

Date:

Report No.: EED32M00160901 Page 1 of 99

TEST REPORT

Product : Smart Helmet

Trade mark : N/A

Model/Type reference : N901

Serial Number : N/A

Report Number : EED32M00160901

FCC ID : 2AVZ7N901

Date of Issue: : Jun. 23, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Kuang-Chi Space Technology Co., Ltd 301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Mark Chen

Mark Chen

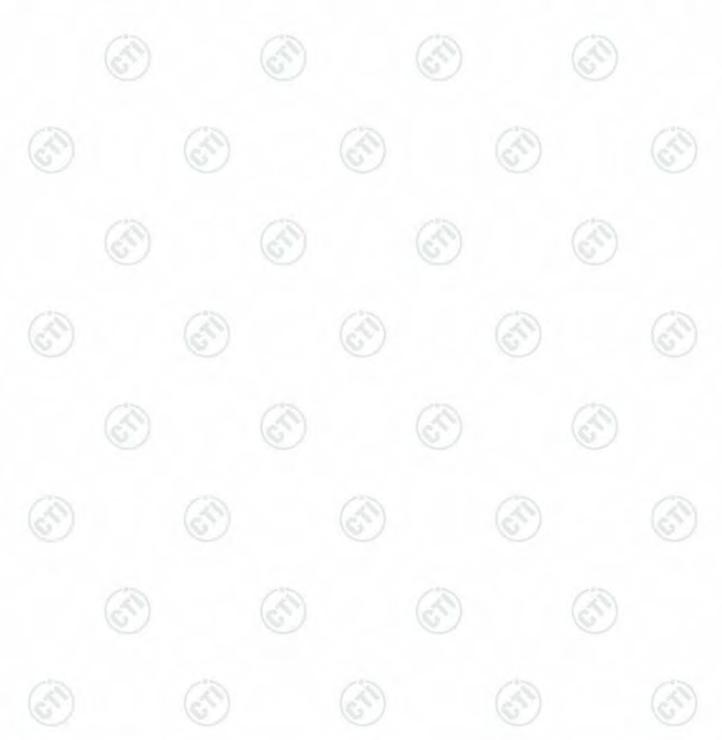
Sunlight Sun

Sam Clusey

Ware Xin

Sam Chuang

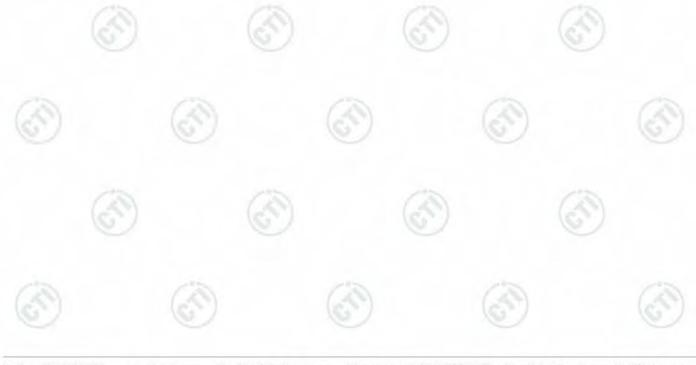
Report Seal


Jun. 23, 2020 Check No.:3096347029

Page 2 of 99

2 Version

Version No.	Date	Description	
00	Jun. 23, 2020	Original	
(
//		0	100


Page 3 of 99

Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

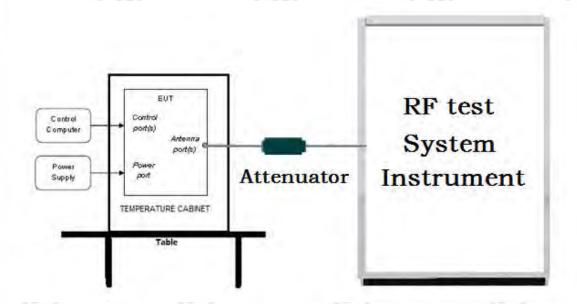
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested samples and the sample information are provided by the client.

Page 4 of 99

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 Test setup 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 Test Environment 5.3 Test Condition 6 GENERAL INFORMATION 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 Test Location 6.6 Deviation from Standards	
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	9 9
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
EUT DUTY CYCLE	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	85



Report No.: EED32M00160901 Page 5 of 99

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

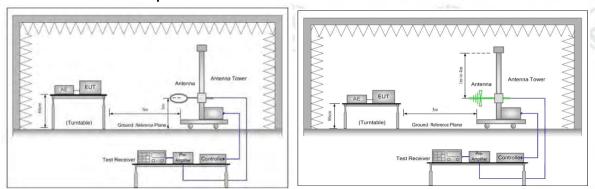
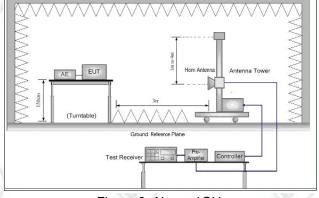
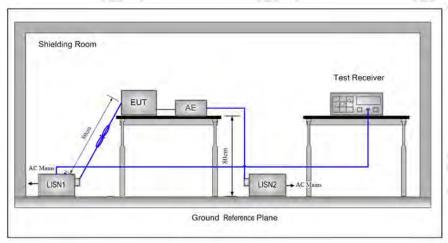


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

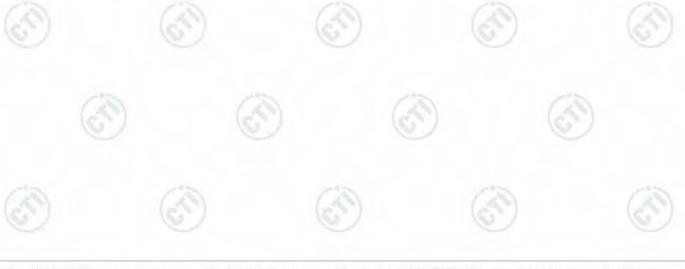



Figure 3. Above 1GHz

Report No. : EED32M00160901 Page 6 of 99

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup



5.2 Test Environment

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	53 % RH	(6,0)	(6,0)		
Atmospheric Pressure:	1010mbar				

5.3 Test Condition

Test Mode	Ty/Dy		100 /	
rest Mode	Tx/Rx	Low(L) Middle(M)		High(H)
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 0	Channel 39	Channel 78
8DPSK(DH1,DH3,DH5)	2402WII IZ ~2400 WII IZ	2402MHz	2441MHz	2480MHz

Report No. : EED32M00160901 Page 7 of 99

6 General Information

6.1 Client Information

Applicant:	Shenzhen Kuang-Chi Space Technology Co., Ltd	
Address of Applicant:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China	
Manufacturer:	Shenzhen Kuang-Chi Space Technology Co., Ltd.	
Address of Manufacturer:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China	
Factory:	Shenzhen Kuang-Chi Space Technology Co., Ltd	
Address of Factory:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China	

6.2 General Description of EUT

Product Name:	Smart Helmet	415	-115
Model No.(EUT):	N901	(45)	(45)
Tark mark:	N/A		6
EUT Supports Radios application	4.0 BT Dual mode,	2402MHz to 2480MHz	
Power Supply:	LI-ION BATTERY	RATED CAPACITY 5000mAh (19Wh) TYPICAL CAPACITY5100mAh (19.38Wh) NOMINAL VOLTAGE:3.8V—— LIMITED CHARGE VOLTAGE:4.35—— MODEL:GQ-V496594P	
Sample Received Date:	Jun. 08, 2020	(4)	(40)
Sample tested Date:	Jun. 08, 2020 to Ju	ın. 17, 2020	(0)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Test Power Grade:	Default
Test Software of EUT:	Engineering Order *#*#9646633#*#*(manufacturer declare)
Antenna Type:	monopole antenna
Antenna Gain:	3 dBi
Test Voltage:	BATTERY 3.8V

Page 8 of 99

- 14		- 14		10		16.4	-
Chan nel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	1	100

Report No.: EED32M00160901 Page 9 of 99

6.4 Description of Support Units

The EUT has been tested with associated equipment below

	ociated nent name	Manufactur e	model	S/N serial number	Supplied by	Certificatio n
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
(20				1
, , , ,	(€	(*)	(6)		(3)	(6)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

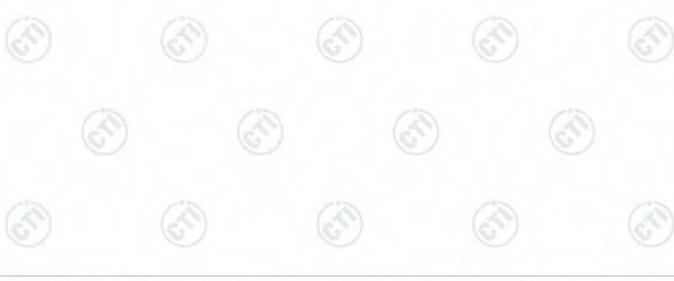
None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2	Kr power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

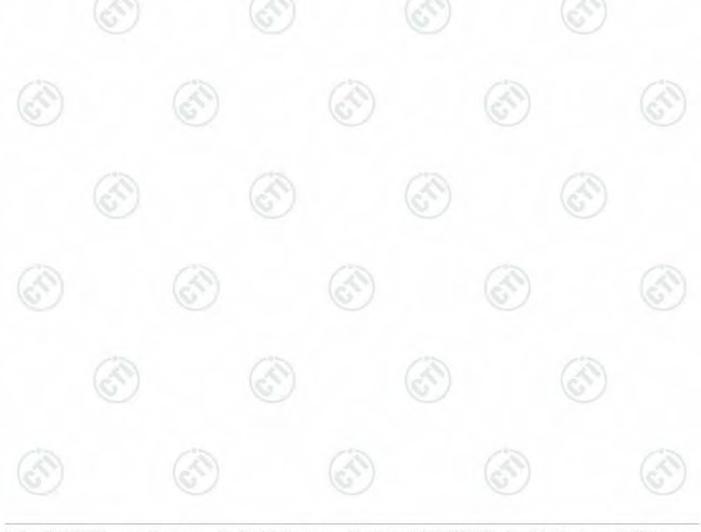
Report No. : EED32M00160901 Page 10 of 99

7 Equipment List


		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			~ <u>-</u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		23	
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		<u> </u>	6
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	0		

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019 05-29-2020	06-13-2020 05-28-2021
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020

Page 11 of 99


Caulanant	Manufacture	Model No	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	05-21-2020 05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	(5)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(3 <u>0</u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(0)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		



Page 12 of 99

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	738		C35
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	(4-1)	
Cable line	Fulai(3M)	SF106	5217/6A	VC+2 /	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001			

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	N/A	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Page 14 of 99

EUT DUTY CYCLE

		Duty Cycle			
Configuration	TX ON(ms)		TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	2.869		3.746	76.59%	
EDR-3Mbps	2.880	750	3.751	76.78%	1
BDR-1	Mbps	(~55)	EDR-	-3Mbps	(3)
Except spaces forging Sensitive Sens	2	Center Fre	Intel Autority Clear 1	Mayg Type: RMS	Auto Tun Center Fre 2.40200000 G- Start Fre 2.40200000 G-
Center 2.402000000 GHz Res BW 1.0 MHz #VBW 1.0 MHz	Span 0 Hz Sweep 30.40 ms (8001 pts)	1.000000 MHz Res BW 1.0	St. X 4	Span 0 Hz Sweep 30.40 ms (8001 pts)	CF Ste t 000000 Mi- Auto Me
1 A2 1 1 (6) 2,898 ms (6) 40.6 dB 2		Freq Offset 2 N 1	1 1.706 ma -18.72 dBm		Freq Offse
ed .	ining	and .		ethfra.	
-18%			all h	or Pro-	

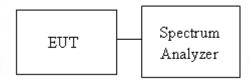
Report No.: EED32M00160901 Page 15 of 99

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

20 dB Bandwidth : For reporting purposes only.

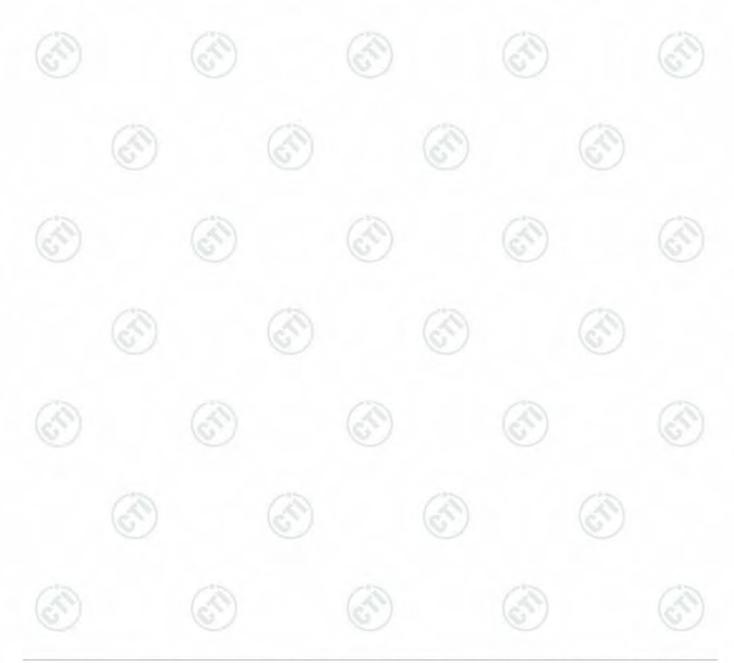

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup



Page 16 of 99

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9707	0.89600	PASS
GFSK	MCH	1.032	0.89718	PASS
GFSK	HCH	1.024	0.89771	PASS
π /4DQPSK	LCH	1.312	1.1750	PASS
π /4DQPSK	MCH	1.289	1.1752	PASS
π /4DQPSK	HCH	1.288	1.1690	PASS
8DPSK	LCH	1.289	1.1806	PASS
8DPSK	MCH	1.299	1.1906	PASS
8DPSK	HCH	1.292	1.2088	PASS

Page 17 of 99

Test Graph

Page 18 of 99

Page 19 of 99

Page 20 of 99

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.

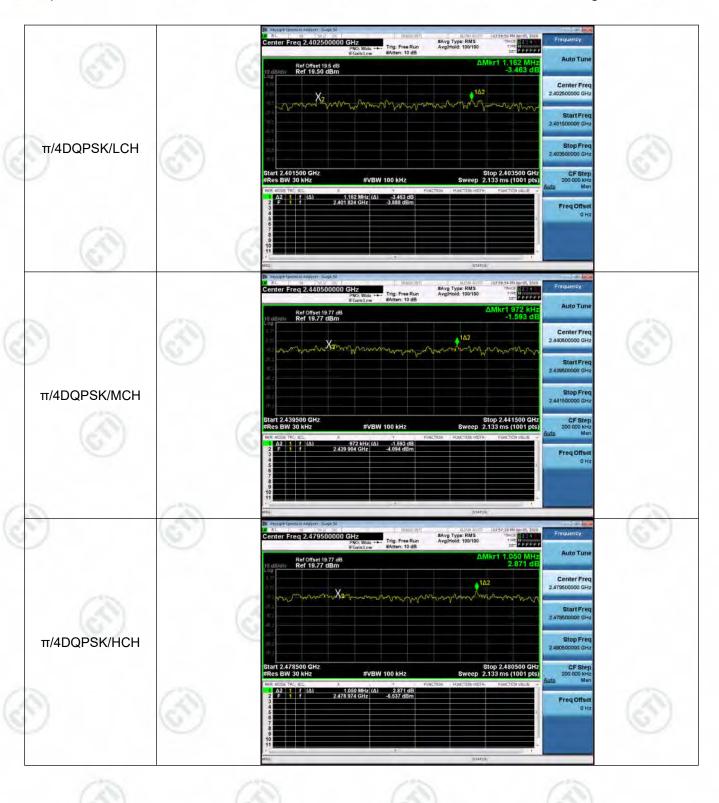
 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

EUT Spectrum Analyzer

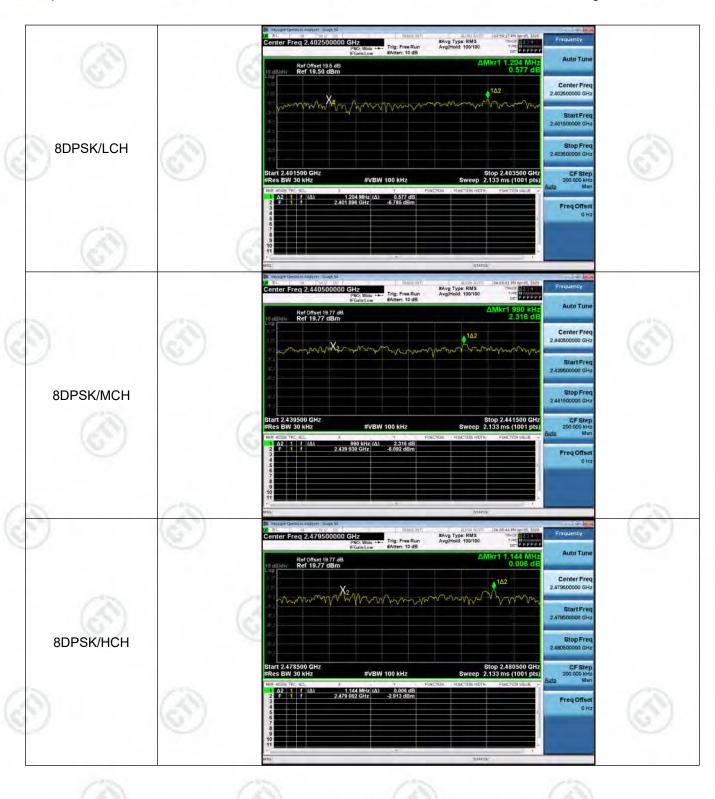
Page 21 of 99

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.990	PASS
GFSK	MCH	1.100	PASS
GFSK	HCH	0.986	PASS
π/4DQPSK	LCH	1.162	PASS
π/4DQPSK	MCH	0.972	PASS
π/4DQPSK	HCH	1.050	PASS
8DPSK	LCH	1.204	PASS
8DPSK	MCH	0.990	PASS
8DPSK	HCH	1.144	PASS


Page 22 of 99

Test Graph

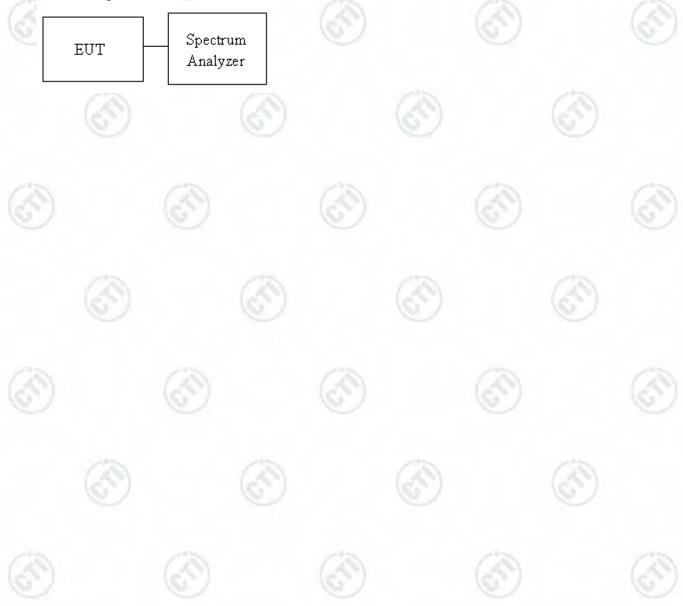

Page 23 of 99

Page 24 of 99

Page 25 of 99

Appendix C): Dwell Time

Test Limit


According to §15.247(a)(1)(iii),

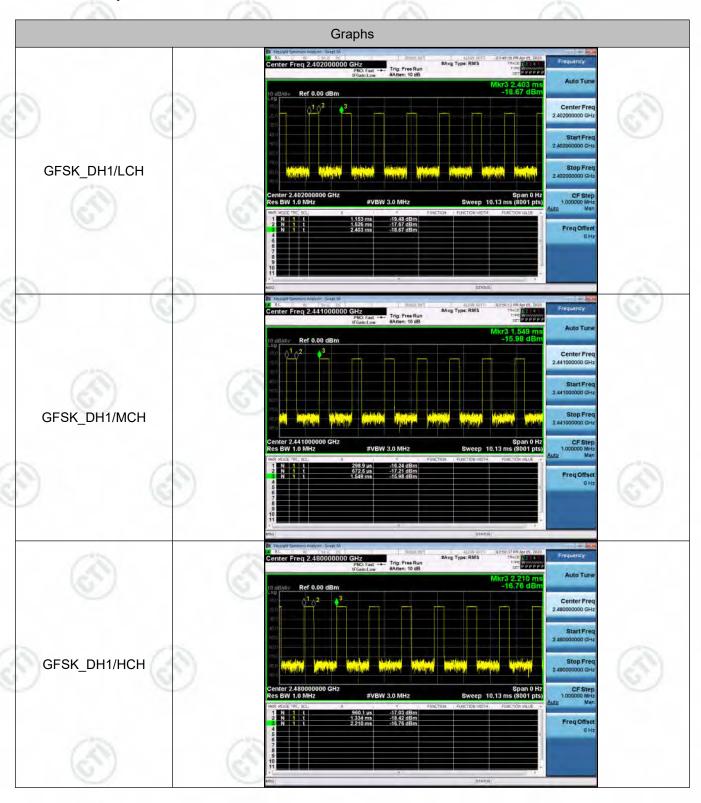
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

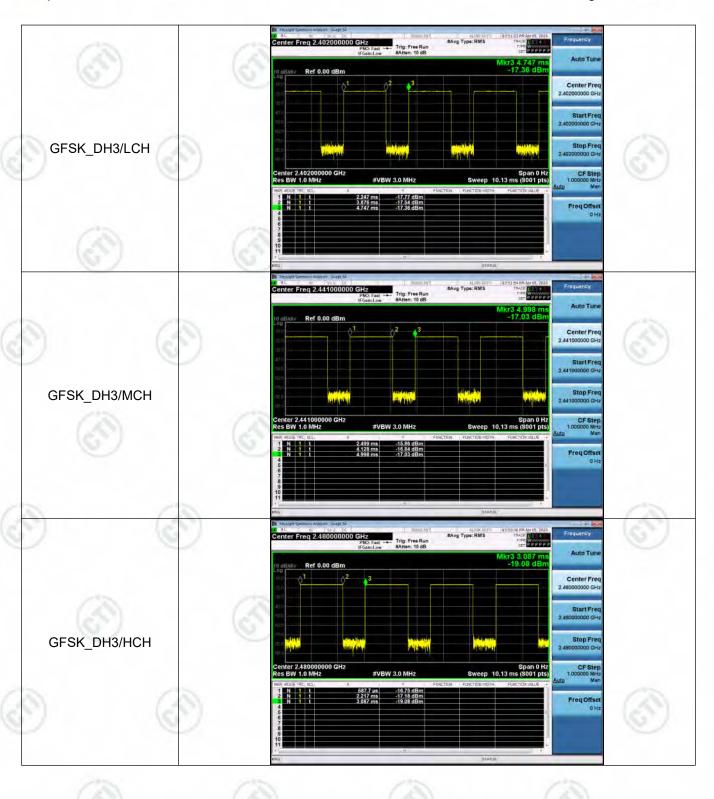
Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

Test Setup

Result Table


Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.37366	320	0.12	0.30	PASS
GFSK	DH1	MCH	0.373667	320	0.12	0.30	PASS
GFSK	DH1	HCH	0.373667	320	0.12	0.30	PASS
GFSK	DH3	LCH	1.62893	160	0.261	0.65	PASS
GFSK	DH3	MCH	1.62894	160	0.261	0.65	PASS
GFSK	DH3	HCH	1.628937	160	0.261	0.65	PASS
GFSK	DH5	LCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	MCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	HCH	2.8612	106.7	0.305	0.76	PASS


Page 27 of 99

Test Graph

Page 28 of 99

Page 29 of 99

Page 30 of 99

Appendix D): Hopping Channel Number Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

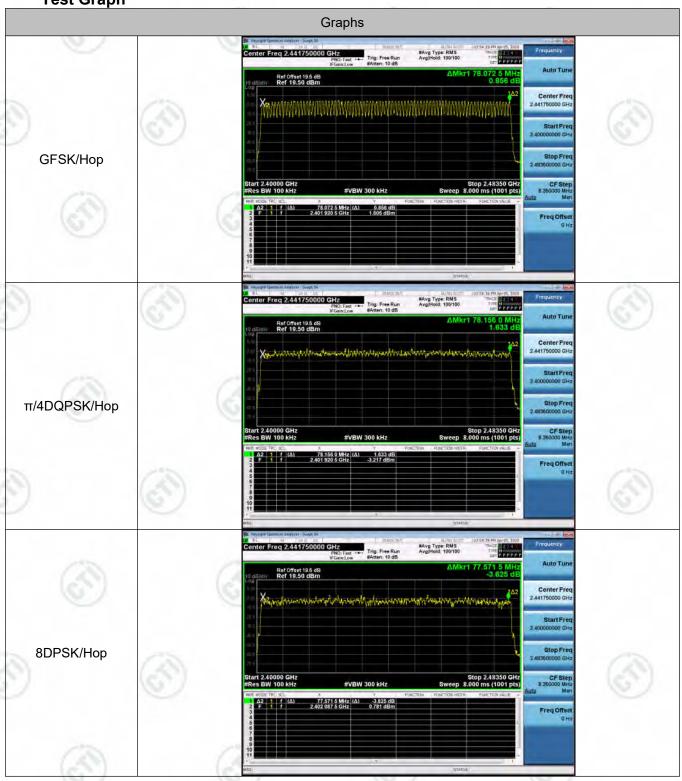
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

Test Setup



Page 31 of 99

Result Table


Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Page 32 of 99

Test Graph

Page 33 of 99

Appendix E): Conducted Peak Output Power Test Limit

According to §15.247(b)(1).

Peak output power:

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

(67)	
Limit	☐ Antenna with DG greater than 6 dBi ∶ 21dBm
	[Limit = $30 - (DG - 6)$]

Average output power: For reporting purposes only.

Test Procedure

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW ≥ RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

Test Setup

Page 34 of 99

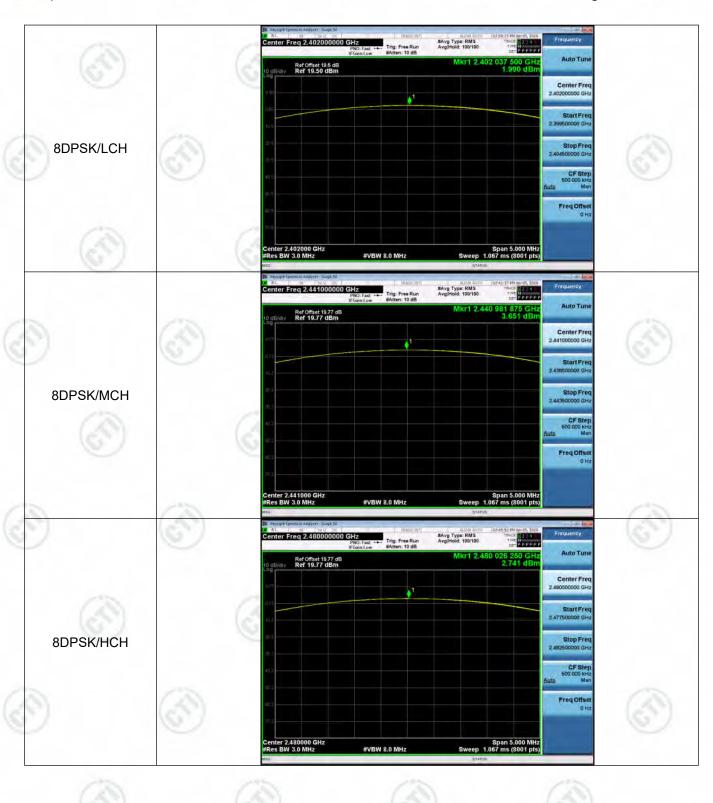
Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	2.059	PASS
GFSK	MCH	3.558	PASS
GFSK	HCH	2.775	PASS
π/4DQPSK	LCH	1.773	PASS
π/4DQPSK	MCH	3.708	PASS
π/4DQPSK	HCH	2.804	PASS
8DPSK	LCH	1.990	PASS
8DPSK	MCH	3.651	PASS
8DPSK	HCH	2.741	PASS

Page 35 of 99

Test Graph




Page 36 of 99

Page 37 of 99

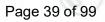
Page 38 of 99

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

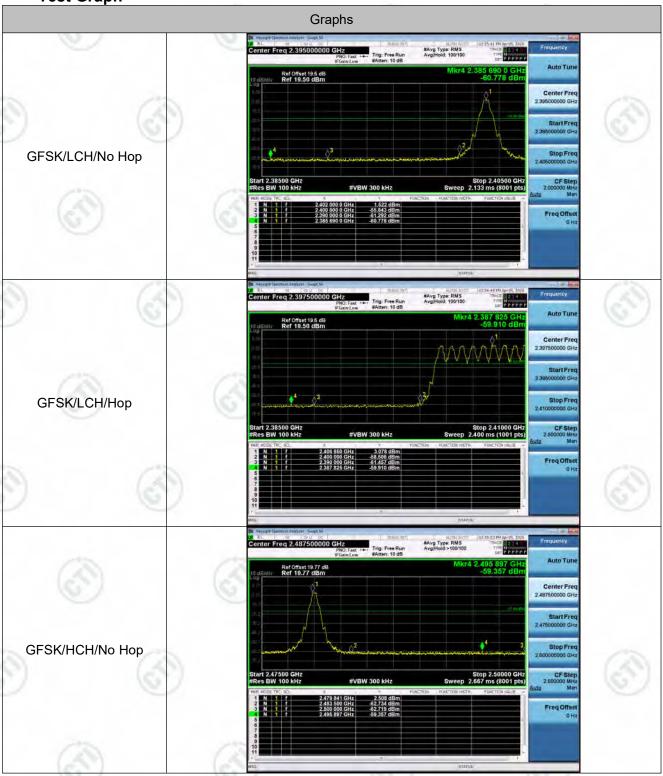
Limit	-20 dBc	(3)	
-------	---------	-----	--


Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Result Table


Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequen cy Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	1.522	Off	-60.778	-18.48	PASS
GFSK	LOIT	2402	3.078	On	-59.910	-16.92	PASS
GFSK	НСН	2480	2.508	Off	-59.357	-17.49	PASS
GFSK	11011	2400	3.186	On	-59.488	-16.81	PASS
π/4DQPSK	LCH	2402	0.231	Off	-60.886	-19.77	PASS
11/4DQF3N	LOTT	2402	1.140	On	-59.245	-18.86	PASS
π/4DQPSK	НСН	2480	1.773	Off	-59.046	-18.23	PASS
11/4DQF3N	11011	2400	2.148	On	-58.683	-17.85	PASS
8DPSK	LCH	2402	1.069	Off	-60.022	-18.93	PASS
ODPSK	LCH	2402	1.624	On	-59.541	-18.38	PASS
ODDCK	НСН	2490	1.663	Off	-58.270	-18.34	PASS
8DPSK	поп	2480	1.903	On	-59.589	-18.1	PASS

Page 40 of 99

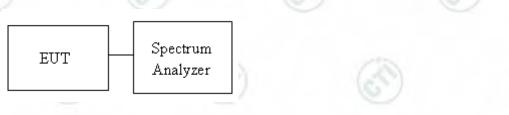
Page 41 of 99

Page 42 of 99

Page 43 of 99

Page 44 of 99

Appendix G): RF Conducted Spurious Emissions


Test Limit According to §15.247(d),

Limit	-20 dBc	
	1,000,000,000	180.00

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

Test Setup

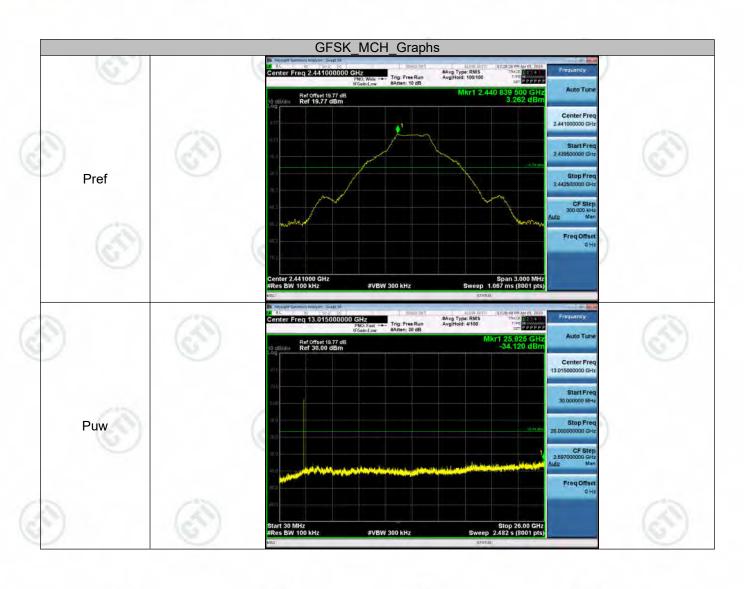


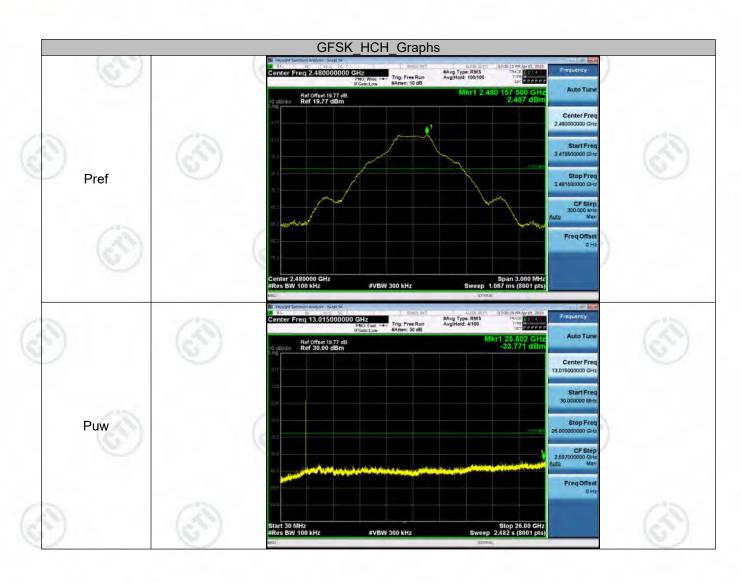
Page 45 of 99

Result Table

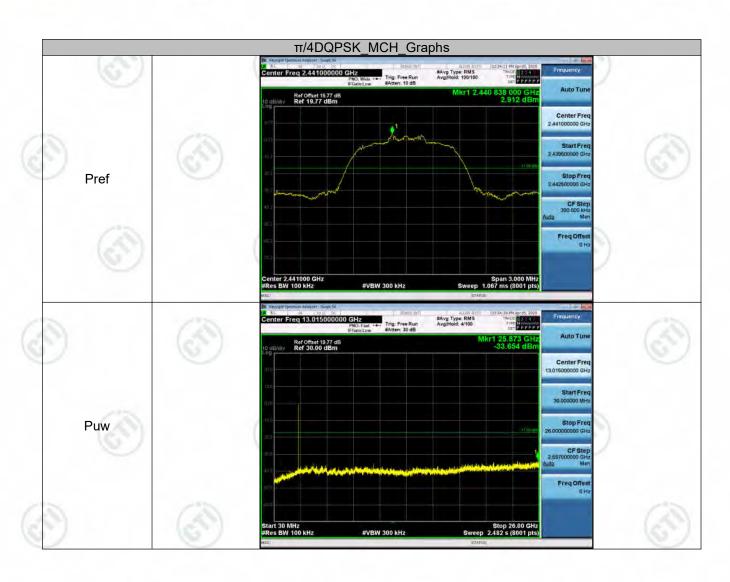
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	1.652	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	3.262	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	2.487	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	0.169	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	2.912	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	1.807	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	0.968	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	2.748	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	1.648	<limit< td=""><td>PASS</td></limit<>	PASS

Page 46 of 99


Test Graph

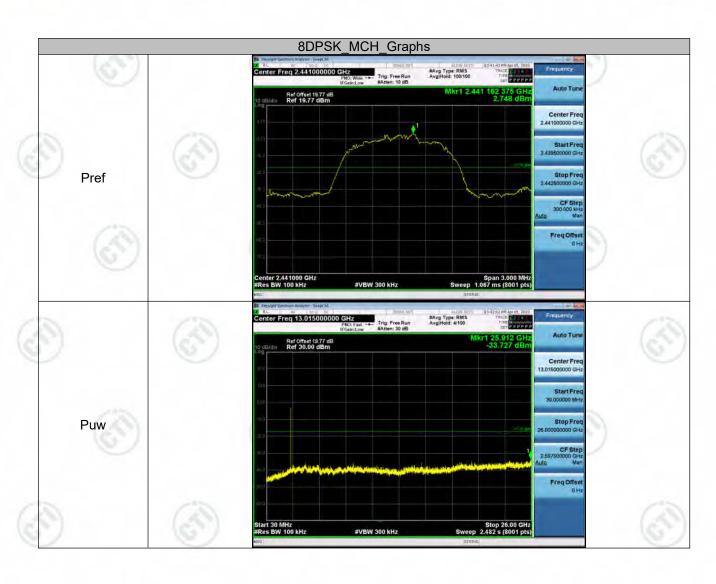

Page 47 of 99

Page 48 of 99

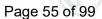

Page 49 of 99

Page 50 of 99

Page 51 of 99


Page 52 of 99

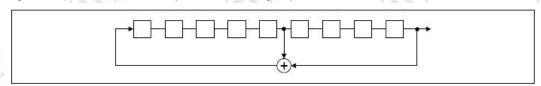
Page 53 of 99



Page 54 of 99

Appendix H)Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channe carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

20	62	46	77			7	64		8	73		16	75	1
				 	 	Т	Т				[
						1		}					П	
									}			į	П	

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

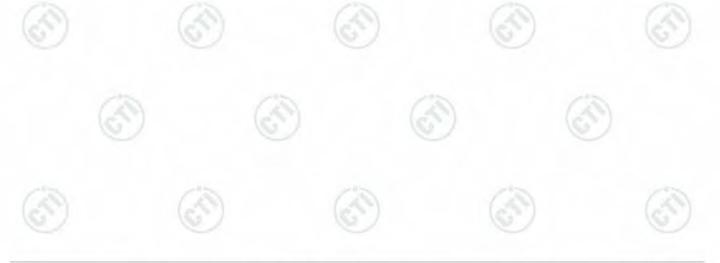
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 56 of 99

Appendix I)Antenna Requirement

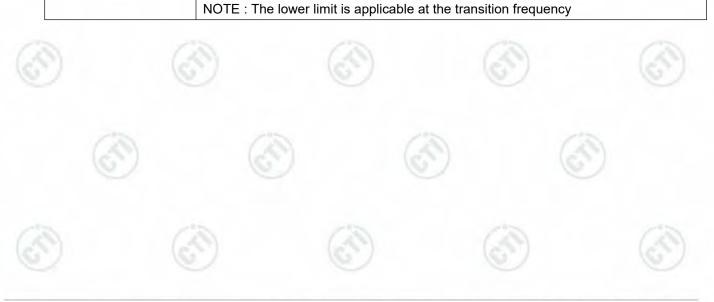
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

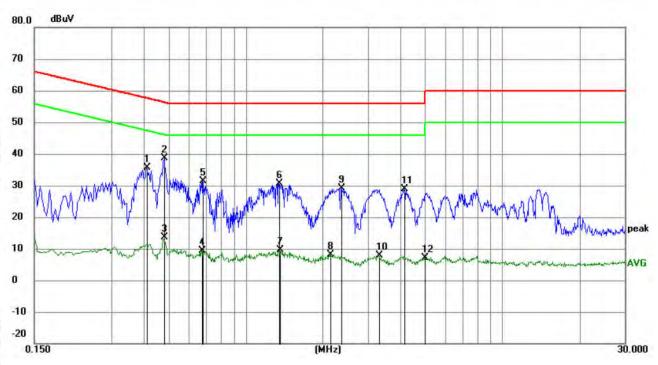
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Page 57 of 99

Test Procedure:	Test frequency range :150KHz-	-30MHz								
	1) The mains terminal disturba	nce voltage test was c	onducted in a shie	elded room.						
	 The EUT was connected to Stabilization Network) whice power cables of all other us which was bonded to the great for the unit being measured multiple power cables to a se exceeded. 	h provides a 50Ω/50μl nits of the EUT were o round reference plane d. A multiple socket ou	H + 5 Ω linear imp connected to a second the same way a utlet strip was use	pedance. The cond LISN 2 as the LISN 1 ad to connect						
	 The tabletop EUT was place reference plane. And for flo horizontal ground reference 	or-standing arrangeme								
	4) The test was performed with a vertical ground reference plane. The rear of the									
	EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN									
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2									
	plane. This distance was be	etween the closest poir	top of the grounts of the LISN 1	nd reference and the EUT						
	plane. This distance was be All other units of the EUT a	etween the closest poir nd associated equipment m emission, the relativ	top of the grounts of the LISN 1 arent was at least 0. Ye positions of educations of educations are to the control of the con	nd reference and the EUT .8 m from the quipment and						
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.	etween the closest poir nd associated equipment m emission, the relativ	top of the grounts of the LISN 1 a ent was at least 0. we positions of eccording to ANS	nd reference and the EUT .8 m from the quipment and						
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables	etween the closest poir nd associated equipment m emission, the relative must be changed a	top of the grounts of the LISN 1 a ent was at least 0. we positions of eccording to ANS	nd reference and the EUT .8 m from the quipment and						
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.	etween the closest poir nd associated equipment m emission, the relative must be changed a	top of the grounts of the LISN 1 and the LISN 2 and the LISN 3 and	nd reference and the EUT .8 m from the quipment and						
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement. Frequency range (MHz)	etween the closest poir nd associated equipment memission, the relative must be changed a Limit (de Quasi-peak	top of the grounts of the LISN 1 arent was at least 0. Ye positions of eccording to ANS BuV) Average	nd reference and the EUT .8 m from the quipment and						
Limit:	plane. This distance was be All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	etween the closest poir nd associated equipment of the relative memission, the relative must be changed a Limit (dE Quasi-peak 66 to 56*	top of the grounts of the LISN 1 agent was at least 0. The positions of expected to the coording to ANS BuV) Average 56 to 46*	nd reference and the EUT .8 m from the quipment and						

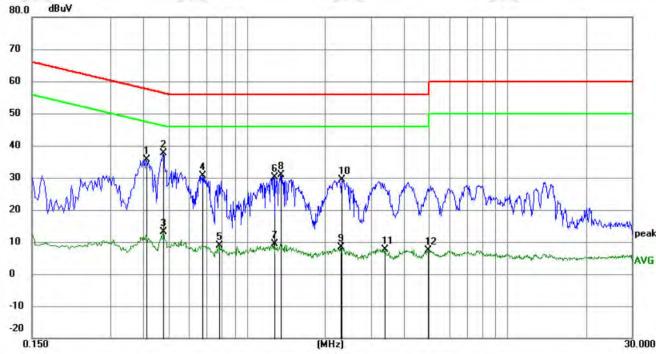

Page 58 of 99

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4110	25.69	10.00	35.69	57.63	-21.94	QP	
2	*	0.4830	28.72	10.00	38.72	56.29	-17.57	QP	
3		0.4830	3.52	10.00	13.52	46.29	-32.77	AVG	
4		0.6720	-0.50	9.77	9.27	46.00	-36.73	AVG	
5		0.6809	21.58	9.73	31.31	56.00	-24.69	QP	
6		1.3515	20.76	9.88	30.64	56.00	-25.36	QP	
7		1.3560	-0.31	9.88	9.57	46.00	-36.43	AVG	
8		2.1390	-1.64	9.83	8.19	46.00	-37.81	AVG	
9		2.3640	19.32	9.83	29.15	56.00	-26.85	QP	
10		3.2955	-1.87	9.83	7.96	46.00	-38.04	AVG	
11		4.1415	19.13	9.83	28.96	56.00	-27.04	QP	
12		4.9785	-2.75	9.83	7.08	46.00	-38.92	AVG	



Page 59 of 99

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4110	25.71	10.00	35.71	57.63	-21.92	QP	
2 *	0.4785	27.55	10.00	37.55	56.37	-18.82	QP	
3	0.4785	3.22	10.00	13.22	46.37	-33.15	AVG	
4	0.6765	20.79	9.75	30.54	56.00	-25.46	QP	
5	0.7799	-0.88	9.86	8.98	46.00	-37.02	AVG	
6	1.2750	20.34	9.89	30.23	56.00	-25.77	QP	
7	1.2750	-0.50	9.89	9.39	46.00	-36.61	AVG	
8	1.3515	21.11	9.88	30.99	56.00	-25.01	QP	
9	2.2920	-1.54	9.83	8.29	46.00	-37.71	AVG	
10	2.3190	19.46	9.83	29.29	56.00	-26.71	QP	
11	3.3855	-2.08	9.83	7.75	46.00	-38.25	AVG	
12	4.9740	-2.40	9.83	7.43	46.00	-38.57	AVG	

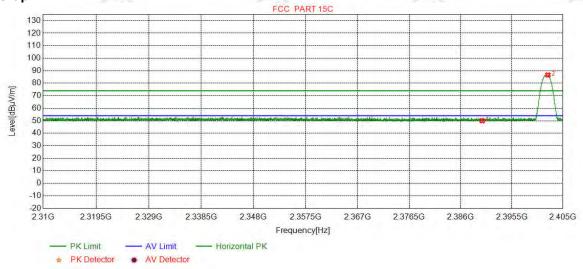
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

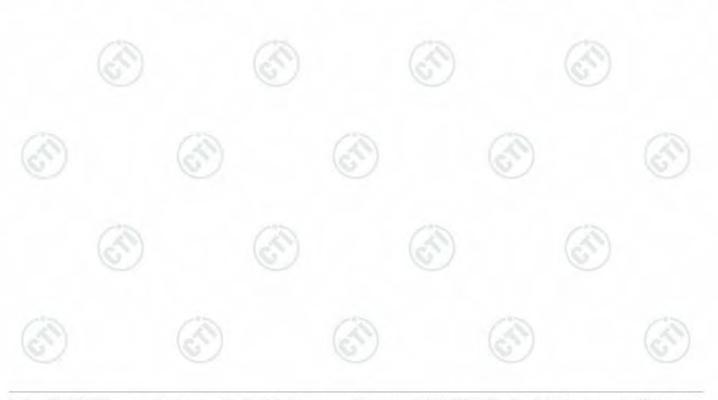
Page 60 of 99

Appendix K)Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak				
	Ab 4011-	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average	3			
Test Procedure:	Below 1GHz test proced	ure as below:							
	 a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the total control of the antenna height is determine the maximum polarizations of the article was turned from the antenna was tune table was turned from the test-receiver syst Bandwidth with Maxim for the test-receiver syst Bandwidth with Maxim for the place a marker at the frequency to show control of the place of the specific for lowest and highest 	on the top of a rocechoic camber. The choic camber. The choic camber is a continuous of the highest rate of the finance of the finance of the finance of the finance. Also material analyzer please to material analyzer please of the restrict of the finance.	he table ware adiation. the interfer neight anter meter to for seld strength make the name of the meter to the degrees the ak Detect content of the degree and the degree a	ence-receinna tower. ur meters n. Both horneasurement ged to its v 4 meters a o find the its Function a	wing antenna, above the groizontal and veent. worst case an and the rotata maximum reand Specified the transmit is in the restricts.	which which was to certical d ther ble ding.			
	g. Different between about to fully Anechoic Character (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced	ove is the test site of the distance is 1 to lowest channel ements are performed found the X axis.	e form table meter and , the Highe ormed in X, xis positioni	0.8 metre table is 1.5 st channel Y, Z axis p ng which i	to 1.5 metre). cositioning for t is worse cas				
Limit:	Frequency	Limit (dBuV	/m @3m)	Rei	mark				
	30MHz-88MHz	40.0		Quasi-pe	eak Value				
	88MHz-216MHz	43.	5	Quasi-pe	eak Value				
	216MHz-960MHz	46.0	0	Quasi-pe	eak Value				
	960MHz-1GHz 54.0 Quasi-peak Value								
	Above 4011=	54.0	0	Averag	je Value				
	Above 1GHz	74.0	0	Peak	Value				
		13	V-	/					



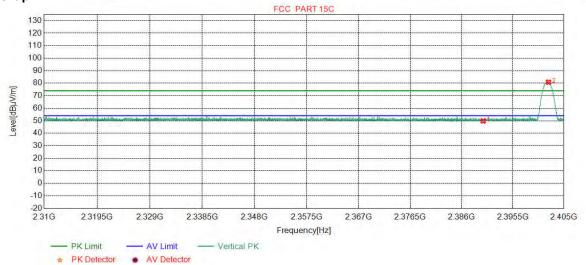
Page 61 of 99


Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

	150			130		100		10	10	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.52	50.02	74.00	23.98	Pass	Horizontal
2	2402.2131	32.26	13.31	-43.12	84.11	86.56	74.00	-12.56	Pass	Horizontal

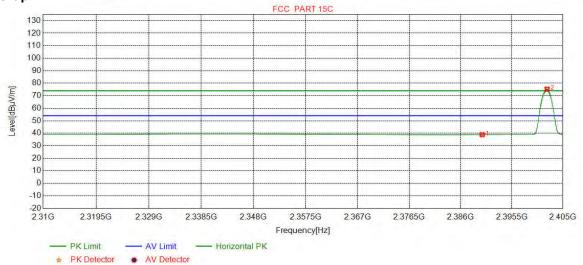


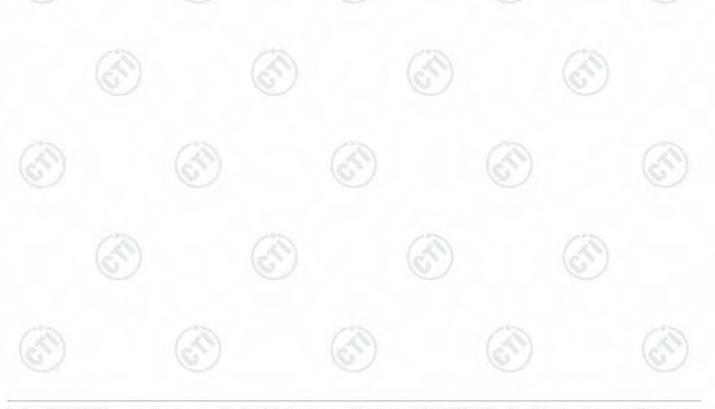
Page 62 of 99

Mode:	Mode: GFSK Transmitting		2402	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.28	49.78	74.00	24.22	Pass	Vertical
2	2402.1308	32.26	13.31	-43.12	78.38	80.83	74.00	-6.83	Pass	Vertical

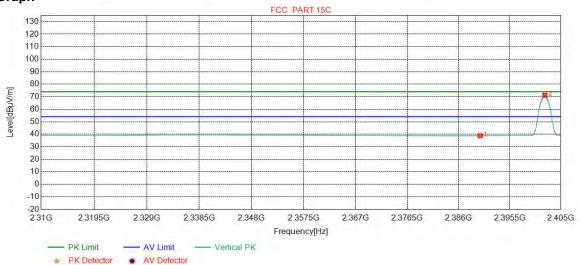


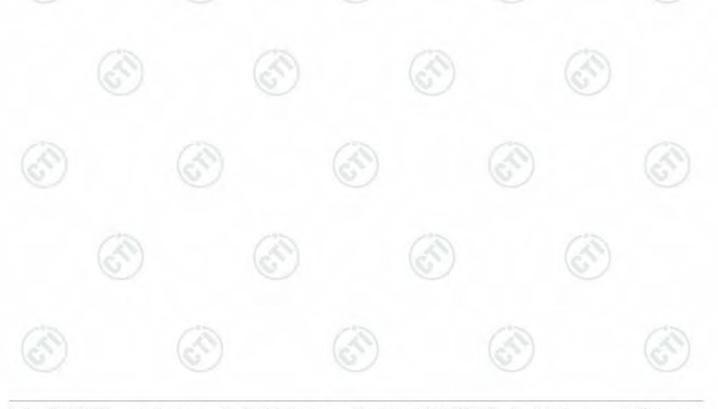

Page 63 of 99

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.36	38.86	54.00	15.14	Pass	Horizontal
2	2402.0548	32.26	13.31	-43.12	72.82	75.27	54.00	-21.27	Pass	Horizontal

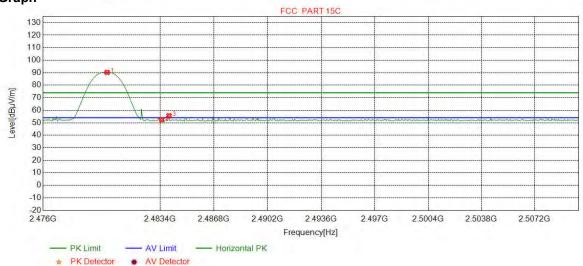


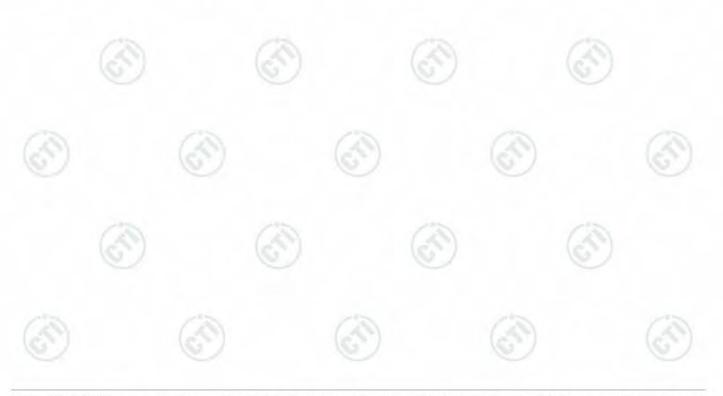

Page 64 of 99

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.33	38.83	54.00	15.17	Pass	Vertical
2	2402.0231	32.26	13.31	-43.12	68.71	71.16	54.00	-17.16	Pass	Vertical

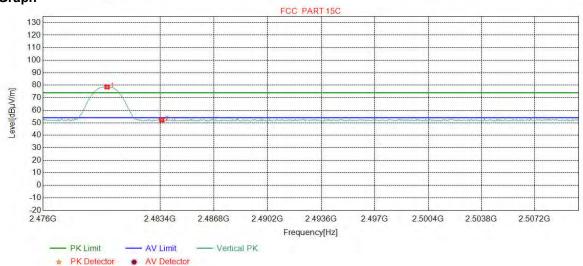


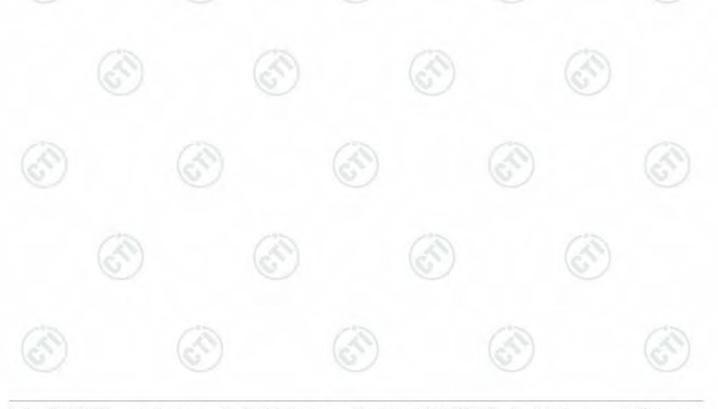

Page 65 of 99

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	87.58	90.24	74.00	-16.24	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.79	52.44	74.00	21.56	Pass	Horizontal
3	2483.9574	32.38	13.37	-43.10	52.96	55.61	74.00	18.39	Pass	Horizontal

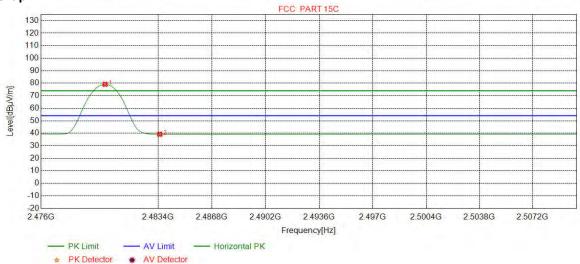


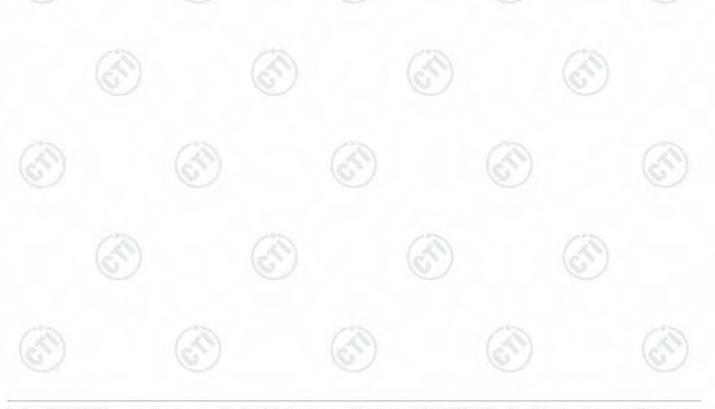

Page 66 of 99

Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	75.96	78.62	74.00	-4.62	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.62	52.27	74.00	21.73	Pass	Vertical

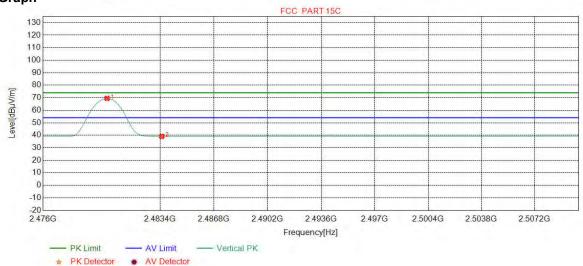


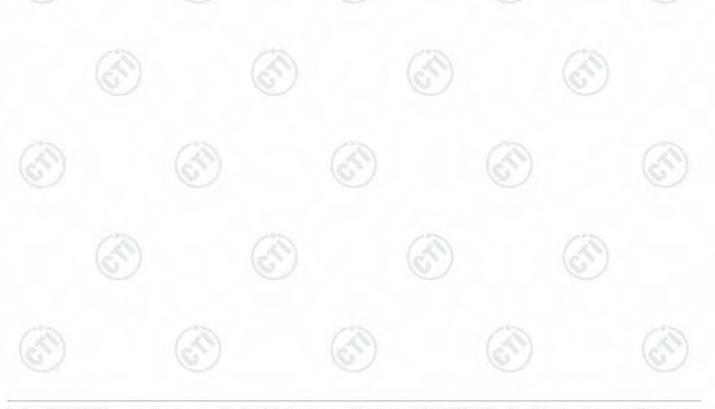

Page 67 of 99

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	76.49	79.15	54.00	-25.15	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.55	39.20	54.00	14.80	Pass	Horizontal

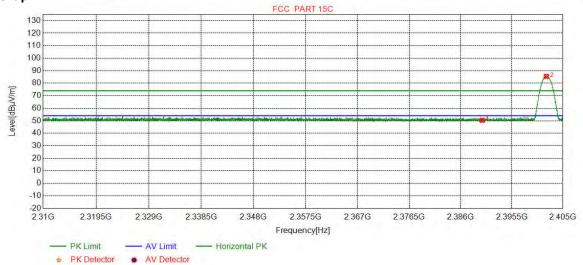


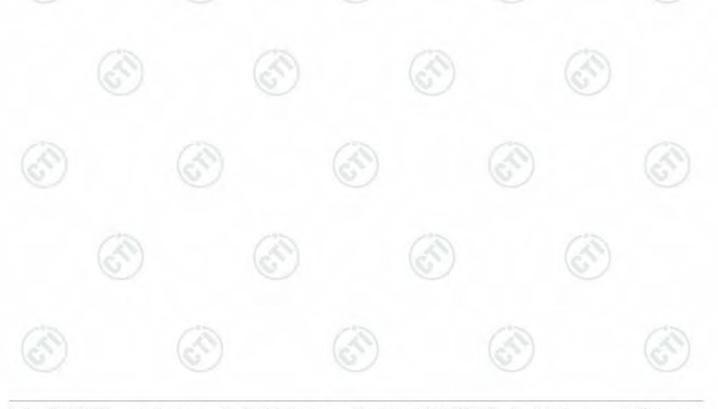

Page 68 of 99

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	66.81	69.47	54.00	-15.47	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.45	39.10	54.00	14.90	Pass	Vertical

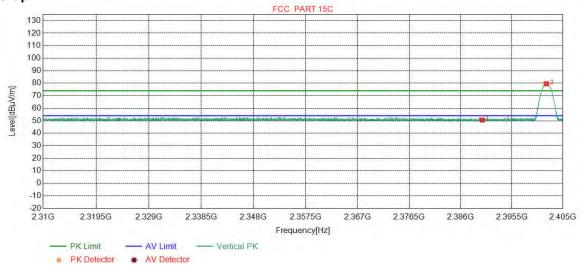



Page 69 of 99

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.84	50.34	74.00	23.66	Pass	Horizontal
2	2401.9155	32.26	13.31	-43.12	82.99	85.44	74.00	-11.44	Pass	Horizontal

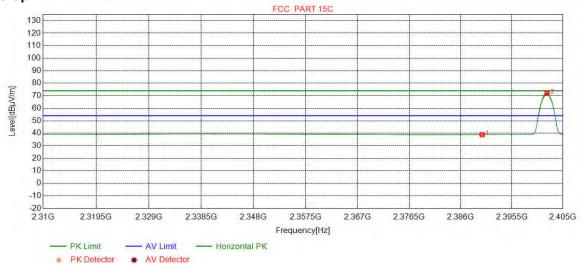


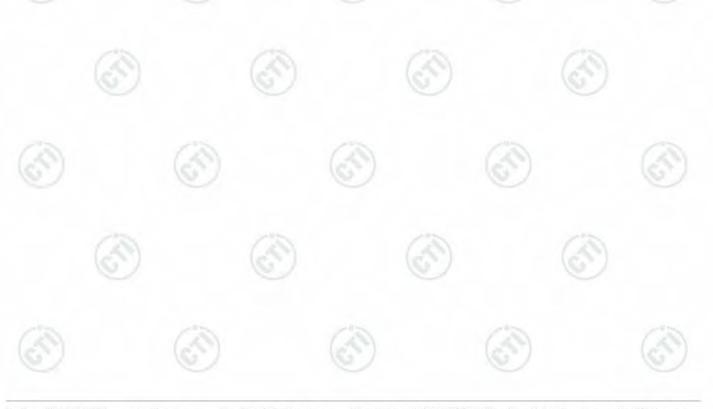
Page 70 of 99

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.04	50.54	74.00	23.46	Pass	Vertical
2	2401.9281	32.26	13.31	-43.12	77.08	79.53	74.00	-5.53	Pass	Vertical

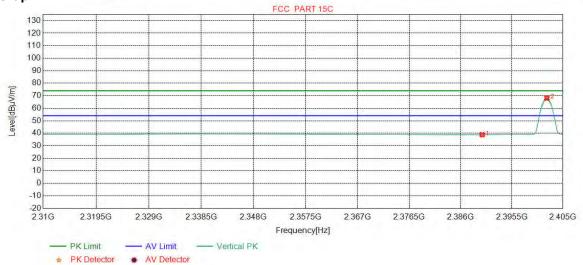


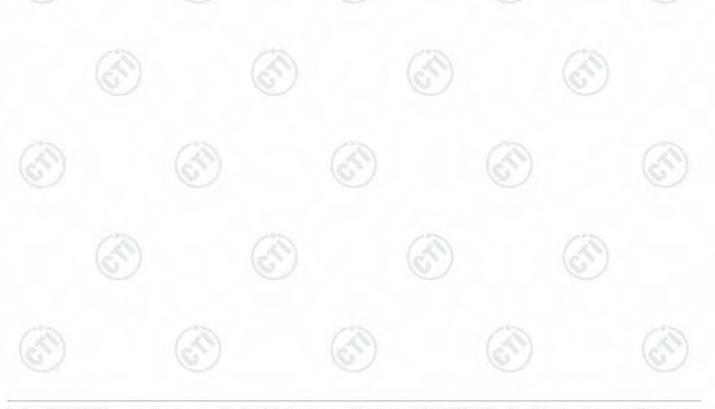

Page 71 of 99

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.42	38.92	54.00	15.08	Pass	Horizontal
2	2402.0358	32.26	13.31	-43.12	69.75	72.20	54.00	-18.20	Pass	Horizontal

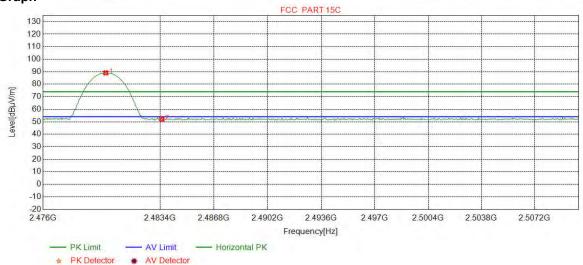


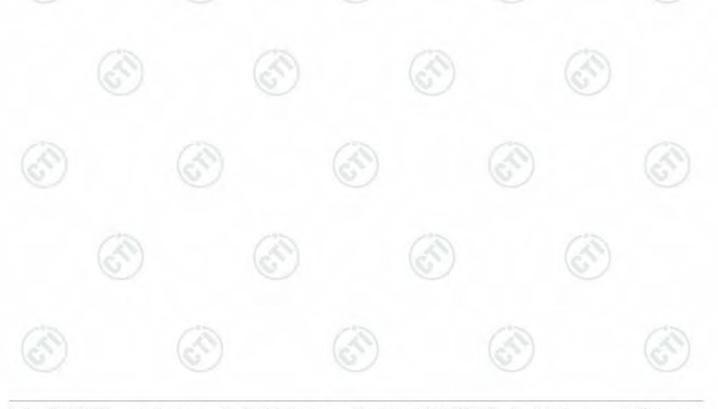

Page 72 of 99

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.34	38.84	54.00	15.16	Pass	Vertical
2	2402.0168	32.26	13.31	-43.12	65.62	68.07	54.00	-14.07	Pass	Vertical

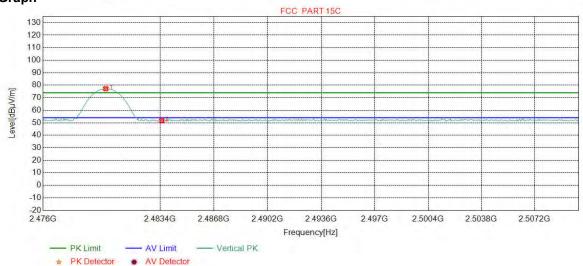


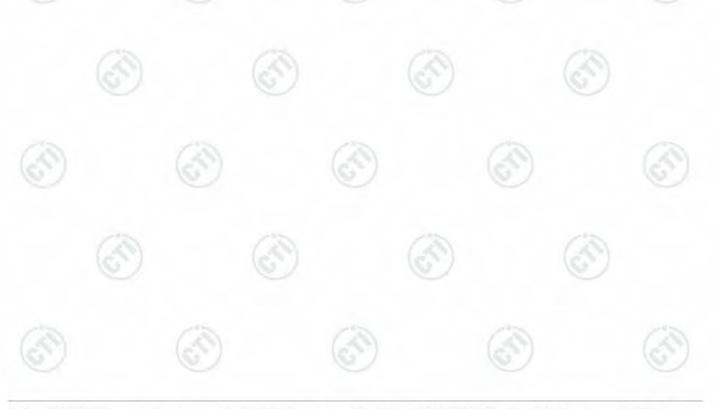

Page 73 of 99

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	86.42	89.08	74.00	-15.08	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.48	52.13	74.00	21.87	Pass	Horizontal

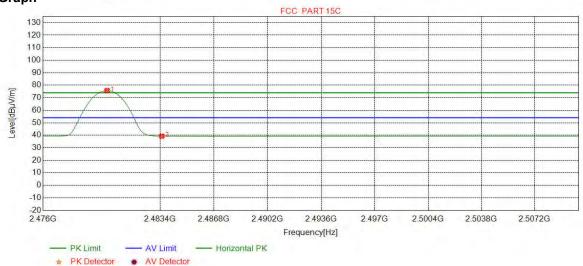


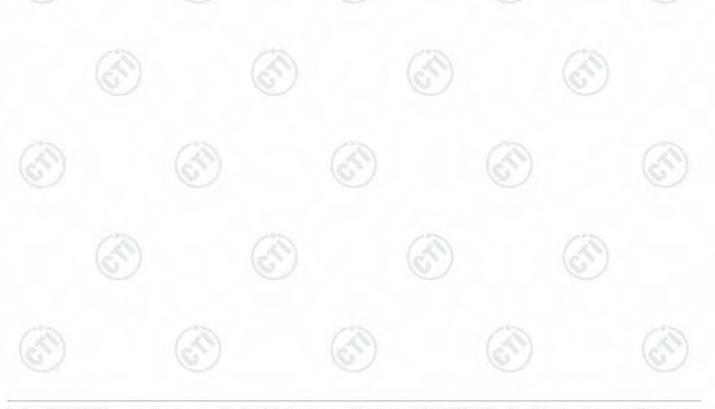

Page	74	of	99
ıayc	<i>1</i> —	OI.	33

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	74.58	77.24	74.00	-3.24	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Vertical

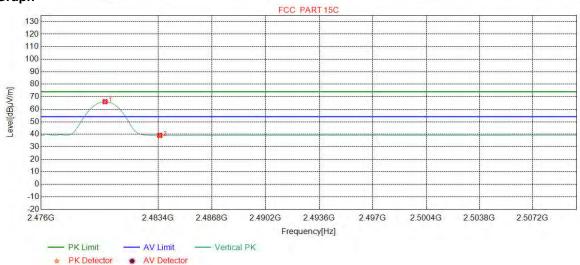



Page 75 of 99

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	73.10	75.76	54.00	-21.76	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.64	39.29	54.00	14.71	Pass	Horizontal



Page 76 of 99

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	63.43	66.09	54.00	-12.09	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.45	39.10	54.00	14.90	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix L)Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

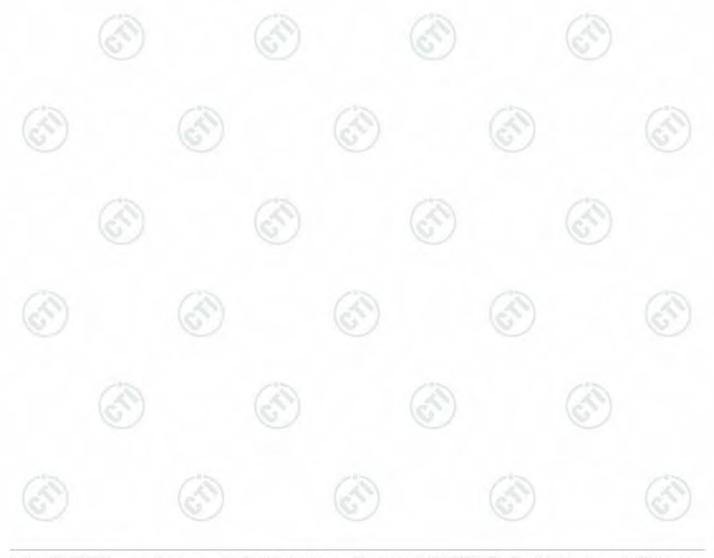
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/met er)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 78 of 99

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

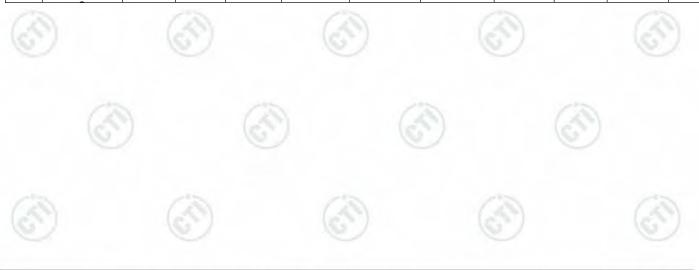
Mode	:		8DPSK	Transmit	ting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	42.1262	12.68	0.73	-31.47	49.91	31.85	40.00	8.15	Pass	Н	PK
2	120.5101	9.12	1.30	-32.06	61.28	39.64	43.50	3.86	Pass	Н	PK
3	239.6380	11.93	1.84	-31.90	46.18	28.05	46.00	17.95	Pass	Н	PK
4	508.9369	17.18	2.69	-31.94	40.63	28.56	46.00	17.44	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.98	30.41	46.00	15.59	Pass	Н	PK
6	904.5425	22.13	3.60	-31.44	32.47	26.76	46.00	19.24	Pass	Н	PK
7	42.7083	12.79	0.74	-31.53	48.55	30.55	40.00	9.45	Pass	V	PK
8	123.5174	8.67	1.31	-32.05	52.55	30.48	43.50	13.02	Pass	V	PK
9	284.4564	12.89	2.01	-31.91	44.69	27.68	46.00	18.32	Pass	V	PK
10	500.9821	17.02	2.67	-31.90	44.87	32.66	46.00	13.34	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	44.03	34.46	46.00	11.54	Pass	V	PK
12	796.4736	20.86	3.38	-31.99	38.96	31.21	46.00	14.79	Pass	V	PK

Page 79 of 99

Transmitter Emission above 1GHz

Mode	:		GFSK T	ransmitting	9			Channel:		2402	
NO	Freq. [MHz]	Ant Fact or [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1592.8593	29.0	3.06	-42.91	57.33	46.49	74.00	27.51	Pass	Н	PK
2	2124.9125	31.8	3.61	-43.17	58.61	50.92	74.00	23.08	Pass	Н	PK
3	4804.0000	34.5	4.55	-42.80	51.11	47.36	74.00	26.64	Pass	Н	PK
4	7206.0000	36.3	5.81	-42.16	48.73	48.69	74.00	25.31	Pass	Н	PK
5	9608.0000	37.6	6.63	-42.10	46.20	48.37	74.00	25.63	Pass	Н	PK
6	12010.0000	39.3	7.60	-41.90	46.43	51.44	74.00	22.56	Pass	Н	PK
7	1336.2336	28.2	2.80	-42.75	52.30	40.59	74.00	33.41	Pass	V	PK
8	2132.3132	31.8	3.63	-43.18	57.06	49.40	74.00	24.60	Pass	V	PK
9	4804.0000	34.5	4.55	-42.80	52.52	48.77	74.00	25.23	Pass	V	PK
10	7206.0000	36.3	5.81	-42.16	50.85	50.81	74.00	23.19	Pass	V	PK
11	9608.0000	37.6	6.63	-42.10	46.72	48.89	74.00	25.11	Pass	V	PK
12	12010.0000	39.3	7.60	-41.90	47.41	52.42	74.00	21.58	Pass	V	PK

Mode:			GFSK T	GFSK Transmitting					Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1596.0596	29.03	3.07	-42.91	54.61	43.80	74.00	30.20	Pass	Н	PK	
2	2126.5127	31.88	3.62	-43.18	60.65	52.97	74.00	21.03	Pass	Н	PK	
3	4882.0000	34.50	4.81	-42.80	50.50	47.01	74.00	26.99	Pass	Н	PK	
4	7323.0000	36.42	5.85	-42.13	49.83	49.97	74.00	24.03	Pass	Н	PK	
5	9764.0000	37.71	6.71	-42.10	46.94	49.26	74.00	24.74	Pass	Н	PK	
6	12205.000	39.42	7.67	-41.89	46.57	51.77	74.00	22.23	Pass	Н	PK	
7	1571.0571	28.87	3.05	-42.96	51.27	40.23	74.00	33.77	Pass	V	PK	
8	2131.1131	31.88	3.62	-43.17	58.66	50.99	74.00	23.01	Pass	V	PK	
9	4882.0000	34.50	4.81	-42.80	49.56	46.07	74.00	27.93	Pass	V	PK	
10	7323.0000	36.42	5.85	-42.13	51.06	51.20	74.00	22.80	Pass	V	PK	
11	9764.0000	37.71	6.71	-42.10	46.70	49.02	74.00	24.98	Pass	V	PK	
12	12205.000	39.42	7.67	-41.89	45.84	51.04	74.00	22.96	Pass	V	PK	



Page 80 of 99

Mode	Mode:			GFSK Transmitting						2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1062.4062	27.96	2.52	-43.03	57.63	45.08	74.00	28.92	Pass	Н	PK
2	2131.5132	31.88	3.62	-43.17	60.81	53.14	74.00	20.86	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.29	44.81	74.00	29.19	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	48.54	48.82	74.00	25.18	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.16	48.62	74.00	25.38	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	45.82	51.32	74.00	22.68	Pass	Н	PK
7	2127.3127	31.88	3.62	-43.18	56.95	49.27	74.00	24.73	Pass	V	PK
8	4000.0667	33.80	4.33	-43.00	51.69	46.82	74.00	27.18	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.58	44.10	74.00	29.90	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	48.93	49.21	74.00	24.79	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.79	49.25	74.00	24.75	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	47.14	52.64	74.00	21.36	Pass	V	PK

Mode	Mode:			Transmit	ting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1599.4599	29.06	3.07	-42.91	55.33	44.55	74.00	29.45	Pass	Н	PK
2	2126.9127	31.88	3.62	-43.18	59.00	51.32	74.00	22.68	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.65	44.90	74.00	29.10	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	48.43	48.39	74.00	25.61	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.64	48.81	74.00	25.19	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.55	51.56	74.00	22.44	Pass	Н	PK
7	2133.5134	31.89	3.63	-43.18	56.38	48.72	74.00	25.28	Pass	V	PK
8	4257.0838	34.16	4.49	-42.89	49.96	45.72	74.00	28.28	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	49.09	45.34	74.00	28.66	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	48.84	48.80	74.00	25.20	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.65	48.82	74.00	25.18	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.81	51.82	74.00	22.18	Pass	V	PK

Page 81 of 99

Mode	:		8DPSK	8DPSK Transmitting					Channel: 2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1599.8600	29.06	3.07	-42.90	55.14	44.37	74.00	29.63	Pass	Н	PK
2	2130.5131	31.88	3.62	-43.17	59.79	52.12	74.00	21.88	Pass	Н	PK
3	4882.0000	34.50	4.81	-42.80	49.48	45.99	74.00	28.01	Pass	Н	PK
4	7323.0000	36.42	5.85	-42.13	48.27	48.41	74.00	25.59	Pass	Н	PK
5	9764.0000	37.71	6.71	-42.10	47.13	49.45	74.00	24.55	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	46.11	51.31	74.00	22.69	Pass	Н	PK
7	1595.2595	29.03	3.07	-42.91	52.53	41.72	74.00	32.28	Pass	V	PK
8	2130.1130	31.88	3.62	-43.17	56.87	49.20	74.00	24.80	Pass	V	PK
9	4882.0000	34.50	4.81	-42.80	49.06	45.57	74.00	28.43	Pass	V	PK
10	7323.0000	36.42	5.85	-42.13	49.23	49.37	74.00	24.63	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	46.59	48.91	74.00	25.09	Pass	V	PK
12	12205.000	39.42	7.67	-41.89	45.94	51.14	74.00	22.86	Pass	V	PK

Mod	Mode:			Transmit	ting		Channel:		2480		
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1592.8593	29.01	3.06	-42.91	57.82	46.98	74.00	27.02	Pass	Н	PK
2	2127.3127	31.88	3.62	-43.18	59.21	51.53	74.00	22.47	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	47.70	44.22	74.00	29.78	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.83	48.11	74.00	25.89	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	47.56	50.02	74.00	23.98	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.99	52.49	74.00	21.51	Pass	Н	PK
7	1444.0444	28.34	2.94	-42.86	51.65	40.07	74.00	33.93	Pass	V	PK
8	2129.5130	31.88	3.62	-43.17	55.77	48.10	74.00	25.90	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.20	43.72	74.00	30.28	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	48.35	48.63	74.00	25.37	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.23	48.69	74.00	25.31	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.79	52.29	74.00	21.71	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.