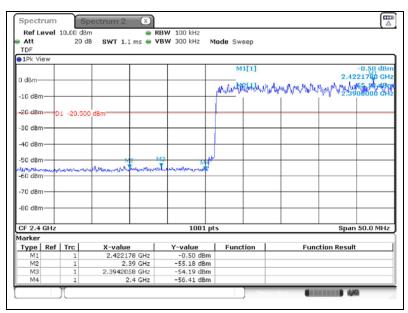

28

of

58

Report Number: F690501-RF-RTL002373

High channel

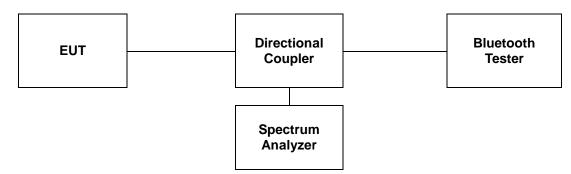


Report Number: F690501-RF-RTL002373

Page: 29 of 58

Operating Mode: 8DPSK (3 Mbps)_hopping function turned on Band edge compliance

Low channel


High channel

Spect	rum	Sp	oectrum 2 🛛 🙁				
	evel	10.00 dBr		RBW 100 kHz			
Att		20 d	B SWT 1.1 ms 👄	VBW 300 kHz N	lode Sweep		
TDF 1Pk Vi	0.14						
					M1[1]		0.19 dBn
N IN					and all all all all all all all all all al		2.4620210 GH
0 dBm-	ind	the hand	yaman man	m.M. A.A.	M2[1]		-53.78 dBn
-10 dBm		1 Y W					2.4835000 GH
10 0.01	·						
-20 dBn	D	1 -19.810) dBm				
-30 dBm	<u> </u>						
-40 dBrr							
TO GDI	` .			M			
-50 dBm				- MP		M3 M4	
				H-MONS	Manhalin	manunamanter	The Martin Contention
-60 dBr	ا ا						
-70 dBr							
10 000	·						
-80 dBm	` +−						
CF 2.4	835 G	Hz		1001 p	ts	S	pan 50.0 MHz
Marker							
Type	Ref		X-value	Y-value	Function	Function Re	sult
M1		1	2.462021 GHz	0.19 dBm			
M2 M3		1	2.4835 GHz 2.4920415 GHz	-53.78 dBm -52.37 dBm			
M3 M4		1	2.4920415 GHz 2.5 GHz	-52.37 dBm			
1414		-	2.0 GHz	55.27 0011	1		
					Me	asuring	100

3. 20 dB Bandwidth and 99 % Bandwidth

3.1. Test Setup

3.2. Limit

Limit: Not Applicable

3.3. Test Procedure

3.3.1. 20 dB **Bandwidth**

The test follows ANSI C63.10-2013.

The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency.

Use the following spectrum analyzer setting:

- 1. Span = approximately 2 to 5 times the 20 dB bandwidth.
- 2. RBW \geq 1 % to 5 % of the 20 dB bandwidth.
- 3. VBW \ge 3 x RBW
- 4. Sweep = auto
- 5. Detector = peak
- 6. Trace = max hold

The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 dB bandwidth of the emission.

3.3.2. 99 % Bandwidth

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the actual occupied / x $\rm dB$ bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

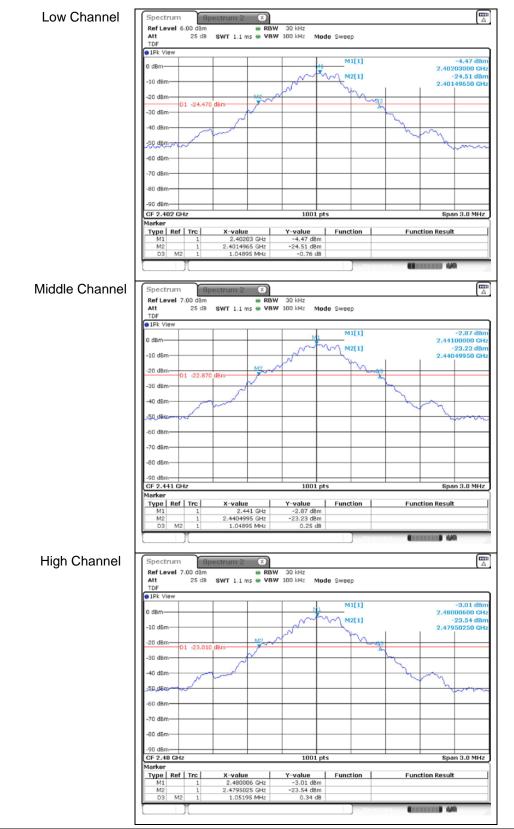
For the 99 % emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99 % emission bandwidth).

Report Number: F690501-RF-RTL002373

3.4. Test Results

Ambient temperature: (23 ± 1) °CRelative humidity: 47 % R.H.

Operation Mode	Data Rate (Mbps)	Channel	Frequency (畑)	20 dB Bandwidth (₩z)	99 % Bandwidth (쌘)
	1	Low	2 402	1.049	0.935
GFSK		Middle	2 441	1.049	0.932
		High	2 480	1.052	0.935
	2	Low	2 402	1.349	1.202
π/4DQPSK		Middle	2 441	1.364	1.208
		High	2 480	1.364	1.208
		Low	2 402	1.319	1.202
8DPSK	3	Middle	2 441	1.349	1.214
		High	2 480	1.346	1.211



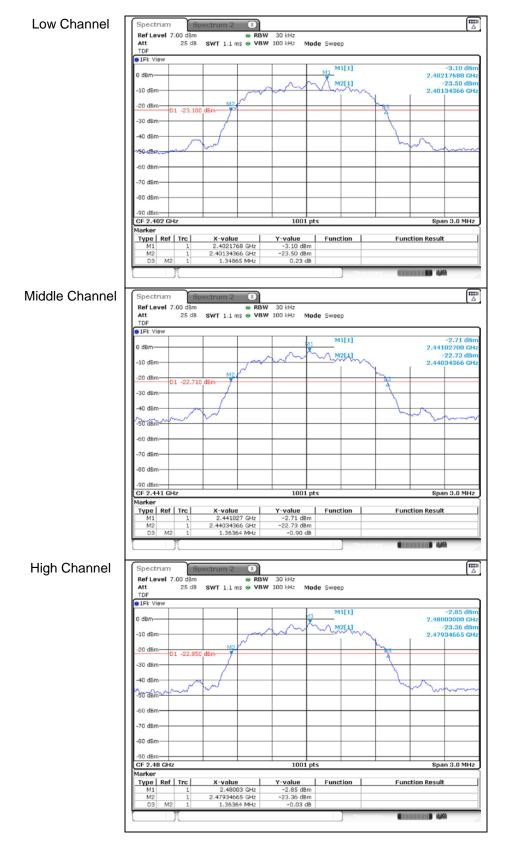
Report Number: F690501-RF-RTL002373

- Test plots

$20 \hspace{0.1 cm} \text{dB} \hspace{0.1 cm} \text{Bandwidth}$

Operating Mode: GFSK

Page:


34

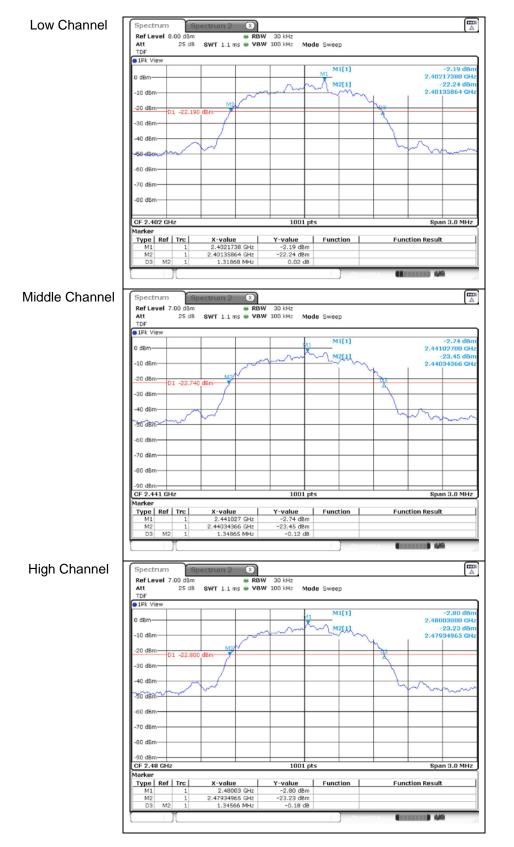
of

58

Report Number: F690501-RF-RTL002373

Operating Mode: $\pi/4DQPSK$

Page:

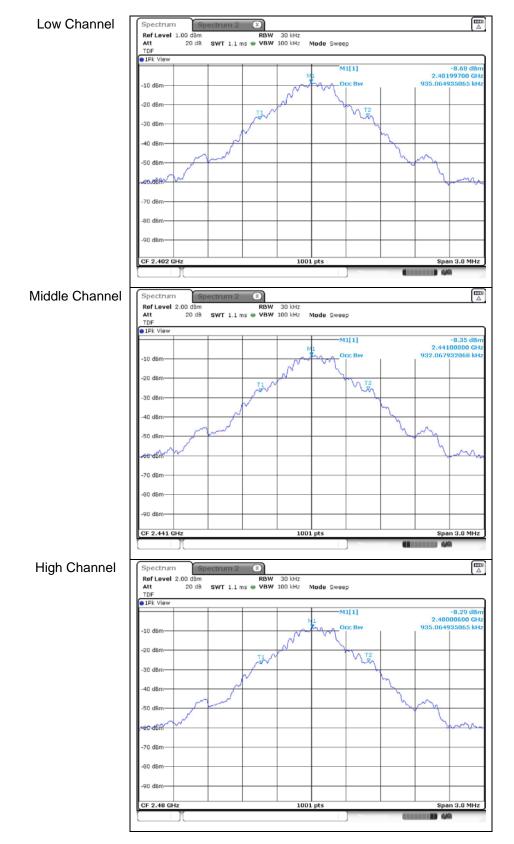

35

of

58

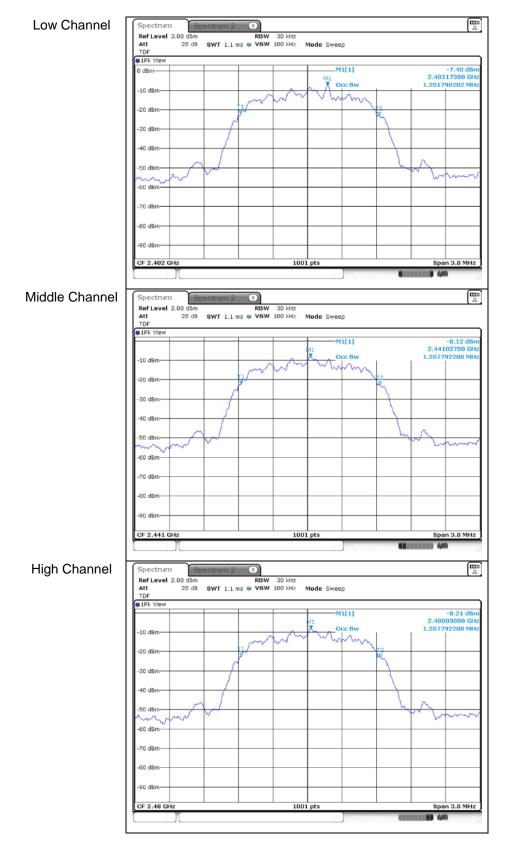
Report Number: F690501-RF-RTL002373

Operating Mode: 8DPSK



Report Number: F690501-RF-RTL002373

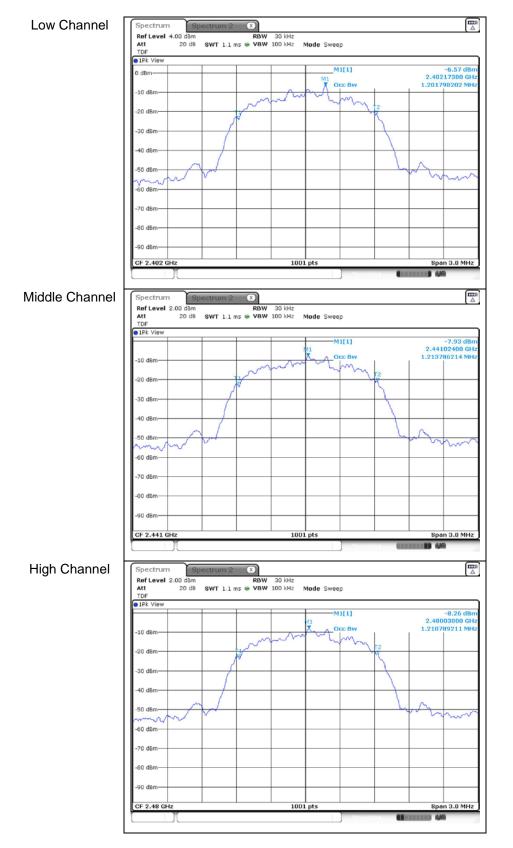
99 % Bandwidth


Operating Mode: GFSK

Report Number: F690501-RF-RTL002373

Operating Mode: $\pi/4DQPSK$

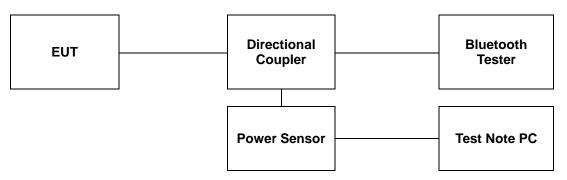
of 58


Page:

37

Report Number: F690501-RF-RTL002373

Operating Mode: 8DPSK


Page:

38

4. Maximum Peak Conducted Output Power

4.1. Test Setup

4.2. Limit

4.2.1. FCC

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400-2 483.5 Mb band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 850 Mb band: 1 watt. For all other frequency hopping systems in the 2 400-2 483.5 Mb band: 0.125 watts.

4.2.2. IC

- 1. According to RSS-247 Issue 2, 5.1(b), FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kl or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2 400-2 483.5 Mb may have hopping channel carrier frequencies that are separated by 25 kl or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- 2. According to RSS-247 Issue 2, 5.4(b), for FHSs operating in the band 2 400-2 483.5 Mb, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

4.3. Test Procedure

The test follows ANSI C63.10-2013. Using the power sensor instead of a spectrum analyzer.

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.
- 3. Test program: (S/W name: R&S Power Viewer, Version: 3.2.0)
- 4. Measure peak power each channel.

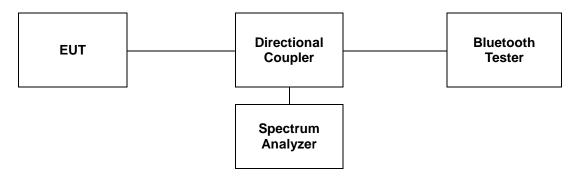
Report Number: F690501-RF-RTL002373

58

4.4. Test Results

Ambient temperature: (23 ± 1) °CRelative humidity: 47 % R.H.

Operation Mode	Data Rate (Mbps)	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (ⓓ m)	Limit (dB m)
		Low	2 402	-1.20	-0.46	
GFSK	1	Middle	2 441	<u>-0.84</u>	<u>-0.18</u>	
		High	2 480	-0.89	-0.24	
		Low	2 402	-0.66	2.15	
π/4DQPSK	2	Middle	2 441	-0.28	<u>2.44</u>	20.97
		High	2 480	<u>-0.25</u>	2.41	
		Low	2 402	-0.53	2.38	
8DPSK	3	Middle	2 441	<u>-0.14</u>	<u>2.70</u>	
		High	2 480	-0.29	2.60	


Remark;

In the case of AFH, the limit for peak power is 0.125 W.

5. Carrier Frequency Separation

5.1. Test Setup

5.2. Limit

5.2.1. FCC

15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400-2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.2.2. IC

According to RSS-247 Issue 2, 5.1(b), FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 klz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2 400-2 483.5 Mlz may have hopping channel carrier frequencies that are separated by 25 klz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

5.3. Test Procedure

The test follows ANSI C63.10-2013.

The device is operating in hopping mode between 79 channels and also supporting Adaptive Frequency Hopping with hopping between 20 channels. As compared with each operating mode, 79 channels are

chosen as a representative for test.

Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels
- 2. RBW: Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. VBW ≥ RBW
- 4. Sweep: Auto
- 5. Detector: Peak
- 6. Trace: Max hold
- 7. Allow the trace to stabilize.

Use the marker-delta function to determine the between the peaks of the adjacent channels.

Report Number: F690501-RF-RTL002373

2373

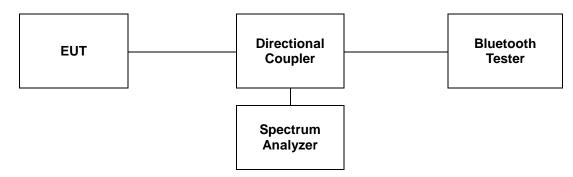
5.4. Test Results

Ambient temperature	:	(23 ±	⊾ 1) ℃
Relative humidity	:	47	% R.H.

Operation Mode	Frequency (쌘)	Adjacent Hopping Channel Separation (朏)	Two-third of 20 dB Bandwidth (啦)		
GFSK	2 441	1 000	699		
8DPSK	2 441	1 000	899		

Remark;

Measurement is made with EUT operating in hopping mode between 79 channels providing a worst case scenario as compared to AFH mode hopping between 20 channels.


- Test plots

Operation Mode: GFSK	Operation Mode: 8DPSK						
Spectrum Spectrum 2 Image: Construct 2	Spectrum Spectrum 2 Imm Ref Level 11.00 dbm						
TOF @ IPk View M1[1] -0.46 dBm 0 dBm 0 dBm 0 2(1] 02 -0.45 dBm 2.4410000 dH 2.44100000 dH 2.441000000 dH 2.44100000 dH 2.44100000000000000000000000000000000000	TDF 0.29 dbm 0 JFK View M11(1) 0.29 dbm 0 dbm M1 2.44100000 cHz 0.028 dbm M1 0.211 0.000 dbm M1 0.211						
-20 dBm	-10 dBm						
-30 d8m	-30 dbm						
-50 dBm	-50 dBm						
-70 dBm	-70 dBm						
CF 2.441 GHz 1001 pts Span 5.0 MHz Image: CF 2.441 GHz Image: CF 2.441 GHz Image: CF 2.441 GHz Image: CF 2.441 GHz	CF 2.441 CHz 1001 pts Span 5.0 MHz						

6. Number of Hopping Frequencies

6.1. Test Setup

6.2. Limit

6.2.1. FCC

§15.247(a)(1)(iii), Frequency hopping systems in the 2 400-2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.2.2. IC

According to RSS-247 Issue 2, 5.1(d), FHSs operating in the band 2 400-2 483.5 Mb shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

6.3. Test Procedure

The test follows ANSI C63.10-2013.

The device supports Adaptive Frequency Hopping and will use a minimum of 20 channels of the 79 available channels.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30 % of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW ≥ RBW
- 4. Sweep: Auto
- 5. Detector function: Peak
- 6. Trace: Max hold
- 7. Allow the trace to stabilize.

Report Number: F690501-RF-RTL002373

6.4. Test Results

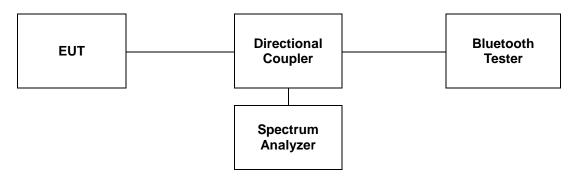
Ambient temperature	:	(23 :	± 1) ℃
Relative humidity	:	47	% R.H.

Operation Mode	Number of Hopping Frequency	Limit			
GFSK	79	≥ 15			
8DPSK	79	≥ 15			

Remark;

Measurement is made with EUT operating in hopping mode between 79 channels providing a worst case scenario as compared to AFH mode hopping between 20 channels.

- Test plots


Operation Mode: GFSK Ref Level Att Ref Level Mode Sweep ŧ₹ 1111 1000 11 1111 111 V V V V V V 000 1111 1111 11 444 100 60 de 1001 pts 4415 GHz tart 2.4415 GH 1001 pt Stop 4835 GHz Ston

		trun			ectru	m 2	_]	Spectru			strum 2									
T	RefLevel 10.00 dbm ■ RBW 200 kHz ● Att 20 dB SWT 1 ms ■ VBW 200 kHz Mode Sweep TOF ToF										Ref Level 10.00 dBm ■ RBW 200 kHz Att 20 dB SWT 1 ms WBW 200 kHz Mode Sweep TOF																						
• 1	Pk V	riew]	1Pk View												
0.0	iBm-	~			(C) 14				6 D <i>i</i>	1.4	6 /L /	5.751	1.4.1	A .2	1.M.M.A.		~ *		<u></u>		0 dBm			I. P. B.	a madam	n nor		N.N. N. 14	a Martin		2. Autors	A NL	
	dB		w	A M.	A Aw	vm	rvv	mr)		m	N N	91	A MI	~ Y	www	101	~ V	ľ	1 V W		-10 dBm-	and a	m w	~~~~	Award		* 7	e V with	- V - 10	No como	S Marth Marth	1	
	dB							_													-20 dBm—						_					Ц	_
-31	dB	m—						_						_		-		-			-30 dBm—		_			-	_					\square	
-4	dB	m—						_		_				-		+		\vdash			-40 dBm—		+			-	+					H	4
5	dB	m—						-		-				-		+		+			-50 dBm—		+			-	+				-	-	harris
-61	dB	m—														\vdash		\vdash			-60 dBm—		+			-	+					-	
-70) dB	m—														\vdash		\vdash			-70 dBm—		+			-	+					+	
-8) dB	m—														-		\vdash			-80 dBm—		+			<u> </u>	+						_
St	art :	2.4 (Hz							1001	pts						Stop 2	2.441	5 GHz		Start 2.4	115 GHz	_			-	1001 p	pts			Stop 2	2.4835	i GHz
			JC) Nev				18 14				()(] Measu				1

7. Time of Occupancy (Dwell Time)

7.1. Test Set up

7.2. Limit

7.2.1. FCC

15.247(a)(1)(iii), Frequency hopping systems in the 2 400-2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

7.2.2. IC

According to RSS-247 Issue 2, 5.1(d), FHSs operating in the band 2 400-2 483.5 Mb shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

A period time = 0.4 (s) * 79 = 31.6 (s)

*Adaptive Frequency Hopping

A period time = 0.4 (s) * 20 = 8 (s)

7.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows ANSI C63.10-2013.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 4. The Bluetooth has 3 type of payload, DH1, DH3, DH5 and 3DH1, 3DH3, 3DH5. The hopping rate is insisted of 1 600 per second.

The EUT must have its hopping function enabled. Use the following spectrum analyzer setting:

- 1. Span = Zero span, centered on a hopping channel.
- 2. RBW = 1 ₩z.
- 3. VBW ≥ RBW.
- 4. Sweep = As necessary to capture the entire dwell time per hopping channel.
- 5. Detector = Peak.
- 6. Trace = Max hold.

Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation, then repeat this test for each variation.

Report Number: F690501-RF-RTL002373

58

7.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

7.4.1. Packet Type: DH1, 3DH1

Operation Mode	Frequency (Mb)	Dwell Time (᠋ɪs)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)		
GFSK	2 441	0.38	121.60	400		
8DPSK	2 441	0.38	121.60	400		

Remark;

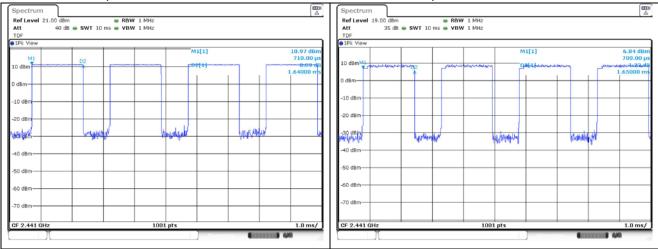
Time of occupancy on the TX channel in 31.6 sec In case of GFSK and 8DPSK: 0.38 x {(1 600 \div 2) / 79} x 31.6 = 121.60 ms

- Test plots

Operation M	ode: GFSK	Operation Mode: 8DPSK					
Spectrum Ref Level 21.00 dBm RBW 1 MHz Att 40 dB • SWT 10 ms • VBW 1 MHz TDF IPk View			Spectrum Ref Level 19.00 dBm Att 35 dB • SV TDF • 1Pk View	● RBW 1 MHz WT 10 ms ● VBW 1 MHz			
10 Ham M1 02 0 dBm		10.94 dBm 3.13900 ms -0.07 dP 380.00 µs 380.00 µs 	10 dtin			6.96 dBm 520.00 µs 3.64 dB 300.00 µs	
-70 dBm			-70 dBm				
CF 2.441 GHz 1001	Manager (1999)	1.0 ms/	CF 2.441 GHz	1001 pts	Measuring	1.0 ms/	

Report Number: F690501-RF-RTL002373

7.4.2. Packet Type: DH3, 3DH3


Operation Mode	Frequency (Mb)	Dwell Time (IIS)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)		
GFSK	2 441	1.64	262.40	400		
8DPSK	2 441	1.65	264.00	400		

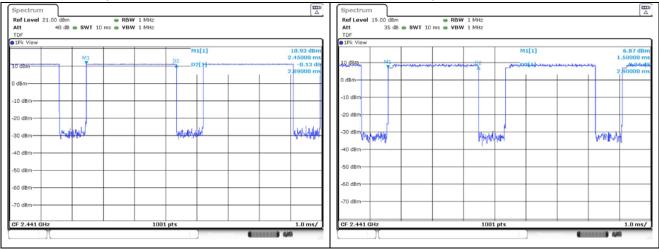
Remark;

Time of occupancy on the TX channel in 31.6 sec In case of GFSK: $1.64 \times \{(1\ 600 \div 4) / 79\} \times 31.6 = 262.40$ ms In case of 8DPSK: $1.65 \times \{(1\ 600 \div 4) / 79\} \times 31.6 = 264.00$ ms

- Test plots

Operation Mode: GFSK

7.4.3. Packet Type: DH5, 3DH5


Operation Mode	Frequency (Mb)	Dwell Time (᠋ɪs)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)		
GFSK	2 441	2.89	308.27	400		
8DPSK	2 441	2.90	309.33	400		

Remark;

Time of occupancy on the TX channel in 31.6 sec In case of GFSK: $2.89 \times \{(1\ 600 \div 6) / 79\} \times 31.6 = 308.27 \text{ ms}$ In case of 8DPSK: $2.90 \times \{(1\ 600 \div 6) / 79\} \times 31.6 = 309.33 \text{ ms}$

- Test plots

Operation Mode: GFSK

F690501-RF-RTL002373 Report Number:

7.4.4. Packet Type: DH1, 3DH1 (Adaptive Frequency Hopping)

Operation Mode	Frequency (Mb)	Dwell Time (᠋ɪs)	Time of occupancy on the Tx Channel in 8 sec (ms)	Limit for time of occupancy on the Tx Channel in 8 sec (ns)	
GFSK	2 441	0.38	60.80	400	
8DPSK	2 441	0.39	62.40	400	

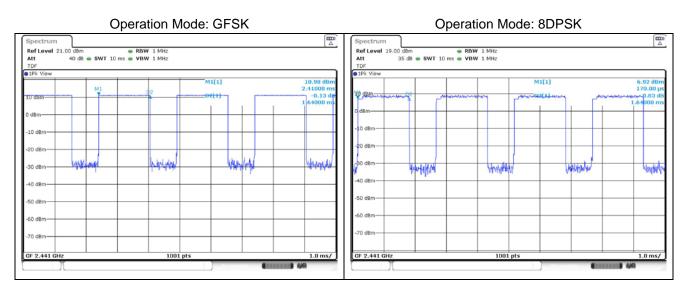
Remark;

Time of occupancy on the TX channel in 8 sec In case of GFSK: $0.38 \times \{(800 \div 2) / 20\} \times 8 = 60.80$ ms In case of 8DPSK: 0.39 x {(800 ÷ 2) / 20} x 8 = 62.40 ms

- Test plots

Operation Mode: GFSK m.
 Ref Level
 19.00 dBm
 RBW
 1 MHz

 Att
 35 dB
 SWT
 10 ms
 VBW
 1 MHz
 1Pk Vi M1[1] M1[1] 2[30 dBm-MAN block which All Antonia WWW A Marchan 40 dB 50 dB 50 d£ 70 dBm 70 dB PE 2.441 1.0 ms/ 100 CE 2.44 100


7.4.5. Packet Type: DH3, 3DH3 (Adaptive Frequency Hopping)

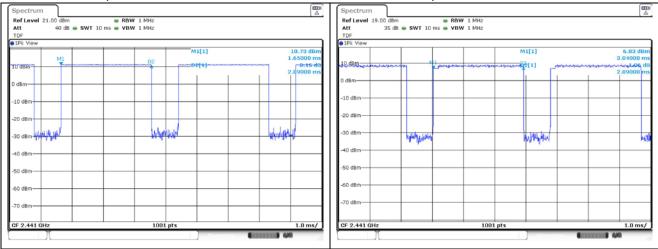
Operation Mode	Frequency (Mb)	Dwell Time (ns)	Time of occupancy on the Tx Channel in 8 sec (IIIS)	Limit for time of occupancy on the Tx Channel in 8 sec (ms)	
GFSK	2 441	1.64	131.20	400	
8DPSK	2 441	1.64	131.20	400	

Remark;

Time of occupancy on the TX channel in 8 sec In case of GFSK and 8DPSK: $1.64 \times \{(800 \div 4) / 20\} \times 8 = 131.20$ ms

- Test plots

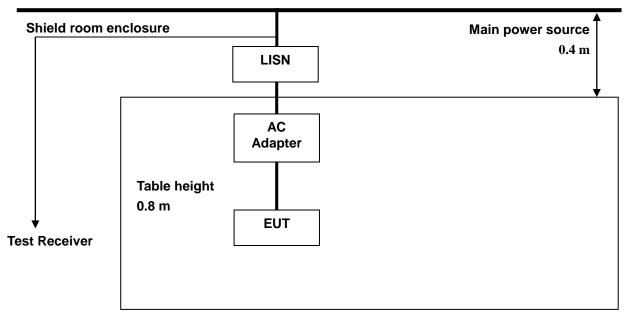
7.4.6. Packet Type: DH5, 3DH5 (Adaptive Frequency Hopping)


Operation Mode	Frequency (Mb)	Dwell Time (᠋ɪs)	Time of occupancy on the Tx Channel in 8 sec (ms)	Limit for time of occupancy on the Tx Channel in 8 sec (ns)	
GFSK	2 441	2.89	154.13	400	
8DPSK	2 441	2.89	154.13	400	

Remark;

Time of occupancy on the TX channel in 8 sec In case of GFSK and 8DPSK: $2.89 \times \{(800 \div 6) / 20\} \times 8 = 154.13$ ms

- Test plots


Operation Mode: GFSK

8. AC Power Line Conducted Emission

8.1. Test Setup

8.2. Limit

8.2.1. FCC

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohms line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)			
Frequency of emission (胍)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

Report Number: F690501-RF-RTL002373

8.2.2. IC

RSS-Gen Issue 5, 8.8, Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Eronuonov (IIII-)	Conducted limit (dBµN)			
Frequency (脞)	Quasi-peak	Average		
0.15-0.5	66 to 56 ¹	56 to 46 ¹		
0.5-5	56	46		
5-30	60	50		

Table 4 - AC power-line conducted emissions limits

Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kl and 30 Mb, the AC power-line conducted emissions must be measured using the following configurations:

- (a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.
- (b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

8.3. Test Procedures

AC conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

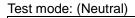
58

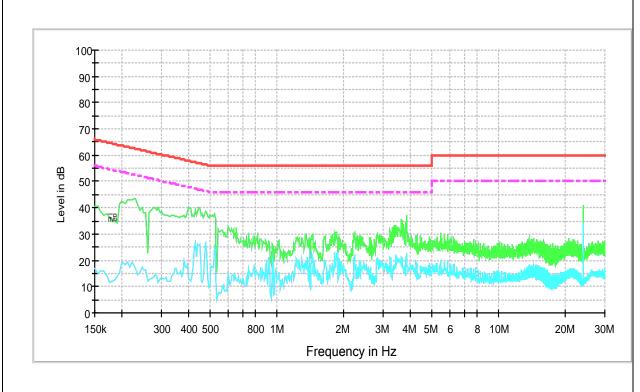
8.4. Test Results

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

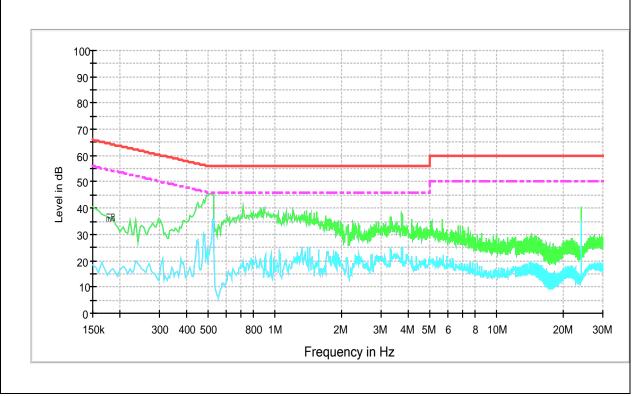
Ambient temperature	: (23 ± 1) ℃
Relative humidity	: 47 % R.H.
Frequency range	: 0.15 MHz - 30 MHz
Measured Bandwidth	: 9 kHz

FREQ.	LEVEL	. (dBµV)		LEVEL (dB,W)		MARGIN (dB)	
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.16	37.30	19.10	Ν	65.46	55.46	28.16	36.36
0.23	34.10	14.60	N	62.45	52.45	28.35	37.85
0.44	32.30	26.60	N	57.06	47.06	24.76	20.46
1.84	23.80	20.00	N	56.00	46.00	32.20	26.00
3.83	27.20	22.30	N	56.00	46.00	28.80	23.70
23.94	30.80	14.60	N	60.00	50.00	29.20	35.40
0.19	31.80	14.60	Н	64.04	54.04	32.24	39.44
0.52	42.90	27.60	Н	56.00	46.00	13.10	18.40
0.72	30.80	17.40	Н	56.00	46.00	25.20	28.60
3.72	28.60	18.90	Н	56.00	46.00	27.40	27.10
5.04	26.10	19.50	н	60.00	50.00	33.90	30.50
24.01	35.30	16.40	Н	60.00	50.00	24.70	33.60


Remark;


- 1. Line (H): Hot, Line (N): Neutral.
- 2. All data rates and modes of operation were investigated and the worst-case emissions were reported using EDR / 3DH5 / Middle channel.
- 3. The limit for Class B device(s) from 150 kHz to 30 MHz are specified in Section of the Title 47 CFR.
- 4. Traces shown in plot were made by using a peak detector and average detector.
- 5. Deviations to the Specifications: None.




Report Number: F690501-RF-RTL002373

- Test plots

9. Antenna Requirement

9.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section \$15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section and according to FCC 47 CFR Section \$15.247(b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

9.2. Antenna Connected Construction

Antenna used in this product is PCB & Cable Assembly Antenna with gain of 1.65 ${\,\mathrm{dB}\,i}$

- End of the Test Report -