

Smart Helmet Product

N/A Trade mark

N901 Model/Type reference

Serial Number N/A

Report Number EED32M00160902

FCC ID 2AVZ7N901 **Date of Issue** : Jun. 23, 2020

47 CFR Part 15 Subpart C **Test Standards**

Test result **PASS**

Prepared for:

Shenzhen Kuang-Chi Space Technology Co., Ltd 301-B077, Building 2, No.1, Mawu Road, **Baoan Community, Longgang District,** Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

mark chen. Tested By:

Compiled by:

Sunlight Sun

Reviewed by:

More Xm

Mark Chen

Sunlight Sun San Cluvery

Ware Xin

Sam Chuang

Date:

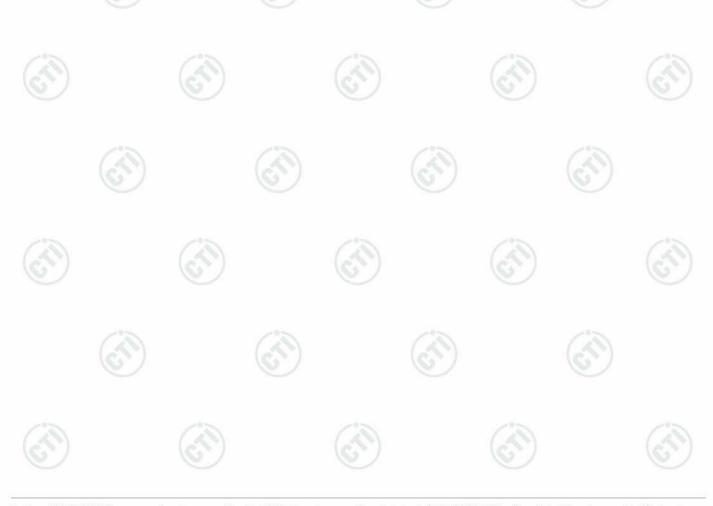
Jun. 23, 2020

Check No.:3096347029

2 Version

Version No.	Date	Description		
00	Jun. 23, 2020	Original		
(

Page 3 of 51


3 Test Summary

o i oot oaiiiiiai y			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions			PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

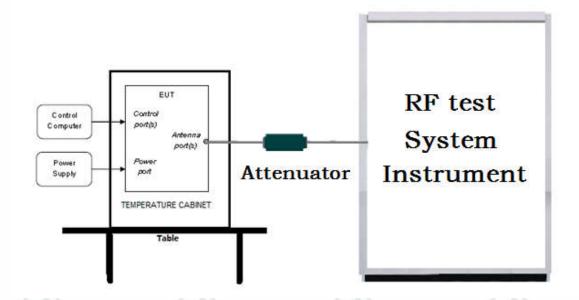
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Report No.: EED32M00160902 Page 4 of 51

4 Content

1 COVER PAGE	
2 VERSION	
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	
5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION	
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): 6dB Occupied Bandwidth	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	



Report No.: EED32M00160902 Page 5 of 51

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

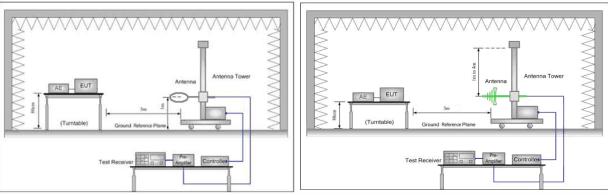


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

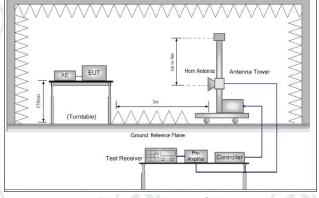
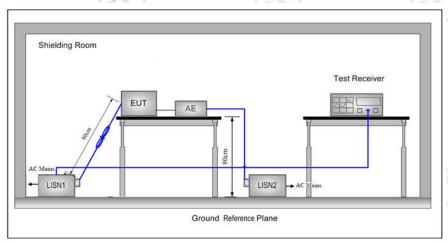
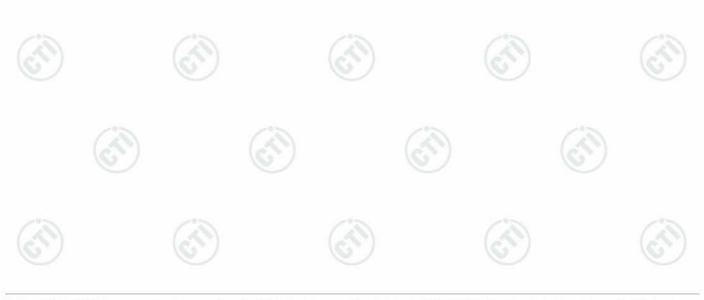



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	(0)		(0)
Temperature:	24.0 °C		
Humidity:	53 % RH	100	
Atmospheric Pressure:	1010 mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.4001411 0.400.1411	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of dat rate.				

Report No. : EED32M00160902 Page 7 of 51

6 General Information

6.1 Client Information

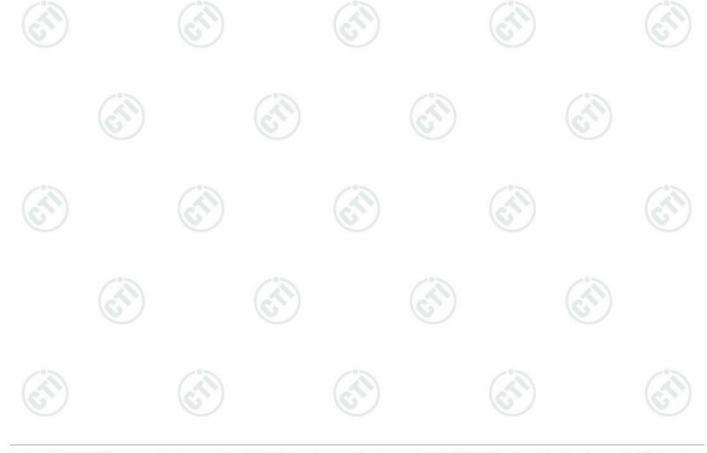
Applicant:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Applicant:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			
Manufacturer:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Manufacturer:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			
Factory:	Shenzhen Kuang-Chi Space Technology Co., Ltd			
Address of Factory:	301-B077, Building 2, No.1, Mawu Road, Baoan Community, Longgang District, Shenzhen, Guangdong, China			

6.2 General Description of EUT

Product Name:	Smart Helmet				
Model No.(EUT):	N901	·a (·a	100		
Trade mark:	N/A	(5,0)	(5,5)		
EUT Supports Radios application:	4.0 BT Dual mode, 2402MHz to 2480MHz				
Power Supply:	LI-ION BATTERY	RATED CAPACITY 5000mAh (19Wh) TYPICAL CAPACITY5100mAh (19.38Wh) NOMINAL VOLTAGE:3.8V—— LIMITED CHARGE VOLTAGE:4.35—— MODEL:GQ-V496594P			
Sample Received Date:	Jun. 08, 2020		~0~		
Sample tested Date:	Jun. 08, 2020 to Ju	un. 17, 2020	(17)		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0 (BLE)
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	Default
Test Software of EUT:	Engineering Order *#*#9646633#*#*(manufacturer declare)
Antenna Type and Gain:	monopole antenna; 3 dBi
Test Voltage:	BATTERY 3.8V



Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

Report No. : EED32M00160902 Page 9 of 51

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

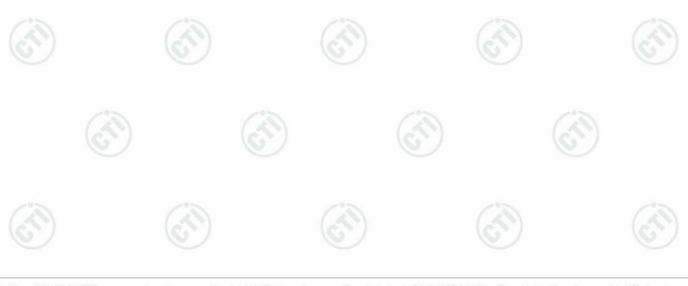
Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions


None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
	DE novem conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dadiatad Commission and all at	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction one is also	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No.: EED32M00160902 Page 10 of 51

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(0,		ـــ ک
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(0)	(6)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(6)	(5)

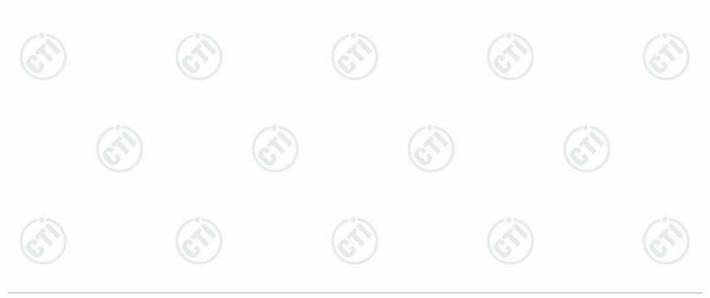
	6.7% I			1.04.76	1.00			
	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021			
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019 05-29-2020	06-13-2020 05-28-2021			
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021			
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020			

Page 11 of 51

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	Cal. Due date (mm-dd-yyyy) 06-18-2020 03-04-2021 03-04-2021 04-24-2021 04-24-2021 05-21-2020 05-19-2021 01-08-2021 01-16-2021 04-09-2021
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019 05-20-2020	
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	(a)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(A)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(62)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

	3M :	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(20)		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	(34-	
Cable line	Fulai(3M)	SF106	5217/6A	(S)/	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001			
(cri)	(St)	9	(cri)		(1)

Report No. : EED32M00160902 Page 13 of 51

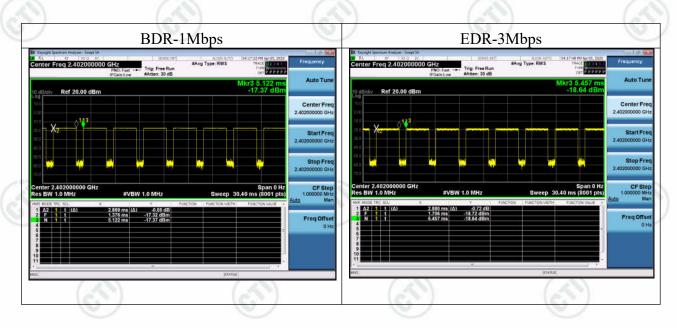

8 Radio Technical Requirements Specification

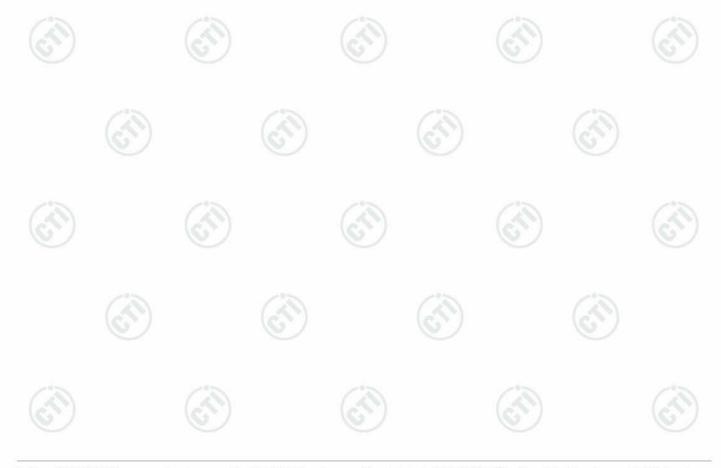
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)





Page 14 of 51

EUT DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	2.869	3.746	76.59%
EDR-3Mbps	2.880	3.751	76.78%

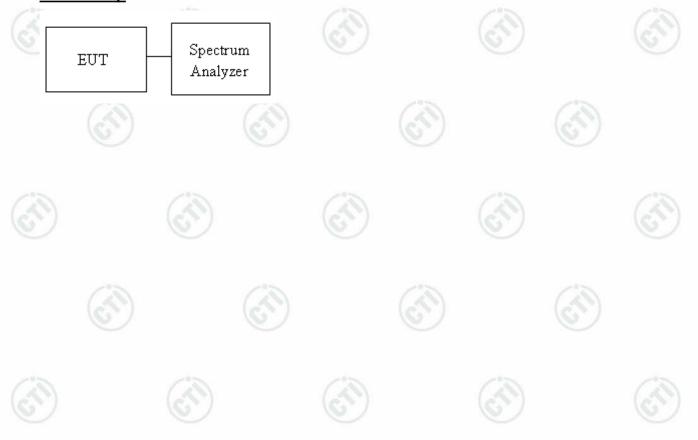
Report No.: EED32M00160902 Page 15 of 51

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:


((A)
Limit	Shall be at least 500kHz	(6)

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

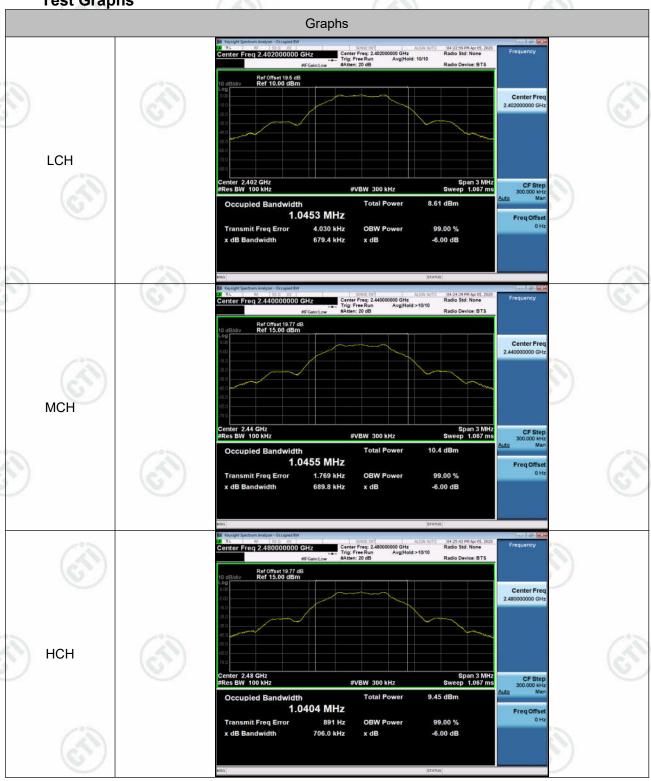
Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth .
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report. **Test Setup**

Test Result

10011100011			
Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6794	PASS
BLE	MCH	0.6898	PASS
BLE	HCH	0.7060	PASS

d l	Mode	Channel	99% OBW[MHz]	Verdict
	BLE	LCH	1.0332	PASS
	BLE	MCH	1.0355	PASS
	BLE	HCH	1.0330	PASS



6dB OBW Test Graphs

99% OBW Test Graphs

Report No. : EED32M00160902 Page 19 of 51

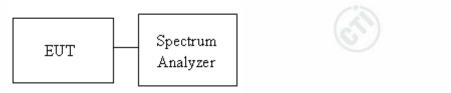
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

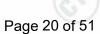
For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


Limit	 ✓ Antenna not exceed 6 dBi : 30dBm ☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] ☐ Point-to-point operation
	☐ Point-to-point operation

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW ≥ DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.


Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.484	PASS
BLE	MCH	4.148	PASS
BLE	HCH	3.379	PASS



Test Graphs

Report No. : EED32M00160902 Page 22 of 51

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

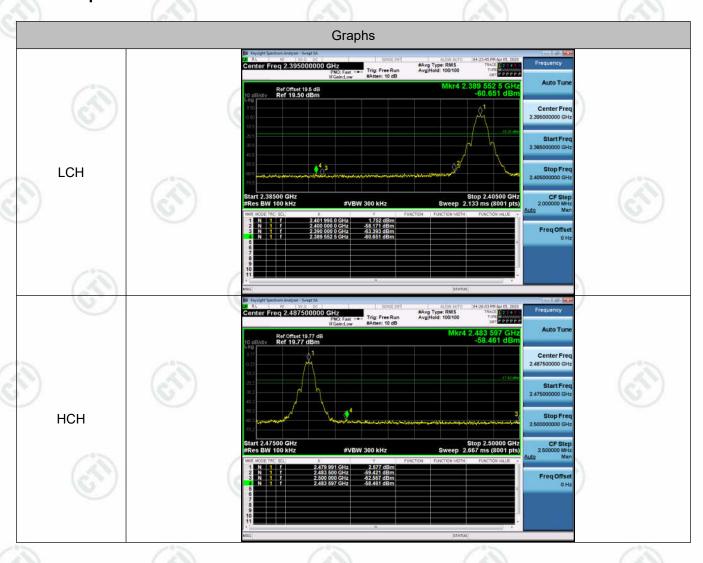
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Report No. : EED32M00160902 Page 23 of 51

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	1.752	-60.651	-18.25	PASS
BLE	HCH	2.577	-58.461	-17.42	PASS

Test Graphs

Report No. : EED32M00160902 Page 24 of 51

Appendix D): RF Conducted Spurious Emissions<u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

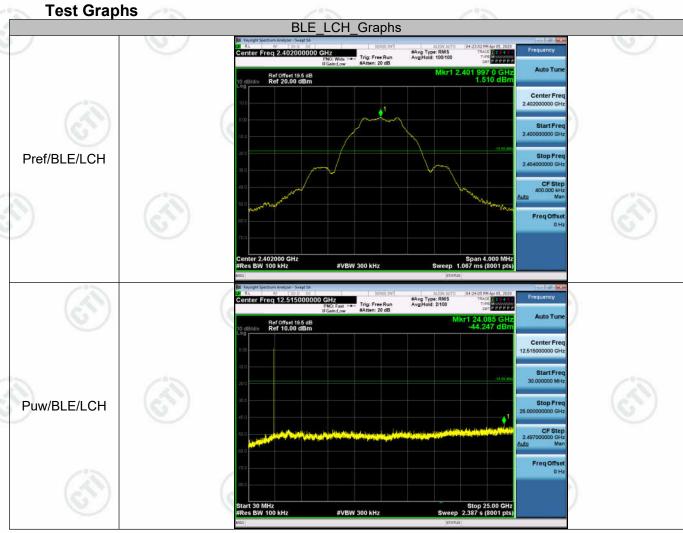
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

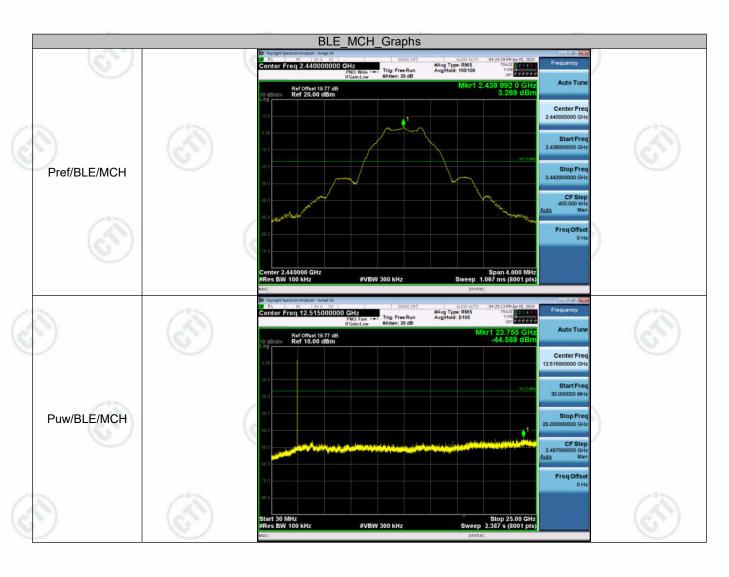
Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Result Table


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.51	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	3.269	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	2.382	<limit< td=""><td>PASS</td></limit<>	PASS

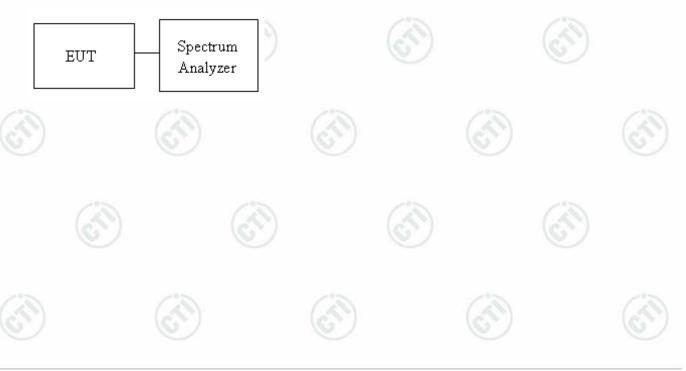
Report No. : EED32M00160902 Page 28 of 51

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :
	i diffe to point operation .

Test Procedure

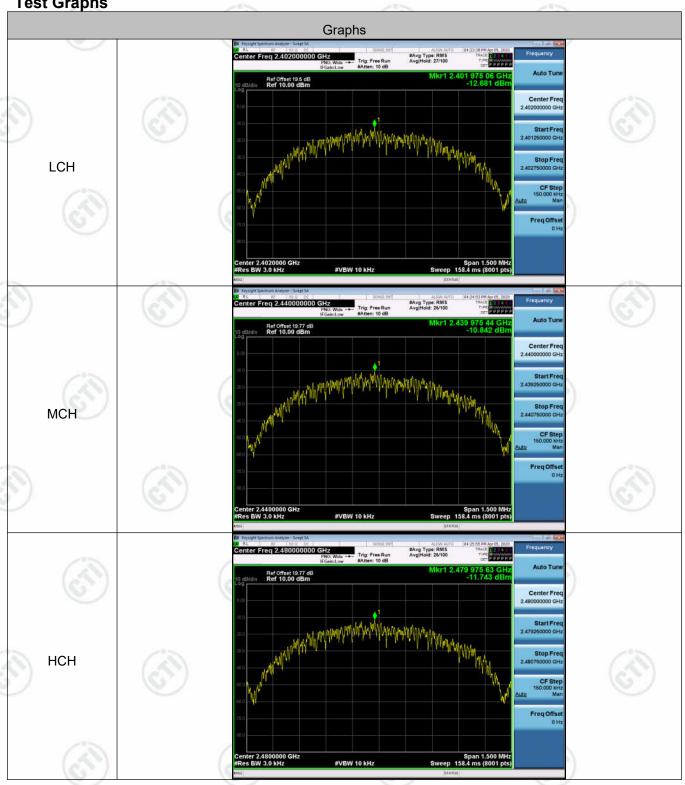
Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict		
BLE	LCH	-12.681	PASS		
BLE	MCH	-10.842	PASS		
BLE	НСН	-11.743	PASS		



Page 30 of 51

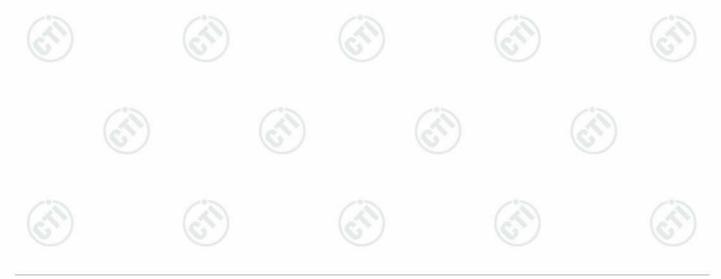
Test Graphs

Report No. : EED32M00160902 Page 31 of 51

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

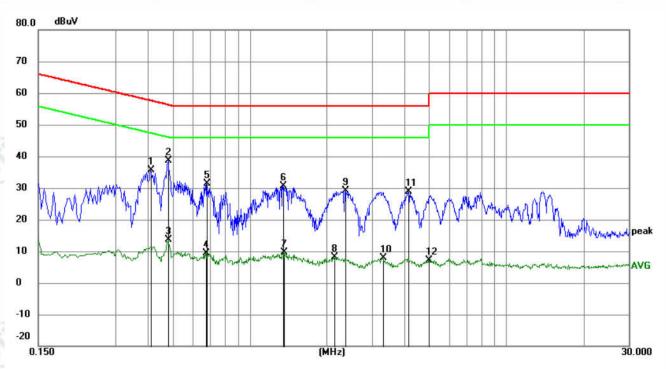
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3 dBi.

Report No. : EED32M00160902 Page 32 of 51

Appendix G)AC Power Line Conducted Emission

	Test Procedure:	Test frequency range :150KHz	-30MHz	(2)	
	root recodule.	The mains terminal disturbations of the mains terminal disturbation of the mains the main disturbation of the mains terminal disturbation of the mains terminal disturbation of the main disturbation of		onducted in a shie	lded room.
		2) The EUT was connected to	-		
		Stabilization Network) which			
		power cables of all other u			
(~)		which was bonded to the g			
		for the unit being measure multiple power cables to a			
		exceeded.	omgio ziori providod are	raing or the Lie	T Was not
		3) The tabletop EUT was place	ced upon a non-metallic	table 0.8m abov	e the ground
		reference plane. And for flo	oor-standing arrangemer		•
		horizontal ground reference			
		4) The test was performed wi			
		EUT shall be 0.4 m from th reference plane was bonder			
		1 was placed 0.8 m from			
(2)		ground reference plane for			
/		plane. This distance was b All other units of the EUT a			
		LISN 2.	ina associated equipme	ni was at icast o.	
		5) In order to find the maximu			
		all of the interface cables	s must be changed ac	cording to ANS	C63.10 on
	Limite	conducted measurement.	1 : 24 / ID	. 10	
	Limit:	Frequency range (MHz)	Limit (dB Quasi-peak	uv) Average	
		0.15-0.5	66 to 56*	56 to 46*	- 0.00
		0.5-5	56	46	
		5-30	60	50	(6)
		* The limit decreases linearly	with the logarithm of th	a fraguancy in th	
			with the logarithm of the	e frequency in the	e range 0.15
		MHz to 0.50 MHz.			
	(0,0)	NOTE : The lower limit is appli	cable at the transition fro	equency	


Page 33 of 51

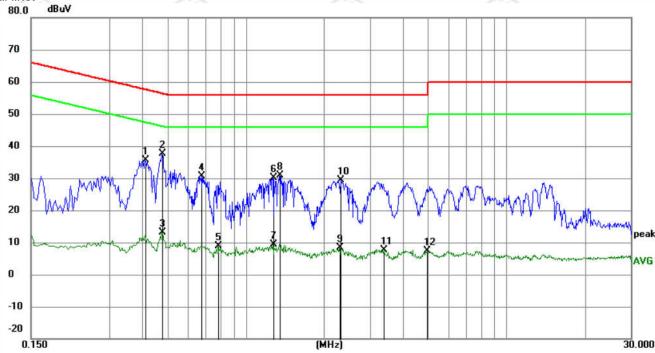
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4110	25.69	10.00	35.69	57.63	-21.94	QP	
2	*	0.4830	28.72	10.00	38.72	56.29	-17.57	QP	
3		0.4830	3.52	10.00	13.52	46.29	-32.77	AVG	
4		0.6720	-0.50	9.77	9.27	46.00	-36.73	AVG	
5		0.6809	21.58	9.73	31.31	56.00	-24.69	QP	
6		1.3515	20.76	9.88	30.64	56.00	-25.36	QP	
7		1.3560	-0.31	9.88	9.57	46.00	-36.43	AVG	
8		2.1390	-1.64	9.83	8.19	46.00	-37.81	AVG	
9		2.3640	19.32	9.83	29.15	56.00	-26.85	QP	
10		3.2955	-1.87	9.83	7.96	46.00	-38.04	AVG	
11		4.1415	19.13	9.83	28.96	56.00	-27.04	QP	
12		4.9785	-2.75	9.83	7.08	46.00	-38.92	AVG	



Page 34 of 51

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.4110	25.71	10.00	35.71	57.63	-21.92	QP	
2 *	0.4785	27.55	10.00	37.55	56.37	-18.82	QP	
3	0.4785	3.22	10.00	13.22	46.37	-33.15	AVG	
4	0.6765	20.79	9.75	30.54	56.00	-25.46	QP	
5	0.7799	-0.88	9.86	8.98	46.00	-37.02	AVG	
6	1.2750	20.34	9.89	30.23	56.00	-25.77	QP	
7	1.2750	-0.50	9.89	9.39	46.00	-36.61	AVG	
8	1.3515	21.11	9.88	30.99	56.00	-25.01	QP	
9	2.2920	-1.54	9.83	8.29	46.00	-37.71	AVG	
10	2.3190	19.46	9.83	29.29	56.00	-26.71	QP	
11	3.3855	-2.08	9.83	7.75	46.00	-38.25	AVG	
12	4.9740	-2.40	9.83	7.43	46.00	-38.57	AVG	

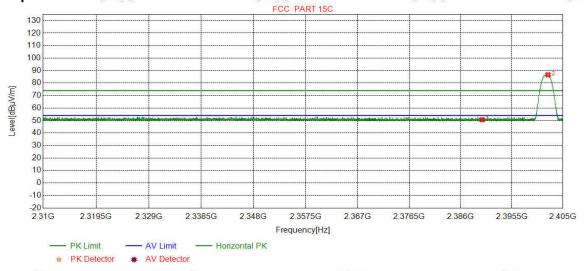
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

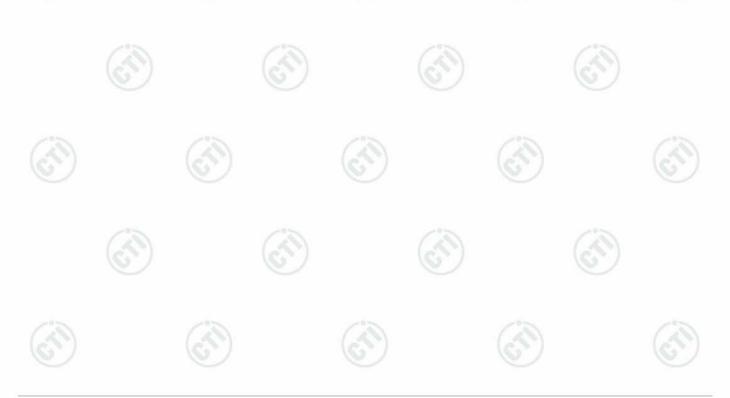
Report No.: EED32M00160902 Page 35 of 51

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Madiated)	1,00,00	10.0								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	:				
	AL 4011-	Peak	1MHz	3MHz	Peak	-0.5				
	Above 1GHz	Peak	1MHz	10Hz	Average					
Test Procedure:	Test method Refer as KDB a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me	558074 D01 , S in the top of a rot choic camber. Th of the highest rac eters away from the	ating table e table wa diation. he interfer	e 0.8 meter is rotated 3 ence-recei	360 degrees	to				
	c. The antenna height is a determine the maximum polarizations of the ant d. For each suspected en the antenna was tuned was turned from 0 degre. The test-receiver system Bandwidth with Maximum f. Place a marker at the efrequency to show com	 determine the maximum value of the field strength. Both horizontal and verti polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and t the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 								
	g. Different between above to fully Anechoic Chamma 18GHz the distance is h. Test the EUT in the load. The radiation measure Transmitting mode, and	ve is the test site, wher change form meter and table west channel, the ments are perfor d found the X axi	table 0.8 is 1.5 metens to the Highest med in X, is positioni	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse cas	ove -				
imit:	j. Repeat above procedu			1						
	Frequency	Limit (dBµV/r			mark Nak Value					
	30MHz-88MHz	40.0		<u> </u>	eak Value					
	88MHz-216MHz	43.5	- 1 - 4	7.1	eak Value					
	216MHz-960MHz	46.0		1	eak Value					
	960MHz-1GHz	54.0		<u> </u>	eak Value					
	Above 1GHz	54.0		_	e Value					
		74.0		Peak	Value					

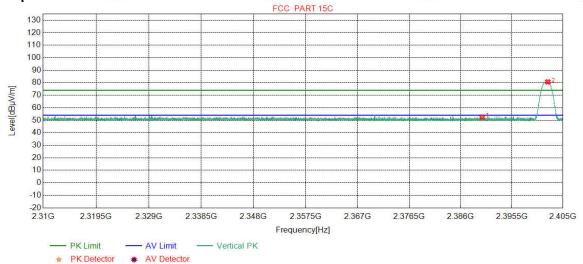


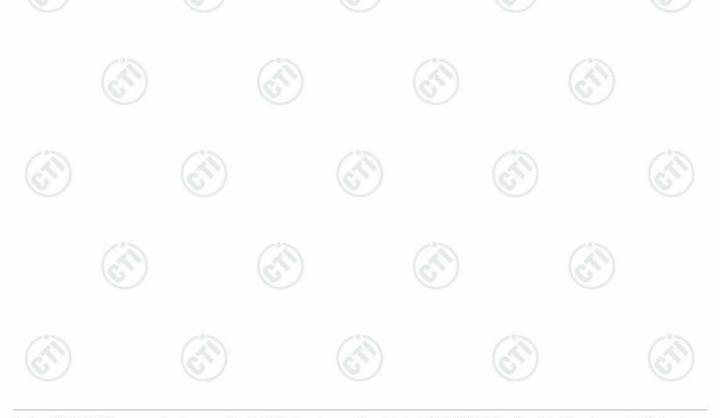
Page 36 of 51


Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

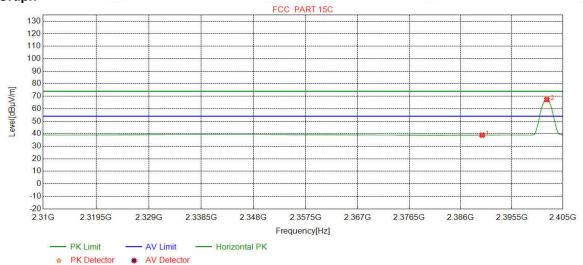

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.16	50.66	74.00	23.34	Pass	Horizontal
2	2402.2258	32.26	13.31	-43.12	84.16	86.61	74.00	-12.61	Pass	Horizontal

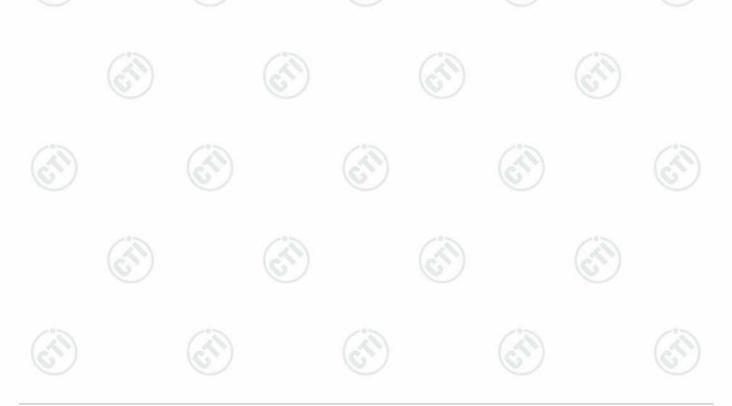


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.01	52.51	74.00	21.49	Pass	Vertical
2	2402.1878	32.26	13.31	-43.12	78.18	80.63	74.00	-6.63	Pass	Vertical

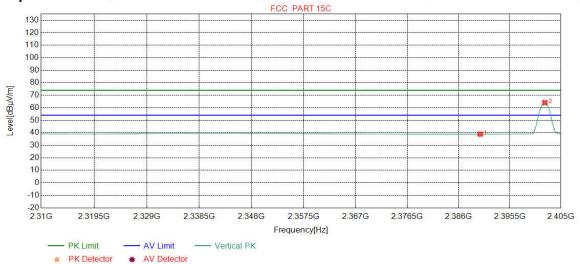


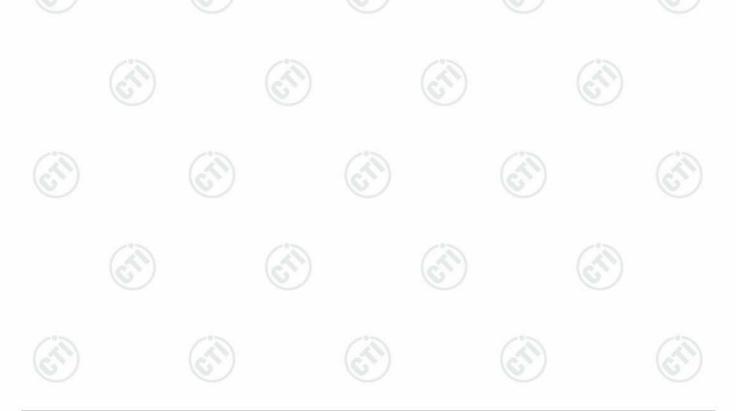

Page	38	of 51	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.38	38.88	54.00	15.12	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	64.86	67.31	54.00	-13.31	Pass	Horizontal

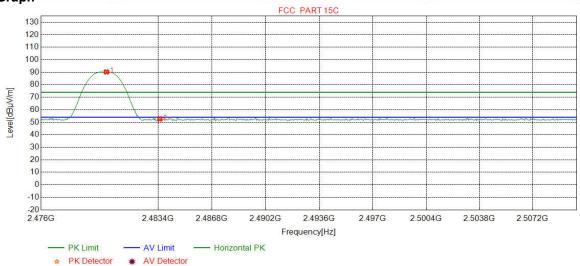


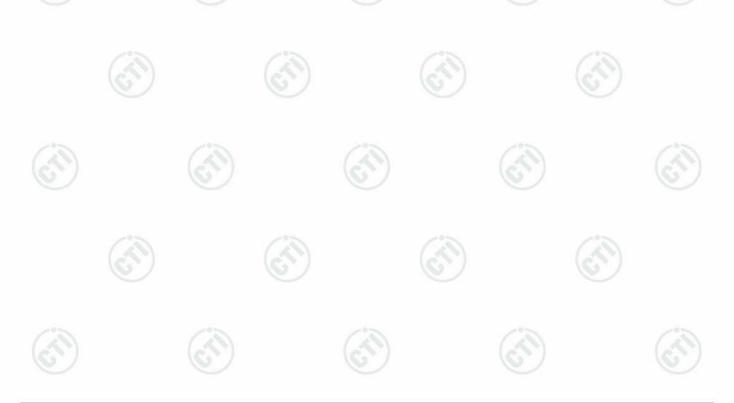

Page	39	of	51
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.35	38.85	54.00	15.15	Pass	Vertical
2	2402.0105	32.26	13.31	-43.12	61.62	64.07	54.00	-10.07	Pass	Vertical

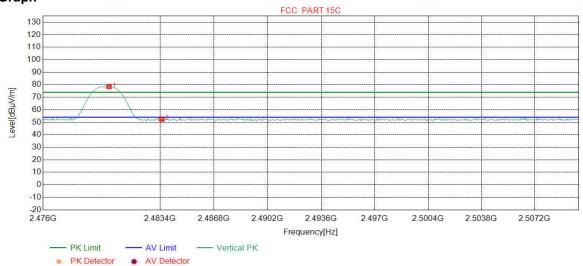


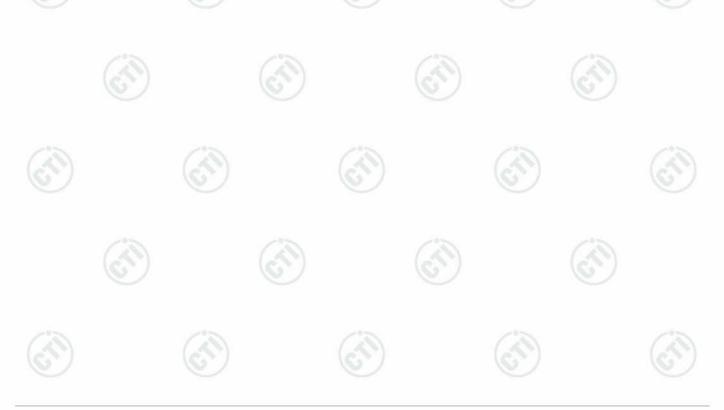

Page	40	of 51	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1277	32.37	13.39	-43.10	87.54	90.20	74.00	-16.20	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.00	52.65	74.00	21.35	Pass	Horizontal

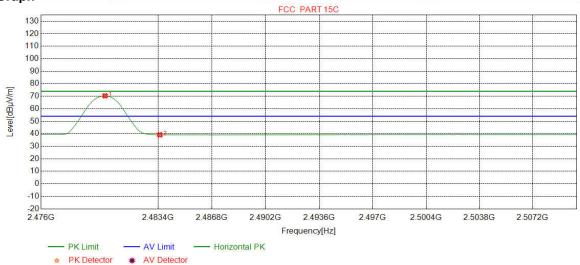


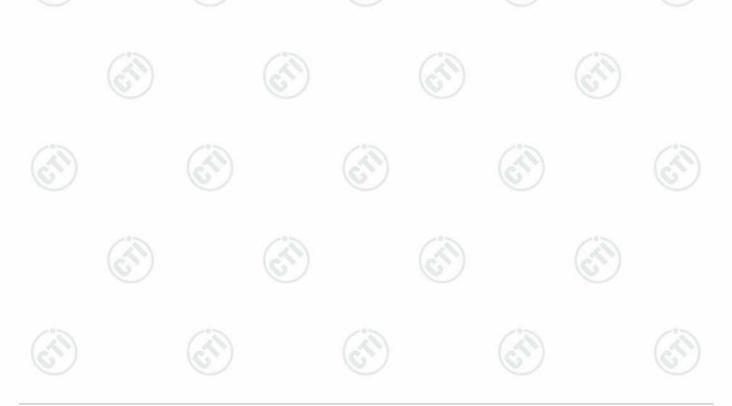

Page 41 of 51	
---------------	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1702	32.37	13.39	-43.10	75.82	78.48	74.00	-4.48	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.72	52.37	74.00	21.63	Pass	Vertical

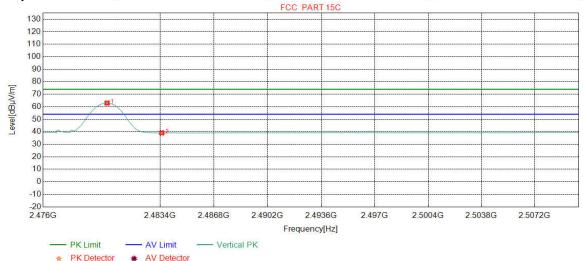



Page 42 of 51

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

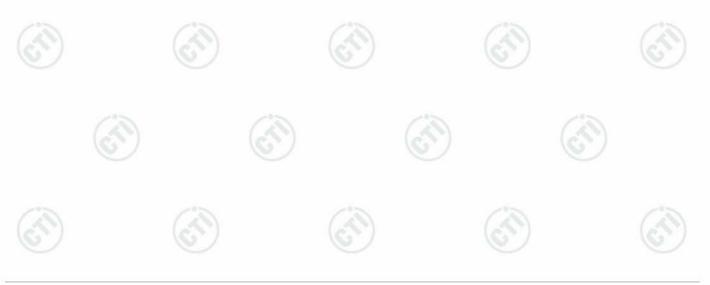
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	67.68	70.34	54.00	-16.34	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.53	39.18	54.00	14.82	Pass	Horizontal



Page -	43	of	51	
--------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	60.28	62.94	54.00	-8.94	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.47	39.12	54.00	14.88	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00160902 Page 44 of 51

Appendix I) Radiated Spurious Emissions

120	1,57%	100				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	130
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above 1GHZ	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32M00160902 Page 45 of 51

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e:		BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	44.0664	13.03	0.74	-31.63	47.94	30.08	40.00	9.92	Pass	Н	PK
2	121.9652	8.91	1.31	-32.07	60.72	38.87	43.50	4.63	Pass	Н	PK
3	286.0086	12.92	2.01	-31.90	42.62	25.65	46.00	20.35	Pass	Н	PK
4	499.4299	16.99	2.67	-31.90	41.29	29.05	46.00	16.95	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.25	29.68	46.00	16.32	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	32.99	26.11	46.00	19.89	Pass	Н	PK
7	42.7083	12.79	0.74	-31.53	49.53	31.53	40.00	8.47	Pass	V	PK
8	128.0768	7.99	1.32	-32.03	53.67	30.95	43.50	12.55	Pass	V	PK
9	276.0166	12.72	1.98	-31.91	44.86	27.65	46.00	18.35	Pass	V	PK
10	507.7728	17.16	2.69	-31.94	44.58	32.49	46.00	13.51	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	43.30	33.73	46.00	12.27	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	37.70	30.82	46.00	15.18	Pass	V	PK

Transmitter Emission above 1GHz

Mode	Mode:			FSK Tran	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2125.7126	31.88	3.62	-43.18	61.10	53.42	74.00	20.58	Pass	Н	PK
2	3997.0665	33.80	4.33	-43.00	53.09	48.22	74.00	25.78	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	49.74	45.99	74.00	28.01	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	47.46	47.42	74.00	26.58	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.35	48.52	74.00	25.48	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	46.59	51.60	74.00	22.40	Pass	Н	PK
7	2126.1126	31.88	3.62	-43.18	55.63	47.95	74.00	26.05	Pass	V	PK
8	3187.0125	33.27	4.63	-43.10	49.84	44.64	74.00	29.36	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	50.82	47.07	74.00	26.93	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	50.79	50.75	74.00	23.25	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.12	48.29	74.00	25.71	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.55	51.56	74.00	22.44	Pass	V	PK

Mode:			BLE G	FSK Trans	mitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cabl e loss [dB]	Pream gain [dB]	Read ing [dBµ V]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2125.9126	31.88	3.62	-43.18	60.24	52.56	74.00	21.44	Pass	Н	PK
2	3993.0662	33.79	4.33	-43.00	50.10	45.22	74.00	28.78	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	49.53	46.03	74.00	27.97	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	48.79	48.92	74.00	25.08	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.98	49.31	74.00	24.69	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	45.54	50.73	74.00	23.27	Pass	Н	PK
7	1377.4377	28.28	2.86	-42.70	53.35	41.79	74.00	32.21	Pass	V	PK
8	2131.1131	31.88	3.62	-43.17	52.70	45.03	74.00	28.97	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	49.82	46.32	74.00	27.68	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	51.45	51.58	74.00	22.42	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	46.66	48.99	74.00	25.01	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.52	50.71	74.00	23.29	Pass	V	PK

Mode:			BLE G	SFSK Tran	nsmitting		Channel:		2480		
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.6332	28.23	2.79	-42.75	54.22	42.49	74.00	31.51	Pass	Н	PK
2	2123.1123	31.87	3.61	-43.17	59.38	51.69	74.00	22.31	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.14	44.66	74.00	29.34	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	49.06	49.34	74.00	24.66	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.63	49.09	74.00	24.91	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.28	52.78	74.00	21.22	Pass	Н	PK
7	2129.9130	31.88	3.62	-43.17	55.82	48.15	74.00	25.85	Pass	V	PK
8	3996.0664	33.80	4.33	-43.00	50.67	45.80	74.00	28.20	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	47.90	44.42	74.00	29.58	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	50.82	51.10	74.00	22.90	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	47.35	49.81	74.00	24.19	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.67	52.17	74.00	21.83	Pass	V	PK

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32M00160902 Page 51 of 51

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32M00160901 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

